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Abstract

Recently, the relationship between several
forms of default reasoning based on conditional
defaults has been investigated. In particular,
the systems based on ε-semantics, preferential
models, and (fragments of) modally-defined
conditional logics have been shown to be equiv-
alent. These systems form a plausible core for
default inference, but are too weak in general,
failing to deal adequately with irrelevance. We
propose an extension of the (modal) conditional
logics in which one can express the truth of
sentences at inaccessible possible worlds and
show how this logic can be used to axiomatize a
simple preference relation on the modal struc-
tures of this logic. This preferential semantics
is shown to be equivalent to 1-entailment and
rational closure. We suggest that many meta-
logical systems of default inference can be ax-
iomatized within this logic, using the notion of
inaccessible worlds.

1 Introduction

Recently, the focus of much research on default reasoning
has centered on the representation of default rules as con-
ditional sentences in various conditional logics. While
the motivation and underlying semantics for these logics
often diverge, most allow “In the most normal situations
in which A is true, B is true” as a profitable interpreta-
tion of the conditional A → B. Each of these logics can
be viewed as enforcing some type of normality ordering
on states of affairs, or possible worlds. For instance, the
logic of ε-semantics (Adams 1975; Pearl 1988) is based
on a probability distributions over sets of worlds, and a
conditional A → B is true iff B is true at the most prob-
able (as ε approaches 0) A-worlds; hence, more probable
worlds can be viewed as more normal under such an or-
dering. The preferential logics of (Kraus, Lehmann and
Magidor 1990) embody an explicit normality ordering on
situations, and the conditional logics of (Boutilier 1990)

are similar, incorporating normality as a modal accessi-
bility relation.

Given that these logics can be regarded in such a
similar fashion, it is not surprising that they have
been shown to be essentially equivalent (Boutilier 1990;
Kraus, Lehmann and Magidor 1990), giving credence to
their underlying motivation. Unfortunately, while each
can be considered a “core” for default reasoning (Pearl
1989), they are too weak to sanction all of the patterns
of default inference we would like. In particular, the con-
clusions authorized by such systems are often rendered
invalid in the face of irrelevant information. For exam-
ple, given that birds fly (B → F ) we cannot conclude
that green birds fly (G ∧B → F ).

To circumvent such difficulties, many schemes have
been proposed which augment the logics under consid-
eration with extra-logical machinery for deriving the ap-
propriate conclusions (Delgrande 1988; Lehmann 1989;
Pearl 1990; Goldszmidt, Morris and Pearl 1990). Gold-
szmidt and Pearl (1990) have shown that Pearl’s 1-
entailment corresponds to Lehmann’s rational closure,
demonstrating that these reasonable extensions (as well
as the logical cores) of ε-semantics and preferential logics
determine the same default conclusions.

We can view these logics as being able to express what
is true at “more normal” possible worlds; hence, sen-
tences can force worlds (which don’t satisfy these con-
straints) to be less normal. The meta-logical extensions
of these systems, conversely, attempt to force worlds to
be more normal than is required. In this paper, we will
show that the conditional logics of (Boutilier 1990) can
also be extended in a manner which corresponds exactly
to these systems. This extension is based on a sim-
ple preference relation over modal structures, one that
prefers structures in which possible worlds are as nor-
mal as possible. Furthermore, we extend the logic itself
such that we can make reference to inaccessible worlds in
addition to accessible worlds; thus we can express truth
at less normal worlds and force worlds to be more nor-
mal. With this capability, we can axiomatize a default
theory making the derivable conclusions exactly those
sanctioned by the preferential semantics. Just as the



second-order circumscription axiom conforms to truth
in (predicate) minimal models (McCarthy 1986), so too
does this closure correspond to preferred models. We
suggest that, to the extent any meta-logical default sys-
tem forces worlds to be more normal, it can be axioma-
tized within this extended conditional logic.
A more detailed presentation and proofs may be found

in (Boutilier 1991c).

2 Inaccessible Worlds and the Logic CO

As in (Boutilier 1990), we will present a Kripke-style pos-
sible worlds semantics for a conditional logic capable of
representing and reasoning with statements of normal-
ity or prototypicality. A sentence A ⇒ B is intended to
mean “A normally implies B”. Following a suggestion of
Delgrande (1988), we will interpret the truth conditions
for such a statement roughly as “In the most normal situ-
ations in which A holds, B is true as well”. The ordering
of normality presupposed by such a reading will be rep-
resented as an accessibility relation on possible worlds;
world v is accessible to w (wRv) iff v is at least as normal

as w. In (Boutilier 1990), it is argued that such a relation
should be, at a minimum, reflexive and transitive, and
that a further restriction of total-connectedness1 gives
rise to a reasonable extension, namely the logic CT4D.
It is also shown that CT4D is equivalent to the standard
modal logic S4.3, in the sense that the conditional con-
nective ⇒ can be defined in terms of the modal operator
2, and vice versa. In the sequel, we will take the modal
connective to be basic and define the conditional within
the modal language.
In (Boutilier 1990) it is shown that CT4D captures

many of the properties we expect of normal implica-
tion, such as allowing exceptions to prototypical state-
ments, and capturing rules such as cautious and rational
monotony. It is also shown that (a fragment of) CT4D
is equivalent to the logic of ranked preferential models
of (Lehmann 1989).
The following approach to default reasoning using

CT4D immediately presents itself. Let KB be (the
conjunction of) a finite knowledge base of sentences
of CT4D. It is reasonable to ask what is true at the
most normal worlds in which all the facts in KB hold;
that is a default reasoner could conclude α whenever
⊢CT4D KB ⇒ α (see also Delgrande’s (1988) Assump-

tion of Normality). However, a serious problem arises
when we consider certain classes of default inferences,
specifically those involving irrelevant properties. If KB

consists of two facts, Bird and Bird ⇒ Fly, then
KB ⇒ Fly is derivable. However, if we add Green

to KB, then KB ⇒ Fly is no longer a theorem, for
the most normal Green ∧ Bird-worlds need not satisfy

1R is total-connected iff vRw or wRv for all v, w. In
(Boutilier 1990) we use forward-connectedness, but this
stronger condition results in an equivalent logic (Hughes and
Cresswell 1984), and the distinction is important later.

Fly, as long as these are not among the most normal
Bird-worlds. In other words, greenness may be an ex-
ceptional property of birds (with respect to flying), as
“penguinness” is.

The problem of irrelevance has been addressed using a
number of extra-logical techniques, such as rational clo-
sure, assumptions of irrelevance (Delgrande 1988), and
1-entailment. We will approach the problem from a per-
spective which may in the future lead to a purely logical
account of default inference, and, at present, provides
some new insights into irrelevance.

Consider some normality ordering on all possible
states of affairs, W , and refer to the most normal A-
worlds in this ordering as n(A). Then A ⇒ C is true iff
n(A) ⊆ ‖C‖.2 Of course, A must hold at all such worlds,
so we can write this as n(A) ⊆ ‖A ∧ C‖. Now, to say
that B is irrelevant to the truth of this conditional is to
say (roughly) that A ∧ B ⇒ C is true. For this to be
the case it is sufficient to insist that some B-world exist
among those in n(A), making this a most normal A∧B-
world. In general, we want this to be true for arbitrary
properties α (consistent with A∧C), so that A∧α ⇒ C

holds. Hence, we need only insist that ‖A ∧C‖ ⊆ n(A).
Together with the converse, this implies that A∧α ⇒ C

for any such α. In other words, we would like to assume,
if we know A ⇒ C, that the most normal A-worlds are
exactly all A ∧ C-worlds.

These constraints are analogous to those used by
Levesque (1990) to define the semantics of OL, the logic
of “only knowing”. In an entirely similar fashion, A ⇒ C

can be read as “at the most normal A-worlds, at least

A ∧ C is known”.3 Supposing a new connective >, we
say A > C is true iff ‖A∧C‖ ⊆ n(A). We can read this,
then, as “at the most normal A-worlds, at most A ∧ C

is known”. Together, A ⇒ C and A > C tell us that ex-
actly A ∧C is known at the most normal A-worlds, and
allow us to conclude that all (consistent) properties are
irrelevant. This captures the intuition that if some fact
(other than A) were relevant to concluding C we would
know this to be the case. Since we “haven’t been told”,
we assume nothing else should affect our deliberations.

In order to formalize this discussion, we will provide
a semantics and axiomatization for the connectives ⇒
and >. As mentioned, we can define ⇒ in terms of the
standard modal operator 2. However, in a similar man-
ner we can define > in terms of a new modal connective

2Formally, n(A) need not exist, but the technical details
which follow will not depend on this. We use this notation
only informally, to illustrate the ideas which follow. ‖α‖
stands for the set of all possible worlds which satisfy α, and
again, in our informal discussion, we take this to mean all
logically possible worlds rather than those from the set W of
some formal structure.

3We use “known” here in a much less technical sense than
Levesque. More accurately, we could say if n(A) were the
only worlds an agent considered possible, then it would know
at least A ∧ C.



←
2. This connective corresponds to Levesque’s N , and
←
2 α will hold exactly when α is true at all inaccessible
worlds.
Our language L will be formed from a denumerable

set P of propositional variables, together with the con-

nectives ¬, ⊃, 2 and
←
2. The connectives ∧, ∨ and ≡

are defined in terms of these in the usual way.

Definition A CO-model is a triple M = 〈W,R,ϕ〉,
where W is a set (of possible worlds), R is a tran-
sitive totally-connected binary relation on W (the
accessibility relation), and ϕ maps P into 2W (ϕ(A)
is the set of worlds where A is true).

The truth of a formula α at w inM is defined in the usual
inductive manner, with the interesting cases being:

M |=w 2α iff for each v such that wRv, M |=v α.

M |=w

←
2 α iff for each v such that not wRv, M |=v α.

We can define several new connectives as follows:
3α ≡df ¬2¬α;

←
3 α ≡df ¬

←
2 ¬α;

↔
2 α ≡df 2α∧

←
2 α;

and
↔
3 α ≡df 3α∨

←
3 α. It is easy to verify that

these connectives have the following truth conditions:

3α (
←
3 α) is true at some world if α holds at all accessi-

ble (inaccessible) worlds;
↔
2 α (

↔
3 α) holds iff α holds at

all (some) worlds, whether accessible or inaccessible. Va-
lidity is defined in a straightforward manner, a sentence
α being CO-valid (|=CO α) just when every CO-model
M satisfies α. Finally, we define the connectives:

A ⇒ B ≡df

↔
2 ¬A∨

↔
3 (A ∧ 2(A ⊃ B)).4

A > B ≡df

↔
2 (A ⊃ (

←
2 (A ⊃ ¬B) ∧3(A ∧B)))∧

↔
3 A.

A ⇒ B will be true vacuously if there is no world
in the model at which A holds. Otherwise, it is true
iff there is some world where A holds, and B holds at
all more normal A-worlds The dual of this is A > B

which states that at most A ∧ B is known at the most
normal A-worlds. This is only true if A holds at some

world (condition
↔
3 A), otherwise there would exist no

such worlds and everything would be trivially satisfied
(“known”) by this (empty) set. Furthermore, A > B

can only hold if, at each A-world, A ⊃ ¬B is true at

4This definition of A ⇒ B is different from that of
(Boutilier 1990). It is more similar in spirit to the connec-
tive |∼ of (Kraus, Lehmann and Magidor 1990), whereby if
A ⇒ B holds at any world in a model then it holds at all
worlds. Previously, A ⇒ B could hold “vacuously” if there
were no accessible worlds at which A is true. While this is in
accord with an epistemic reading of the relation R, it does
not conform to our normative interpretation. It is entirely
unreasonable to expect only more normal worlds to deter-
mine which normative statements we take to be true. Worlds
which are exceptional should also play a role in such deliber-
ations. One advantage of our approach is that the connective
←

2 allows us to define the truth conditions of ⇒ at individual
worlds, whereas the truth conditions of |∼ can only be defined
with respect to entire structures.

every inaccessible world (otherwise this world would be
strictly more normal than some A ∧ B-world); and if
at each A-world, A ∧ B is true at some more normal
world (since such worlds are the most normal A-worlds,
each A-world should “see” one). It is easy to verify that
A > B holds iff all A∧B-worlds are mutually accessible
(equally normal) and no A-world is strictly more normal
than these. In other words, by asserting that ¬B holds
at each inaccessible A-world, we force all A ∧ B-worlds
to be accessible to, or at least as normal as, every other
A-world.

We call the logic associated with this semantics CT4D-
O, or CO for short, the extension of CT4D allowing con-
ditionalized “only knowing”. Completeness is proven us-
ing a technique of Humberstone (1983).

Definition The conditional logic CO is the smallest
S ⊆ L such that S contains classical propositional
logic and the following axiom schemata, and is
closed under the following rules of inference:

K 2(A ⊃ B) ⊃ (2A ⊃ 2B)

K′
←
2 (A ⊃ B) ⊃ (

←
2 A ⊃

←
2 B)

T 2A ⊃ A

4 2A ⊃ 22A

4′
←
2 A ⊃

←
2
←
2 A

S A ⊃
←
2 3A

H
↔
3 (2A∧

←
2 B) ⊃

↔
2 (A ∨B)

Nes From A infer
↔
2 A.

MP From A ⊃ B and A infer B.

Theorem 1 The system CO is characterized by the

class of CO-models.

That the connective ⇒, as defined, captures a reason-
able notion of normal implication has been discussed in
(Boutilier 1990). It should also be clear that the connec-
tive > captures the dual notion of (conditional) “know-
ing at most”, and that together, A ⇒ B and A > B

allow us to extend the conditional to include all irrele-
vant properties. Consider the following theorem of CO
(for propositional A, B, and α):

(A ⇒ B ∧A > B) ⊃ (
↔
3 (A ∧B ∧ α) ⊃ (A ∧ α ⇒ B)).

This theorem states that if both A ⇒ B and A > B

are true, then we can conclude that all properties α are
irrelevant to the truth of the original conditional.

Notice that the extension of A ⇒ B is conditional on
the possibility of A∧B ∧α. If we insist that all logically
possible worlds be contained in W , then we can derive
A∧α ⇒ B directly (provided A∧B ∧α is logically con-
sistent). Levesque (1990) enforces a similar constraint.
This gives rise to the following extension of CO:

Definition CO* is the smallest extension of CO closed
under all rules of CO and containing the following:



LP
↔
3 α for all satisfiable propositional α.5

Definition A CO*-model is any CO-model M =
〈W,R,ϕ〉, such that
{w∗ : w ∈ W} ⊇ {f : f maps P into {0, 1}}.6

Theorem 2 The system CO* is characterized by the

class of CO*-models.

The logic CO* addresses the difficulty of having to
conditionalize extensions of normative conditionals on
the possibility of the antecedent (since all consistent such
antecedents are possible). Hence a theorem of CO* (for
satisfiable A∧B∧α) is (A ⇒ B∧A > B) ⊃ (A∧α ⇒ B).
The notion of irrelevance sketched here is rather un-

dermotivated. While it’s clear in examples such as the
case of green birds that Green should be irrelevant to
Fly, the question remains: what do we mean by irrele-
vance? Space limitations preclude anything resembling
a reasonable discussion of this point, but a few words are
in order. Gärdenfors (1978) has presented and discussed
a number of postulates which should be satisfied by any
notion of relevance, motivated by the consideration that
p is relevant to r (given evidence e), written pRer, iff the
conditional probability of r given p ∧ e is different than
that of r given e alone (i.e. P (r|p ∧ e) 6= P (r|e)). Pos-
tulates (R0) to (R4) are presented as reasonable restric-
tions on the relevance relation.7 In (Boutilier 1991b) we
define a notion of statistical relevance (s-relevance) which
roughly states that pRer if learning the truth (or falsity)
of p affects our judgement as to the truth of r. Assuming
e ⇒ r means we are willing to accept r based on evidence
e, p is relevant to r if p ∧ e 6⇒ r or ¬p ∧ e 6⇒ r (similar
definitional clauses apply when e ⇒ ¬r, or e 6⇒ r and
e 6⇒ ¬r). We show this definition to satisfy the postu-
lates, and that asserting e > r ensures that any sentence
contingent on e ∧ r is irrelevant to r in this sense.
We also define a weaker notion of commonsense rele-

vance (c-relevance), violating the postulate (R2) which
asserts that pRer iff ¬pRer. Defined in terms of con-
ditional independence, s-relevance must satisfy (R2). If
learning p increases the probability of r, then learning
¬p must decrease it. If the magnitudes of the changes
are vastly different, this may seem a counterintuitive no-
tion of relevance. For instance, if I’m about to cross a
bridge a someone tells me to go ahead because there will
be no earthquakes (¬Q) in the next minute, I’m liable
to dismiss my informant as a lunatic and discount ¬Q

5Alternatively, we could use Levesque’s schema:
←

2 α ⊃
¬2α for all falsifiable α.

6For all w ∈ W , w∗ is defined as the map from P into
{0, 1} such that w∗(A) = 1 iff w ∈ ϕ(A); in other words, w∗

is the valuation associated with w.
7Gärdenfors also presents postulate (R5) — which leads

to a triviality result — and two possible replacements, one
of which (R7) is deemed acceptable. The notion of relevance
defined below is a simple one, but can be extended easily to
incorporate (R7) (see (Boutilier 1991b) for details).

as being irrelevant. However, if I am told there will be
an earthquake (Q), I will surely consider this informa-
tion to be relevant. Intuitively, ¬Q is irrelevant because
(statistically) it changes the probability of a safe cross-
ing negligibly (assuming the prior probability of Q is
very low), while Q changes the probability radically. We
capture this potential failure of (R2) by saying that p is
c-relevant to r if, e.g., p ∧ e 6⇒ r when e ⇒ r, and dis-
counting the possible effect of learning ¬p. It often seems
that p is only regarded as relevant if its truth can change
the status of r as an accepted belief, not its falsehood.
Other reasons for disassociating conditional indepen-

dence and irrelevance are mentioned in (Gärdenfors
1978) and we discuss our definition of irrelevance and
how inaccessible worlds capture this concept in detail in
(Boutilier 1991b).
While the logic CO* seems able to express the con-

cept of irrelevance, it is not clear how a default reasoner
should proceed given such a logic and a set of facts KB.
A modest proposal is to simply assert A > B for each
A ⇒ B in KB, so long as the result is consistent. This
works on a wide variety of examples; for instance, if
KB = {Bird ⇒ Fly}, then asserting Bird > Fly, we
can derive conditionals such as Bird ∧Green ⇒ Fly. If
Penguin ⇒ ¬Fly and 2(Penguin ⊃ Bird) are added
to KB, B > F is no longer consistent. However,
B ∧ ¬P ⇒ F and B ∧ P ⇒ ¬F are both derivable and
it is consistent to assert B ∧ P > ¬F and B ∧ ¬P > F .
Adding these to KB, we obtain the following theorems:

1. (KB ∧Bird) ⇒ Fly

2. (KB ∧Bird ∧Green) ⇒ Fly

3. (KB ∧ Penguin) ⇒ ¬Fly

4. (KB ∧ Penguin∧Green) ⇒ ¬Fly

Such an approach, however, has limitations. Con-
sider a KB of two independent conditionals A ⇒ B

and C ⇒ D. In this case, it is inconsistent to assert
both A > B and C > D, and it is not clear what “ex-
tendible” conditionals of interest are derivable from such
aKB. Thus, the use of the connective> for dealing with
irrelevance requires further investigation. Another sim-
ple proposal, which adequately handles this KB, can be
described as follows: since the material counterparts of
these sentences, A ⊃ B and C ⊃ D, must be normally
true (that is ⊤ ⇒ (A ⊃ B ∧ C ⊃ D)), it should be the
case that ⊤ > (A ⊃ B∧C ⊃ D) holds as well. Extending
this idea, we will show that the connective> is capable of
representing a certain form of default reasoning, namely
1-entailment or rational closure.

3 A Simple Preference Relation

A common approach to default reasoning is to use the
notion of preferred models (Shoham 1986). Given a set
of CO-models, we will suggest the preferred models are
those in which possible worlds are as normal as possible.
Consider again a KB containing only Bird ⇒ Fly. A



model ofKB will contain some Bird∧Fly-world which is
more normal than any Bird∧¬Fly-world. In general, we
want to derive sentences like Bird ∧ Green ⇒ Fly, but
the most normal worlds with green birds need not satisfy
Fly. However, assuming that some Green∧Bird∧Fly-
world is as normal as the most normal Bird-worlds vi-
olates no constraints imposed by KB. This assumption
forces such a world to be more normal than we origi-
nally supposed, so if preferred models force worlds to
be as normal as possible, Bird ∧ Green ⇒ Fly will be
derivable.
We must formulate the conditions under which one

model will be more normal than another. Let M1 =
〈W,R1, ϕ〉 and M2 = 〈W,R2, ϕ〉 be CO-models.8 To
ensure that M1 is at least as “normal” as M2, each world
in W should be as normal in M1 as in M2; so we will
insist (in general) that each world “see” at least as many
worlds in R1 as in R2. There are two cases to consider
when a world w has fewer accessible worlds in R1. First,
some world v might be less normal in R1 than in R2, in
which case it is inaccessible to (some) w in R1 to which
it was accessible in R2. In such a case M1 should not
be preferred to M2. However, in the second case, w may
have become more normal in R1, in which case it should
see fewer worlds (since fewer will be more normal than
it). In this circumstance, M1 may well be preferable to
M2, and we relax the restriction that w see as many
worlds in R1. More formally, assume M1 and M2 are
defined as above.

Definition w ∈ W is more normal in R1 than in R2

(written N(w,R1, R2)) iff there is some v ∈ W such
that vR1w, wR1v, and not vR2w.

Definition M1 is as preferable as M2 (written M1 ≤
M2) iff for all w ∈ W , N(w,R1, R2) is false only if
{v : wR2v} ⊆ {v : wR1v}. M1 is preferred to M2

(M1 < M2) iff M1 ≤ M2 and M2 6≤ M1.

Definition Let T ⊆ L be a set of facts. M is a minimal
model of T iff M |= T and for all M ′ such that
M ′ |= T , M ′ 6≤ M . α is a default conclusion based
on T (written T |=≤ α) iff M |= α for each minimal
model M of T .9

We examine the consequences of these definitions in the
following section.

4 Equivalence to 1-entailment

Pearl (1990) describes a natural ordering on default rules
named the Z-ordering, and uses this to define a non-
monotonic entailment relation, 1-entailment. While put

8We will only compare models which agree on possible
worlds; however, it should be clear that the idea can be ex-
tended by taking preference relative to the subset of worlds
two models have in common. See (Boutilier 1991c).

9Strictly speaking, T should consist only of conditional
sentences and α should be conditional as well. See (Boutilier
1991c) for details on how to extend this relation.

forth as an extension of ε-semantics, this entailment re-
lation is essentially based on using preferred models of
a sort similar to those described in the previous section.
In fact, we will show these notions correspond exactly,
and that, while 1-entailment is defined in terms of a par-
ticular theory T and orders only models of T , it can be
described in terms of our theory-independent preference
criterion, whereby all logical interpretations are ordered.
In this section, we will assume a language with a finite

set of propositional variables, and CO*-models only will
be treated. The default rules r of (Pearl 1990) have the
form α → β, where α and β are propositional formulae.
These will correspond to our conditional sentences α ⇒
β. We say a valuation (possible world) w verifies the rule
α → β iff w |= α ∧ β, falsifies the rule iff w |= α ∧ ¬β,
and satisfies the rule iff w |= α ⊃ β. Let T be a finite
set of such rules. From (Pearl 1990):

Definition T tolerates α → β iff there is some world
which verifies α → β, and falsifies no rule in T ; that
is, {α ∧ β} ∪ {γ ⊃ δ : γ → δ ∈ T } is satisfiable.

This notion of toleration can be used to characterize
probabilistic ε-consistency (Adams 1975; Pearl 1988) in
a manner that also captures the CO-consistency of a set
of rules.10 Furthermore, toleration can be used to define
a natural ordering on default rules (or conditionals) by
partitioning T as follows (Pearl 1990):

Definition Ti = {r : r is tolerated by T − T0 − T1 −
· · ·Ti−1}, for i ≥ 0.

Assuming T is ε-consistent, this results in an ordered
partition T = T0 ∪ T1 ∪ · · ·Tn. Now to each rule r ∈ T

we assign a rank (the Z-ranking), Z(r) = i whenever
r ∈ Ti. The idea is that lower ranked rules are more
general, or have lower priority. Given this ranking, we
can rank possible worlds according to the highest ranked
rule they falsify:

Z(w) = min{n : w satisifes r, for all r ∈ T

where Z(r) ≥ n}.

Lower ranked worlds are to be considered more normal.
Now, a propositional formula α can be ranked according
to the lowest ranked world which satisfies it: Z(α) =
min{Z(w) : w |= α}. Given that lower ranked worlds
are considered more normal, we can say that a normative
conditional α ⇒ β should hold iff the rank of α ∧ β is
lower than that of α ∧ ¬β. This leads to the following
definition (Pearl 1990):

Definition Formula β is 1-entailed by α with respect to
T (written α ⊢1 β) iff Z(α ∧ β) < Z(α ∧ ¬β).

10T is ε-consistent iff every non-empty subset of T contains
some rule tolerated by all others. If T is the corresponding set
of conditionals, this condition holds iff T is “non-vacuously”

satisfiable; that is, if T∪{
↔

3 α : α ⇒ β ∈ T} is CO-consistent.



For details regarding the types of conclusions 1-
entailment draws, see (Pearl 1990). It should be fairly
clear that 1-entailment can be viewed as asserting a pref-
erence on models of theory T , namely that worlds should
have their lowest possible rank (without violating the
rules of T ). In other words, worlds should be as nor-
mal as possible. Not surprisingly then 1-entailment cor-
responds to the preferential entailment relation of the
preceding section. For a fixed theory T , we define the
CO*-model ZT as:

Definition ZT = 〈W,R,ϕ〉 where wRv iff Z(w∗) ≥
Z(v∗).

Theorem 3 T |=≤ α ⇒ β iff α ⊢1 β with respect to T .

This means that the minimal Z-ranking of worlds cor-
responds to a theory-dependent instance of the more gen-
eral preferential ranking of CO*-models. Furthermore,
the explicit nature of this Z-ranking allows us to cap-
ture the exact nature of the (unique) preferred model
ZT . In particular, if T is ε-consistent and is partitioned
as T0, · · · , Tn, then ZT consists of n + 2 “clusters” of
mutually accessible (or equally normal) worlds; cluster 0
consists of all worlds of rank 0, cluster 1 consisting of all
worlds of rank 1, and so on, with the most exceptional
worlds being those of rank n+ 1.
Since the preferred model of T is unique, we can cap-

ture the exact structure of ZT using sentences in the
logic CO containing the connective >, since worlds in
each cluster can be characterized by the rules they vio-
late (see (Boutilier 1991c) for details).
Let T be a finite set of conditionals, partitioned as

T0, T1, · · · , Tn.

Definition Let R∧−1 ≡df ⊥. For 0 ≤ i ≤ n+ 1, let
R∧i ≡df

∧
{α ⊃ β : α ⇒ β ∈ T − T0 − · · ·Ti−1}.

We assume
∧
∅ ≡df ⊤ (hence R∧n+1 ≡ ⊤).

Definition For theory T as above, the closure of T is
Cl(T ) = T ∪ {¬R∧

i
> R∧

i+1 : −1 ≤ i ≤ n}.

Theorem 4 Cl(T ) |=CO∗ α ⇒ β iff T |=≤ α ⇒ β.

Corollary 1 Cl(T ) |=CO∗ α ⇒ β iff α ⊢1 β with
respect to T .

Just as the (second-order) circumscriptive axiom ap-
plied to a theory T closes that theory to correspond to
(predicate) minimal models, so too does this closure cor-
respond to our notion of minimality. Theorem 4 shows
that Cl(T ) can be regarded as an axiomatization of the
notion of preference described in the previous section,
and of the implicit preference ordering determined by
System-Z. Hence, the types of conclusions sanctioned
by 1-entailment (see (Pearl 1990)) are also determined
by this form of closure. This implies, given the results
of (Goldszmidt and Pearl 1990), that Cl(T ) determines
the same consequence relation as that of rational closure
(Lehmann 1989).

5 Concluding Remarks

We have presented a modal logic CO in which truth at
inaccessible worlds is expressible. In this logic we can
define not only the normative conditional ⇒ of condi-
tional “knowing at least”, as in (Boutilier 1990), but
also the dual connective > of conditional “knowing at
most”. This provides us with a conditional version of
Levesque’s (1990) “only knowing”. We discussed briefly
the relationship of conditional only knowing to the prob-
lem of irrelevance in default reasoning, and have shown
how a simple preference relation (corresponding to 1-
entailment and rational closure) which deals with irrele-
vance can be axiomatized within this logic.

Much work remains to be done on the application
of conditional only knowing to problems in default rea-
soning. Levesque’s characterization is semantically very
clear and elegant, but has the drawback of relying on
an autoepistemic interpretation of default rules (see e.g.
(Reiter 1987) for problems with this interpretation). Ul-
timately, we would like to push the “closure” of our de-
fault theories into the logic via some connective analo-
gous to Levesque’s O operator, thereby consolidating the
semantic clarity of only knowing with the compelling
conditional interpretation of default rules. We expect
the expressive power gained by the use of inaccessible
worlds makes this goal achievable.

In this connection, we have begun exploring the use
of the logic CO to capture a number of other types of
reasoning. In (Boutilier 1991a) we provide a logical cal-
culus for belief revision within CO, and show how re-
vision, subjunctive reasoning and default reasoning (in-
cluding such varied approaches as autoepistemic logic,
ε-semantics and normative conditionals) can be unified
using a framework which exploits the power of inacces-
sible worlds.

Other avenues to pursue include the weakening of
these logics, along the same lines suggested in (Boutilier
1990), providing other versions of “only knowing” (e.g.
based on S4). A further task is to investigate how the
logic CO can be used to capture other default reason-
ing systems, such as the maximum entropy formalism of
(Goldszmidt, Morris and Pearl 1990), which makes finer-
grained distinctions on the ordering of possible worlds.
We suggest that most approaches to default reasoning
which can be viewed as restricting the degree of abnor-
mality of worlds may be axiomatized using some logic of
inaccessible worlds, or conditional only knowing.
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