
A Semantical Approach to Stable Inheritance Reasoning

Craig Boutilier

Department of Computer Science

University of Toronto

Toronto, Canada M5S 1A4

Abstract

Inheritance reasoning has frequently been char-
acterized by algorithms designed to operate on
inheritance networks, or collections of links.
While the intended meaning of links in a net-
work is understood, formal semantic accounts
of such networks are somewhat troublesome, as
are semantic accounts of the inference process.
We suggest that links be interpreted as sen-
tences in the conditional logic E, providing a
formal interpretation for such networks. Fur-
thermore, we develop a semantic characteriza-
tion of inheritance reasoning based on the tech-
nique of minimal (or preferred) models. In the
process, we identify a key difference between
this characterization of inference in networks
and those based on the notion of inferential dis-
tance, specifically with respect to stability.

1 Introduction

A number of techniques exist for reasoning with non-
monotonic multiple inheritance systems. While they
have drawn the attention of many researchers, consen-
sus on the meaning of networks and the approach to be
taken by inheritance reasoners has yet to be achieved. In
fact, the number of choices available to the designer of
such systems is considerable. In [Touretzky et al. 1987],
the design space for inheritance reasoners is explicitly
mapped out, and the widely varied approaches and im-
plications of existing schemes are made clear. There
it is claimed that this divergence represents a number
of different, but equally plausible reasoning strategies,
suitable for various tasks. We conjecture that a compar-
ison of such techniques is made difficult by a lack of a
semantic account of inheritance reasoning, and without
such, the intuitive appeal and adequacy of these systems
cannot be accurately evaluated. A semantic characteri-
zation of inheritance reasoning can more readily capture
our intuitions. Furthermore, such a semantics can be
used as a yardstick with which to measure the adequacy
of syntactic, algorithmic techniques.

The goal of this paper is to provide a semantic charac-
terization of inheritance reasoning. This will be achieved
by, first, providing a semantic interpretation of network
links, and second, utilizing the concept of minimal (or
preferred) models to account for the nonmonotonic na-
ture of inference in inheritance systems. We will also
show how this approach differs from traditional meth-
ods in a crucial respect.

1.1 Definition of a Network

Inheritance systems are essentially devices which per-
form (possibly nonmonotonic) inference in a computa-
tionally feasible manner by restricting the form “sen-
tences” in the “language” can take. Although many
definitions of inheritance networks exist, the following
is similar in spirit to the one given in [Touretzky 1986].
The details will be much simpler though, since we require
less machinery to elucidate the relevant concepts in this
paper. In particular, while inheritance networks gener-
ally deal with both classes of objects and individuals, we
will not distinguish individuals in order to simplify the
treatment. As well, the only relationship between classes
permitted is the ISA (or subclass) relation.

Definition An inheritance network over a finite set of
classes Γ is an acyclic set of ordered triples (links)
of the form 〈sign x, y〉 where sign ∈ {#,+,−} and
x, y ∈ Γ.

The intended interpretation of the links in these net-
works is as follows:

• 〈+A,B〉 means “members of A are members of B”.

• 〈−A,B〉 means “members of A are not members of
B”.

• 〈#A,B〉 means “members of A may or may not be
members of B”.

For instance, 〈+ Apple, RedThing〉 represents the as-
sertion that apples are red. The third type of link is
not meant to be true when it is unknown whether A’s
are B’s; rather, it is intended to state that both of
the other links are false. In other words, the link is



true exactly when the relationship of A to B is known,
and that relationship is (something like) “A’s may or
may not be B’s with roughly equal likelihood” (e.g.
〈# American,Republican〉).

Networks are often represented as directed graphs in
the obvious manner (see, e.g., [Touretzky 1986]). A link
〈+ A,B〉 will be also written as A −→ B, and 〈− A,B〉
as A 6−→ B.

Given a network, an inheritance reasoner is charged
with the task of deciding which statements (or links)
should be inferred from those given. If classes were in-
terpreted as monadic predicates and links as universally-
quantified statements, there would exist an obvious
translation of networks into first-order logic. The inheri-
tance reasoner then could simply be a first-order theorem
prover to act on these new sentences; the semantics of
inheritance networks would be clear. In fact, for inheri-
tance networks without exceptions, this interpretation is
acceptable. The problem is most natural subclass rela-
tionships are not universal. Exceptions are the rule, so
to speak. Therefore, the treatment here will be of inher-
itance networks with exceptions. In this type of network,
all links will be viewed as exception-allowing. If 〈+A,B〉
is a link in the network, it may be the case that a par-
ticular A is not a B. This suggests the links be given a
normative interpretation. So 〈+ A,B〉, in an exception-
allowing network, stands for “Normally A’s are B’s”.

In exception-allowing networks, the semantic import
of the links is not as clear as in the case of nets which pro-
hibit exceptions. Attempts have been made to interpret
links in terms of autoepistemic logic ([Touretzky 1986])
and default logic ([Etherington and Reiter 1983]) with
limited success; and while these may provide a loose se-
mantic interpretation for the links themselves, little at-
tempt has been made to account for the nature of infer-
ence in exception-allowing networks. While exception-
less networks are (relatively) unproblematic, classical
semantics will not adequately reflect exception-allowing
networks, due to their nonmonotonic nature.

A survey of the traditional approaches to inheri-
tance reasoning can be found in [Touretzky et al. 1987].
For reference to specific systems of inheritance, see,
for example, [Touretzky 1986], [Horty et al. 1986], and
[Sandewall 1986].

2 A Minimal Model Approach to

Inheritance

2.1 Interpretation of Links

As mentioned in the previous section, links in an inher-
itance network can be reasonably interpreted as assert-
ing normative statements. Obviously, such statements
are not necessarily universally true regarding members
of their constituent classes; but they should be subjected
to some normative attribution. Some objections to this
denotation are raised by Touretzky [1986, pp.6–7]; how-

ever, these are not serious and are not considered here
(see [Boutilier 1989]).
In [Boutilier 1988], the conditional logic E is presented

for reasoning about default or prototypical properties1.
The language of E is that of classical propositional logic
augmented with the connective ⇒. The intended in-
terpretation of a sentence A ⇒ B is “If A holds, then
in the normal course of events, B holds as well”. The
logic is given a possible worlds semantics that provides
the desired intuitive characterization of such exception-
allowing sentences. Given a set of possible worlds and a
reflexive, transitive, forward-connected (if xRy and xRz,
then either yRz or zRy) relation on that set (represent-
ing accessibility of less-exceptional worlds), A ⇒ B is
true at some world if there is some accessible world such
that A holds, and A ⊃ B holds at all worlds accessible
from that point.
Since E has a well-developed semantics, and we have

argued that links in inheritance networks be given a
normative interpretation, it seems that translating in-
heritance networks into sentences of the logic E would
provide an adequate logical account of the “connective”
−→. In fact, it is precisely this device which will be used
to provide a semantic account of links in a network. The
following translation is suggested:

1. 〈+A,B〉 is translated to A ⇒ B, with the interpre-
tation that A’s are normally B’s.

2. 〈− A,B〉 is translated to A ⇒ ¬B, interpreted as
A’s are normally not B’s.

3. 〈# A,B〉 is translated to ¬(A ⇒ B) ∧ ¬(A ⇒ ¬B).
This states that neither of the other two alternatives
hold.

Now the semantic import of a network is clear: a net-
work is a collection of sentences in the language of E,
and as such, has associated with it the semantics of the
logic E.
While the meaning of networks themselves has been

specified, the logic E cannot be used alone to identify
nonmonotonic consequences, and hence, cannot account
for inference in inheritance networks. We must establish
new conditions with which to capture the nonmonotonic
nature of inheritance.
A number of algorithms characterizing inference

have been presented in the literature2, but these
characterizations yield incredibly divergent results
[Touretzky et al. 1987]. It is conjectured that this state
of affairs exists because a clear semantic account of in-
ference in inheritance reasoners has not been proposed.
A yardstick is needed which can measure the intuitive

1E is an extension of the logic N found in [Delgrande 1987]
that deals with nested conditionals.

2These can apply to sentences of E as well as to other
syntactic entities, or links, they were designed for.



appeal of syntactic characterizations and enhance our
understanding of the entire process.
The approach we will take is one suggested by Shoham

[1986]. To identify the nonmonotonic consequences of a
theory, we restrict our attention to those models of the
theory which are in some sense preferred. We will as-
sociate a reflexive, transitive preference relation ≤ with
the set of models of a network, where M1 ≤ M2 is in-
tended to mean M1 is as prefable as M2. The preferred
models are those minimal in this relation. The minimal
model approach seems to be able to capture in a nat-
ural fashion the ideas behind nonmonotonic reasoning,
therefore we will enlist it to aid in providing a semantic
characterization of inheritance reasoning.
Before discussing the concept of a preferred model, we

must define a model for an inheritance network. Links
in a network have been associated with sentences in the
language of E. Therefore, under this plausible normative
interpretation, E-models could be considered as mod-
els of inheritance networks, an E-model satisfying a net-
work exactly when it satisfies the translation of its links.
Preference criteria could then be defined for E-models
such that minimal E-models of the network determine
the nonmonotonic consequences (or extensions) of that
network.
While in principle this could be achieved, it is not

the tack taken here. In dealing with the full generality
of the language of E complications and subtleties may
arise which are not entirely relevant to the discussion at
hand. Thus, a simpler notion of a model will be provided,
allowing full attention to be paid to the relevant aspects
of the preference relation.

Definition An I-model (over a finite set of classes Γ)
is a set of links such that exactly one of 〈+ A,B〉,
〈− A,B〉, 〈# A,B〉 is in the set for each A,B ∈
Γ, A 6= B, and the ISA/ISNOTA-subgraph of this
set is acyclic.

Definition An I-model I satisfies a network Φ iff for
each link λ ∈ Φ, λ ∈ I.

2.2 The Assumption of Redundancy

In [Touretzky 1986], Touretzky presents his notion of in-
ferential distance, the use of which has become a hall-
mark of contemporary inheritance reasoners. A class B
is defined to be “closer” to a class A than is a class C
in a network if there exists a path from A to C which
passes through B. If a conflict arises with respect to a
property that class A should inherit, then this conflict
is resolved by inheriting the property from the closest of
the conflicting superclasses.
The use of inferential distance in this manner yields

intuitive results from a number of networks. For in-
stance, the network in Figure 1 asserts that people who
work hard (H) are productive (P ), and that most re-
searchers (R) are quite diligent, yet fail to make signifi-
cant progress (for the sake of argument!). Now Sarah (S)

P

HRS

Figure 1: Inferential Distance

should inherit the characteristic of being productive by
virtue of being a hard worker, while the fact that she’s a
researcher suggests she’s not productive at all. Reason-
ing based on inferential distance will solve this conflict
by determining that Sarah is unproductive because re-
searchers are a specific subclass of hard workers (i.e. R
is closer to S than is H).

This example shows the intuitive appeal of inferen-
tial distance. Why is it, though, that such an arbi-
trary criterion as “inherit from the closest superclass”
provides intuitive results in this case? Suppose Sarah
is a hard worker for reasons altogether independent of
her being a researcher (say, her editorial work), and is
quite productive because of this. In such a case, inferen-
tial distance does not provide intuitive results. The fact
that R is closer to S than is H is no reason to inherit
properties from R instead of H . However, this coun-
terexample is intuitively unacceptable. Given just the
information in the network, the conclusion that Sarah
is unproductive should be forthcoming. The reasoner
should assume Sarah is a hard worker because she is a re-
searcher (since the an independent reason makes the use
of inferential distance quite unreliable). In other words,
the link S −→ H is “redundant”, due to the presence
of the links S −→ R and R −→ H . Without assuming
such redundancy, the justification for inferential distance
simply doesn’t exist.

Calling links redundant may give the impression that
such links add no information to a network, which is
not the intention3. Rather than call these links redun-
dant, “independently justified” may be a more appropri-
ate term. In general, a link is considered to be redundant
in a network if there exists a set of links that can be con-
strued as the reason for the truth of that link. A more
rigorous and comprehensive definition of redundancy can
be given after the development of certain definitions in
the next subsection.

2.3 The Preference Relation

In the minimal model framework, nonmonotonic conse-
quences are derived by identifying the preferred models
of a theory, in this case, a network. In the terminology of
other network formalisms, the preferred models should

3Indeed, the conclusions reached from a network with
a “redundant” link may be different from those with
the link missing (e.g. see [Touretzky 1986, pp.10–11], or
[Boutilier 1989]).



be those which satisfy permissible “arguments”, or paths.
Rather than speak of arguments, we will use the con-
cept of support. For instance, if the links A −→ B and
B −→ C belong to Γ, then these sentences will support
the conclusion A −→ C, unless more specific evidence
contradicts this. It remains to be stated what consti-
tutes this specific evidence for inheritance networks.
It will be convenient to use the path notation of tra-

ditional reasoners as shorthand.

Definition A path 〈∗x1, x2, . . . , xn〉 is contained in a set
of links Φ iff each of the links 〈+ x1, x2〉, 〈+ x2, x3〉,
. . . , 〈∗ xn−1, xn〉 is in Φ (where ∗ ∈ {+,−}).

For convenience, ∗ will denote the “complement” of ∗,
which is any sign not equal to ∗ (e.g. if the value of ∗ is
+, then ∗ can be either of # or −). Notice that paths can
only be positive or negative, while links can be neutral
as well. If λ is a (positive or negative) link 〈∗ x, y〉, then
λ denotes either of the two complement links 〈∗ x, y〉4.
We will now define a reflexive, transitive preference

relation on the set of I-models. In general, models which
respect the transitivity of subclass relationships should
be preferred to those which do not. That is, if a model
contains the path 〈∗ x1, x2, . . . , xn〉, then it should also
contain the link 〈∗x1, xn〉. Unsurprisingly however, there
are exceptions to this rule, when more specific evidence
presents itself. These exceptional conditions reflect re-
dundancy considerations.

Example Assume the following paths are present in a
network Γ:

〈+ x1, x2, . . . , xn〉, 〈+ xi, y, xi+1〉, and
〈− y, xn〉,

where 1 ≤ i < n − 1. The first path indicates sup-
port for the assertion x1 −→ xn. This is because
x1’s are x2’s, which are x3’s, and so on. The second
sequence can be interpreted as the reason xi −→
xi+1 holds. Now, this line of reasoning can be ex-
tended to show that the justification for concluding
x1 −→ xn is the path 〈+ x1, . . . , xi, y, xi+1, . . . , xn〉.
However, it is also known that y 6−→ xn. This makes
y an exceptional subclass of xi+1 with respect to xn.
Therefore x1 should inherit properties from y over
xi+1, making x1 an exceptional subclass of xi+1.
Just as with inferential distance, since y and xi+1

conflict with respect to property xn, x1 should in-
herit the property x1 6−→ xn from y, since y is closer
to x1 than is xi+1. The concept illustrated in this
example is closely related to Touretzky’s [1986] no-
tion of preclusion.

Example Assume the following paths are present in a
network Γ:

4E.g. 〈+x, y〉 has two complements, 〈−x, y〉 and 〈#x, y〉,
while the complement of 〈# x, y〉 is undefined.

x1

Type−1
︷ ︸︸ ︷

−→ x2 −→ x3 . . . xn−2 −→ xn−1 −→ xn

x1 −→ x2 −→ x3 . . . xn−2 −→ xn−1 −→
︸ ︷︷ ︸

Type−2

xn

Figure 2: Positioning of intermediaries

〈+ x1, x2, . . . , xn〉, 〈+ xi, y, xi+1〉, and
〈− x1, y〉,

where 2 ≤ i < n. The first path indicates support
for the assertion x1 −→ xn and the reason for this
(if the second path is taken into consideration) is be-
cause x1’s are x2’s, which are . . .xi’s, which are y’s,
which are xi+1’s, . . . which are xn’s. However, the
third link asserts that x1’s are not y’s, thus disabling
the entire chain of reasoning. Hence, the conclusion
x1 −→ xn should not be drawn. This example illus-
trates a concept closely related to Touretzky’s [1986]
notion of contradiction.

These definitions, in the style of [Touretzky 1986], will
formalize the concepts required by the preference rela-
tion. Let Φ be any set of inheritance links.

Definition A type-1 intermediary to a path 〈∗x1, . . . , xn〉
in Φ is any class y such that either

1. y = xi : (1 < i < n); or

2. the path 〈+ xi, y1, . . . , yj, . . . , ym, xi+1〉 ∈ Φ :
m ≥ 1, 1 ≤ i < n− 1, and y = yj.

Definition A type-2 intermediary to a path 〈∗x1, . . . , xn〉
in Φ is any class y such that either

1. y = xi : (1 < i < n); or

2. the path 〈+ xi, y1, . . . , yj, . . . , ym, xi+1〉 ∈ Φ :
m ≥ 1, 2 ≤ i < n− 1, and y = yj; or

3. the path 〈∗ xn−1, y1, . . . , yj, . . . , ym, xn〉 ∈ Φ :
m ≥ 1 and y = yj.

Figure 2 illustrates exactly where an intermediary of
either type can be situated along a path. Both type-
1 and type-2 intermediaries can be viewed, given the
assumption of redundancy of links, as reasons for the
support of the conclusion 〈∗x1, xn〉 from the appropriate
path. In the examples, it was seen that support for this
conclusion should be withdrawn if a type-1 y exists such
that y 6−→ xn holds, or if a type-2 z exists such that
x1 6−→ z holds.
Now that the reasons for disabling the support for a

conclusion have been discussed, a definition of supported
sentences can be presented along with the preference re-
lation for models. Recall that meta-variable ∗ ranges
over {+,−}, while ∗ can be any of the three signs. Let
Φ be any set of links.

Definition A link 〈∗ x1, xn〉 is supported in Φ by the

path φ = 〈∗ x1, . . . , xn〉 iff



1. φ ∈ Φ,

2. There exists no type-1 y to φ in Φ such that
〈∗ y, xn〉 ∈ Φ, and

3. There exists no type-2 z to φ in Φ such that
〈+ x1, z〉 ∈ Φ.

A link λ is supported in Φ iff there exists a path
φ ∈ Φ which supports λ.

Definition The set of contradicted links in Φ is

CONTRA(Φ) = {λ : λ ∈ Φ and λ is sup-
ported in Φ}.

In other words, if a link λ is supported in Φ, its com-
plement links are contradicted (if either is in Φ).

Definition An I-model M1 is as preferable as an I-
model M2 (written M1 ≤ M2) iff

CONTRA(M1) ⊆ CONTRA(M2).

M1 is preferred to M2 (written M1 < M2) iff M1 ≤
M2 and not M2 ≤ M1.

The preferred models of a network are those models
which satisfy the links of the network and are minimal
in the relation ≤. The nonmonotonic consequences of a
theory, or network, are precisely those links true in all
preferred models. Essentially, the preferred models of a
network are those which satisfy as many supported links
as possible, where a link is supported if there is a “chain
of reasoning” (path) which leads to that conclusion, and
no more specific evidence (intermediaries) inhibit this
support.
Given the definitions here, a formal characterization of

the notion of redundant link, discussed in the last subsec-
tion, can be given. The idea is that a redundant link is
one which has some independent justification, consisting
of a set of other links, for its truth.

Definition A link 〈∗ x1, xn〉 is redundant in a network
Φ iff there exists a path 〈∗ x1, . . . , xn〉 (where n >
2) such that the restriction (in the graph-theoretic
sense) of Φ to {x1, . . . , xn} contains no contradicted
links.

3 A Comparison to Existing Techniques

There are a number of different intuitions regarding
the exact nature of inheritance reasoning, and these
are reflected in a divergent collection of reasoning tech-
niques. The “clash of intuitions” is described in detail in
[Touretzky et al. 1987], and the space of options avail-
able to an inheritance reasoner is explicitly mapped out.
There it is claimed that these choices represent a number
of different, but equally plausible, reasoning strategies,
suitable for varying tasks. We claim here that many of
these design options are unintuitive, and while space pro-
hibits a complete discussion of where the minimal model
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Figure 3: An Unstable Network

reasoner fits along this scale and a presentation of exam-
ples (see [Boutilier 1989] for details), we will show how
it differs from other techniques in a crucial respect.
In the terminology of [Touretzky et al. 1987], our ap-

proach is skeptical, in that conclusions are reached only
when no evidence contradicts them. Unlike the “re-
stricted skepticism” of [Horty et al. 1986], this approach
is truly skeptical. The reasoner performs coupling, it is
not opportunistic, and it uses on-path preemption, all de-
sirable qualities. As well, the reasoner is stable, a point
to be discussed in greater detail now.

3.1 Stability and Redundancy

In (standard) logics the property of monotonicity is guar-
anteed by definition. Letting S and T be sets of sen-
tences, α a sentence, and C the consequence operation
of some logic, the property of monotonicity can be ex-
pressed as

If α ∈ C(T ), then α ∈ C(T ∪ S).

Of course, this property is too strong for nonmonotonic
inference systems. However, a property known as the
Cumulation Property was proposed in [Gabbay 1985] as
being a minimal requirement (among others) of any non-
monotonic reasoning system. Interpreting C as the non-
monotonic “consequence” operation of such a system,
this property can be expressed as

If α ∈ C(T ), then β ∈ C(T ) iff β ∈ C(T ∪{α}).

This condition asserts that if a sentence is derivable from
some theory, the addition of that sentence to the theory
won’t affect the set of consequences5.
An inheritance reasoner is said to be stable iff it sat-

isfies the Cumulation Property. In other words, a rea-
soner is stable if, for any network, the addition of a link
representing a consequence of that network will not in-
validate any consequences of the original network, nor
introduce new consequences. While stability is a seem-
ingly incontrovertible property of inheritance reasoners,
reasoners which use inferential distance (ID-reasoners),
such as those of [Touretzky 1986] or [Horty et al. 1986],
do not exhibit this attribute.
Consider the network in Figure 3. In this network

an ID-reasoner will conclude that D’s are not L’s, and
hence make no conclusion about D’s with respect to A’s.

5Actually, Gabbay proposed two separate
rules, Weak Monotonicity and Cut, which were combined in
[Besnard 1988] as the resultant Cumulation Property.



Notice that the conclusion that M’s are A’s is also war-
ranted. Now consider the network augmented with “M’s
are A’s” (sanctioned in the original network), via the
explicit link M −→ A. In contrast to its determination
in the original network, an ID-reasoner will now assert
that D’s are indeed A’s. Even though a link has been
added which was previously deducible from the network,
it significantly altered the consequences of the network.
The minimal model characterization of inheritance, how-
ever, is stable, almost by definition. The link D −→ A
is not true in all minimal models of either network, thus
D −→ A is not concluded in either case. The question
remains whether stability makes the minimal model rea-
soner a more plausible approach than ID-reasoners.
It is suggested that this sort of instability may be

desirable, giving inheritance reasoners an added flex-
ibility by allowing “a sensitivity to the structure of
arguments that is difficult to achieve in deductive
systems”[Horty et al. 1986, p.21]. This claim is sup-
ported by the following interpretation of the networks.
Let D stand for Moby, W for Whales, M for Mammals,
L for Land-Dwellers, and A for Air-Breathers. Given
the information in the first network, the reasoner cannot
(and should not) conclude that Moby is an air breather.
In the second network, the direct link from mammals to
air breathers changes things, it is argued. While whales
are still not land-dwellers, they are mammals and mam-
mals are directly linked to air breathers (hence, they
are air breathers independently of being land dwellers6).
Therefore, it is claimed, the instability exhibited by the
reasoner is actually quite useful because the desired con-
clusion is reached, namely, that Moby is an air breather.
Clearly, this argument is incompatible with the notion

of redundancy assumed by the minimal model reasoner.
A simple change in the interpretation of this network
will perhaps illustrate the problem clearly. Let all nodes
be interpreted as before except for A, which will now
stand for Walking-Things. ID-reasoners will determine
that Moby the whale can walk because of the explicit
link from M to A. In other words, they assume the
link is not redundant (i.e. it is independently justified).
On the other hand, the minimal model reasoner will not
conclude anything about whales (in particular, Moby)
walking, since the link from M to A is assumed to be
redundant. That is, mammals can walk because they are
land-dwellers.
The key difference between the reasoners is in their

treatment of redundant links. One may say that since
each “works” (gives intuitive conclusions) on a different
example, each is useful for different purposes. The mini-
mal model reasoner assumes that M −→ A is redundant,
useful in one instance, while the others do not, helpful in
the other circumstance. However, it seems that the mini-
mal model reasoner is more principled in its choice. It as-

6In fact, this is the case in the real world, which is why
the results seem so appropriate.

sumes that all links with a certain “topology” are redun-
dant. If it turns out that a particular network has this
“shape” but its link is not redundant (e.g. M −→ A),
then the reason for the minimal model reasoner’s lack
of intuitive conclusions is obvious: it wasn’t designed to
work on this network (which does not fit its definition of
an inheritance network).

In contrast, the reasoners of [Touretzky 1986] and
[Horty et al. 1986] are a little less clear in this respect.
While the use of inferential distance makes a tacit as-
sumption about redundancy, these systems fail to make
clear which links will be taken to be redundant. As a
result, they are designed to work on specific examples,
some of which have redundant links, and some of which
have “pseudo-redundant” links. The problem is, looking
at an uninterpreted network, we cannot distinguish these
types of links. While the minimal model reasoner makes
its principles explicit by stating that all such links are
redundant, the other reasoners exhibit a certain unpre-
dictability.

3.2 Concluding Remarks

While many syntactic characterizations of inheritance
reasoning exist, the semantics of these systems has re-
mained unclear and, as a result, disparate conclusions
abound. We have provided a semantic interpretation of
links in these networks and a semantic characterization
of inference in inheritance systems, based on minimal
models. In particular, we have pointed out what appears
to be a deficiency in inferential distance based reasoners
which causes unstable behavior7 and a certain lack of
predictability. While ID-reasoners work well on a num-
ber of networks, the minimal model reasoner seems more
principled in its design choices.

The characterization presented here is quite intuitive,
and it can be extended in a number of ways. As it
stands, the semantic interpretation of links and the se-
mantic account of the inference process are somewhat
distinct. The approach may be augmented to account
for more “general” inheritance reasoning by extending
the the preference relation to E-models, rather than I-
models. In this manner, we may account for the full
interpretation of networks, and characterize how infor-
mation in non-network form can be integrated. Also,
an account can be given of inheritable properties and
relations of classes (see, e.g., [Touretzky 1986]). As ID-
reasoners and the approach presented here differ with
respect to stability, the minimal model characterization
cannot be construed as a semantics for these forms of
inheritance. Those algorithms are of no use for comput-
ing the consequences of a network, in the sense defined

7While inferential distance causes a violation of the “if”
clause of the Cumulation Property, those reasoners (e.g.
[Horty et al. 1986]) which use off-path preemption as well,
also violate the “only if” clause, resulting in “super-unstable”
behavior.



here. While consequences can be derived in a “brute
force” fashion, a (clearly desirable) syntactic account of
the “traditional” sort has yet to be developed.
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