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Abstract

While stable matching problems are widely studied, little
work has investigated schemes for effectively eliciting agent
preferences using either preference (e.g., comparison) queries
or interviews (to form such comparisons); and no work has
addressed how to combine both. We develop a new model for
representing and assessing agent preferences that accommo-
dates both forms of information and (heuristically) minimizes
the number of queries and interviews required to determine a
stable matching. Our Refine-then-Interview (RtI) scheme uses
coarse preference queries to refine knowledge of agent pref-
erences and relies on interviews only to assess comparisons
of relatively “close” options. Empirical results show that RtI
compares favorably to a recent pure interview minimization
algorithm, and that the number of interviews it requires is
generally independent of the size of the market.

Introduction
Due to its interesting structure and real-world importance,
stable marriage/matching problems (SMPs) have generated
considerable interest since Gale and Shapley’s (1962) sem-
inal paper. In its most basic form, participants from each of
two sides of a matching market (e.g., men and women, hos-
pitals and residents) express preferences—in the form of a
ranking—over those on the other side. The aim is to find a
bipartite matching (e.g., one-to-one in marriage, many-to-
one in resident matching) that is game-theoretically stable,
i.e., robust to deviation by any couple/pair. The problem has
wide applicability, including school choice and matching in
residency (or other labor) markets (Niederle, Roth, and Son-
mez 2008). Since Gale and Shapley’s (1962) deferred accep-
tance algorithm (DFA), numerous algorithmic developments
have extended the utility of this model.

One impediment to the use of DFA (and its extensions)
is the requirement that agents specify their complete pref-
erences, in the form of a total order (or preorder) for their
counterparts on the other side of the market. This creates
two difficulties. First, ranking all options imposes a signif-
icant cognitive burden on agents, requiring a large number
of (say) pairwise comparisons. Many of these may in fact
be unnecessary to the discovery of a stable matching. Pref-
erence elicitation schemes, including DFA, that incremen-
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tally elicit only the preference information deemed to be
necessary to construct a stable matching, can help alleviate
this burden. In the sequel, we draw heavily on the partial
preference representation and minimax-regret-based elicita-
tion scheme devised in our previous work (Drummond and
Boutilier 2013) (we refer to this model and method as DB).

A second difficulty is that, even with efficient elicitation
schemes, agents may be unable to rank two options with-
out engaging in additional information gathering activities.
In marriage markets, this might take the form of dating,
while in labor markets, this takes the form of interviews. In-
deed, the National Residency Matching Program (NRMP)
has served as a centralized clearing house since 1952 to de-
termine stable matchings of hospitals and residents in the
US (NMRP 2013). However, preference assessment is very
costly—residents spend $1,000 to $5,000 to interview with
an average of 11 programs each (Anderson et al. 2000).
Since residents only rank the programs with whom they in-
terview, rankings submitted to NRMP will be strongly influ-
enced their choice of interviews.

Given their costly nature, interview minimization is crit-
ical. Rastegari et al. (2013) address this problem, showing
that interview minimization is computationally intractable,
but developing a feasible method that is tractable if cer-
tain (rather restrictive) preference information is provided
a priori; we refer to this model as RCIL in the sequel. Two
weaknesses of this approach are: the limited circumstances
in which it works; and lack of assessment of the elicitation
requirements needed to provide the “prior” preferences.

In this work, we provide a unified model that allows for
the assessment of preferences using both direct queries and
interviews. Specifically, we assume that direct comparisons
can be made by agents if two options are sufficiently dis-
tinct (i.e., well-spaced) in their true (but partially latent)
underlying ranking; but that such a comparison requires in-
terviews of both options if they are close in their ranking.
Our method uses minimax regret to determine robust solu-
tions to matching problems given partial information, and
generates (a heuristically minimal number of) queries and
interviews that are guaranteed to reach a stable matching.
In doing so, we: (i) extend the preference representations of
both DB and RCIL; (ii) extend the minimax-regret based ap-
proach of DB to accommodate interviews; and (iii) provide
a tractable (polytime) scheme for generating interviews (and



queries) that deals with more general partial preferences that
RCIL. Experimental results demonstrate the effectiveness of
our scheme.

Background
We review stable matching problems (SMPs), focusing on
one-to-one matchings (e.g., marriages) for ease of exposi-
tion. We also discuss recent work on SMPs with partial pref-
erences, preference elicitation, and interview minimization,
explicating key concepts upon which our work is based.

Stable Matching Problems. We describe one-to-one
SMPs using stable marriage terminology. Assume a set of
men M and women W , each of size n. Each person q pro-
vides a strict total ordering �q over the set R(q), where
R(q) is the “opposite side” of the market (e.g., if q ∈ W ,
then R(q) = M ) and a �q b means q prefers a to b. Let
� be a preference profile consisting of a ranking for each
q ∈ M ∪W . A matching µ : M ∪W → M ∪W requires
µ(w) ∈M, ∀w ∈W , µ(m) ∈W, ∀m ∈M , and µ(w) = m
iff µ(m) = w. A blocking pair for µ is a pair (m,w) s.t.
w �m µ(m) and m �w µ(w) (i.e., m,w prefer to be with
each other than their partners in µ). We say µ is stable if it
admits no blocking pairs.

The deferred acceptance algorithm (DFA) is a polynomial
time algorithm for SMPs (Gale and Shapley 1962). Briefly,
the (female-proposing) algorithm proceeds as follows: ini-
tially, everyone is unmatched. During each round, all un-
matched women propose to the man highest in their ranking
to whom they have yet to propose. A man receiving multiple
proposals (including any tentative partner) accepts his most
preferred proposal (tentative partner). This continues until
all women are tentatively matched, and this final tentative
match µ is returned. Despite its simplicity, DFA always re-
turns a stable matching, and has many important properties
(e.g., it is proposer optimal and strategy-proof). DFA can
be applied to many-to-one problems with a variety of real-
world applications (Roth 1984; Abdulkadiroglu et al. 2005)
and extends to handle richer forms of preferences (e.g., in-
difference, acceptability cutoffs).

Matching and Preference Elicitation. As discussed
above, the burden of providing a complete ranking of all
potential partners can be considerable in large-scale match-
ing markets. Recent work has considered eliciting partial
information about agent preferences, just enough to ensure
a stable match is found. In principle, DFA can be used as
an elicitation scheme, but rarely done so in practice. Biró
and Norman (2012) propose a stochastic matching technique
that can be interpreted as an elicitation scheme. However,
it scales poorly and requires far more rounds than the DB
scheme we adopt below (Drummond and Boutilier 2013).

Drummond and Boutilier (2013) propose a method for
computing robust matchings, using the notion of minimax
regret, that are approximately stable given partial informa-
tion about agent preferences in the form of pairwise compar-
isons. They use this to drive an elicitation scheme that asks
“relevant” queries of agents to help determine stable match-
ings with relatively little preference information—typically

log2(n) queries per agent on average, much less than elicited
by DFA. We describe this model (hereafter dubbed DB) in
detail, since we draw on it later.

A partial preference ranking Pq for agent q is a consistent
set of pairwise comparisons (i.e., partial order) over R(q).
We say Pq are partitioned preferences (PP) if it partitions
R(q) into subsets or blocks G1, . . . , Gk s.t. gi �q gj for
any gi ∈ Gi, gj ∈ Gj , i < j, and all gi ∈ Gi are un-
compared. Let C(Pq) be the set of all consistent comple-
tions of Pq . Such partial preferences reflect incompleteness
of the knowledge of the matching mechanism, hence the set
of completions C(Pq) reflect the possible realizations of q’s
preferences from the perspective of the mechanism. In the
DB model, one assumes all agents q have a complete under-
lying ranking �q; and that q can compare any two alterna-
tives r and r′ (i.e., determine whether r �q r′ or r′ �q r)
without gathering additional information. Of course, certain
comparisons may be more computationally or cognitively
demanding than others; indeed, DB also consider such cog-
nitive costs, as we do below.

If the mechanism must select a matching given a profile
P of partial preferences, stability may not be guaranteed.
DB use max regret to define the potential degree of instabil-
ity of a matching, assuming a worst-case completion of the
profile, and propose minimax regret as a robustness criterion
for matching. Let s(r,�) = n− rank(r,�) be the (inverse
Borda) score of r in ranking �. DB define:
Regret(q, r′, r,�q) = sq(r

′,�q)− sq(r,�q) (1)

PMR(q, r′, r, Pq) = max�q∈C(Pq)sq(r
′,�q)− sq(r,�q) (2)

Inst(m,w, µ,�m,�w) = (3)
min{PMR(m,w, µ(m),�m),PMR(w,m, µ(w),�w)}

Inst(µ,�) = max
(m,w)

Inst(m,w, µ,�m,�w) (4)

MR(µ,P) = max
�∈C(P)

Inst(µ,�) (5)

MMR(P) = min
µ

MR(µ,P); µ∗P ∈ argmin
µ

MR(µ,P). (6)

The maximum regret MR(µ,P) of matching µ given par-
tial profile P is the maximum incentive any blocking pair
has to defect from µ, under any realization of preferences
consistent with the partial profile P. The minimax-optimal
matching µ∗ minimizes this max regret. If MMR(P) = 0,
then µ∗ is in fact stable, despite the incompleteness in pref-
erences. While computing µ∗ is NP-complete, DB devise
polytime methods, known as PPGS, that offer excellent re-
sults in practice.

DB also describe an elicitation scheme that uses the
MMR-solution to guide the querying process. Agent partial
preferences are always of the partitioned form, and at each
stage, one or more agents is asked to refine one of its blocks
by dividing it into a “top half” (more preferred) and “bottom
half” (less preferred). They show this scheme to be quite ef-
fective, but again it assumes that agents can answer queries
without additional information gathering.

Interview Minimization. Rastegari et al.(2013) (hereafter
RCIL) investigate interview policies that minimize total in-
terview costs for SMPs from a theoretical perspective. Much
like the DB elicitation method, their aim is to find an in-
terview policy that, beginning with a partial profile, will



provide enough preference information to ensure a stable
matching can be computed. RCIL define an interview to be
an information gathering step taken by two agents (say m,
w), one on each side of the market. After the interview, m
(resp. w) is able to rank all options they have interviewed
with, includingw (resp.m). In other words, if (say) q has in-
terviewed with both r and r′, then q can definitively answer
whether r �q r′ or r′ �q r. This is the form of interview we
assume in this work as well.

RCIL show the general problem of interview minimiza-
tion is NP-hard, even with the PP model, and propose an
MDP formulation to solve the problem (though one that
is quite impractical). They also consider the restricted case
when the partitioned preferences of agents on one side of the
market have identical structure (i.e., identical blocks), and
provide a poly-time algorithm Lazy Gale-Shapley (LGS) to
compute an interview-minimizing policy. The method pro-
vides a proposer-optimal stable matching. However LGS re-
stricts the true underlying preferences, requires small blocks
(i.e., considerable prior information) to ensure small num-
ber of interviews, and does not analyze the method or costs
needed to assess the “prior” preferences.

Combining Elicitation and Interviews
In many settings, the practical assessment of prefer-
ences in matching markets requires both direct preference
elicitation—asking agents to compare or rank options about
which they have adequate information—and interviews—
allowing agents to determine the properties of specific op-
tions needed to make such comparisons. We outline a frame-
work and elicitation scheme for doing just this. Our scheme
is a direct extension of the DB elicitation method, allow-
ing agents to express uncertainty in the response to cer-
tain queries prior to interviewing with specific options. It
can also be viewed somewhat loosely as an extension of the
RCIL/LGS scheme, since it does not rely on restrictive pref-
erence assumptions of LGS; and it provides a means for ac-
quiring the prior preferences needed by the LGS scheme to
compute the minimal set of interviews.

We first describe our preference query model and assump-
tions about agents’ ability to answer queries without inter-
views, as well as the representation of preferences. We then
describe a method for approximating minimax regret given
a partial profile. Finally, we describe a combined elicitation-
interview protocol, Refine-then-Interview (RtI), that in some
sense unifies the DB and RCIL models.

Overlapping Partitioned Preferences
The DB model for representing partial preferences (and
computing minimax regret) supports arbitrary pairwise com-
parisons. However, their elicitation scheme is based on halv-
ing queries, which ensures that each partial preference is
in fact partitioned. Let agent q have true (latent) prefer-
ence �q over n options, and let the mechanism’s knowl-
edge of �q be a PP G1, . . . , Gk. A halving query asks q
to split one of the blocks Gj into a more preferred half
G+
j and a less preferred half G−j , leading to a refined PP

G1, . . . , Gj−1, G
+
j , G

−
j , . . . , Gk. This scheme assumes that

q is able to answer arbitrary pairwise comparisons to refine
any block of the partition.

While many pairwise comparisons are relatively straight-
forward, others cannot be assessed without engaging in an
interview. To model this, let w ≤ n be a window size. We
assume q is able to state whether option a is preferred to
b if |s(a,�q) − s(b,�q)| ≥ w in the q’s latent ranking
�q; otherwise we assume that interviewing with both op-
tions is needed to distinguish them. For example, if the at-
tributes of a and b are sufficiently distinct (e.g., East Coast
vs. West Coast hospital), then q’s preference may be obvi-
ous; but if they are similar, then q may need interviews to
rank one over the other. Having rank-distance determine the
difficulty of comparison (or odds of choosing incorrectly) is
commonly assumed in econometrics and psychometrics as
well (e.g., as in the Luce-Shepard choice model (Luce 1959;
Shepard 1959)).

In our query model below, we ask halving queries as in
DB. However, we assume that when splitting a block Gk of
size g > w, q is able to determine the (g − w)/2 options
she knows to lie in the top half G+

k of G, and the (g − w)/2
options in the bottom half G−k but the remaining w options
form an uncertain middle tier, G?

k, all elements of which
could lie somewhere in the top or bottom half of Gk. We as-
sume that distinguishing any two of these options from each
other—and from the w/2 least-ranked elements of G+

k and
the w/2 top-ranked elements of G−k —requires interviews.
In particular, prior to interviews, q believes the elements of
G?
k lie in any of the middle 2w positions of Gk.
We fix the window size w, and assume that the top and

bottom partitions have the same size, i.e., |G−k | = |G
+
k | =

(g − w)/2, for all agents and all queries. This is merely for
ease of exposition. Neither of these assumptions impact the
algorithms below, and a model where the window size and
precise location of the resulting split varies across agents—
and for a given individual, across queries—can be addressed
using the same techniques.

Our representation, the overlapping partitioned prefer-
ences (OPP) model, maintains a set of blocks, as in the par-
titioned case, but also the set of eligible positions, p(Gk) =
(t(Gk), b(Gk)), that elements of any block Gk can occupy
in the true ranking �q (where t(Gk), b(Gk) are the top and
bottom such positions). A response to a halving query for
Gk (with mid-pointm(Gk)) thus refines that block into three
blocks with the following sizes and allowable positions:

|G+
k | = (|Gk| − w)/2, p(G+

k ) = [t(Gk),m(Gk)− 1]

|G?
k|=w, p(G?

k)=

{
[m(Gk)−w,m(Gk)+w], if |Gk|≥2w

[t(Gk), b(Gk)], otherwise

|G−k | = (|Gk| − w)/2, p(G−k ) = [m(Gk), b(Gk)]

We define t(a) = t(Gk) and b(a) = b(Gk) for all a ∈ Gk,
i.e., denoting the top and bottom positions an option a can
take (given the block it occupies).

These constraints imply that no block of size less than
w+2 can be halved. To refine agent preferences further, the
mechanism proposes a bidirectional interview, which allows
agents to determine their relative preference for “close” op-
tions. For any agent q on one side of the market, let I(q)



be the set of options (from the other side) with who she has
interviewed. We assume that q is able to totally order all el-
ements of I(q), so that �I(q)⊆�q . Furthermore, we require
p ∈ I(q) iff q ∈ I(p). When OPP is complemented by the
interview ordering constraints �I(q), we call this overlap-
ping partitioned preferences with interviews (OPPI).

Approximating Minimax Regret. As in the DB ap-
proach, we use minimax regret (MMR) to compute robust
matchings given a partial preference profile, where our pro-
files take the OPPI form. We will use these solutions to
drive the querying and interviewing process in the next sec-
tion. Of course, since DB show computing MMR is NP-hard
even for PP, and since OPP and OPPI include PP as a spe-
cial case, the problem remains NP-hard in our model. Fol-
lowing DB, we adopt the following strategy: given an par-
tial profile P in OPP or OPPI form, we assign each agent
q some complete ranking �q consistent with their partial
preference Pq . (We discuss completion functions below.) We
then run the GS algorithm on this completion to determine
a stable matching µ. The max regret MR(µ,P) of µ pro-
vides an upper bound on MMR(P) (repeating with multiple
completions can tighten the bound). DB show this PPGS
method is tractable by proving that pairwise max regret
PMR(q, r′, µ(q), Pq), see Eq. 2, is computable in polytime.
These PMR terms can then be used to compute MR(µ,P)
using Eq. 5 over the O(n2) potential blocking pairs.

Unfortunately, computing PMR(q, r′, r, Pq) is somewhat
more straightforward in the PP model than in OPP or OPPI.
Thus our primary goal is to show that PMR can be computed
efficiently in both models. We begin with OPP. For our pur-
poses, we need accurate calculation only when PMR ≥ 0
(if PMR < 0 we “cut it off” at 0). Using a variant of Hall’s
Theorem (see Demange, Gale, and Sotomayer 1986), we
show, given OPP Gq , that PMR(q, r′, r,Gq) = max(b(r)−
t(r′), 0). Intuitively, we recast PMR computation as an al-
location problem, where the options “bid” for a rank posi-
tion, bidding on all eligible positions given their assigned
bounds. Each option must win exactly one spot. The two
options used to compute PMR are set by the adversary, and
thus are pre-assigned their spots, which is represented by a
transformation function that removes the pre-assigned alter-
natives and now-unavailable spots. We then show that there
are no over-demanded sets after the transformation. A full
proof can be found in an extended version of the paper.1

PMR, hence MR(µ,P), can also be computed in polyno-
mial time for OPPI, requiring that we account for the inter-
view ranking constraints. We calculate PMR for an agent q
with OPPI profileGq and interview set I(q) via a subtractive
counting argument, where we calculate the maximal possi-
ble distance between two options using positional informa-
tion, and then reduce this distance to account for interview-
related information. For clarity, we present only the core of
the algorithm, deferring analysis of special cases to the ex-
tended version of the paper.

We calculate PMR by computing segments Sq , a comple-
mentary set toGq; while each block inGq is a disjoint set of

1See www.cs.toronto.edu/∼cebly/papers.html.

Algorithm 1 Constructing Segments (|Gk| ≥ w, ∀k)

Require: Gq, I(q)
1: for Gk ∈ Gq
2: if k is odd
3: mid =

∑k−1
i=0 |Gi|+ |Gk|/2

4: t(S
G−

k
), b(S

G−
k
) = mid− w,mid− 1

5: t(S
G+

k
), b(S

G+
k
) = mid,mid + w − 1

6: else
7: prev mid =

∑k−2
i=0 |Gi|+ |Gk−1|/2

8: next mid =
∑k
i=0 |Gi|+ |Gk+1|/2

9: t(S
G−

k
), b(S

G−
k
) = prev mid, prev mid + w − 1

10: t(S
G+

k
), b(S

G+
k
) = next mid− w, next mid− 1

11: S
G−

k
= generate seg(Gk, t(SG−

k
), b(S

G−
k
))

12: S
G+

k
= generate seg(Gk, t(SG+

k
), b(S

G+
k
))

13: Sq[Gk] = S
G−

k
, S
G+

k

14: def generate seg(Gk, top, bottom)
15: //Generates segment s
16: t(s) = top, b(s) = bottom
17: s.dom = {Gx s.t. t(Gx) ≤ b(s) and b(Gx) ≥ t(s)}
18: s.boundaries = {(max(t(s), t(Gx)),min(b(s), b(Gx))

s.t. Gx ∈ dom}
19: s.required = populate required(s)
20: s.ordered req = s.required, s.t. it’s consistent with I(q)
21: def populate required(s)
22: push up = Gs.dom[0]

23: push down = Gs.dom[1]

24: s.required[dom[−1]] = |{x ∈ I(q) ∩Gs.dom[−1] s.t.
∃y ∈ push up s.t. x �I(q) y}|

25: s.required[dom[0]] = |{x ∈ I(q) ∩Gs.dom[0] s.t.
∃y ∈ push down s.t. y �I(q) x}|

alternatives (with overlapping positions), each segment in Sq
is a disjoint set of positions (with overlapping alternatives).
Alg. 1 shows how to calculate these segments. (For ease of
exposition, we assume |Gk| ≥ w, ∀Gk ∈ Gq; see extended
version of the paper describes details for other cases).

Segments are generated by first identifying the extremal,
overlapping portions of each block, and then characterizing
them. Each block has two extremal positional segments—
an upper and lower segment (corresponding to its upper and
lower bounds). When |Gk| ≥ w, ∀Gk ∈ Gq , each segment
will be exactly of size w (when |Gk| < w, then |s| > w for
one of its segments s). We identify these extremal positions
using the partial preference structure imposed by our elici-
tation scheme (Lines 2–13), though these upper and lower
positional bounds could be given as input. In our setting, the
uncertain blocks (G?

j when halving block Gj) partition the
extremal segments. (All uncertain blocks have an odd index;
Lines 2–5.) All other blocks have their extremal positions
defined by the odd blocks as well (Lines 7–10).

Once the positions are determined (or given) for a seg-
ment, then all characteristic information is generated. The
domain of the segment is every blockGx s.t.Gx overlaps the
segment’s bounds (Line 17). Each block in the domain has
boundaries associated with it that are the subset of positions
an element in Gx is allowed to take in the segment—some
Gx may have tighter bounds than the segment itself (Line
18). Most importantly, some constraints in I(q) require that
certain elements from some domains must be placed in this



Algorithm 2 Calculating PMR for OPPI (|Gk| ≥ w, ∀k)

Require: Agent q’s OPPI profile Gq , with interviews I(q), seg-
ments Sq , reversed input q−1, and alternatives a, a′

1: if |I(q)| < 2
2: PMR(q, a′, a,Gq) = max(b(a)− t(a′), 0)
3: else
4: if a �I(q) a′ or b(a) < t(a′)
5: PMR(q, a′, a,Gq) = 0
6: else if k < j
7: Edge case (see extended version)
8: else
9: r(a′) = n− 1− find lower bound(a′, q−1)

10: r(a) = find lower bound(a, q)
11: PMR(q, a′, a,Gq) = max(r(a)− r(a′), 0)
12: def find lower bound(a, q)
13: if a /∈ Iq
14: seg up, seg down = Sq[Gk]
15: if placing a in seg down is legal
16: return b(a)
17: else //place in the bottom of upper segment
18: return b(seg up)
19: else //a ∈ I(q)
20: if a required to be in seg up
21: lowest a = b(seg up)− |{x ∈ I(q) s.t.

a �I(q) x and p(x) ≥ b(seg up)}|
22: holes = # spaces not already required via I(q) between

b(seg up), b(seg down)
23: else
24: s = seg down
25: lowest a = b(a)− |{x ∈ I(q) s.t. a �I(q) x and

x ∈ seg down.req}|
26: holes = 0
27: free = |Gseg down.dom[−1] − I(q)|
28: mand = |seg down.req.dom[−1]|
29: return lowest a - max(0, w/2− (holes + mand + free)

segment. This is what allows for us to quickly count the in-
terview constraints when calculating PMR. Lines 21–25 de-
scribe the method for finding these required elements. Intu-
itively, given some x in the less desirable block, and y in the
more desirable block, if x �I(q) y, both x and y must be in
this segment.

We now examine these extremal segments to calculate
PMR(q, a′, a,Gq) given chosen option a and adversarial
selection a′, as shown in Alg. 2 (again, see the extended
paper for the full algorithm). Note that, if |I(q)| < 2,
calculating PMR for OPPI reduces to calculating PMR
on OPP preferences (Lines 1–2). Otherwise, we check if
PMR(q, a′, a,Gq) is forced to be zero either given avail-
able positional information (a′ must be placed below a) or
interview information (a �I(q) a′) (Lines 4–5). If not, the
algorithm consists of two main cases using the segments: a
is in a more desirable block than a′, and the maximal po-
sitions of a and a′ must be calculated simultaneously; or,
the maximal position of a and a′ can be calculated inde-
pendently (this is a simple, but tedious, argument by cases
to ensure that no options are double-counted). We note that
calculating the best position a′ can take is equivalent to cal-
culating the worst position a′ can take for an agent q−1 with
“reversed” preferences (Lines 9–11). Thus, the remainder of
the PMR algorithm involves calculating this worst position,

which uses similar intuitions to those used to calculate a and
a′’s positions simultaneously (some edge cases must be con-
sidered to ensure that no double-counting occurs).

Computing the maximum (worst) position a can take
(Lines 12–29) consists of two main cases: a /∈ I(q) (i.e.,
a not interviewed) and a ∈ I(q) (i.e., a interviewed). If
a /∈ I(q), there are fewer constraints on a’s placement,
though we still need to guarantee that a valid ranking ex-
ists given a’s assigned placement. We want to place a as low
as possible in its bottom extremal segment. However, if I(q)
requires too many options to be placed in this bottom seg-
ment, we place a at the bottom of its top segment (Line 18).
Otherwise, there is room in the bottom segment, and with no
constraints on a’s placement imposed by I(q), we place a at
its maximal position (Line 16).

When a ∈ I(q), we first compute the number of options
that must lie between a and b(a) dictated by I(q). We then
count to check that placing a there still results in a valid
ranking; we subtract positions from a’s maximal position
(i.e., move a higher in the ranking) until a valid ranking is
obtained. Since a ∈ I(q), either a is required to be in the
upper extremal segment given interview information I(q) or
this is not implied by I(q). The former occurs when there
is some option x whose positional constraints require it to
be in the upper segment, and a �I(q) x. In either case, we
compute the lowest position a is allowed to take given I(q),
a’s maximal position (Lines 21 and 25). As discussed above
in segment generation, w/2 options from the least-desirable
block whose positional information allows its members to be
placed in the bottom segment must be placed in that segment
(otherwise a valid ranking does not exist). The remainder of
the algorithm verifies that enough of the options from this
least-desirable block can be placed in the lower segment.
Since we need to ensure that there is space in the lowest
segment for the w/2 options from the least-desirable block,
we may need to move a up in the ranking by as many as
w/2 positions from its maximal position. However, there are
different ways in which we could place these w/2 options
that do not affect a’s placement. Counting these ways, as
we describe below, allows the accurate computation of the
lowest position that a can take while guaranteeing a valid
ranking is constructed.

If a ∈ I(q), the number of positions between a’s place-
ment and b(a) may not form a “dense set” (i.e., I(q) may
not require that all of these positions be filled; Line 22).
Such “holes” allow us to place more of the w/2 required
elements in the bottom segment without changing a’s posi-
tion. Furthermore, options in the least desirable block that
do not have their order fixed by I(q) (i.e., they have not
been interviewed) can be placed above a, again not chang-
ing a’s position (Line 27). All options that are required to be
in the segment have already been counted (via the number
of “holes” and the lowest legal position of a), and thus we
must not double count them (Line 28). If all of these options
account for the w/2 required positions, the lowest possible
position computed for a is valid and is returned. Otherwise,
we subtract from this the extra positions required to place the
w/2 options in the lowest segment, ensuring a valid ranking
exists (Line 28). As we show in the extended version of the



paper, this results in a method that allows PMR(q, r′, r,Gq)
to be computed in O(n3) time.

Finally, we require an efficiently computable completion
function in order to use PPGS to approximate MMR. Given
OPPI profile P, we assume a reference ranking σM (resp.,
σW ) over each side of the market.2 Our completion func-
tion places, for any q, all interviewed options in I(q) in the
highest allowable position that results in a valid ranking, and
fills remaining positions with uninterviewed options within
the relevant blocks (ties are broken using σ). More formally:
(i) Sort all blocks according to σ. (ii) For each position p,
if no interviewed options can be placed at p, place the next
uninterviewed option at p. Otherwise, count the number of
uninterviewed options r that must lie before the next block
boundary b(G). If r + 1 < b(G) − p, place an interviewed
option at p. Otherwise, place an uninterviewed option at p.
This completion takes polynomial time.

Elicitation Scheme
We now define our Refine-then-Interview (RtI) elicitation
scheme. Given a current OPPI profile P, RtI computes an
(approximately) regret-minimizing matching µ. This solu-
tion is used to guide the choice of queries or interviews at
each round with the aim or reducing MMR as much as pos-
sible. The scheme focuses on Regret Inducing (RI) agents in
µ, those whose max regret (or instability) dictates the max
regret MR(µ) of the matching. By gathering additional in-
formation, through elicitation or interviews, about their pref-
erences or those of their blocking partners, we will reduce
the regret of µ, and ideally MMR as well.

At any point we can ask an agent to either halve one of
their blocks (which we take to be less costly) or engage in
one or more interviews (which we take to be more costly).
Of course, halving only works to the point where a block has
been refined to size w; after that, interviews are required to
make further ranking distinctions. Thus, RtI, see Alg. 3, pri-
oritizes queries over interviews. Let RI (µ) denoting the set
of all regret-inducing individuals in µ. For any r ∈ RI (µ),
let BP(r) be the set of r’s potential blocking partners. Intu-
itively, RtI uses halving queries to determine roughly where
in their preference ranking each agent will be matched. Once
their preferences have been refined in the “relevant” regions
of their rankings to the extent possible without interviews,
RtI proposes interviews for the few options with whom they
could still form blocking pairs.

Since halving queries split a block into three smaller
blocks, we expect between log3(n) and log2(n) queries per
agent. However, we expect the number of interviews to be
independent of n (the size of the market) and depend only
on w (the degree to which agents can make comparisons
without interviews), in fact, to be at most approximately 2w.
This is due to the fact that halving will reduce the “relevant”
blocks in any agent q’s preference (i.e., blocks containing
viable partners) to size no greater than w; and at most two
additional blocks (one of which must be of size less than w)

2When using Mallows models (see below), we use the reference
ranking defining the Mallows model (i.e., the ranking with maxi-
mum prior probability). Otherwise, we use an arbitrary ranking.

Algorithm 3 Refine-then-Interview Elicitation Scheme
Require: OPPI profile G, threshold τ

loop
1: Compute (approximate) µ = µ∗(G), compute MR(µ,G).
2: if MR(µ,G) ≤ τ , done.
3: for each q ∈ RI (µ) s.t. q not queried this round
4: Q = {gk ∈ Gr s.t. |gk| > w + 1 ∧ ∃b ∈ BP(r)∪

{µ(r)} s.t. b ∈ gk}
5: Query (halve) every block in Q
6: if |Q| = 0 (i.e., no blocks were halved)
7: for b ∈ BP(r)
8: if b not queried this round:
9: Q = {gk ∈ Gr s.t. |gk| > w + 1 ∧ (r ∈ gk∨

µ(b) ∈ gk)}
10: Query (halve) every block in Q
11: if no blocks were halved this round
12: for r ∈ RI
13: if r not interviewed with this round
14: r interviews with BP(r) ∪ {µ(r)}
15: if r did not interview (BP(r) ∪ {µ(r)} ⊆ I(r))
16: for b ∈ BP(r)
17: b interviews with µ(b) (r ∈ I(b))

can contribute options to such a block.

Empirical Evaluation
We evaluate RtI on a variety of randomly generated match-
ing problems, using several different probabilistic models as
well as preferences derived from real-world ratings data. All
results are reported over 20 random matching instances.

Comparison to LGS. RtI and LGS solve slightly different
problems, since LGS requires very specific (more restric-
tive) prior preferences, but at the same time finds proposer-
optimal matchings (while RtI finds some stable matching).
Nevertheless, we show that with the same prior information,
RtI generates almost as few interviews as LGS, and that it
can more effectively assess “prior” preferences.

Using markets of size n = 124, 252, and a window size
of w = 4, we first compare the two using partitioned pref-
erences of the form needed by LGS: women’s (employers’)
preferences are drawn from a Mallows φ-model (Mallows
1957; Marden 1995) with dispersion φ and reference rank-
ing σ, and assign w options to each of n/w blocks. Men (ap-
plicants) must have identical blocks, so we first partition all
options into n/w blocks of size w, then create each man’s
true preference within each block by drawing a (smaller)
ranking from a Mallows distribution (same φ and projected
σ). Results for varying dispersion values are shown in Ta-
ble 1. We see that LGS and RtI generate similar numbers of
interviews, with RtI averaging less than one interview per
person more than LGS, despite its broader applicability (we
note of course that LGS is providing female (employer) op-
timal matchings and RtI is not). RtI also requires far fewer
rounds of interviews, meaning that many interviews can be
run in parallel; i.e., individual participants can work through
their interviews without for additional input from the match-
ing mechanism (e.g., waiting for other participants to com-
plete interviews). LGS by contrast must run a large number
of interviews sequentially (using prior interview results be-
fore setting interviews at the current round).



RtI LGS RtI LGS
n φ interviews interviews rounds rounds

124 0.2 3.93 (0.09) 3.66 (0.07) 7.4 (1.3) 154.3 (6.0)
124 0.6 3.19 (0.18) 2.42 (0.09) 12.2 (2.9) 163.9 (3.4)
124 1.0 3.08 (0.16) 2.37 (0.06) 13.8 (2.7) 130.0 (1.8)

252 0.2 3.92 (0.05) 3.64 (0.05) 8.8 (0.9) 314.6 (0.1)
252 0.6 3.24 (0.16) 2.41 (0.09) 15.1 (3.0) 336.6 (7.8)
252 1.0 3.03 (0.11) 2.31 (0.04) 17.2 (2.1) 258.5 (3.2)

Table 1: RtI vs. LGS (identical input): interviews/person (std.).

We also compare RtI to LGS by analyzing the “total infor-
mation” requirements of the algorithms. To do so, we pro-
vide LGS the strict blocks it needs (as above), but provide
RtI with no prior preference information. We compare the
number/cost of RtI’s queries with the queries/cost needed to
produce LGS’s prior blocks, as well as the number of in-
terviews. Table 2 shows that RtI performs well w.r.t. LGS.
While RtI generates roughly twice as many interviews as
LGS, the strict block boundaries provided to LGS require
pairwise comparisons that in the RtI model cannot be as-
sessed without interviews (hence, this comparison is mis-
leading). Despite the fact that RtI starts with no preference
information (in contrast to LGS’s blocks), RtI takes signifi-
cantly fewer rounds of combined elicitation/interviews than
LGS needs for only interviews, except when φ = 1 (uni-
formly distributed preference rankings).

Finally, we compare the (non-interview) elicitation re-
quirements of both. The number of halving queries used
by RtI, as well as their cognitive cost is show in the ta-
ble. Here we measure the cognitive cost of a pairwise com-
parison using a Luce-Shepard model, see (Drummond and
Boutilier 2013). Given preferences �q , temperature γ ≥ 0,
and threshold τ , the cost for q to compare r with r′ is:

c(r, r′) = eγ(n−min(|sq(r,�q)−sq(r′,�q)|,τ)) (7)

We set γ = 0.5, τ = 5, and normalize reported cogni-
tive cost by e(γn) (as in DB). To assess the cost of creat-
ing LGS blocks, we assume that agents can engage in par-
tial Quicksort to create blocks and have access to “perfect”
pivots at block boundaries. Again, this assumes agents can
accurately compare two “close” options without interviews
(something not allowed in RtI). RtI’s cost is computed sim-
ilarly, but unanswerable comparisons have cost 0. Eliciting
LGS’s prior preferences, when n = 124 (resp., 252), re-
quires 586 (resp., 1445) comparisons, with a cognitive cost
of 107.58 (resp., 241.61). Table 2 shows that the cost of
RtI’s queries is roughly 16% of that of LGS, and RtI needs
about 55% fewer comparisons than LGS. Thus, while LGS
requires fewer interviews—though we emphasize that LGS
obtains information without interviews that force interviews
in our model—it needs significantly more preference infor-
mation overall.

Evaluation of RtI. We now evaluate RtI using random
matching problems with preferences generated using several
different probabilistic preference models, varying both the
market size n and window size w. The models are the same
as those used by DB: the Mallows φ-model (Mallows 1957);
a riffled independence model (Huang and Guestrin 2009) de-
rived by riffling two Mallows models; and preferences de-

RtI LGS RtI RtI RtI LGS
n φ interviews interviews queries cog cost rounds rounds

124 0.2 8.81 (0.26) 3.66 (0.07) 4.63 (0.17) 17.8 (0.3) 92.3 (11.1) 154.3 (6.0)
124 0.6 7.57 (0.30) 2.42 (0.09) 4.88 (0.19) 18.1 (0.4) 125.9 (12.9) 163.9 (4.1)
124 1.0 4.94 (0.15) 2.37 (0.06) 6.35 (0.07) 21.1 (0.1) 199.1 (22.9) 123.0 (1.8)

252 0.2 8.95 (0.23) 3.64 (0.05) 5.85 (0.22) 38.8 (0.6) 135.3 (9.0) 314.6 (7.1)
252 0.6 7.60 (0.26) 2.41 (0.09) 6.17 (0.3) 39.7 (0.8) 213.4 (22.4) 304.2 (7.8)
252 1.0 4.78 (0.16) 2.31 (0.04) 8.69 (0.1) 48.3 (0.4) 488.4 (48.0) 258.5 (3.2)

Table 2: RtI (with queries) vs. LGS: interviews, etc./person (std.).
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Figure 1: RtI: Avg. queries and interviews/person; varying n, φ.

rived from MovieLens ratings data.3 In all instances, RtI be-
gins with no preference information.4

We first test RtI on a Mallows distributions, varying the
degree of preference correlation (or dispersion φ). Fig. 1
describes results for w = 4. As n increases, the num-
ber of interviews (dashed line) remains virtually constant.
The exception is when φ = 1.0 (i.e., no preference cor-
relation, or impartial culture), where the number of inter-
views required decreases, which occurs due to more het-
erogeneous preferences. With φ = 0.2, RtI generates about
2.5w interviews/person, consistent with the conjecture that
it will require between w and 2w interviews. With highly
correlated preferences, as expected, more interviews are re-
quired (this also occurs with LGS). The average number of
halving queries per person (solid lines) increases logarith-
mically w.r.t. market size, and is unaffected by degree of
preference correlation. This mirrors results in the DB query
model. Table 3 shows results as we vary w (n = 300).
As expected, the number of interviews increases with w
(and peaks at about 2w–2.5w interviews/person when pref-
erences are highly correlated), while the number of queries
is roughly constant. We note that w = 4, 6 results in a num-
ber of interviews similar to the 11 that residents average in
the NRMP (Anderson et al. 2000).

Since approximately stable matches may be sufficient for
many real world problems, we show the anytime perfor-
mance of RtI in Figs. 2a and 2b, plotting reduction in the
max regret (MR) of the induced matching as rounds (either
queries or interviews) progress (n = 300 and φ = 0.2, 1.0).
Each point represents MR after a round of RtI, vs. the
number of queries/interviews to that point. We see that no

3See http://www.grouplens.org/node/73, the 100K data set.
4Error bars are omitted (too small to be seen).



Interviews Split Queries
w φ = 0.2 0.6 1.0 0.2 0.6 1.0

4 9.88 8.00 2.84 6.84 7.42 7.31
6 15.09 13.02 4.23 6.09 6.48 7.10
8 17.82 15.45 5.13 6.27 6.59 7.08

Table 3: RtI performance varying w; n = 300.

costly interviews are generated until MR has been signifi-
cantly reduced via halving queries. Once MR is sufficiently
small, interviews are used drive MR of the matching to 0
(i.e., true stability), though occasionally, new queries are re-
quired after some initial interviews (e.g., when the estimated
matches are changed significantly after some interviews).
These trends are more obvious in Fig. 2b, where few inter-
views are requested until 5 to 6 split queries per person have
been asked, and after interviews begin, relatively few split
queries are generated.
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Figure 2: Anytime performance for RtI; n = 300.

Results on the riffle model, Fig. 3, exhibit the same trends
as above. Comparing Mallows results with φ = 0.2 to riffle
results that merge two φ = 0.2 models, we see fewer inter-
views are required in the riffle case; small perturbations in
correlated preferences, combined with two “types” of pref-
erences (as we would expect in real-world data) induces
enough heterogeneity to reduce the number of interviews.

Finally, we apply RtI to the MovieLens preference model,
with n = 300, where agent preferences are determined using
an affinity score based on how similarly they rank movies
(see (Drummond and Boutilier 2013) for details). With more
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Figure 3: RtI (riffle model): Avg. queries and interviews/person;
varying n, φ.

correlated affinities, RtI averages 4.95 interviews and 6.76
queries per person, while with less correlated affinities, it
averages 2.34 interviews and 6.65 queries per person. These
results, on a model based on real-world ratings data, are con-
sistent with the observations above.

Conclusions and Future Work

We have developed a new elicitation scheme, which uses
both queries and interviews, to assess agent preferences
in stable matching problems. When compared with the
interview-minimizing LGS algorithm (which works on re-
stricted preference structures), RtI requires a similar num-
ber of interviews when given identical input, but generally
requires significantly less overall preference information.
Our comparison has focused on cases with relatively low
preference uncertainty on the part of agents (i.e., small w).
We hypothesize this level of uncertainty is realistic in mar-
kets of the size studied here, since it generates a number
of interviews comparable to those seen in practice (Ander-
son et al. 2000). Of course, for markets with greater par-
ticipant uncertainty, RtI would require more interviews, as
would LGS or any other interview-minimizing scheme. RtI
also scales well: the number of interviews increases with the
agent uncertainty (w), not with market size, and appears to
require about 2w interviews/person on all probabilistic mod-
els tested. The number of (less expensive) halving queries
increases logarithmically with market size.

Many interesting questions remain. In many domains,
agents naturally express their preferences using option at-
tributes (not ranked lists), requiring an extension of our elic-
itation method to multi-attribute preferences (e.g., (Pilotto et
al. 2009)). We also hope to analyze other probabilistic pref-
erence models, and account for other objectives (e.g., social-
welfare-maximizing stable matchings) and constraints (e.g.,
matching with couples).
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