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Abstract

The use of simple auction mechanisms like the GSP in on-
line advertising can lead to significant loss of efficiency and
revenue when advertisers have rich preferences—even sim-
ple forms of expressiveness like budget constraints can lead
to suboptimal outcomes. While the optimal allocation of in-
ventory can provide greater efficiency and revenue, natural
formulations of the underlying optimization problems grow
exponentially in the number of features of interest, present-
ing a key practical challenge. To address this problem, we
propose a means for automatically partitioning inventory into
abstract channelsso that the least relevant features are ig-
nored. Our approach, based on LP/MIP column and con-
straint generation, dramatically reduces the size of the prob-
lem, thus rendering optimization computationally feasible at
practical scales. Our algorithms allow for principled trade-
offs between tractability and solution quality. Numericalex-
periments demonstrate the computational practicality of our
approach as well as the quality of the resulting abstractions.

Introduction

Online advertising has radically changed the nature of ad-
vertising and the technology supporting the deployment of
ad campaigns. While ad targeting and campaign design is
inherently complex, the variety of online advertising ser-
vices has only increased this complexity. In particular, the
ability to target ads tospecific individualsbased on detailed,
personalized online information—information that is simply
not available in broadcast media—presents compelling op-
portunities and tremendous technical challenges for ad de-
livery. Sophisticated matching and bidding algorithms, such
as auctions usinggeneralized second price (GSP)(Edelman,
Ostrovsky, & Schwarz 2007; Varian 2007), have been de-
veloped for sponsored search advertising. By contrast, the
selling of graphicaldisplay adson web pages is still largely
managed via manual negotiation. Though much low-value
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remnantinventory is sold in online exchanges,premiumdis-
play advertising space (e.g., slots near the top, or “above
the fold,” of high traffic, high profile websites) is sold al-
most exclusively by non-automated means. One reason for
this is a perception that auction/market mechanisms can-
not be made to work for the types ofcampaign-level ex-
pressiveness(e.g., impression targets, smoothness of de-
livery, temporal sequencing, complements, representative-
ness) required for display ads (Parkes & Sandholm 2005;
Boutilier et al. 2008).

While sophisticated bidding strategies (Borgset al. 2006;
Feldmannet al. 2007; Rusmevichientong & Williamson
2006) can increase the value a bidder extracts from an in-
expressive auction (e.g., GSP) for some limited preference
types (e.g., long-term budgets), it is very difficult to bid ef-
fectively with more demanding types of preferences (e.g.,
requiring minimum quantities). Furthermore, with inexpres-
sive auctions, arbitrarily large inefficiencies can arise in gen-
eral (Benisch, Sadeh, & Sandholm 2009). Richer languages
that allow advertisers to express their true campaign pref-
erences directly, rather than forcing them into standard per-
event bidding models, are critical to the automated matching
and selling of display ads. It is just these forms ofcampaign-
level expressivenessthat are developed in (Parkes & Sand-
holm 2005; Boutilieret al. 2008), where a variety of ex-
pressiveness forms are outlined. But a significant bottleneck
remains: the use of expressive bidding requiresoptimization
to match ad supply with advertisers’ demand.

In this paper we tackle a key impediment to the use of op-
timization in ad auctions:channel explosion. Online adver-
tisers can segment the target audience and ad impressions
using an enormous number of features. But the number
of ad channels, or feature instantiations, to which ads can
be assigned grows exponentially in the number of features.
Standard models that use linear programming (LP) (Abrams,
Mendelevitch, & Tomlin 2007) or mixed-integer program-
ming (MIP) (Boutilier et al. 2008; Parkes & Sandholm
2005) to assign ads to such channels simply cannot scale
directly to problems involving more than a few thousand
channels. We address this through the use ofchannel ab-



straction. Intuitively, an abstract channel is any aggrega-
tion of concrete channels (i.e., feature instantiations) into a
single channel. During allocation optimization, ads are as-
signed to abstract channels rather than concrete channels.As
we show, a well-chosen abstraction, guided by its impact on
allocation value—as opposed to clustering based solely on
statistical properties of the features in question—can make
optimization practical with little sacrifice of revenue or effi-
ciency. We propose techniques for automatically generating
and using a set of abstract channels: a novel form ofcolumn
generationto generate an abstraction; and a newconstraint
generationalgorithm for improving the allocation of ads to
abstract channels.

In the next section we present the basic ad allocation
model and define abstract channels. We show that a small
number of channels is sufficient to implement an optimal
allocation. We then develop a novel and computationally
effective column generation technique to generate useful
abstractions—empirical results show that the algorithm ob-
tains near-optimal allocations with very few channels. We
extend the approach with a constraint generation algorithm
that makes more effective use of abstract channels, and
demonstrate how it significantly improves value when “MIP
expressiveness” is involved. We conclude with directions
for future research.

Allocation Model and Abstract Channels

We assume a finite attribute orfeaturesetF , eachF i ∈ F
having finite domainDom(F i) = {f i

1, . . . , f
i
ni}. Features

describe attributes of an ad display such as web site, page lo-
cation, user demographic, day part, contextual features, etc.
The set ofconcrete channels (c-channels)C comprises the
instantiations of featuresF . Intuitively, a c-channelc ∈ C
is a finest-grained chunk of supply to which an ad can be
assigned. We often treatc as a model of the propositional
language over variablesF (e.g., writingc |= ϕ for propo-
sitional formulaeϕ overF ). Let s(c, t) be the supply of
c-channelc available at timet ≤ T .

Advertisers express their campaign objectives using a set
of one or more bids, potentially linked by shared variables
and constraints. While we allow all forms of expressiveness
that can be represented as a MIP, we motivate our techniques
using a simple LP-based model. We assume a setB of item-
based, budget-constrained bids. Each bidi ∈ B has form
〈ϕi, vi, gi, wi〉, whereϕi is a logical formula over features
F , vi > 0 is i’s price per impression,gi > 0 is its budget,
andwi is a time window[si, ei] within which impressions
must occur (1 ≤ si ≤ ei ≤ T ). Bid i reflects adver-
tiser i’s interest in impressions satisfying the conditionϕi.
The allocation problem in this setting can be formulated as
a simple LP that maximizes revenue by allocatingxi

c(t) im-
pressions of c-channelc ∈ C to bid i at timet. To simplify
notation, we formulate the optimization as if there were a
single time period. (The generalization to multiple periods
is obvious). Letvi

c be i’s value for ac-impression:vi
c = vi

if c |= ϕi; vi
c = 0 otherwise. Then we have (withxi

c ≥ 0):

max
xi

c
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i
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i
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s.t.
∑

i

x
i
c ≤ s(c) ∀c ∈ C;
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i
c ≤ g

i ∀i ∈ B.

This LP can easily be extended to other forms ofLP ex-
pressiveness, such as substitutes, complements, and time-
based smoothness. For example, if a campaign has (par-
tially) substitutable demands (e.g., it desiresϕ1 or ϕ2 with
valuesv1 andv2), two separate bids can be posted with a
joint budget constraint. Ifϕ1 andϕ2 are complements, we
can constrain the allocated impressions to meet some ap-
proximate ratio target (e.g,imp(ϕ1) ≤ (1 + ε)imp(ϕ2),
imp(ϕ2) ≤ (1 + ε)imp(ϕ1), whereimp(ϕ) is the number
of impressions ofϕ). Smoothness constraints can also be
encoded linearly (e.g., requiring at least 10% of total impres-
sions to be allocated in each eligible time period). A bidder
may want to receive a “representative allocation” (Ghosh
et al. 2009), whereby the distribution of the attributes of
impressions received reflects that in the overall population
matchingϕi. Bidders may also want to cap the frequency
that an ad is shown to any given user. We can model all of
these forms of bid expressiveness within the LP.

Other forms ofMIP expressivenessrequires the use of bi-
nary variables, for example, threshold/bonus bids in which
an advertiser requires a certain minimum quantity of impres-
sions (Boutilieret al. 2008; Parkes & Sandholm 2005). Our
model also generalizes readily to per-click and per-action
valuation. For a deeper discussion of expressiveness forms,
see (Boutilieret al. 2008).

Abstract Channels The number of c-channels|C| grows
exponentially in the number of features. Thus we must con-
sider the use ofabstract channels (a-channels). An ab-
stract channel is any aggregation of c-channels, and can be
represented as a logical formulaα over F . An abstrac-
tion is a partitioning of c-channelsC into a setA of a-
channels, i.e., a set of mutually exclusive and covering for-
mulae{α1, . . . , α|A|}. We treat an a-channel and its logical
representationα indistinguishably, writing bothc ∈ α and
c |= α as appropriate.Lossless abstractionis one means of
creating a-channels: we group c-channels corresponding to
(logically consistent) formulae of the form∧i∈B ± ϕi; i.e.,
conjunctions over all bid formulae or their negations. While
this allows for optimal allocation, it it will not generallylead
to a manageable number of channels; instead we consider
“approximation” using a-channels that are not necessarily
aligned with bid formulae.

Given an abstractionA, our optimization problem is one of
assigning bids toa-channels. Define the supply of a-channel
α to bes(α) =

∑
{s(c) : c ∈ C, c |= α}. We formulate the

optimization assuming arandom dispatch policy: if i is as-
signed to an abstract channelα, it’s ad will be dispatched
randomly to the c-channels that constituteα. Under this as-
sumption, the probability that anα-impression is relevant for
bid i is pi

α = Pr(ϕi|α), wherePr(ϕi|α) = s(ϕi∧α)/s(α).
Thus, for channelα, the number of specific impressions out
of xi

α that “count towards” the satisfaction of a bidi’s condi-
tions ispi

αxi
α. In particular, for our simple LP, the value of a



singleα-impression toi is vi
α = vipi

α. This reflects the (ex-
pected) value of arandom dispatch policy: if i is assigned
to an abstract channelα, it will be assigned randomly to the
c-channels that constituteα.1 The optimal allocation under
the random dispatch assumption is given by the LP:

max
xi

α

∑

i

∑

α

vipi
αxi

α

s.t.
∑

i

xi
α ≤ s(α) ∀α ∈ A

∑

α

vi
αxi

α ≤ gi ∀i ∈ B.

With more general expressiveness, we may not associate
value directly with impressions, but with complex proper-
ties of the entire allocation, possibly involving multiplefor-
mulaeϕi. In such a case, we discount the impressions that
count toward satisfaction of the any component formulaϕi

by Pr(ϕi|α). The value discount in the per-impression LP
is a special case of this.

We wish to obtain an abstraction that allows optimization
to tractably achieve a high-value allocation. Fortunately,
such an allocation always exists.

Theorem 1 For any abstractionA with an allocationΥ in
which W is the set of bids with positive allocation, there
exists an abstractionA′ with a corresponding allocationΥ′

such that|A′| ≤ 2|W | − 1 and each bid receives the same
number of relevant impressions inΥ′ as inΥ.

Proof sketch. Construct a bipartite graphG = {VB, VC , E}
with a bid vertexfor eachi ∈ W and achannel vertexfor
eachα ∈ A. An edge with weightxi

α exists between a
bid vertexi and a channel vertexα iff there is a positive
allocation from channelα to bid i in the allocationΥ.

If any cycles exist inG, choose one and consider the sub-
graphG′ = {V ′

B, V ′
C , E′} comprising the edges in this cy-

cle. Let k = |V ′
B | = |V ′

C |, and label the bid and channel
vertices from 1 tok, s.t. bid vertex 1 connects to channel
vertices 1 and 2, etc. We break this cycle byshiftingthe allo-
cation, holding each bid’s relevant impression total constant
and not exceeding the supply used in each channel. This cor-
responds to finding a new set of (non-negative) edge weights
x, with at least onexi

α = 0, satisfying:
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1The dispatch of ads can be handled more intelligently: no ad
for i will actually be assigned to a channel not satisfyingϕi; intel-
ligent dispatch (Parkes & Sandholm 2005) can be used to reassign
such wasted supply to ads that can exploit it. Thus,vi

α underesti-
mates true value. We discuss this below, and develop methodsto
assign ads to abstract channels in a more refined fashion.

This system must have a solution withxi
α = 0 for somei, α.

We update the graphG by changing all edge weightsx in
the cycle to these new weightsx and remove the edge with
(new) weight 0. We repeat this process untilG is acyclic.

Channel vertices with degree 1 in the new graph (singleton
channels) are those in which only one bid receives positive
allocation. Any two singleton channelsα andβ allocated to
the same bidi can be collapsed into a single channelα ∨ β,
while preserving total relevant impressions, as follows:

x
i
α∨β =

pi
αxi

α + pi
βxiβ

pi
α∨β

.

We then replaceα and β by a single new channel vertex
α ∨ β with a single edge of weightxi

α∨β connected to the
bid vertexi. Channels not allocated to a bid can be collapsed
into any such singleton channel by the same process.

By maximal collapse of singletons, we have a bipartite
graph with at most|W | channel vertices of degree 1 (or 0).
Since the graph is now acyclic, there are at most|W | − 1
channel vertices with degree 2 or more. Hence there are at
most2|W | − 1 channel vertices in the new graph. Construct
an abstractionA′ and allocationΥ′ corresponding to the fi-
nal graph. Each operation preserved the total of relevant
impressions awarded to each bid, and|A′| ≤ 2|W | − 1. �

It immediately follows that an optimal allocation requires
at most2|W | − 1 channels. The proof is constructive given
the initial allocation, but does not provide any guidance for
how to come up with an optimal initial allocation. In the fol-
lowing sections we describe instead how to generate small,
high-quality abstractions based on column generation.

Creating Abstractions: Column Generation

The solution of an abstract LP or MIP (depending on the
form of expressiveness allowed in the market) provides us
with an optimal assignment of bids to a-channels. This
leaves the question of choosing a set of a-channels of
computationally-manageable size, yet whose solution pro-
vides a near-optimal solution to the original problem. We
develop a novel column generation method to do just this.
We first describe the method using LPs with only supply
constraints, then show how it applies more broadly to arbi-
trary LP and IP expressiveness.

The basic approach is as follows: we solve an abstract LP
using a trivial initial abstraction (e.g., aggregating allchan-
nels into a single a-channel⊤). We refine the abstraction
by splitting an a-channelα by conjoining a formulaβ and
its negation, thus replacingα by α ∧ β andα ∧ β. A new
LP is solved with the new a-channels, and the process re-
peats until the improvement in LP objective value falls be-
low some threshold or the number of channels reaches a
specified limit. To illustrate, consider an LP to allocate a sin-
gle a-channelα to bidsB = {1, 2} (with no bid constraints):

max v1
αx1

α +v2
αx2

α

s.t. x1
α +x2

α ≤ s(α).

andx1
α, x2

α ≥ 0. Refiningα requires introducing the bid
columns (and supply rows) corresponding toα ∧ β, α ∧ β



for someβ. We first discuss how to evaluate the quality of
candidateβs, and then how to search for the best split.

Scoring Abstract Channel Splits
The process of splittingα by β requires introducing
new columns (variables) to the LP.Column genera-
tion (Lübbecke & Desrosiers 2005) is widely used to solve
LPs with very large numbers of columns by first solving
a version of the LP with few columns, then adding new
columns at each iteration and resolving. New columns are
chosen by solving apricing subproblemwhich identifies
columns that potentially improve the objective. We adopt
this approach, but require significant enhancements that ex-
ploit the special structure of our problem, and account for
the introduction of multiple columns at once (i.e.,xi

α∧β and
xi

α∧β
for each bidi) while simultaneously removing other

columns (i.e., those forxi
α).

Assume we have the solution of the abstract LP above. We
determine the value, orscore, of a potential split ofα into
two a-channelsα∧β, α∧β by: (a) scoring the new columns
introduced by the split using a form of column generation
scoring; and (b) combining the scores of these new columns
in a way that exploits the special structure of our problem.
Standard column generation methods solve the pricing sub-
problem to identify individual columns absent from an LP
with positive reduced costand typically add one or more
such columns with high reduced cost, terminating when no
reduced costs are positive. We apply a similar technique.
Let πα be the value of the dual variable corresponding to the
supply constraint for a-channelα in the dual of the abstract
LP (i.e., the shadow price of the constraint). The reduced
cost of variablexi

α∧β is:

rc(xi
α∧β) = vi

α∧β − cπ,

wherec is xi
α∧β ’s column (i.e., the vector of coefficients for

xi
α∧β over the rows) andπ is the vector of dual variables

over the rows. The reduced cost ofxi

α∧β
is defined simi-

larly. Reduced cost measures the increase in objective value
per unit increase in the (nonbasic) variable, making maxi-
mum reduced cost a common, easily computableheuristic
for variable introduction. (It can also be used to prove opti-
mality when max reduced cost is nonpositive.) Althoughcπ
measures the marginal impact of constraints w.r.t. the vari-
able, reduced cost is a heuristic since it fails to consider how
far the target variable can be moved until constraints are met.

Unfortunately, the abstract LP does not include relevant
supply constraints forα∧β orα∧β, meaning shadow prices
cannot be directly obtained from the LP. If we add two rows
to the abstract LP reflecting split channel supply, we obtain:

Max v1
αx1

α +v2
αx2

α

s.t. x1
α +x2

α ≤ s(α)
Pr(β|α)x1

α + Pr(β|α)x2
α ≤ s(α ∧ β)

Pr(β|α)x1
α + Pr(β|α)x2

α ≤ s(α ∧ β).

Sinces(α ∧ β) = Pr(β|α)s(α) (similarly for β), the new
constraints are multiples of thes(α) constraint, leaving the
optimal solution unaffected. This allows us to price the two
new constraints: when we consider the dual of this LP, one

optimal solution sets the dual variableπα to its value in the
original abstract dual LP, and sets the two new dual vari-
ablesπα∧β = πα∧β = 0. As a result, we can compute
the reduced costs of the split channel variables using terms
available from the solution of the original abstract LP:2

rc(xi
α∧β) = v

i
α∧β − cπ = v

i
α∧β − πα

rc(xi

α∧β
) = v

i

α∧β
− cπ = v

i

α∧β
− πα.

In contrast to typical column generation, we want to model
the impact of simultaneously introducing the entireset of
new columns created by a split, andremovingthe entire set
of columns corresponding to the original channel. Never-
theless, reduced cost forms the basis of an effective scoring
function. With only supply constraints, we can measure the
exactchange in objective value resulting from a split. If
bids have no budget constraints, all supply of the new split
channelα ∧ β will be allocated to the bidi that has max-
imum valuevi

α∧β , giving objective value improvement of
rc(xi

α∧β)s(α∧β). Here the reduced cost component reflects
the precise difference in objective value if anα-impression
to a current winning bid is replaced by anα ∧ β-impression
to bid i, while the supply component tells us exactly how
much substitution is possible. Applying the same argument
to α ∧ β gives the followingscorefor the split of anyα into
two subchannelsα ∧ β andα ∧ β:

score(α, β, β) = max
i∈B

{rc(xi
α∧β)s(α ∧ β)}

+ max
i∈B

{rc(xi

α∧β
)s(α ∧ β)}.

This scoring function has the desirable property that the
score of a split isexactlythe induced improvement in ob-
jective value when only supply constraints are present. Of
course, almost all problems have other constraints (budget,
etc.), which would be accounted for appropriately in the re-
duced cost calculation. Still, the reduced cost calculation re-
mains straightforward for LP expressiveness, requiring only
one vector product (using dual values computed in the LP
solution). Moreover, the score provides an upper bound on
possible objective value improvement, and a guarantee of
optimality if the maximum score is nonpositive, even when
other constraints are present.3 A key advantage of our scor-
ing function is that no additional computation is required
apart from reduced cost calculations (using terms available
from the LP solve) and a trivial maximization. This is criti-
cal, since the number of potential splits is doubly exponen-
tial, as discussed next.

Searching for Suitable Splits

Scoring a split is straightforward, requiring at most2|B| re-
duced cost calculations. However, the number of potential
splits of an a-channel is doubly exponential inn (i.e., 2kn

formulae overn features with domain sizek). In addition,
we must evaluate splits of eachα in the current abstraction

2For more general expressiveness, we would also subtractcrπr,
for any non-supply constraintr.

3One could use more complex, computationally demanding
scoring to better estimate objective improvement, but folklore in
column generation suggests this is rarely worthwhile.



A. To manage the complexity of this search, we adopt a sim-
ple myopic approach to find the best split of an a-channelα.
We build up the formulaβα on whichα is split as follows.
Let f i

k = Dom(F i) \ {f i
k}. We first consider eachβ1

α con-

sisting off i
k for somei, k; i.e., at the first “level” we con-

sider splits that exclude one attribute-value. We “commit”
to the single attribute-value exclusion with the best score

score(α, β1
α, β

1

α). We then consider refiningβ1
α by conjoin-

ing with some newf i
k or disjoining with some newf i

k (con-
joining tightensβ1

α, disjoining relaxes it). Each resultingβ2
α

is scored in a similar fashion, and we again commit to the
β2

α with the highest score. This continues forℓ iterations,
whereℓ is either a fixed threshold or is determined dynam-
ically by requiring a minimum score improvement be met.
The best split ofα is determined heuristically as〈βα, βα〉,
whereβα = βℓ

α.
Given abstractionA, theα ∈ A with the highest-scoring

best split is adopted, creating a new abstractionA′ with α
replaced byα∧βα andα∧βα. The LP for the new abstrac-
tion is solved and the search for a best split repeated until
the score of the best split ofA falls below some thresholdτ .

Using Abstractions in Ad Auction Optimization

A limitation of our column generation method as specified
is its focus on LP expressiveness. However, the abstraction
process is used to create the set of a-channels which are then
usedin MIP optimization—the intended output is a set of
a-channels, not (necessarily) the allocation itself. WithMIP
expressiveness, we apply column generation to a linear re-
laxation of the MIP to generate a-channels. We then solve
the original MIP using allocation to the a-channels created.
To evaluate column generation, we ran it on a collection of
random problems, some with LP expressiveness, others with
MIP expressiveness. All experiments were run on a machine
with a 3.8GHz Xeon CPU, 2BM cache, and 16GB RAM.

LP Expressiveness The first battery of problems involves
bids that use only LP expressiveness, each having per-
impression valuations for a set of attribute-values over a
given period, and a total budget. Optimization is performed
over a horizon of 30 periods. Problem instances are charac-
terized by parameterm: m binary attributes and10m bid-
ders. We run sets of instances withm ∈ {10, 20, . . . , 100}.

Supply distribution. The probability of an impression
satisfyingf i

1 is drawn fromU [0, 1] and we setPr(f i
2) =

1 − Pr(f i
1). Total supply of impressions, over all attribute-

values, is 1,000,000 per period.
Bids.Each bidj has form〈ϕj , vj , gj , wj〉 and cares about

a set of attributesAj with size|Aj | ∼ U [0, 10]. We assume
bidders tend to care about similar attributes, so bid attributes
are sampled from a Zipf distribution, withPr(F i ∈ Aj) =
(1/i)/(

∑m

k=1 1/k), sampled without replacement. For any
F i ∈ Aj , bid j requires that impressions satisfyf i

zi
, with

zi ∈ {1, 2} chosen uniformly. The bid’s formula is the con-
junction of all required attributes,ϕj =

∧
F i∈Aj f i

zi
.

Our bid valuation model assumes that higher values are
more likely for specific bids (i.e., with more attributes) and
if the attributes in the bid formula are in greater demand. Bid

j’s per-impression valuevj is determined thusly: we first
draw abase valuêvj from U [0.1, 1] then adjust it by setting
vj = v̂j(1 + 10

∑
F i∈Aj Pr(F i)) (e.g., if a bid cares about

no attributes, i.e.,ϕj = ⊤, thenvj = v̂j ; and if it cares about
all m attributes, thenvj = 11v̂j). A bid’s time window
wj is determined by samplingt1 and t2 from U [−10, 40],
settingwj = [min(t1, t2), max(t1, t2)], then truncatingwj

to lie in [1, 30]. This captures the fact that some bids have
windows that extend beyond the optimization horizon. Bid
j’s budget is set to a fractionτ j ∼ U [0.1, 1] of its value
for the total supplyσj in window wj of the formulaϕj it
desires:gj = τ jσjvj .

In addition to these bids, we include a “market” bid with
value 0.1, unlimited budget, and no attribute preferences
(i.e., ϕ = ⊤), reflecting value that could be obtained from
other sources (e.g., future bids or a spot market).
Optimization parameters.During an iteration of column
generation, we continue searching for a suitable split as long
as we can find a channel refinement whose score offers a
minimum relative improvementMI over the previous ab-
straction’s LP value. If such an improvement is found, we
solve the new abstract LP and iterate, otherwise we termi-
nate column generation.4

Estimating an upper bound on the optimal value.To mea-
sure how good an allocation is, we need to estimate the
true optimum value achievable if we generated all relevant
columns. We compute an upper bound on the optimum as
follows. When column generation is complete, we run an-
other optimization usingundiscountedvalues. That is, we
remove allPr(ϕi|α) terms. This is clearly an upper bound
on the optimum because it assumes that bids could actually
make use of the entire amount of a channel it is allocated
(rather than just the fractionPr(ϕi|α) it actually cares about
for channelj). However, this is a very loose upper bound.
We can tighten it significantly by ensuring that a bid’s al-
location does not exceed the supply that it actually cares
about. That is, we add additional constraints of the form
xi

α ≤ s(ϕi ∧ α) for all bids i and channelsα. This is still
an overestimate because it does not account for interactions
between multiple bids. However, empirically, this bound is
quite close to an even tighter upper bound that we generate
via constraint generation (see below).
Experimental results.Table 1 shows results from runs with
parametersMI = 0.01 andMI = 0.001, averaged over
20 instances for each〈m, n〉 pair. The table shows several
key measures including the number of a-channels generated.
The fraction of the upper bound on the optimal value ob-
tained by the abstract LP when column generation termi-
nates (“Frac UB”) is also shown (giving us a lower bound
on the quality of the abstract allocation relative to the true

4Lack of improvement does not imply allocation value is within
MI of optimal, only that nomyopicsplit that offers this improve-
ment within our restricted space of splits: some sequence ofsplits
could give more improvement. Even without this restriction(i.e.,
if splitting into arbitrary subsets is allowed), one can show that
myopic splitting is insufficient under IP expressiveness. But for
certain forms of LP expressiveness we can show that, unless the
allocation is optimal, there exists a two-way split of some channel
that improves value (in which case myopic splitting is sufficient).



# Frac Runtime (sec)
m channels UB Improve µ range

MI = 0.01
10 12.0 0.893 0.447 12 [4, 24]
20 11.0 0.828 0.364 40 [8, 74]
30 10.2 0.841 0.380 75 [35, 150]
40 9.8 0.803 0.334 153 [28, 556]
50 10.0 0.816 0.396 212 [23, 418]
60 8.6 0.827 0.343 245 [33, 470]
70 8.3 0.824 0.304 314 [26, 656]
80 9.2 0.824 0.345 461 [101, 940]
90 8.6 0.806 0.333 566 [75, 1211]
100 9.3 0.804 0.344 811 [203, 1438]

MI = 0.001
10 32.4 0.965 0.515 53 [10, 112]
20 33.8 0.905 0.439 317 [21, 758]
30 27.1 0.899 0.438 538 [112, 1384]
40 28.6 0.871 0.399 1247 [211, 4159]
50 26.8 0.871 0.450 1543 [153, 4027]
60 22.7 0.877 0.392 1775 [88, 4798]
70 19.3 0.867 0.346 1959 [66, 5878]
80 24.2 0.873 0.393 3746 [469, 8670]
90 24.0 0.858 0.374 4956 [807, 14534]
100 25.7 0.853 0.392 6687 [1677, 17047]

Table 1: Average results for column generation with LP ex-
pressivenessm attributes, andn = 10m bidders.

optimal allocation). An estimate of the improvement in the
degree of optimality is shown (“Improve”). This is reported
as the average of(Final − Initial)/UB, whereFinal is the
final LP value,Initial is the LP value at the start of column
generation (when a single abstract channel is used), andUB
is the upper bound on the optimal value. Finally, the average
and range of runtimes is presented.

We see that, with LP expressiveness, column generation
can obtain a significant fraction of the upper bound value
for problems in which it would be impossible to even enu-
merate the full unabstracted LP. Furthermore, the number of
generated channels is comparable across all problem sizes
tested. Setting a lower value for the minimum improvement
parameterMI allows us to obtain a greater fraction of the
upper bound, but with a fairly significant increase in run
time. We note that, on average, much of the improvement
is obtained early in the procedure. Fig. 1 shows the fraction
of the upper bound obtained after a given number of chan-
nels has been generated, averaged over 20 instances, with
10 features, 100 bidders, andMI = 0.001. We obtain a
high fraction of the upper bound from the first few channels
generated, with additional channel splitting providing more
modest improvement.

MIP Expressiveness The second problem set adds all-or-
nothing bonus bids to the per-impression bids above. Since
these require binary variables, column generation on the
LP relaxation only provides an approximation to the opti-
mal abstract allocation. All problems have 100 attributes,
n bonus bidders, and4n per-impression bidders, withn ∈
{10, 20, . . . , 60}. The preferences of per-impression bidders
are as before. Each bonus bidder hasϕj and wj chosen
similarly; but its per-impression value isvj = 0, and in-
stead it paysbj if it receives at leastqj impressions satis-
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Figure 1: Fraction of upper bound vs number of channels
for 10 attributes and 100 per-unit bidders.

# Frac Runtime (sec)
n channels UB Improve µ range
10 6.6 0.847 0.248 41 [5, 82]
20 6.6 0.815 0.252 66 [15, 129]
30 7.0 0.769 0.264 91 [14, 205]
40 8.5 0.790 0.296 153 [31, 282]
50 8.8 0.823 0.325 188 [39, 613]
60 6.8 0.814 0.289 92 [5, 325]

Table 2: Average results for column generation with MIP
expressiveness,MI = 0.01, 100 attributes,n bonus bidders,
and4n per-impression bidders.

fying ϕj , and nothing otherwise. We setqj = τ jσj where
τ j ∼ U [0.1, 1] is the fraction of the supplyσj of ϕj in win-
dow wj . We then setbj = b̂jqj whereb̂j is chosen asvj

for a flat bidder, but then multiplied by a factor chosen from
U [1.1, 1.5]. We also include a “market” bid as above.

Table 2 shows results withMI = 0.01, averaged over 20
instances for eachn. Shown are the number of channels
generated, the fraction of the upper bound (on the optimum)
obtained when column generation terminates (“Frac UB”),
the improvement over the fraction of the upper bound ob-
tained before column generation (“Improve”), and the mean
and range of runtimes. Although we use the LP relaxation to
determine channel splits, the feasible allocation and the up-
per bound are computed by solving the corresponding MIP
(discounted or not) on the set of channels produced.

Although column generation operates on a relaxation of
the true MIP, our scoring function finds very good chan-
nel splits. Indeed, the performance with MIP expressiveness
compares favorably to that with LP expressiveness. We em-
phasize that these campaign-level optimizations are run of-
fline, and used to parametrize dispatch policies that are then
implemented in real time. Thus the times reported here al-
low frequent, multiple optimizations (and reoptimization) of
offline allocations (Boutilieret al. 2008).

Constraint Generation

The column generation approach converges to an optimal
allocation with LP expressiveness (though we may not run it
to optimality). It is not guaranteed to converge to optimality
for MIPs since it is run on the LP relaxation at the root of the
search tree. We develop aconstraint generationalgorithm
that can be used to refine any abstract allocation, and will



converge to optimality for MIPs, as well as for LPs.

The Constraint Generation Process
The optimization above, using the abstraction generated by
our column generation process, assumes that any ad allo-
cated to an a-channelα will be randomly dispatched to the
component c-channels that make upα. This is reflected
in the MIP (or LP) objective, where we replace the per-
impression valuevi of bid i by vi

α = vi Pr(ϕi|α). With
a well-crafted abstraction, this may produce an optimal allo-
cation. However, if the number of a-channels is limited for
computational reasons, the “pessimism” of random dispatch
may leave revenue or efficiency on the table.

Alternatively, given an abstractionA, we can run anopti-
mistic MIPassigning bids to a-channelsassumingeach im-
pression to bidi satisfies its formulaϕi (i.e., do not discount
the impressions bypi

α). This optimistic assumption may not
be valid—there may be no allocation ofα to bids that per-
mits feasible “packing” of their promised supply so that each
i gets onlyϕi-impressions. But we cantestthis assumption
with a simple LP that determines whether there is enough
supply to do so. Leṫx = {ẋi

α} be the solution of the opti-
mistic MIP with a-channels{α}. LetW (α) = {i : ẋi

α > 0}
denote the the “winners” of a-channelα. We solve the fol-
lowing LP for eachα (with xi

c ≥ 0):
min 1 (2)

s.t.
∑

c∈α,c|=ϕi

x
i
c = ẋ

i
α ∀i ∈ W (α)

∑

i∈W (α)

x
i
c ≤ s(c) ∀c ∈ α.

This LP determines a feasible allocation to the c-channels
that constituteα, thus guaranteeing that every impression
given toi satisfies its bid conditionϕi. The first set of con-
straints ensures there is enoughϕi supply for each bidi,
while the second establishes that no c-channel is overallo-
cated. IfLP (α) is feasible for eachα, then it provides an
optimal dispatch policy that extracts the full objective value
of the optimistic MIP.

If LP (α) is infeasible, then there must be some minimal
set of constraints that are jointly infeasible. LetS = Sa∪Ss

be such a minimal set, whereSa are constraints of the first
type, andSs are constraints of the second type. We can show
that the MIP solution violates the inequality

∑

i∈Sa

xi
α ≤

∑

c∈Ss

s(c).

We add this constraint to ensure that overallocation of the
channels inSs does not occur from bids inSa. A tighter
version of this constraint can be employed: we can add to
the sum on the lefthand side any bidi all of whose relevant
channels are included inSs, i.e., anyi s.t. {c ∈ α : c |=
ϕi} ⊆ Ss. At each iteration, setsS leading to violated con-
straints are identified for each a-channel and posted.5 At
each iteration, constraints are generated using a search pro-
cedure for identifying such setsSs, and the MIP is resolved.

5These can be identified using the facilities of standard solvers,
such as the CPLEX IIS (irreducible inconsistent set) routine. We
use our own special purpose algorithm to identify such sets.

This continues until feasibility is attained (in which casethe
optimistic objective value is actually obtained), or computa-
tional or time bounds are reached.

While LP (α) could require an exponential number of
variables (i.e., thexi

c corresponding to all c-channelsc ∈ α)
and constraints, we use simple lossless channel abstraction
(i.e.,∧i∈W (α) ± ϕi) to collapse this number. As such, the
number of winners for each channel (and the interaction of
their bids) determines the true complexity of the required LP
solves. Even with lossless channel abstraction, the feasibil-
ity LP could require an exponential number of variables. In
practice, we find that ifW (α) is no greater than around 20,
the size of the LP is reasonable (andmuchsmaller than220).
If the MIP givesW (α) > 20, we split channelα to mini-
mize the maximum number of bids interested in a channel.
Using this approach, we are able to generate LPs of reason-
able size which solve very quickly (within a second).

The constraint generation algorithm can be used directly
to solve the ad allocation MIP without relying on column
generation. For example, it can be applied directly to the
fully abstract MIP with a single a-channel (⊤), or could be
used to optimize w.r.t.anyheuristically chosen abstraction.

Empirical Results

To evaluate the effectiveness of constraint generation we ex-
periment with problems with bonus and per-impression bid-
ders presented in the previous section. We first perform col-
umn generation usingMI = 0.01, then extend the solution
using constraint generation. To avoid generating an unrea-
sonable number of constraints, we use a toleranceǫ (set to
0.01) that permits MIP allocations to decrease by as much
asǫ, solving the following LP:

min ǫ (3)

s.t.
∑

c∈α,c|=ϕi

x
i
c ≤ ẋ

i
α ∀i ∈ W (α)

∑

c∈αj,c|=ϕi

x
i
c ≥ ẋ

i
α − ǫ ∀i ∈ W (α)

∑

i∈W (α)

x
i
c ≤ s(c) ∀c ∈ α.

If constraint generation does not terminate within 600s., we
stop the process and produce a feasible allocation that min-
imizes the maximum difference from the MIP allocation.
Thus, when constraint generation terminates, the allocation
may be suboptimal, but is guaranteed to be feasible.

When constraint generation is complete, we compute the
value of the allocation based on the final feasible allocation
generated by the LP (which might be different than that of
the final MIP allocation, due toǫ), but use the final (infeasi-
ble) MIP allocation as an upper bound on the true optimum
value. This bound is close to, but somewhat tighter than the
bound shown earlier.

Table 3 shows the results of our experiments: number of
constraints generated; fraction of the upper bound on opti-
mal value obtained by the MIP when constraint generation
terminates (“Frac UB”); an estimate ofadditional improve-
ment in the degree of optimality over the final column gen-
eration value (“Add’l improve”); and average and range of



# Frac Add’l. Runtime (sec)
n constraints UB improve µ range
10 221 0.954 0.104 154 [14, 615]
20 557 0.939 0.118 636 [118, 1178]
30 750 0.965 0.190 850 [317, 1750]
40 787 0.954 0.157 1434 [648, 6609]
50 721 0.967 0.139 1419 [679, 6235]
60 803 0.964 0.143 1029 [635, 2269]

Table 3: Average results from adopting the constraint gen-
eration phase following column generation, with IP expres-
siveness,MI = 0.01, 100 attributes,n bonus bidders, and
4n per-impression bidders.

constraint generation runtimes. The additional solve phase
increases value to a high degree of optimality, finding so-
lutions that are roughly within 94-97% of the upper bound
(compared with 77-85% for column generation alone). Ob-
taining this improvement can be time consuming for larger
problems. We emphasize, however, that abstraction genera-
tion is typically an offline process.

Other Uses of Constraint Generation

One bottleneck in the effective use of constraint generation
is its poor scaling in the number of “winners.” Specifi-
cally, if an a-channel, time-period pair has a large number
of bids that are allocated to it in the initial abstract MIP
solve, the procedure can generate hundreds of thousands of
constraints, causing the MIP to slow down significantly and
dominate runtime. The number of winners in the MIP can
be used to suggest further channel refinements. The devel-
opment of effective channel splitting heuristics that attempt
to “separate” bids into different channels could make con-
straint generation much more effective. The quick identifi-
cation of problematic a-channels during constraint genera-
tion is critical as well: whenever a channel is split, all con-
straints on the split channel must be discarded, and new ones
must be generated on the new channels, further “wasting”
computational effort. Thus problematic a-channels should
be identified before significant constraint generation occurs.

Constraint generation can also be used selectively. The
MIP can be solved by using the “optimistic” values on some
channel-time pairs—requiring constraint generation to ef-
fectively carve up supply with those segments—while the
random dispatch policy can be assumed in others (e.g., those
where constraint generation cannot scale effectively). This
offers a tractable means for improving on the abstract alloca-
tion problem without necessarily accounting for intelligent
dispatch across the entire space.

Concluding Remarks
We developed a suite of techniques based on column and
constraint generation that effectively tackle the channelex-
plosion problem in the optimal allocation of display ads.
Our techniques apply to both simple, current forms of ex-
pressiveness (e.g., simple budget constraints) and other,
richer forms of campaign-level expressiveness that require
the solution of large-scale integer programs (Boutilieret al.
2008; Parkes & Sandholm 2005). Our experiments demon-
strate that high-quality allocations can be determined using

very few abstract channels, indicating a desirable sensitivity
of our methods to those distinctions that have the greatest
impact on value (e.g., revenue or efficiency), and the ability
to scale to problems with hundreds of attributes and bidders.
Given the offline nature of the optimization problem we pro-
pose, our computational results suggest that our procedures
can be run and rerun frequently to determine, say, (approxi-
mately) optimal allocations in stochastic models that require
sampling (Boutilieret al. 2008).

Our method considers complex splits to generate a
tractable number of channels. Though more sophisticated
methods might further reduce the number of channels, our
goal is not to minimize the number of channels per se, but
to identify an abstraction with high value while maintaining
LP/MIP tractability. Currently, channel split search domi-
nates runtime: a focus of future research is accelerating this
search, e.g., via heuristics for variable/literal ordering. Im-
provements to our constraint generation procedure are of in-
terest as is the exploration of branch-and-price techniques.
Finally, assessing the impact of approximate channel ab-
straction and optimization on incentives in ad markets would
be of significant interest and value.
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