
Context-Specific Independence in Bayesian Networks

Craig Boutilier
Dept. of Computer Science

University of British Columbia
Vancouver, BC V6T 1Z4

cebly@cs.ubc.ca

Nir Friedman
Dept. of Computer Science

Stanford University
Stanford, CA 94305-9010

nir@cs.stanford.edu

Moises Goldszmidt
SRI International

333 Ravenswood Way, EK329
Menlo Park, CA 94025

moises@erg.sri.com

Daphne Koller
Dept. of Computer Science

Stanford University
Stanford, CA 94305-9010

koller@cs.stanford.edu

Abstract

Bayesiannetworks provide a languagefor qualitatively
representing the conditional independence properties
of a distribution. This allows a natural and compact
representation of the distribution, eases knowledge ac-
quisition, and supports effective inference algorithms.
It is well-known, however, that there are certain inde-
pendencies that we cannot capture qualitatively within
the Bayesian network structure: independencies that
hold only in certain contexts, i.e., given a specific as-
signment of values to certain variables. In this pa-
per, we propose a formal notion of context-specific in-
dependence (CSI), based on regularities in the condi-
tional probability tables (CPTs) at a node. We present
a technique, analogous to (and based on) d-separation,
for determining when such independence holds in a
given network. We then focus on a particular quali-
tative representation scheme—tree-structured CPTs—
for capturing CSI. We suggest ways in which this rep-
resentation can be used to support effective inference
algorithms. In particular, we present a structural de-
composition of the resulting network which can im-
prove the performance of clustering algorithms, and an
alternative algorithm based on cutset conditioning.

1 Introduction

The power of Bayesian Network (BN) representations of
probability distributions lies in the efficient encoding of in-
dependence relations among random variables. These in-
dependencies are exploited to provide savings in the rep-
resentation of a distribution, ease of knowledge acquisition
and domain modeling, and computational savings in the in-
ference process.1 The objective of this paper is to increase
this power by refining the BN representation to capture ad-
ditional independence relations. In particular, we investi-
gate how independence given certain variable assignments1Inference refers to the computation of a posterior distribution,
conditioned on evidence.

can be exploited in BNs in much the same way indepen-
dence among variables is exploited in current BN represen-
tations and inference algorithms. We formally characterize
this structured representation and catalog a number of the
advantages it provides.

A BN is a directed acyclic graph where each node rep-
resents a random variable of interest and edges represent
direct correlations between the variables. The absence of
edges between variables denotes statements of indepen-
dence. More precisely, we say that variables Z and Y are
independent given a set of variables X if P (z j x; y) =P (z j x) for all values x, y and z of variables X, Y andZ. A BN encodes the following statement of independence
about each random variable: a variable is independent of its
non-descendants in the network given the state of its parents
[14]. For example, in the network shown in Figure 1, Z is
independent of U , V and Y given X and W . Further inde-
pendence statements that followfrom these local statements
can be read from the network structure, in polynomial time,
using a graph-theoretic criterion called d-separation [14].

In addition to representing statements of independence, a
BN also represents a particular distribution (that satisfies all
the independencies). This distribution is specified by a set
of conditional probability tables (CPTs). Each node X has
an associated CPT that describes the conditional distribu-
tion of X given different assignments of values for its par-
ents. Using the independencies encoded in the structure of
the network, the joint distribution can be computed by sim-
ply multiplying the CPTs.

In its most naive form, a CPT is encoded using a tabular
representation in which each assignment of values to the
parents of X requires the specification of a conditional dis-
tribution over X. Thus, for example, assuming that all ofU , V , W and X in Figure 1 are binary, we need to spec-
ify eight such distributions (or eight parameters). The size
of this representation is exponential in the number of par-
ents. Furthermore, this representation fails to capture cer-
tain regularities in the node distribution. In the CPT of
Figure 1, for example, P (x j u; V;W) is equal to some
constant p1 regardless of the values taken by V and W :
when u holds (i.e., when U = t) we need not consider

p1
p1
p1
p2
p2
p3
p4

t t t

P(x)

t t f

t f

p1

t

t f f

f t t

f t f

f f t

f f f
Z

X

Y

WVU

p4p3

p2

p1

U

V

W

U VW

Figure 1: Context-Specific Independence

the values of V and W . Clearly, we need to specify at
most five distributions over X instead of eight. Such reg-
ularities occur often enough that at least two well known
BN products—Microsoft’s Bayesian Networks Modeling
Tool and Knowledge Industries’ DXpress—have incorpo-
rated special mechanisms in their knowledge acquisition in-
terface that allow the user to more easily specify the corre-
sponding CPTs.

In this paper, we provide a formal foundation for such reg-
ularities by using the notion of context-specific indepen-
dence. Intuitively, in our example, the regularities in the
CPT of X ensure that X is independent of W and V given
the context u (U = t), but is dependent onW;V in the con-
text u (U = f). This is an assertion of context-specific in-
dependence (CSI), which is more restricted than the state-
ments of variable independence that are encoded by the
BN structure. Nevertheless, as we show in this paper, such
statements can be used to extend the advantages of variable
independence for probabilistic inference, namely, ease of
knowledge elicitation, compact representation and compu-
tational benefits in inference.

We are certainly not the first to suggest extensions to the
BN representation in order to capture additional indepen-
dencies and (potentially) enhance inference. Well-known
examples include Heckerman’s [9] similarity networks (and
the related multinets [7]), the use of asymmetric represen-
tations for decision making [18, 6] and Poole’s [16] use of
probabilistic Horn rules to encode dependencies between
variables. Even the representation we emphasize (decision
trees) have been used to encode CPTs [2, 8]. The intent of
this work is to formalize the notion of CSI, to study its rep-
resentation as part of a more general framework, and to pro-
pose methods for utilizing these representations to enhance
probabilistic inference algorithms.

We begin in Section 2 by defining context-specific indepen-
dence formally, and introducing a simple, local transforma-
tion for a BN based on arc deletion so that CSI statements
can be readily determined using d-separation. Section 3 dis-
cusses in detail how trees can be used to represent CPTs
compactly, and how this representation can be exploited by
the algorithms for determining CSI. Section 4 offers sug-
gestions for speeding up probabilistic inference by taking
advantage of CSI. We present network transformations that
may reduce clique size for clustering algorithms, as well
as techniques that use CSI—and the associated arc-deletion
strategy—in cutset conditioning. We conclude with a dis-
cussion of related notions and future research directions.

2 Context-Specific Independence and Arc
Deletion

Consider a finite set U = fX1; : : : ; Xng of discrete ran-
dom variables where each variable Xi 2 U may take on
values from a finite domain. We use capital letters, such asX;Y; Z, for variable names and lowercase letters x; y; z to
denote specific values taken by those variables. The set of
all values of X is denoted val(X). Sets of variables are de-
noted by boldface capital lettersX ;Y ;Z, and assignments
of values to the variables in these sets will be denoted by
boldface lowercase lettersx;y; z (we use val(X) in the ob-
vious way).

Definition 2.1: Let P be a joint probability distribution
over the variables in U , and let X ;Y ;Z be subsets of U .X and Y are conditionally independent given Z, denotedI(X ;Y j Z), if for all x 2 val(X);y 2 val(Y); z 2
val(Z), the following relationship holds:P (x j z;y) = P (x j z) whenever P (y; z) > 0: (1)

We summarize this last statement (for all values of x;y; z)
by P (X j Z;Y) = P (X j Z).
A Bayesian network is a directed acyclic graph B whose
nodes correspond to the random variablesX1; : : : ; Xn, and
whose edges represent direct dependencies between the
variables. The graph structure ofB encodes the set of inde-
pendence assumptions representing the assertion that each
nodeXi is independent of its non-descendants given its par-
ents �Xi . These statements are local, in that they involve
only a node and its parents in B. Other I() statements, in-
volving arbitrary sets of variables, follow from these local
assertions. These can be read from the structure of B us-
ing a graph-theoretic path criterion called d-separation [14]
that can be tested in polynomial time.

A BN B represents independence information about a par-
ticular distribution P . Thus, we require that the indepen-
dencies encoded in B hold for P . More precisely, B is said
to be an I-map for the distributionP if every independence
sanctioned by d-separation in B holds in P . A BN is re-
quired to be a minimal I-map, in the sense that the deletion
of any edge in the network destroys the I-mapness of the
network with respect to the distribution it describes. A BNB for P permits a compact representation of the distribu-
tion: we need only specify, for each variable Xi, a condi-
tional probability table (CPT) encoding a parameter P (xi j�xi) for each possible value of the variables in fXi;�Xig.
(See [14] for details.)

The graphical structure of the BN can only capture indepen-
dence relations of the form I(X ;Y j Z), that is, indepen-
dencies that hold for any assignment of values to the vari-
ables in Z. However, we are often interested in indepen-
dencies that hold only in certain contexts.

Definition 2.2: Let X ;Y ;Z;C be pairwise disjoint sets
of variables. X and Y are contextually independent given

Z and the context c 2 val(C), denoted Ic(X;Y j Z; c), ifP (X jZ; c;Y)=P (X jZ; c) whenever P (Y ;Z; c) > 0:
This assertion is similar to that in Equation (1), takingC[Z
as evidence, but requires that the independence ofX and Y
hold only for the particular assignment c toC.

It is easy to see that certain local Ic statements — those of
the form Ic(X;Y j c) for Y ;C � �X — can be veri-
fied by direct examination of the CPT for X. In Figure 1,
for example, we can verify Ic(X;V j u) by checking in the
CPT forX whether, for each valuew ofW , P (X j v; w; u)
does not depend on v (i.e., it is the same for all values v ofV). The next section explores different representations of
the CPTs that will allow us to check these local statements
efficiently. Our objective now is to establish an analogue
to the principle of d-separation: a computationally tractable
method for deciding the validity of non-local Ic statements.
It turns out that this problem can be solved by a simple re-
duction to a problem of validating variable independence
statements in a simpler network. The latter problem can be
efficiently solved using d-separation.

Definition 2.3: An edge from Y intoX will be called vac-
uous in B, given a context c, if Ic(X;Y j c \�X). Given
BNB and a context c, we defineB(c) as the BN that results
from deleting vacuous edges in B given c. We say that X
is CSI-separated from Y givenZ in context c inB ifX is
d-separated from Y givenZ [C in B(c).
Note that the statement Ic(X;Y j c \ �X) is a local Ic
statement and can be determined by inspecting the CPT forX. Thus, we can decide CSI-separation by transformingB
into B(c) using these local Ic statements to delete vacuous
edges, and then using d-separation on the resulting network.

We now show that this notion of CSI-separation is sound
and (in a strong sense) complete given these local indepen-
dence statements. Let B be a network structure and Ic̀ be
a set of local Ic statements over B. We say that (B; Ic̀)
is a CSI-map of a distribution P if the independencies im-
plied by (B; Ic̀) hold in P , i.e., Ic(X;Y j Z; c) holds inP whenever X is CSI-separated from Y given Z in con-
text c in (B; Ic̀). We say that (B; Ic̀) is a perfect CSI-map
if the implied independencies are the only ones that hold inP , i.e., if Ic(X ;Y j Z; c) if and only ifX is CSI-separated
from Y given Z in context c in (B; Ic̀)
Theorem 2.4: Let B be a network structure, Ic̀ be a set of
local independencies, and P a distribution consistent withB and Ic̀. Then (B; Ic̀) is a CSI-map of P .

The theorem establishes the soundness of this procedure. Is
the procedure also complete? As for any such procedure,
there may be independencies that we cannot detect using
only local independencies and network structure. However,
the following theorem shows that, in a sense, this procedure
provides the best results that we can hope to derive based
solely on the structural properties of the distribution.

Theorem 2.5: Let B be a network structure, Ic̀ be a set of
local independencies. Then there exists a distribution P ,
consistent withB andIc̀ , such that (B; Ic̀) is a perfect CSI-
map of P .

3 Structured Representations of CPTs

Context-specific independence corresponds to regularities
within CPTs. In this section, we discuss possible represen-
tations that capture this regularity qualitatively, in much the
same way that a BN structure qualitatively captures condi-
tional independence. Such representations admit effective
algorithms for determining local CSI statements and can be
exploited in probabilistic inference. For reasons of space,
we focus primarily on tree-structured representations.

In general, we can view a CPT as a function that maps
val(�X) into distributions over X. A compact represen-
tation of CPTs is simply a representation of this function
that exploits the fact that distinct elements of val(�X) are
associated with the same distribution. Therefore, one can
compactly represent CPTs by simply partitioning the space
val(�X) into regions mapping to the same distribution.

Most generally, we can represent the partitions using a set
of mutually exclusive and exhaustive generalized proposi-
tions over the variable set �X . A generalized proposition is
simply a truth functional combination of specific variable
assignments, so that if Y; Z 2 �X , we may have a par-
tition characterized by the generalized proposition (Y =y) _:(Z = z). Each such proposition is associated with a
distribution over X. While this representation is fully gen-
eral, it does not easily support either probabilistic inference
or inference about CSI. Fortunately, we can often use other,
more convenient, representations for this type of partition-
ing. For example, one could use a canonical logical form
such as minimal CNF. Classification trees (also known in
the machine learning community as decision trees) are an-
other popular function representation, with partitions of the
state space induced by the labeling of branches in the tree.
These representations have a number of advantages, includ-
ing the fact that vacuous edges can be detected, and reduced
CPTs produced in linear time (in the size of the CPT repre-
sentation). As expected, there is a tradeoff: the most com-
pact CNF or tree representation of a CPT might be much
larger (exponentially larger in the worst case) than the min-
imal representation in terms of generalized propositions.

For the purposes of this paper, we focus on CPT-trees—
tree-structured CPTs, deferring discussion of analogous re-
sults for CNF representations and graph-structured CPTs
(of the form discussed by [3]) to a longer version of this
paper. A major advantage of tree structures is their nat-
uralness, with branch labels corresponding in some sense
to “rule” structure (see Figure 1). This intuition makes it
particularly easy to elicit probabilities directly from a hu-
man expert. As we show in subsequent sections, the tree
structure can also be utilized to speed up BN inference al-
gorithms. Finally, as we discuss in the conclusion, trees are
also amenable to well-studied approximation and learning

X

B CA D

D

p1 p2

A

B

Cp3

p4 D

p5 p6

Tree for X (1)

A

Tree for X (2)

D

C

B

B

C

D

p1

p2’

p2’’ p2’’’

p3

p4

p5 p6

Network

Figure 2: CPT-tree Representation

methods [17]. In this section, we show that they admit fast
algorithms for detecting CSI.

In general, there are two operations we wish to perform
given a context c: the first is to determine whether a given
arc into a variableX is vacuous; the second is to determine
a reduced CPT when we condition on c. This operation is
carried out whenever we set evidence and should reflect the
changes to X’s parents that are implied by context-specific
independencies given c. We examine how to perform both
types of operations on CPT-trees. To avoid confusion, we
use t-node and t-arc to denote nodes and arcs in the tree (as
opposed to nodes and arcs in the BN). To illustrate these
ideas, consider the CPT-tree for the variableX in Figure 2.
(Left t-arcs are labeled true and right t-arcs false).

Given this representation, it is relatively easy to tell which
parents are rendered independent ofX given context c. As-
sume that Tree 1 represents the CPT for X. In context a,
clearly D remains relevant whileC and B are rendered in-
dependent of X. Given a ^ b, both C and D are rendered
independent of X. Intuitively, this is so because the distri-
bution on X does not depend on C and D once we knowc = a^ b: every path from the root to leaf which is consis-
tent with c fails to mention C or D.

Definition 3.1: A path in the CPT-tree is the set of t-arcs
lying between the root and a leaf. The labeling of a path is
the assignment to variables induced by the labels on the t-
arcs of the path. A variable Y occurs on a path if one of the
t-nodes along the path tests the value ofY . A path is consis-
tent with a context c iff the labeling of the path is consistent
with the assignment of values in c.

Theorem 3.2: Let T be a CPT-tree for X and let Y be one
of its parents. Let c 2 C be some context (Y 62 C). IfY does not lie on any path consistent with c, then the edgeY ! X is vacuous given c.

This provides us with a sound test for context-specific in-
dependence (only valid independencies are discovered).
However, the test is not complete, since there are CPT struc-
tures that cannot be represented minimally by a tree. For in-
stance, suppose that p1 = p5 and p2 = p6 in the example
above. Given context b^c, we can tell thatA is irrelevant by
inspection; but, the choice of variable ordering prevents us

from detecting this using the criterion in the theorem. How-
ever, the test above is complete in the sense that no other
edge is vacuous given the tree structure.

Theorem 3.3: Let T be a CPT-tree forX, let Y 2 �X and
let c 2 C be some context (Y 62 C). If Y occurs on a path
that is consistent with c, then there exists an assignment of
parameters to the leaves of T such that Y ! X is not vac-
uous given c.

This shows that the test described above is, in fact, the best
test that uses only the structure of the tree and not the ac-
tual probabilities. This is similar in spirit to d-separation:
it detects all conditional independencies possible from the
structure of the network, but it cannot detect independen-
cies that are hidden in the quantification of the links. As for
conditional independence in belief networks, we need only
soundness in order to exploit CSI in inference.

It is also straightforward to produce a reduced CPT-tree rep-
resenting the CPT conditioned on context c. Assume c an
assignment to variables containing certain parents ofX andT is the CPT-tree of X, with root R and immediate sub-
trees T1; � � �Tk. The reduced CPT-tree T (c) is defined re-
cursively as follows: if the label ofR is not among the vari-
ablesC, then T (c) consists ofR with subtrees Tj(c); if the
label of R is some Y 2 C, then T (c) = Tj(c), where Tj is
the subtree pointed to by the t-arc labeled with value y 2 c.
Thus, the reduced tree T (c) can be produced with one tree
traversal in O(jT j) time.

Proposition 3.4: Variable Y labels some t-node in T (c) if
and only if Y 62 C and Y occurs on a path in T that is
consistent with c.

This implies that Y appears in T (c) if and only if Y ! X
is not deemed vacuous by the test described above. Given
the reduced tree, determining the list of arcs pointing intoX
that can be deleted requires a simple tree traversal of T (c).
Thus, reducing the tree gives us an efficient and sound test
for determining the context-specific independence of all
parents of X.

4 Exploiting CSI in Probabilistic Inference

Network representations of distributions offer considerable
computational advantages in probabilistic inference. The
graphical structure of a BN lays bare variable independence
relationships that are exploited by well-known algorithms
when deciding what information is relevant to (say) a given
query, and how best that informationcan be summarized. In
a similar fashion, compact representations of CPTs such as
trees make CSI relationshipsexplicit. In this section, we de-
scribe how CSI might be exploited in various BN inference
algorithms, specifically stressing particular uses in cluster-
ing and cutset conditioning. Space precludes a detailed pre-
sentation; we provide only the basic intuitions here. We
also emphasize that these are by no means the only ways
in which BN inference can employ CSI.

X
A=t

X
A=f

B
1

B
2

B
k

A

X

A XA=t XA=f P (x)t t t 1t t f 1t f t 0t f f 0f t t 1f t f 0f f t 1f f f 0 X
A=t

X
A=f

B
1

B
2

A

B B
3 4

X

(a) (b) (c)

Figure 3: (a) A simple decomposition of the nodeX; (b) The CPT for the new nodeX; (c) A more effective decomposition
of X, utilizing CSI.

4.1 Network Transformations and Clustering

The use of compact representations for CPTs is not a novel
idea. For instance, noisy-or distributions (or generaliza-
tions [19]) allow compact representation by assuming that
the parents of X make independent “casual contributions”
to the value of X. These distributions fall into the gen-
eral category of distributions satisfying causal indepen-
dence [10, 11]. For such distributions, we can perform a
structural transformation on our original network, resulting
in a new network where many of these independencies are
encoded qualitatively within the network structure. Essen-
tially, the transformation introduces auxiliary variables into
the network, then connects them via a cascading sequence
of deterministic or-nodes [11]. While CSI is quite distinct
from causal independence, similar ideas can be applied: a
structural network transformation can be used to capture
certain aspects of CSI directly within the BN-structure.

Such transformations can be very useful when one uses
an inference algorithm based on clustering [13]. Roughly
speaking, clustering algorithms construct a join tree, whose
nodes denote (overlapping) clusters of variables in the orig-
inal BN. Each cluster, or clique, encodes the marginal dis-
tribution over the set val(X) of the nodesX in the cluster.
The inference process is carried out on the join tree, and its
complexity is determined largely by the size of the largest
clique. This is where the structural transformations prove
worthwhile. The clustering process requires that each fam-
ily in the BN — a node and its parents — be a subset of at
least one clique in the join tree. Therefore, a family with
a large set of values val(fXig [�Xi) will lead to a large
clique and thereby to poor performance of clustering algo-
rithms. A transformation that reduces the overall number of
values present in a family can offer considerable computa-
tional savings in clustering algorithms.

In order to understand our transformation, we first consider
a generic node X in a Bayesian network. Let A be one
of X’s parents, and let B1; : : : ; Bk be the remaining par-
ents. Assume, for simplicity, thatX and A are both binary-
valued. Intuitively, we can view the value of the random
variableX as the outcome of two conditional variables: the
value that X would take if A were true, and the value thatX would take ifAwere false. We can conduct a thought ex-
periment where these two variables are decided separately,

and then, when the value of A is revealed, the appropriate
value for X is chosen.

Formally, we define a random variableXA=t, with a condi-
tional distribution that depends only on B1; : : : ; Bk:P (XA=t j B1; : : : ; Bk) = P (X j A = t; B1; : : : ; Bk)
We can similarly define a variable XA=f . The variable X
is equal to XA=t if A = t and is equal to XA=f if A = f .
Note that the variablesXA=t andXA=f both have the same
set of values as X. This perspective allows us to replace the
node X in any network with the subnetwork illustrated in
Figure 3(a). The nodeX is a deterministic node, which we
call a multiplexer node (since X takes either the value ofXA=t or of XA=f , depending on the value of A). Its CPT
is presented in Figure 3(b).

For a generic nodeX, this decomposition is not particularly
useful. For one thing, the total size of the two new CPTs
is exactly the same as the size of the original CPT for X;
for another, the resulting structure (with its many tightly-
coupled cycles) does not admit a more effective decompo-
sitions into cliques. However, if X exhibits a significant
amount of CSI, this type of transformation can result in a far
more compact representation. For example, let k = 4, and
assume that X depends only on B1 and B2 when A is true,
and only onB3 andB4 whenA is false. Then each ofXA=t
and XA=f will have only two parents, as in Figure 3(c). If
these variables are binary, the new representation requires
two CPTs with four entries each, plus a single determinis-
tic multiplexer node with 8 (predetermined) ‘distributions’.
By contrast, the original representation of X had a single
CPT with 32 entries. Furthermore, the structure of the re-
sulting network may well allow the construction of a join
tree with much smaller cliques.

Our transformation uses the structure of a CPT-tree to ap-
ply this decomposition recursively. Essentially, each nodeX is first decomposed according to the parent A which is
at the root of its CPT tree. Each of the conditional nodes
(XA=t andXA=f in the binary case) has, as its CPT, one of
the subtrees of the t-node A in the CPT for X. The result-
ing conditional nodes can be decomposed recursively, in a
similar fashion. In Figure 4, for example, the node corre-
sponding to XA=f can be decomposed into XA=f;B=t andXA=f;B=f . The node XA=f;B=f can then be decomposed

X
A=f,B=t

X
A=f,B=f

A

D

X
A=t

X
A=f

B

C
X X

A=f,B=f,C=t A=f,B=f,C=f

X

Figure 4: A decomposition of the network in Figure 2, ac-
cording to Tree (1).

into XA=f;B=f;C=t and XA=f;B=f;C=f .

The nodes XA=f;B=t and XA=f;B=f;C=t cannot be de-
composed further, since they have no parents. While further
decomposition of nodes XA=t and XA=f;B=f;C=f is pos-
sible, this is not beneficial, since the CPTs for these nodes
are unstructured (a complete tree of depth 1). It is clear
that this procedure is beneficial only if there is a structure
in the CPT of a node. Thus, in general, we want to stop the
decomposition when the CPT of a node is a full tree. (Note
that this includes leaves a special case.)

As in the structural transformation for noisy-or nodes of
[11], our decomposition can allow clustering algorithms to
form smaller cliques. After the transformation, we have
many more nodes in the network (on the order of the size
of all CPT tree representations), but each generally has far
fewer parents. For example, Figure 4 describes the transfor-
mation of the CPT of Tree (1) of Figure 2. In this transfor-
mation we have eliminated a family with four parents and
introduced several smaller families. We are currently work-
ing on implementing these ideas, and testing their effective-
ness in practice. We also note that a large fraction of the
auxiliary nodes we introduce are multiplexer nodes, which
are deterministic function of their parents. Such nodes can
be further exploited in the clustering algorithm [12].

We note that the reduction in clique size (and the result-
ing computational savings) depend heavily on the structure
of the decision trees. A similar phenomenon occurs in the
transformation of [11], where the effectiveness depends on
the order in which we choose to cascade the different par-
ents of the node.

As in the case of noisy-or, the graphical structure of our
(transformed) BN cannot capture all independencies im-
plicit in the CPTs. In particular, none of the CSI relations—
induced by particular value assignments—can be read from
the transformed structure. In the noisy-orcase, the analogue
is our inability to structurally represent that a node’s parents
are independent if the node is observed to be false, but not

if it is observed to be true.2 In both cases, these CSI rela-
tions are captured by the deterministic relationships used in
the transformation: in an “or” node, the parents are inde-
pendent if the node is set to false. In a multiplexer node,
the value depends only on one parent once the value of the
“selecting” parent (the original variable) is known.

4.2 Cutset Conditioning

Even using noisy-or or tree representations, the join-tree al-
gorithm can only take advantage of fixed structural inde-
pendencies. The use of static precompilation makes it diffi-
cult for the algorithm to take advantage of independencies
that only occur in certain circumstances, e.g., as new ev-
idence arrives. More dynamic algorithms, such as cutset
conditioning [14], can exploit context-specific independen-
cies more effectively. We investigate below how cutset al-
gorithms can be modified to exploit CSI using our decision-
tree representation.3
The cutset conditioning algorithm works roughly as fol-
lows. We select a cutset, i.e., a set of variables that, once in-
stantiated, render the network singly connected. Inference
is then carried out using reasoning by cases, where each
case is a possible assignment to the variables in the cutsetC. Each such assignment is instantiated as evidence in a
call to the polytree algorithm [14], which performs infer-
ence on the resulting network. The results of these calls
are combined to give the final answer. The running time is
largely determined by the number of calls to the polytree al-
gorithm (i.e., jval(C)j).
CSI offers a rather obvious advantage to inference algo-
rithms based on the conditioning of loop cutsets. By in-
stantiating a particular variable to a certain value in order to
cut a loop, CSI may render other arcs vacuous, perhaps cut-
ting additional loops without the need for instantiatingaddi-
tional variables. For instance, suppose the network in Fig-
ure 1 is to be solved using the cutset fU; V;Wg (this might
be the optimal strategy if jval(X)j is very large). Typically,
we solve the reduced singly-connected network jval(U)j �jval(V)j � jval(W)j times, once for each assignment of val-
ues to U; V;W . However, by recognizing the fact that the
connections between X and fV;Wg are vacuous in contextu, we need not instantiate V andW when we assignU = t.
This replaces jval(V)j � jval(W)j network evaluations with
a single evaluation. However, when U = f , the instanti-
ation of V;W can no longer be ignored (the edges are not
vacuous in context u).

To capture this phenomenon, we generalize the standard no-
tion of a cutset by considering tree representations of cut-
sets. These reflect the need to instantiate certain variables in
some contexts, but not in others, in order to render the net-
work singly-connected. Intuitively, a conditional cutset is
a tree with interior nodes labeled by variables and edges la-2This last fact is heavily utilized by algorithms targeted specif-
ically at noisy-or networks (mostly BN2O networks).3We believe similar ideas can be applied to other compactCPT
representations such as noisy-or.

U

t f

V

t f

W

t f

U

V

W

t,f

t,f

t,f

U

t,f

V

t f

t f
W

(a) (b) (c)

Figure 5: Valid Conditional Cutsets

beled by (sets of) variable values.4 Each branch through the
tree corresponds to the set of assignments induced by fixing
one variable value on each edge. The tree is a conditional
cutset if: (a) each branch through the tree represents a con-
text that renders the network singly-connected; and (b) the
set of such assignments is mutually exclusive and exhaus-
tive. Examples of conditional cutsets for the BN in Figure 1
are illustrated in Figure 5: (a) is the obvious compact cutset;
(b) is the tree representation of the “standard” cutset, which
fails to exploit the structure of the CPT, requiring one eval-
uation for each instantiation of U; V;W .

Once we have a conditional cutset in hand, the extension
of classical cutset inference is fairly obvious. We con-
sider each assignment of values to variables determined by
branches through the tree, instantiate the network with this
assignment, run the polytree algorithm on the resulting net-
work, and combine the results as usual.5 Clearly, the com-
plexity of this algorithm is a function of the number of dis-
tinct paths through the conditional cutset. It is therefore cru-
cial to find good heuristic algorithms for constructing small
conditional cutsets. We focus on a “computationally inten-
sive” heuristic approach that exploits CSI and the existence
of vacuous arcs maximally. This algorithm constructs con-
ditional cutsets incrementally, in a fashion similar to stan-
dard heuristic approaches to the problem [20, 1]. We dis-
cuss computationally-motivated shortcuts near the end of
this section.

The standard “greedy” approach to cutset construction
selects nodes for the cutset according to the heuristic
value w(X)d(X) , where the weight w(X) of variable X islog(jval(X)j) and d(X) is the out-degree of X in the net-
work graph [20, 1].6 The weight measures the work needed
to instantiate X in a cutset, while the degree of a vertex
gives an idea of its arc-cutting potential—more incident
outgoing edges mean a larger chance to cut loops. In order
to extend this heuristic to deal with CSI, we must estimate
the extent to which arcs are cut due to CSI. The obvious
approach, namely adding to d(X) the number of arcs actu-
ally rendered vacuous byX (averaging over values ofX), is
reasonably straightforward, but unfortunately is somewhat4We explain the need for set-valued arc labels below.5As in the standard cutset algorithm, the weights required to
combine the answers from the different cases can be obtained from
the polytree computations [21].6We assume that the network has been preprocessed by node-
splitting so that legitimate cutsets can be selected easily. See [1]
for details.

myopic. In particular, it ignores the potential for arcs to be
cut subsequently. For example, consider the family in Fig-
ure 2, with Tree 2 reflecting the CPT for X. Adding A orB to a cutset causes no additional arcs into X to be cut, so
they will have the same heuristic value (other things being
equal). However, clearlyA is the more desirable choice be-
cause, given either value of A, the conditional cutsets pro-
duced subsequently using B, C and D will be very small.

Rather than using the actual number of arcs cut by select-
ing a node for the cutset, we should consider the expected
number of arcs that will be cut. We do this by consider-
ing, for each of the children V of X, how many distinct
probabilityentries (distributions)are found in the structured
representation of the CPT for that child for each instantia-
tion X = xi (i.e., the size of the reduced CPT). The log
of this value is the expected number of parents required for
the child V after X = xi is known, with fewer parents
indicating more potential for arc-cutting. We can then av-
erage this number for each of the values X may take, and
sum the expected number of cut arcs for each of X’s chil-
dren. This measure then plays the role of d(X) in the cutset
heuristic. More precisely, let t(V) be the size of the CPT-
structure (i.e., number of entries) for V in a fixed network;
and let t(V; xi) be the size of the reduced CPT given con-
textX = xi (we assume X is a parent of V). We define the
expected number of parents of V given xi to be

EP(V; xi) = PA2Parents(V)�X logjval(A)j t(V;X = xi)jParents(V)j � 1
The expected number of arc deletions fromB ifX is instan-
tiated is given byd0(X)=PV 2Children(X)Pxi2val(X) jParents(V)j�EP(V; xi)jval(X)j
Thus, w(X)d0(X) gives an reasonably accurate picture of the
value of adding X to a conditional cutset in a network B.

Our cutset construction algorithm proceeds recursively by:
1) adding a heuristically selected nodeX to a branch of the
tree-structured cutset; 2) adding t-arcs to the cutset-tree for
each value xi 2 val(X); 3) constructing a new network for
each of these instantiations of X that reflects CSI; and 4)
extending each of these new arcs recursively by selecting
the node that looks best in the new network corresponding
to that branch. We can very roughly sketch it as follows.
The algorithm begins with the original network B.

1. Remove singly-connected nodes from B, leaving Br .
If no nodes remain, return the empty cutset-tree.

2. Choose node X in Br s.t. w(X)=d0(X) is minimal.

3. For each xi 2 val(X), construct Bxi by removing
vacuous arcs from Br and replacing all CPTs by the
reduced CPTs using X = xi.

4. Return the tree T 0 where: a) X labels the root of T 0;
b) one t-arc for each xi emanates from the root; and c)

the t-node attached to the end of the xi t-arc is the tree
produced by recursively calling the algorithm with the
network Bxi .

Step 1 of the algorithmis standard [20, 1]. In Step 2, it is im-
portant to realize that the heuristic value ofX is determined
with respect to the current network and the context already
established in the existing branch of the cutset. Step 3 is
required to ensure that the selection of the next variable re-
flects the fact that X = xi is part of the current context. Fi-
nally, Step 4 emphasizes the conditional nature of variable
selection: different variables may be selected next given
different values ofX. Steps 2–4 capture the key features of
our approach and have certain computational implications,
to which we now turn our attention.

Our algorithm exploits CSI to a great degree, but requires
computational effort greater than that for normal cutset con-
struction. First, the cutset itself is structured: a tree rep-
resentation of a standard cutset is potentially exponentially
larger (a full tree). However, the algorithm can be run on-
line, and the tree never completely stored: as variables are
instantiated to particular values for conditioning, the selec-
tion of the next variable can be made. Conceptually, this
amounts to a depth-first construction of the tree, with only
one (partial or complete) branch ever being stored. In ad-
dition, we can add an optional step before Step 4 that de-
tects structural equivalence in the networksBxi . If, say, the
instantiations of X to xi and xj have the same structural
effect on the arcs in B and the representation of reduced
CPTs, then we need not distinguish these instantiations sub-
sequently (in cutset construction). Rather, in Step 4, we
would create one new t-arc in the cutset-tree labeled with
the set fxi; xjg (as in Figure 5). This reduces the number of
graphs that need to be constructed (and concomitant com-
putations discussed below). In completely unstructured set-
tings, the representation of a conditional cutset would be of
size similar to a normal cutset, as in Figure 5(b).

Apart from the amount of information in a conditional cut-
set, more effort is needed to decide which variables to add
to a branch, since the heuristic component d0(X) is more in-
volved than vertex degree. Unfortunately, the value d0(X)
is not fixed (in which case it would involve a single set of
prior computations); it must be recomputed in Step 2 to re-
flect the variable instantiations that gave rise to the current
network. Part of the re-evaluation of d0(X) requires that
CPTs also be updated (Step 3). Fortunately, the number of
CPTs that have to be updated for assignment X = xi is
small: only the children of X (in the current graph) need
to have CPTs updated. This can be done using the CPT
reduction algorithms described above, which are very effi-
cient. These updates then affect the heuristic estimates of
only their parents; i.e., only the “spouses” V of X need to
have their value d0(V) recomputed. Thus, the amount of
work required is not too large, so that the reduction in the
number of network evaluations will usually compensate for
the extra work. We are currently in the process of imple-
menting this algorithm to test its performance in practice.

There are several other directions that we are currently in-
vestigating in order to enhance this algorithm. One involves
developing less ideal but more tractable methods of con-
ditional cutset construction. For example, we might select
a cutset by standard means, and use the considerations de-
scribed above to order (on-line) the variable instantiations
within this cutset. Another direction involves integrating
these ideas with the computation-saving ideas of [4] for
standard cutset algorithms.

5 Concluding Remarks

We have defined the notion of context-specific indepen-
dence as a way of capturing the independencies induced
by specific variable assignments, adding to the regularities
in distributions representable in BNs. Our results provide
foundations for CSI, its representation and its role in infer-
ence. In particular, we have shown how CSI can be deter-
mined using local computation in a BN and how specific
mechanisms (in particular, trees) allow compact representa-
tion of CPTs and enable efficient detection of CSI. Further-
more, CSI and tree-structured CPTs can be used to speed up
probabilistic inference in both clustering and cutset-style al-
gorithms.

As we mentioned in the introduction, there has been con-
siderable work on extending the BN representation to cap-
ture additional independencies. Our notion of CSI is re-
lated to what Heckerman calls subset independence in his
work on similarity networks [9]. Yet, our approach is sig-
nificantly different in that we try to capture the additional
independencies by providing a structured representation of
the CPTs within a single network, while similarity networks
and multinets [9, 7] rely on a family of networks. In fact
the approach we described based on decision trees is closer
in spirit to that of Poole’s rule-based representations of net-
works [16].

The arc-cutting technique and network transformation in-
troduced in Section 2 is reminiscent of the network trans-
formations introduced by Pearl in his probabilistic calculus
of action [15]. Indeed the semantics of actions proposed
in that paper can be viewed as an instance of CSI. This is
not a mere coincidence, as it is easy to see that networks
representing plans and influence diagrams usually contain
a significant amount of CSI. The effects of actions (or de-
cisions) usually only take place for specific instantiation of
some variables, and are vacuous or trivial when these in-
stantiations are not realized. Testimony to this fact is the
work on adding additional structure to influence diagrams
by Smith et al. [18], Fung and Shachter [6], and the work by
Boutilier et al [2] on using decision trees to represent CPTs
in the context of Markov Decision Processes.

There are a number of future research directions that are
needed to elaborate the ideas presented here, and to expand
the role that CSI and compact CPT representations play in
probabilistic reasoning. We are currently exploring the use
of different CPT representations, such as decision graphs,
and the potential interaction between CSI and causal inde-

pendence (as in the noisy-or model). A deeper examina-
tion of the network transformation algorithm of Section 4.1
and empirical experiments are necessary to determine the
circumstances under which the reductions in clique size are
significant. Similar studies are being conducted for the con-
ditional cutset algorithm of Section 4.2 (and its variants). In
particular, to determine the extent of the overhead involved
in conditional cutset construction. We are currently pursu-
ing both of these directions.

CSI can also play a significant role in approximate prob-
abilistic inference. In many cases, we may wish to trade
a certain amount of accuracy to speed up inference, allow
more compact representation or ease knowledge acquisi-
tion. For instance, a CPT exhibiting little structure (i.e.,
little or no CSI) cannot be compactly represented; e.g., it
may require a full tree. However, in many cases, the local
dependence is weaker in some circumstances than in oth-
ers. Consider Tree 2 in Figure 2 and suppose that none ofp20; p200; p2000 are very different, reflecting the fact the influ-
ence ofB andC’s onX is relatively weak in the case whereA is true and D is false. In this case, we may assume that
these three entries are actually the same, thus approximat-
ing the true CPT using a decision tree with the structure of
Tree 1.

This saving (both in representation and inference, using the
techniques of this paper) comes at the expense of accu-
racy. In ongoing work, we show how to estimate the (cross-
entropy) error of a local approximationof the CPTs, thereby
allowing for practical greedy algorithms that trade off the
error and the computational gain derived from the simpli-
fication of the network. Tree representations turn out to be
particularly suitable in this regard. In particular, we show
that decision-tree construction algorithmsfrom the machine
learning community can be used to construct an appropriate
CPT-tree from a full conditional probability table; pruning
algorithms [17] can then be used on this tree, or on one ac-
quired directly from the user, to simplify the CPT-tree in or-
der to allow for faster inference.

Structured representation of CPTs have also proven benefi-
cial in learning Bayesian networks from data [5]. Due to the
compactness of the representation, learning procedures are
capable of inducing networks that better emulate the true
complexity of the interactions present in the data.

This paper represents a starting point for a rigorous ex-
tension of Bayesian network representations to incorporate
context-specific independence. As we have seen, CSI has
a deep and far-ranging impact on the theory and practice
of many aspects of probabilistic inference, including rep-
resentation, inference algorithms, approximation and learn-
ing. We consider the exploration and development of these
ideas to be a promising avenue for future research.

Acknowledgements: We would like to thank Dan Geiger,
Adam Grove, Daishi Harada, and Zohar Yakhini for useful
discussions. Some of this work was performed while Nir
Friedman and Moises Goldszmidt were at Rockwell Palo
Alto Science Center, and Daphne Koller was at U.C. Berke-

ley. This work was supported by a University of California
President’s Postdoctoral Fellowship (Koller), ARPA con-
tract F30602-95-C-0251 (Goldszmidt), an IBM Graduate
fellowship and NSF Grant IRI-95-03109 (Friedman), and
NSERC Research Grant OGP0121843 (Boutilier).

References
[1] A. Becker and D. Geiger. Approximation algorithms for the

loop cutset problem. In UAI-94, pp. 60–68, 1994.

[2] C. Boutilier, R. Dearden, and M. Goldszmidt. Exploiting
structure in policy construction. In IJCAI-95, pp. 1104–1111,
1995.

[3] R. E. Bryant. Graph-based algorithms for boolean func-
tion manipulation. IEEE Transactions on Computers, C-
35(8):677–691, 1986.

[4] A. Darwiche. Conditioning algorithms for exact and approx-
imate inference in causal networks. In UAI-95, pp. 99–107,
1995.

[5] N. Friedman and M. Goldszmidt. Learning Bayesian net-
works with local structure. In UAI ’96, 1996.

[6] R. M. Fung and R. D. Shachter. Contingent influence dia-
grams. Unpublished manuscript, 1990.

[7] D. Geiger and D. Heckerman. Advances in probabilistic rea-
soning. In UAI-91, pp. 118–126, 1991.

[8] S. Glesner and D. Koller. Constructing flexible dynamic be-
lief networks from first-order probabilistic knowledge bases.
In ECSQARU ’95, pp. 217–226. 1995.

[9] D. Heckerman. Probabilistic Similarity Networks. PhD the-
sis, Stanford University, 1990.

[10] D. Heckerman. Causal independence for knowledge acqui-
sition and inference. In UAI-93, pp. 122–137, 1993.

[11] D. Heckerman and J. S. Breese. A new look at causal inde-
pendence. In UAI-94, pp. 286–292, 1994.

[12] F. Jensen and S. Andersen. Approximations in Bayesian be-
lief universes for knowledge-based systems. In UAI-90, pp.
162–169, 1990.

[13] S. L. Lauritzen and D. J. Spiegelhalter. Local computations
with probabilities on graphical structures and their applica-
tion to expert systems. Journal of the Royal Statistical Soci-
ety, B 50(2):157–224, 1988.

[14] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Net-
works of Plausible Inference. Morgan Kaufmann, 1988.

[15] J. Pearl. A probabilistic calculus of action. In UAI-94, pp.
454–462, 1994.

[16] D. Poole. Probabilistic Horn abduction and Bayesian net-
works. Artificial Intelligence, 64(1):81–129, 1993.

[17] J. R. Quinlan. C45: Programs for Machince Learning. Mor-
gan Kaufmann, 1993.

[18] J. E. Smith, S. Holtzman, and J. E. Matheson. Structuring
conditional relationships in influence diagrams. Operations
Research, 41(2):280–297, 1993.

[19] S. Srinivas. A generalization of the noisy-or model. In UAI-
93, pp. 208–215, 1993.

[20] J. Stillman. On heuristics for finding loop cutsets in multiply
connected belief networks. In UAI-90, pp. 265–272, 1990.

[21] J. Suermondt and G. Cooper. Initialization for the method of
conditioning in bayesian belief networks. Artificial Intelli-
gence, 50:83–94, 1991.

