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Abstract

The use of simple auction mechanisms like the GSP in on-
line advertising can lead to significant loss of efficiencd an
revenue when advertisers have rich preferences—even sim-
ple forms of expressiveness like budget constraints cah lea
to suboptimal outcomes. While the optimal allocation of in-
ventory can provide greater efficiency and revenue, natural
formulations of the underlying optimization problems grow
exponentially in the number of features of interest, presen
ing a key practical challenge. To address this problem, we
propose a means for automatically partitioning inventatg i
abstract channelso that the least relevant features are ig-
nored. Our approach, based on LP/MIP column and con-
straint generation, dramatically reduces the size of thé-pr
lem, thus rendering optimization computationally feasiat
practical scales. Our algorithms allow for principled &ad
offs between tractability and solution quality. Numerieat
periments demonstrate the computational practicalityusf o
approach as well as the quality of the resulting abstrastion

I ntroduction

Online advertising has radically changed the nature of ad-
vertising and the technology supporting the deployment of
ad campaigns. While ad targeting and campaign design is
inherently complex, the variety of online advertising ser-
vices has only increased this complexity. In particulag, th
ability to target ads tepecific individual®ased on detailed,
personalized online information—information that is slynp
not available in broadcast media—presents compelling op-
portunities and tremendous technical challenges for ad de-
livery. Sophisticated matching and bidding algorithmghsu

as auctions usingeneralized second price (GSEdelman,
Ostrovsky, & Schwarz 2007; Varian 2007), have been de-
veloped for sponsored search advertising. By contrast, the
selling of graphicatlisplay adson web pages is still largely
managed via manual negotiation. Though much low-value
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remnantinventory is sold in online exchanggsemiumdis-

play advertising space (e.g., slots near the top, or “above
the fold,” of high traffic, high profile websites) is sold al-
most exclusively by non-automated means. One reason for
this is a perception that auction/market mechanisms can-
not be made to work for the types chmpaign-level ex-
pressivenesge.g., impression targets, smoothness of de-
livery, temporal sequencing, complements, represeetativ
ness) required for display ads (Parkes & Sandholm 2005;
Boutilier et al. 2008).

While sophisticated bidding strategies (Boegsl. 2006;
Feldmannet al. 2007; Rusmevichientong & Williamson
2006) can increase the value a bidder extracts from an in-
expressive auction (e.g., GSP) for some limited preference
types (e.g., long-term budgets), it is very difficult to bid e
fectively with more demanding types of preferences (e.qg.,
requiring minimum quantities). Furthermore, with inexpre
sive auctions, arbitrarily large inefficiencies can arisgen-
eral (Benisch, Sadeh, & Sandholm 2009). Richer languages
that allow advertisers to express their true campaign pref-
erences directly, rather than forcing them into standard pe
event bidding models, are critical to the automated matghin
and selling of display ads. It is just these formsampaign-
level expressivenegkat are developed in (Parkes & Sand-
holm 2005; Boutilieret al. 2008), where a variety of ex-
pressiveness forms are outlined. But a significant bottlene
remains: the use of expressive bidding requingtsmization
to match ad supply with advertisers’ demand.

In this paper we tackle a key impediment to the use of op-
timization in ad auctionschannel explosionOnline adver-
tisers can segment the target audience and ad impressions
using an enormous number of features. But the number
of ad channelsor feature instantiations, to which ads can
be assigned grows exponentially in the number of features.
Standard models that use linear programming (LP) (Abrams,
Mendelevitch, & Tomlin 2007) or mixed-integer program-
ming (MIP) (Boutilier et al. 2008; Parkes & Sandholm
2005) to assign ads to such channels simply cannot scale
directly to problems involving more than a few thousand
channels. We address this through the usehainnel ab-



straction Intuitively, an abstract channel is any aggrega-

tion of concrete channels (i.e., feature instantiationg) a max Z ol )
single channel. During allocation optimization, ads are as i — e

signed to abstract channels rather than concrete chadsels. i i i i L

we show, a well-chosen abstraction, guided by its impact on st Z e <s(e) VeeC; Y war<g VieB
allocation value—as opposed to clustering based solely on ) ’ ) ©

statistical properties of the features in question—canenak 1hiS LP can easily be extended to other formsL&f ex-

optimization practical with little sacrifice of revenue dfie pressivenesssuch as substitutes, complements, and time-
ciency. We propose techniques for automatically genegatin  Paseéd smoothness. For example, if a campaign has (par-
and using a set of abstract channels: a novel foroobfmn tially) substitutable demands (e.g., it desitgsor ¢, with
generationto generate an abstraction; and a reamstraint valuesv; andw;), two separate bids can be posted with a
generationalgorithm for improving the allocation of ads to ~ J0int budget constraint. I, andp, are complements, we
abstract channels. can constrain the allocated impressions to meet some ap-

) ) ~ proximate ratio target (e.gmp(p1) < (1 + €)imp(p2),
In the next section we present the basic ad allocation iy (p,) < (1 + ¢)imp(p1 ), whereimp(y) is the number

model and define abstract channels. We show that a small of impressions ofs). Smoothness constraints can also be
number of channels is sufficient to implement an optimal encoded linearly (e.g., requiring at least 10% of total iespr
allocation. We then develop a novel and computationally sions to be allocated in each eligible time period). A bidder
effective column generation technique to generate useful may want to receive a “representative allocation” (Ghosh
abstractions—empirical results show that the algorithm ob et al. 2009), whereby the distribution of the attributes of
tains near-optimal allocations with very few channels. We impressions received reflects that in the overall popuatio
extend the approach with a constraint generation algorithm matchingy?. Bidders may also want to cap the frequency
that makes more effective use of abstract channels, and that an ad is shown to any given user. We can model all of
demonstrate how it significantly improves value when “MIP  these forms of bid expressiveness within the LP.
expressiveness” is involved. We conclude with directions  Qther forms oMIP expressivenegequires the use of bi-
for future research. nary variables, for example, threshold/bonus bids in which
an advertiser requires a certain minimum quantity of impres
sions (Boutilieret al. 2008; Parkes & Sandholm 2005). Our
model also generalizes readily to per-click and per-action
valuation. For a deeper discussion of expressiveness forms
We assume a finite attribute teaturesetF, eachF* € F see (Boutilieret al. 2008).

having finite domainDom(F*) = {f{,..., fi,}. Features
describe attributes of an ad display such as web site, page lo
cation, user demographic, day part, contextual featutes, e
The set ofconcrete channels (c-channetS)comprises the
instantiations of feature®. Intuitively, a c-channet € C

is a finest-grained chunk of supply to which an ad can be
assigned. We often treatas a model of the propositional
language over variableg (e.g., writinge |= ¢ for propo-
sitional formulaey over F). Let s(c,t) be the supply of
c-channet available at time < 7'

Allocation Model and Abstract Channds

Abstract Channels The number of c-channe]€’| grows
exponentially in the number of features. Thus we must con-
sider the use ofbstract channels (a-channels)An ab-
stract channel is any aggregation of c-channels, and can be
represented as a logical formutaover 7. An abstrac-
tion is a partitioning of c-channel€’ into a setA of a-
channels, i.e., a set of mutually exclusive and covering for
mulae{as, ..., a4 }. We treat an a-channel and its logical
representatiom indistinguishably, writing botl: € « and
¢ = « as appropriateLossless abstractiois one means of
Advertisers express their campaign objectives using a set creating a-channels: we group c-channels corresponding to
of one or more bids, potentially linked by shared variables (logically consistent) formulae of the form;cs £ ¢'; i.e.,
and constraints. While we allow all forms of expressiveness conjunctions over all bid formulae or their negations. Whil
that can be represented as a MIP, we motivate our techniguesthis allows for optimal allocation, it it will not generallgad

using a simple LP-based model. We assume & sdtitem- to a manageable number of channels; instead we consider
based, budget-constrained bids. Eachibid B has form “approximation” using a-channels that are not necessarily
(o' v, gt w'), wherey' is a logical formula over features  aligned with bid formulae.

F,v" > 0is4’s price per impressiorg’ > 0 is its budget, Given an abstractiod, our optimization problem is one of
andw® is a time window(s‘, e!] within which impressions assigning bids ta-channelsDefine the supply of a-channel
mustoccur{ < s* < e < T). Bidireflects adver-  atobes(a) = Y {s(c) : c € C, c = a}. We formulate the
tisers’s interest in impressions satisfying the conditigh optimization assuming eandom dispatch policyif i is as-

The allocation problem in this setting can be formulated as signed to an abstract channel it's ad will be dispatched

a simple LP that maximizes revenue by allocatiri¢t) im- randomly to the c-channels that constitateUnder this as-
pressions of c-channele C to bid i at timet. To simplify sumption, the probability that arimpression is relevant for

notation, we formulate the optimization as if there were a bidiisp!, = Pr(¢'|a), wherePr(¢?|a) = s(¢' Aa)/s(a).
single time period. (The generalization to multiple pesod  Thus, for channek, the number of specific impressions out
is obvious). Lew! bei’s value for ac-impressionw? = v of z¢, that “count towards” the satisfaction of a hid condi-
if ¢ = % vl = 0 otherwise. Then we have (witH, > 0): tions isp’,«% . In particular, for our simple LP, the value of a



singlea-impression ta is v, = v'p’,. This reflects the (ex-
pected) value of @andom dispatch policyif i is assigned

to an abstract channel it will be assigned randomly to the
c-channels that constitute® The optimal allocation under
the random dispatch assumption is given by the LP:

i
max E E VDL Ty,

i

s.t. fol < s(a)
i
> el < g

[0}

Va e A

Vi e B.

With more general expressiveness, we may not associate

value directly with impressions, but with complex proper-
ties of the entire allocation, possibly involving multigte-
mulaey’. In such a case, we discount the impressions that
count toward satisfaction of the any component formeila
by Pr(¢?|a). The value discount in the per-impression LP
is a special case of this.

We wish to obtain an abstraction that allows optimization
to tractably achieve a high-value allocation. Fortunately
such an allocation always exists.

Theorem 1 For any abstractiond with an allocationY in
which W is the set of bids with positive allocation, there
exists an abstractiod’ with a corresponding allocatioff”’
such that A’| < 2|IW| — 1 and each bid receives the same
number of relevant impressions¥f as in Y.

Proof sketch. Construct a bipartite graphl = {V, V¢, E'}
with a bid vertexfor eachi € W and achannel vertexor
eacha € A. An edge with weightr?, exists between a
bid vertexi and a channel vertex iff there is a positive
allocation from channel to bid+ in the allocationY'.

If any cycles exist in, choose one and consider the sub-
graphG’ = {V}, V/,, E'} comprising the edges in this cy-
cle. Letk = |V}| = |V4|, and label the bid and channel
vertices from 1 tok, s.t. bid vertex 1 connects to channel
vertices 1 and 2, etc. We break this cycledtftingthe allo-
cation, holding each bid’s relevant impression total cantst

and not exceeding the supply used in each channel. This cor-

This system must have a solution with = 0 for somei, a.
We update the grap&' by changing all edge weightsin
the cycle to these new weightsand remove the edge with
(new) weight 0. We repeat this process ugtils acyclic.

Channel vertices with degree 1 in the new graghdleton
channel¥ are those in which only one bid receives positive
allocation. Any two singleton channeisand allocated to
the same bid can be collapsed into a single chanael 3,
while preserving total relevant impressions, as follows:

i DaTa + ppx'p
IEa\/ﬁ =

Pavp

We then replacex and 3 by a single new channel vertex
«a VvV ( with a single edge of Weightfwﬁ connected to the
bid vertexi. Channels not allocated to a bid can be collapsed
into any such singleton channel by the same process.

By maximal collapse of singletons, we have a bipartite
graph with at mosWW| channel vertices of degree 1 (or 0).
Since the graph is now acyclic, there are at moist — 1
channel vertices with degree 2 or more. Hence there are at
most2|1V| — 1 channel vertices in the new graph. Construct
an abstractiomd’ and allocatiori(” corresponding to the fi-
nal graph. Each operation preserved the total of relevant
impressions awarded to each bid, add < 2|W|—-1. O

It immediately follows that an optimal allocation requires
at most2|WW| — 1 channels. The proof is constructive given
the initial allocation, but does not provide any guidanae fo
how to come up with an optimal initial allocation. In the fol-
lowing sections we describe instead how to generate small,
high-quality abstractions based on column generation.

Creating Abstractions: Column Generation

The solution of an abstract LP or MIP (depending on the
form of expressiveness allowed in the market) provides us
with an optimal assignment of bids to a-channels. This
leaves the question of choosing a set of a-channels of
computationally-manageable size, yet whose solution pro-
vides a near-optimal solution to the original problem. We
develop a novel column generation method to do just this.
We first describe the method using LPs with only supply

responds to finding a new set of (non-negative) edge weights constraints, then show how it applies more broadly to arbi-

7, with at least one’, = 0, satisfying:
T+ T4 < a + af

—k—1

—k k—1 k
T, +Tp <z, +xi

1-1 1-1 11 11
P1%1 + P22 = pi%1 + Paka

k—k k—k _ k_k kK
PrTr + P1T1 = Pp&i + P11

1The dispatch of ads can be handled more intelligently: no ad
for ¢ will actually be assigned to a channel not satisfyisigintel-
ligent dispatch (Parkes & Sandholm 2005) can be used toigeass
such wasted supply to ads that can exploit it. Thysunderesti-
mates true value. We discuss this below, and develop metbods
assign ads to abstract channels in a more refined fashion.

trary LP and IP expressiveness.

The basic approach is as follows: we solve an abstract LP
using a trivial initial abstraction (e.g., aggregatingaibn-
nels into a single a-channél). We refine the abstraction
by splitting an a-channel by conjoining a formulas and
its negation, thus replacing by o A 3 anda A 3. A new
LP is solved with the new a-channels, and the process re-
peats until the improvement in LP objective value falls be-
low some threshold or the number of channels reaches a
specified limit. To illustrate, consider an LP to allocatéa s
gle a-channek to bidsB = {1, 2} (with no bid constraints):

Vala

1
T

2,2
+vama
2

+za

max

s.t. < s(a).

andz,,z2 > 0. Refininga requires introducing the bid
columns (and supply rows) correspondingata\ 3, A



for somes. We first discuss how to evaluate the quality of
candidatess, and then how to search for the best split.

Scoring Abstract Channe Splits

The process of splittingr by 3 requires introducing
new columns (variables) to the LRColumn genera-
tion (Lubbecke & Desrosiers 2005) is widely used to solve
LPs with very large numbers of columns by first solving
a version of the LP with few columns, then adding new
columns at each iteration and resolving. New columns are
chosen by solving gricing subproblemwhich identifies
columns that potentially improve the objective. We adopt
this approach, but require significant enhancements that ex
ploit the special structure of our problem, and account for
the introduction of multiple columns at once (i.€},, ; and

x;/\ﬁ for each bid:) while simultaneously removing other
columns (i.e., those for?)).

Assume we have the solution of the abstract LP above. We
determine the value, @rcore of a potential split oty into
two a-channela A 3, a A 3 by: (a) scoring the new columns
introduced by the split using a form of column generation
scoring; and (b) combining the scores of these new columns
in a way that exploits the special structure of our problem.
Standard column generation methods solve the pricing sub-
problem to identify individual columns absent from an LP
with positive reduced costaind typically add one or more
such columns with high reduced cost, terminating when no
reduced costs are positive. We apply a similar technique.
Letw, be the value of the dual variable corresponding to the
supply constraint for a-channelin the dual of the abstract
LP (i.e., the shadow price of the constraint). The reduced
cost of variabler}, , ; is:

Tc(xfmﬁ) = ”jmﬁ —cm

wherec is z, , 5's column (i.e., the vector of coefficients for
xt,, 5 over the rows) andr is the vector of dual variables
over the rows. The reduced costﬂfé@ is defined simi-

larly. Reduced cost measures the increase in objective valu
per unit increase in the (nonbasic) variable, making maxi-
mum reduced cost a common, easily computddaeristic
for variable introduction. (It can also be used to prove-opti
mality when max reduced cost is nonpositive.) Althowgh
measures the marginal impact of constraints w.r.t. the vari
able, reduced cost is a heuristic since it fails to consider h
far the target variable can be moved until constraints ate me
Unfortunately, the abstract LP does not include relevant
supply constraints far A 3 or a A 3, meaning shadow prices
cannot be directly obtained from the LP. If we add two rows
to the abstract LP reflecting split channel supply, we obtain

3

Max olzl +ola?
st oz} +22 < s(a)
Pr(fla)zs  +Pr(fla)z; < s(aAp)
Pr(ﬁ|o¢)mé + Pr(ma):ci < s(aA B)

Sinces(a A 8) = Pr(B|a)s() (similarly for 3), the new
constraints are multiples of th€a) constraint, leaving the
optimal solution unaffected. This allows us to price the two
new constraints: when we consider the dual of this LP, one

optimal solution sets the dual variabtg to its value in the
original abstract dual LP, and sets the two new dual vari-
ablesmo s = m,,5 = 0. As a result, we can compute
the reduced costs of the split channel variables using terms
available from the solution of the original abstract .P:

1c(Tang) = Vang — CT = Vang — Ta
; .

2 %
1e(Top5) = Vopg — €T = Vyp5 — Ta-

In contrast to typical column generation, we want to model
the impact of simultaneously introducing the entiegt of
new columns created by a split, arenovingthe entire set
of columns corresponding to the original channel. Never-
theless, reduced cost forms the basis of an effective ggorin
function. With only supply constraints, we can measure the
exactchange in objective value resulting from a split. If
bids have no budget constraints, all supply of the new split
channela A 8 will be allocated to the bid that has max-
imum vaIuevjmﬂ, giving objective value improvement of
re(xl, 5 5)s(A3). Here the reduced cost componentreflects
the precise difference in objective value if anmpression
to a current winning bid is replaced by am\ S-impression
to bid 7, while the supply component tells us exactly how
much substitution is possible. Applying the same argument
to a A 3 gives the followingscorefor the split of anya into
two subchannels A 5 anda A 5:

score(a, 3, 8) = meag{rc(mé/\ﬁ)s(a AB)}
+ IBEaB:)({rc(:rLAE)s(a AB)}.

This scoring function has the desirable property that the
score of a split isexactlythe induced improvement in ob-
jective value when only supply constraints are present. Of
course, almost all problems have other constraints (budget
etc.), which would be accounted for appropriately in the re-
duced cost calculation. Still, the reduced cost calcutatin
mains straightforward for LP expressiveness, requirifg on
one vector product (using dual values computed in the LP
solution). Moreover, the score provides an upper bound on
possible objective value improvement, and a guarantee of
optimality if the maximum score is nonpositive, even when
other constraints are presénf\ key advantage of our scor-
ing function is that no additional computation is required
apart from reduced cost calculations (using terms availabl
from the LP solve) and a trivial maximization. This is criti-
cal, since the number of potential splits is doubly exponen-
tial, as discussed next.

Searching for Suitable Splits

Scoring a split is straightforward, requiring at mags| re-
duced cost calculations. However, the number of potential
splits of an a-channel is doubly exponentiakir(i.e., 2"
formulae ovem features with domain sizk). In addition,

we must evaluate splits of eachin the current abstraction

°For more general expressiveness, we would also sulatract
for any non-supply constraimt

30ne could use more complex, computationally demanding
scoring to better estimate objective improvement, butléotin
column generation suggests this is rarely worthwhile.



A. To manage the complexity of this search, we adopt a sim-
ple myopic approach to find the best split of an a-channel
We build up the formulgs, on whiche is split as follows.

Let fi = Dom(F*)\ {fi}. We first consider each, con-
sisting of f for somei, k; i.e., at the first “level” we con-

sider splits that exclude one attribute-value. We “commit”
to the single attribute-value exclusion with the best score
score(a, ﬁi,ﬁi). We then consider refining’, by conjoin-
ing with some new; or disjoining with some nevy; (con-
joining tightens3., disjoining relaxes it). Each resultintf
is scored in a similar fashion, and we again commit to the
(2 with the highest score. This continues foiterations,
where/ is either a fixed threshold or is determined dynam-
ically by requiring a minimum score improvement be met.
The best split ofx is determined heuristically a$,,, 3,,),
whereg,, = .
Given abstractioM, thea € A with the highest-scoring
best split is adopted, creating a new abstractidwith o
replaced by A 8, anda A 3,,. The LP for the new abstrac-
tion is solved and the search for a best split repeated until
the score of the best split of falls below some threshold

Using Abstractionsin Ad Auction Optimization

A limitation of our column generation method as specified
is its focus on LP expressiveness. However, the abstraction

j’'s per-impression value’ is determined thusly: we first
draw abase value?’ from U[0.1, 1] then adjust it by setting
v/ = 01(1 4103 pic 45 Pr(F?)) (e.g., if a bid cares about
no attributes, i.eq’ = T, them’ = 97; and if it cares about
all m attributes, then’ = 11¢7). A bid's time window
w’ is determined by sampling andt, from U[-10,40],
settingw’ = [min(ty,t2), max(¢1,t2)], then truncatingv’

to lie in [1,30]. This captures the fact that some bids have
windows that extend beyond the optimization horizon. Bid
j's budget is set to a fraction’ ~ UJ[0.1, 1] of its value
for the total supplys? in window w’ of the formulag? it
desiresg’ = 170707,

In addition to these bids, we include a “market” bid with
value 0.1, unlimited budget, and no attribute preferences
(i.e., = T), reflecting value that could be obtained from
other sources (e.g., future bids or a spot market).
Optimization parameters.During an iteration of column
generation, we continue searching for a suitable splitag lo
as we can find a channel refinement whose score offers a
minimum relative improvemenitl over the previous ab-
straction’s LP value. If such an improvement is found, we
solve the new abstract LP and iterate, otherwise we termi-
nate column generatigh.

Estimating an upper bound on the optimal vald@ mea-
sure how good an allocation is, we need to estimate the
true optimum value achievable if we generated all relevant

process is used to create the set of a-channels which are therfolumns. We compute an upper bound on the optimum as

usedin MIP optimization—the intended output is a set of
a-channels, not (necessarily) the allocation itself. WAtP
expressiveness, we apply column generation to a linear re-
laxation of the MIP to generate a-channels. We then solve
the original MIP using allocation to the a-channels created
To evaluate column generation, we ran it on a collection of
random problems, some with LP expressiveness, others with
MIP expressiveness. All experiments were run on a machine
with a 3.8GHz Xeon CPU, 2BM cache, and 16GB RAM.

LP Expressiveness The first battery of problems involves
bids that use only LP expressiveness, each having per-
impression valuations for a set of attribute-values over a
given period, and a total budget. Optimization is performed

follows. When column generation is complete, we run an-
other optimization usingindiscountedralues. That is, we
remove allPr(p?|a) terms. This is clearly an upper bound
on the optimum because it assumes that bids could actually
make use of the entire amount of a channel it is allocated
(rather than just the fractidpr(¢*|«) it actually cares about

for channelj). However, this is a very loose upper bound.
We can tighten it significantly by ensuring that a bid’s al-
location does not exceed the supply that it actually cares
about. That is, we add additional constraints of the form
2! < s(p' A «) for all bidsi and channels. This is still

an overestimate because it does not account for interaction
between multiple bids. However, empirically, this bound is
quite close to an even tighter upper bound that we generate

over a horizon of 30 periods. Problem instances are charac- yi constraint generation (see below).

terized by parameten: m binary attributes andOm bid-
ders. We run sets of instances withe {10, 20,...,100}.

Supply distribution. The probability of an impression
satisfying fi is drawn fromU|0, 1] and we sefPr(f3)
1 — Pr(f}). Total supply of impressions, over all attribute-
values, is 1,000,000 per period.

Bids. Each bidj has form(x7, v7, g, w’) and cares about
a set of attributest? with size|A’| ~ U[0, 10]. We assume
bidders tend to care about similar attributes, so bid attei®
are sampled from a Zipf distribution, witPr(F? € A;) =
(1/i)/(>-5=, 1/k), sampled without replacement. For any
F'" € A7, bid j requires that impressions satisfy , with
z; € {1,2} chosen uniformly. The bid’s formula is the con-
junction of all required attributess’ = A g 45 f7 -

Our bid valuation model assumes that higher values are
more likely for specific bids (i.e., with more attributes)dan
if the attributes in the bid formula are in greater demand. Bi

Experimental resultsTable 1 shows results from runs with
parametersV/I = 0.01 and MI = 0.001, averaged over

20 instances for eactin, n) pair. The table shows several
key measures including the number of a-channels generated.
The fraction of the upper bound on the optimal value ob-
tained by the abstract LP when column generation termi-
nates (“Frac UB") is also shown (giving us a lower bound
on the quality of the abstract allocation relative to thestru

4Lack of improvement does not imply allocation value is withi
MI of optimal, only that nanyopicsplit that offers this improve-
ment within our restricted space of splits: some sequencpldf
could give more improvement. Even without this restrict{oa.,
if splitting into arbitrary subsets is allowed), one canwhthat
myopic splitting is insufficient under IP expressivenesaut fr
certain forms of LP expressiveness we can show that, uriess t
allocation is optimal, there exists a two-way split of sorharmnel
that improves value (in which case myopic splitting is sigfit).



# Frac Runtime (sec) © 1 T T T T T

m channels UB Improve pu range S

MI = 0.01 o
10 120  0.893 0447 12 [4,24] 3
20 11.0  0.828 0.364 40 8, 74] o
30 102  0.841  0.380 75  [35,150] g
40 9.8 0.803 0.334 153  [28,556] 2
50 100  0.816 0396 212  [23,418] S ol 1
60 8.6 0.827 0.343 245 [33,470] 5 ’
70 8.3 0.824 0.304 314  [26,650] N
80 9.2 0.824 0.345 461 [101, 940] 2 4 6 8 10 12
90 8.6 0.806 0.333 566 [75,1211] Number of Channels
100 9.3 0'80‘}‘/[] :06?.)331 811 [203, 1438] Figure 1: .Fraction of upper bom_mq vs number of channels
0 357 0965 0515 53 [0, 112] for 10 attributes and 100 per-unit bidders.
20 338 0905 0439 317  [21,758] # Frac Runtime (sec)
30 271 0.899 0438 538 [112,1384] n | channels UB  Improve u  range
40 | 286 0871 0399 1247 [211,4159) 0] 66 0847 0248 41 1[5 87
60 | 227 0877 0392 1775 ([88,4798] 30| 70 0769 0264 91 [14.205]
70 | 193 0867 0346 1959 [66,5878] 40| 85 0790 0296 153 [31,282]
80 | 242 0873 0393 3746 [469, 8670] 50| 88 0823 0325 188 [39 613]
100 25.7 0.853 0.392 6687 [1677,17047] '

Table 2: Average results for column generation with MIP
expressivenesd/I = 0.01, 100 attributesp bonus bidders,
and4n per-impression bidders.

Table 1: Average results for column generation with LP ex-
pressiveness: attributes, andh = 10m bidders.

optimal allocation). An estimate of the improvement in the . , : . - o
degree of optimality is shown (“Improve”). This is reported f;;mg %7, and nothing otherwise. We set - 7’ ng. where
as the average dfFinal — Initial ) /UB, whereFinal is the 77 ~ U[0.1,1] is the fraction of the SUDP.IQ_" of ¢/ in win-
final LP value Initial is the LP value at the start of column ~ doww’. We then set’ = b’¢’ whered’ is chosen as’
generation (when a single abstract channel is used)Jghd  for a flat bidder, but then multiplied by a factor chosen from
is the upper bound on the optimal value. Finally, the average U[1.1,1.5]. We also include a “market” bid as above.
and range of runtimes is presented. Table 2 shows results with{I = 0.01, averaged over 20
We see that, with LP expressiveness, column generation instances for each. Shown are the number of channels
can obtain a significant fraction of the upper bound value generated, the fraction of the upper bound (on the optimum)
for problems in which it would be impossible to even enu- obtained when column generation terminates (“Frac UB”),
merate the full unabstracted LP. Furthermore, the number of the improvement over the fraction of the upper bound ob-
generated channels is comparable across all problem sizestained before column generation (*Improve”), and the mean
tested. Setting a lower value for the minimum improvement and range of runtimes. Although we use the LP relaxation to
parameterM] allows us to obtain a greater fraction of the determine channel splits, the feasible allocation and e u
upper bound, but with a fairly significant increase in run per bound are computed by solving the corresponding MIP
time. We note that, on average, much of the improvement (discounted or not) on the set of channels produced.
is obtained early in the procedure. Fig. 1 shows the fraction  Although column generation operates on a relaxation of
of the upper bound obtained after a given number of chan- the true MIP, our scoring function finds very good chan-
nels has been generated, averaged over 20 instances, wittnel splits. Indeed, the performance with MIP expressivenes
10 features, 100 bidders, ardd/ = 0.001. We obtain a compares favorably to that with LP expressiveness. We em-
high fraction of the upper bound from the first few channels phasize that these campaign-level optimizations are run of
generated, with additional channel splitting providingmmo  fline, and used to parametrize dispatch policies that are the
modest improvement. implemented in real time. Thus the times reported here al-
low frequent, multiple optimizations (and reoptimizafjar

MIP Expressiveness The second problem set adds all-or- offline allocations (Boutilieet al. 2008).

nothing bonus bids to the per-impression bids above. Since
these require binary variables, column generation on the Constraint Generation

LP relaxation only provides an approximation to the opti-

mal abstract allocation. All problems have 100 attributes, The column generation approach converges to an optimal

n bonus bidders, andn per-impression bidders, with € allocation with LP expressiveness (though we may not run it
{10,20,...,60}. The preferences of per-impression bidders to optimality). It is not guaranteed to converge to optityali
are as before. Each bonus bidder hdsand w’ chosen for MIPs since it is run on the LP relaxation at the root of the
similarly; but its per-impression value i§ = 0, and in- search tree. We developcanstraint generatiomlgorithm

stead it pay$’ if it receives at least’ impressions satis- that can be used to refine any abstract allocation, and will



converge to optimality for MIPs, as well as for LPs.
The Constraint Generation Process
The optimization above, using the abstraction generated by

our column generation process, assumes that any ad allo-

cated to an a-channal will be randomly dispatched to the
component c-channels that make ap This is reflected

in the MIP (or LP) objective, where we replace the per-
impression value’ of bid i by v/, = v Pr(¢|a). With

a well-crafted abstraction, this may produce an optimaktall
cation. However, if the number of a-channels is limited for
computational reasons, the “pessimism” of random dispatch
may leave revenue or efficiency on the table.

Alternatively, given an abstractiaA, we can run ampti-
mistic MIP assigning bids to a-channelssumingeach im-
pression to bid satisfies its formula,; (i.e., do not discount
the impressions by!,). This optimistic assumption may not
be valid—there may be no allocation afto bids that per-
mits feasible “packing” of their promised supply so thatteac
i gets onlypi-impressions. But we caestthis assumption
with a simple LP that determines whether there is enough
supply to do so. Lek = {i? } be the solution of the opti-
mistic MIP with a-channel§a’}. LetW (a) = {i : if, > 0}
denote the the “winners” of a-channel We solve the fol-
lowing LP for eachy (with z¢ > 0):

min 1 2)
st Y aL=ij Vi€ W(a)
cEa,cl=pt
Z z! < s(c) Ve € a.
€W ()

This LP determines a feasible allocation to the c-channels
that constituten, thus guaranteeing that every impression
given to; satisfies its bid conditiop’. The first set of con-
straints ensures there is enough supply for each bid,
while the second establishes that no c-channel is overallo-
cated. IfLP(«) is feasible for eachy, then it provides an
optimal dispatch policy that extracts the full objectivéuea
of the optimistic MIP.

If LP(«) is infeasible, then there must be some minimal
set of constraints that are jointly infeasible. 1%t S, U S;
be such a minimal set, wherg, are constraints of the first
type, andS, are constraints of the second type. We can show
that the MIP solution violates the inequality

Z zt, < Z s(c).

i€S, cESs
We add this constraint to ensure that overallocation of the
channels inS, does not occur from bids i§,. A tighter
version of this constraint can be employed: we can add to
the sum on the lefthand side any hidll of whose relevant
channels are included ifi;, i.e., anyi st.{c € a : ¢
'} C S,. At each iteration, set§ leading to violated con-
straints are identified for each a-channel and posteit.
each iteration, constraints are generated using a seaweh pr
cedure for identifying such seft, and the MIP is resolved.

5These can be identified using the facilities of standardess|v
such as the CPLEX IIS (irreducible inconsistent set) rautikve
use our own special purpose algorithm to identify such sets.

This continues until feasibility is attained (in which cdke
optimistic objective value is actually obtained), or congu
tional or time bounds are reached.

While LP(«) could require an exponential number of
variables (i.e., the' corresponding to all c-channels «)
and constraints, we use simple lossless channel abstractio
(e, Niew(a) T ©*) to collapse this number. As such, the
number of winners for each channel (and the interaction of
their bids) determines the true complexity of the requird L
solves. Even with lossless channel abstraction, the fiégasib
ity LP could require an exponential number of variables. In
practice, we find that it? («) is no greater than around 20,
the size of the LP is reasonable (andchsmaller thar220).

If the MIP givesW («) > 20, we split channeb to mini-

mize the maximum number of bids interested in a channel.
Using this approach, we are able to generate LPs of reason-
able size which solve very quickly (within a second).

The constraint generation algorithm can be used directly
to solve the ad allocation MIP without relying on column
generation. For example, it can be applied directly to the
fully abstract MIP with a single a-channér}), or could be
used to optimize w.r.anyheuristically chosen abstraction.

Empirical Results

To evaluate the effectiveness of constraint generatiorwe e
periment with problems with bonus and per-impression bid-
ders presented in the previous section. We first perform col-
umn generation using/ = 0.01, then extend the solution
using constraint generation. To avoid generating an unrea-
sonable number of constraints, we use a toleranset to
0.01) that permits MIP allocations to decrease by as much
ase, solving the following LP:

min € 3)
s.t. Z zh < 3l Vi e W(a)
cEa,cl=pt
Z b >al —e Vi e W(a)
cEaj,cl=pt
Z zl < s(c) Ve € a.
iEW (@)

If constraint generation does not terminate within 600s., w
stop the process and produce a feasible allocation that min-
imizes the maximum difference from the MIP allocation.
Thus, when constraint generation terminates, the allocati
may be suboptimal, but is guaranteed to be feasible.

When constraint generation is complete, we compute the
value of the allocation based on the final feasible allocatio
generated by the LP (which might be different than that of
the final MIP allocation, due te), but use the final (infeasi-
ble) MIP allocation as an upper bound on the true optimum
value. This bound is close to, but somewhat tighter than the
bound shown earlier.

Table 3 shows the results of our experiments: number of
constraints generated; fraction of the upper bound on opti-
mal value obtained by the MIP when constraint generation
terminates (“Frac UB"); an estimate aflditionalimprove-
ment in the degree of optimality over the final column gen-
eration value (“Add’l improve”); and average and range of



# Frac Add'l. Runtime (sec)
n | constraints UB  improve u range
10 221 0.954 0.104 154  [14,615]
20 557 0.939 0.118 636 [118,1178]
30 750 0.965  0.190 850 [317,1750]
40 787 0.954  0.157 1434 [648, 6609]
50 721 0.967  0.139 1419 [679, 6235]
60 803 0.964 0.143 1029 [635, 2269]

Table 3: Average results from adopting the constraint gen-

eration phase following column generation, with IP expres-
sivenessMI = 0.01, 100 attributesp bonus bidders, and
4n per-impression bidders.

constraint generation runtimes. The additional solve phas

very few abstract channels, indicating a desirable seitgiti

of our methods to those distinctions that have the greatest
impact on value (e.g., revenue or efficiency), and the gbilit
to scale to problems with hundreds of attributes and bidders
Given the offline nature of the optimization problem we pro-
pose, our computational results suggest that our procedure
can be run and rerun frequently to determine, say, (approxi-
mately) optimal allocations in stochastic models that nequ
sampling (Boutilieret al. 2008).

Our method considers complex splits to generate a
tractable number of channels. Though more sophisticated
methods might further reduce the number of channels, our
goal is not to minimize the number of channels per se, but
to identify an abstraction with high value while maintaigin

increases value to a high degree of optimality, finding so- | pmip tractability. Currently, channel split search demi

lutions that are roughly within 94-97% of the upper bound
(compared with 77-85% for column generation alone). Ob-
taining this improvement can be time consuming for larger

nates runtime: a focus of future research is acceleratisg th
search, e.g., via heuristics for variable/literal ordgritm-
provements to our constraint generation procedure are of in

problems. We emphasize, however, that abstraction genera-terest as is the exploration of branch-and-price techmsique

tion is typically an offline process.

Other Uses of Constraint Generation

One bottleneck in the effective use of constraint genematio
is its poor scaling in the number of “winners.” Specifi-

Finally, assessing the impact of approximate channel ab-
straction and optimization on incentives in ad markets woul
be of significant interest and value.
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