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Abstract

We explore the notions of permission and obli-
gation and their role in knowledge representa-
tion, especially as guides to action for plan-
ning systems. We first present a simple condi-
tional deontic logic (or more accurately a pref-

erence logic) of the type common in the litera-
ture and demonstrate its equivalence to a num-
ber of modal and conditional systems for de-
fault reasoning. We show how the techniques
of conditional default reasoning can be used to
derive factual preferences from conditional pref-
erences. We extend the system to account for
the effect of beliefs on an agent’s obligations,
including beliefs held by default. This leads us
to the notion of a conditional goal, goals to-
ward which an agent should strive according
to its belief state. We then extend the system
(somewhat naively) to model the ability of an
agent to perform actions. Even with this simple
account, we are able to show that the deontic
slogan “make the best of a bad situation” gives
rise to several interpretations or strategies for
determining goals (and actions). We show that
an agent can improve its decisions and focus its
goals by making observations, or increasing its
knowledge of the world. Finally, we discuss how
this model might be extended and used in the
planning process, especially to represent plan-
ning under uncertainty in a qualitative manner.

1 Introduction

In the usual approaches to planning in AI, a planning
agent is provided with a description of some state of af-
fairs, a goal state, and charged with the task of discover-
ing (or performing) some sequence of actions to achieve
that goal. This notion of goal can be found in the ear-
liest work on planning (see [24] for a survey) and per-
sists in more recent work on intention and commitment
[8]. In most realistic settings, however, an agent will

frequently encounter goals that it cannot achieve. As
pointed out by Doyle and Wellman [28] an agent pos-
sessing only simple goal descriptions has no guidance for
choosing an alternative goal state toward which it should
strive. Some progress has been made toward providing
systems with the power to express sub-optimal goals.
Recently, Haddawy and Hanks [12] have provided a very
restricted model for partial fulfillment of deadline goals.
Their goals are propositions that must be made true by a
given deadline. If a goal cannot be met, utility is assigned
to partial fulfillment, for instance, making “more” of the
proposition true or getting close to the deadline. But
we should not expect goals to be so well-behaved in gen-
eral. There are many situations in which, say, missing
a deadline by some small margin is worse than ignoring
the task altogether; or in which an agent that fails to
satisfy one conjunct of a conjunctive goal should not at-
tempt to satisfy the rest of the goal. Indeed, goals can
change drastically depending on the situation in which
an agent finds itself. If it is raining, an agent’s goal
state is one it which it has its umbrella. If it’s not rain-
ing, it should leave its umbrella home. Moreover, goals
do not change simply because some ideal goal cannot
be satisfied: a robot may be able to leave its umbrella
home when it is raining. Circumstances play a crucial
role in determining goals. We want the ability to ex-
press such goals as “Pick up a shipment at wholesaler
X by 9AM,” but state exceptions like “If it’s a holiday,
go to wholesaler Y.” Permitting explicit exceptions to
goal statements allows goals to be expressed naturally.
Clearly, just as conditional plans allow circumstances to
dictate the appropriate sequence of actions for satisfying
a goal, conditional goals allow circumstances to dictate
just what goal state an agent “desires.”

It is profitable to think of an agent’s goal as an obliga-

tion. It ought to do what it can to ensure the goals set for
it are achieved. There have been a number of systems
proposed to model the notions of permission and obli-
gation, what ought to be the case [26, 7]. The earliest
modal logics for obligation were unsuccessful, for they
seem unable to represent conditional obligations. Condi-
tional deontic logics have been developed to account for



the fact that obligations can vary in different circum-
stances [13, 17, 25]. This indicates that such systems
are suitable for the representation of conditional goals.

In this paper we present a simple modal semantics for
defeasible deontic conditionals and extend this in sev-
eral ways to account for the influence of default knowl-
edge, incomplete knowledge and ability on obligations
and goals. Many systems have a rather complex seman-
tics that attempts to capture the defeasibility of such
conditionals [18, 15]. In Section 2, we present a fam-
ily of simple modal logics that can be used to repre-
sent defeasible deontic conditionals. These logics deal
only with preferences on deontic alternatives. This is a
crucial abstraction for it allows us to concentrate solely
on the structure of deontic preferences, ignoring impor-
tant but separate concerns that must be considered in
any true logic of obligation (see below). We show that
our logic captures the semantic system of Hansson [13],
and demonstrate that one can capture conditional obli-
gations with a unary modal operator, contrary to “con-
ventional wisdom” in the conditional logic literature.

Recently, the mechanisms of default reasoning have
been applied to problems in deontic logic [14, 16]. In-
deed, our conditional/modal logic was originally devel-
oped for applications in default reasoning [1, 2]; we show
in Section 3 how techniques for conditional default rea-
soning can be used for deontic reasoning.

In Section 4, we turn our attention to the influence of
beliefs on an agent’s goals. Since goals are conditional
on circumstances, the goals adopted by an agent will
depend crucially (and defeasibly) on the agent’s beliefs
about the world. We (tentatively) adopt the deontic
strategy that an agent should strive to bring about the
best situations consistent with its beliefs. This provides
a different conception of goals from that usually found
in AI (e.g., the goals of [8]). Included in this analysis
is a model of default beliefs. This takes the first steps
toward defining a “qualitative decision theory.”

Since an agent cannot be expected to do things be-
yond its ability, we introduce a naive model of ability
and action in Section 5. We describe goals to be those
propositions within an agent’s control that ensure opti-
mal outcomes. It turns out, however, that this model
is sufficient to render useless the deontic slogan “bring
about the best situations possible.” Incomplete knowl-
edge of the world gives rise to different strategies for de-
riving goals, in the tradition of game theory. We describe
several of these and how observations can be used to im-
prove decisions and focus goals.

Finally, we conclude with a brief summary and some
future directions in which this work may be pursued,
including applications to planning under uncertainty.

2 Conditional Preferences and Deontic

Logic

Deontic logics have been proposed to model the con-
cepts of obligation and permission [26, 27, 7, 13]. It is
clear that a sentence “It ought to be the case that A”
has non-extensional truth conditions, for what is actually
the case need not have any influence on what (ideally)
ought to be. Deontic logics usually have a modal con-
nective O where the sentence Oα means that the propo-
sition α is obligatory, or it ought to be the case that α.1

Semantically, the truth of such statements are usually
determined with respect to a given set of ideal possible
worlds, α being obligatory just when α is true in all ideal
situations. While this set of ideal worlds (obligation) is
often taken to be determined by some code of moral or
ethical conduct, this need not be the case. “Obligations”
may simply be the goals imposed on an agent by its de-
signer, and the ideal worlds simply those in which an
agent fulfills its specified duties.2 We take the notion of
ideality or preference in what follows to be determined
by any suitable metric, and allow “obligation” to refer
to the satisfaction of design goals, moral imperatives or
anything similar.
It has been widely recognized that deontic logic, de-

fined using a unary modal connective O, has certain lim-
itations. In particular, it is difficult to represent condi-
tional obligations [7]. For this reason, conditional deontic
logic (CDL) has been introduced to represent the depen-
dence of obligations on context [27]. Obligation is then
represented by a two-place conditional connective. The
sentence O(B|A) is interpreted as “It ought to be that B
given A” or “If A then it is obligatory that B,” and indi-
cates a conditional obligation to do B in circumstances
A. These logics can be interpreted semantically using an
ordering on worlds that ranks them according to some
notion of preference or ideality [13, 17]. Such a ranking
satisfies O(B|A) just in case B is true at all most pre-
ferred of those worlds satisfying A. Thus, we can think
of B as a conditional preference given A. Once A is true,
the best an agent can do is B.
In this section, we present a simple modal logic and se-

mantics for the representation of conditional obligations.
The logic CO (and related systems) are presented below
for this purpose. The presentation is brief and we refer to
[1, 4] for further technical details and an axiomatization.

2.1 The Bimodal Logic CO

We assume a propositional bimodal language LB over a
set of atomic propositional variables P, with the usual

1When discussing the obligations of a particular agent,
we will often say that the agent has an obligation to “do
α.” Though α is a proposition, we take “do α” to be some
(unspecified) action that brings about α.

2Cohen and Levesque [8] analyze goals similarly. An agent
has a goal α just in case α is true at all worlds that are “goal
accessible.”



Figure 1: A CO-model

classical connectives and two modal operators 2 and
←

2.
Our Kripkean possible worlds semantics for deontic pref-
erence will be based on the class of CO-models, triples
of the form M = 〈W,≤, ϕ〉 where W is a set of possible
worlds, or deontic alternatives, ϕ is a valuation function
mapping P into 2W (ϕ(A) is the set of worlds where A

is true), and ≤ is a reflexive, transitive connected binary
relation on W .3 Thus ≤ imposes a total preorder on
W : W consists of a set of ≤-equivalence classes, these
being totally ordered by ≤. We take ≤ to represent an
ordering of deontic preference: w ≤ v just in case v is at
least as preferable as w. This ordering is taken to reflect
the preferences of an agent about complete situations,
however these are to be interpreted (e.g., an ordering of
moral acceptability, personal utility, etc.). We will some-
times speak of preferred situations as being more ideal
or more acceptable than others. Each equivalence class,
or cluster of worlds, consists of a set of equally preferred
situations. Figure 1 illustrates a typical CO-model. The
truth conditions for the modal connectives are

1. M |=w 2α iff for each v such that w ≤ v, M |=v α.

2. M |=w

←

2α iff for each v such that w 6≤ v, M |=v α.

2α is true at a world w just in case α is true at all

worlds at least as preferred as w, while
←

2α holds just
when α holds at all less preferred worlds. The dual con-
nectives are defined as usual: 3α ≡df ¬2¬α means α

is true at some equally or more preferred world; and
←

3α ≡df ¬
←

2¬α means α is true at some less preferred

world.
↔

2α ≡df 2α ∧
←

2α and
↔

3α ≡df 3α ∨
←

3α mean α

is true at all worlds and at some world, respectively.

2.2 Deontic Conditionals

We now define a conditional connective I(−|−) to ex-
press conditional preferences. Intuitively, I(B|A) should
hold just when B holds at the most ideal worlds sat-
isfying A. Of course, nothing in our models forces the
existence of such minimal A-worlds (see Lewis [17] on the

3≤ is connected iff w ≤ v or v ≤ w for each v, w ∈ W .

Limit Assumption). However, we may simply say that
there should be some world satisfying A ∧ B such that
A ⊃ B holds at all “accessible” (equally or more ideal)
worlds. We also let the conditional hold vacuously when
the antecedent A is false in all situations. These truth
conditions can be expressed in LB as follows:

I(B|A) ≡df

↔

2¬A ∨
↔

3(A ∧2(A ⊃ B)). (1)

I(B|A) can be read as “In the most preferred situations
where A holds, B holds as well,” or “If A then ideally
B.” This can be thought of, as a first approximation, as
expressing “If A then an agent ought to ensure that B,”
for making B true (apparently) ensures an agent ends
up in the best possible A-situation. There are problems
with such a reading, as we discuss shortly; hence, we
usually adopt the former reading. However, we will oc-
casionally lapse and read I(B|A) as “IfA then it ought to
be that B.” We note that an absolute preference A can

be expressed as I(A|⊤), or equivalently,
↔

32A. We ab-
breviate this as I(A) (“ideally A”). We can also express
the (analog of) the notion of conditional permission. If
¬I(¬A|B) holds, then in the most preferred B-situations
it is not required that ¬A. This means there are ideal
B-worlds where A holds, or that A is “tolerable” given
B. We abbreviate this sentence T (A|B). Loosely, we
can think of this as asserting that an agent is permitted

to do A if B. Unconditional toleration is denoted T (A)

and stands for ¬I(¬A), or equivalently,
↔

23A.
Using CO we can express the conditional prefer-

ences involved in a number of classic deontic puzzles.
Chisholm’s paradox of contrary-to-duty imperatives [7]
is one such puzzle. The preferences involved in the fol-
lowing account [18] cannot be adequately captured in
with a unary modal deontic connective:

(a) It ought to be that Arabella buys a train ticket
to visit her grandmother.

(b) It ought to be that if Arabella buys the ticket
she calls to tell her she is coming.

(c) If Arabella does not buy the ticket, it ought to
be that she does not call.

(d) Arabella does not buy the ticket.

We can, however, represent these sentences conditionally
as I(V ), I(C|V ), I(¬C|¬V ) and ¬V . These give rise to
no inconsistency in CO, and induce a natural ordering
on worlds where only V ∧C-worlds are most acceptable.
Less preferred are certain ¬V ∧¬C-worlds, and still less
preferred is any ¬V ∧C-world:

V C < V C < V C

(The relative preference of V ∧ ¬C-worlds is left un-
specified by this account, though we are assured that
V C < V C.) Notice that from this set we can derive



I(C). More generally, CO satisfies the principle of deon-
tic detachment [18]:

I(B|A) ∧ I(A) ⊃ I(B)

Another principle sometimes advocated in the deontic
literature is that of factual detachment:

I(B|A) ∧ A ⊃ I(B)

This expresses the idea that if there is a conditional obli-
gation to do B given A, and A is actually the case,
then there is an actual obligation to do B. No exten-
sion of standard deontic logic can contain both prin-
ciples as theorems [18]. Given our reading of I(B|A),
factual detachment should not be (and is not) valid in
CO. However, clearly we require some mechanism for in-
ferring “actual preferences” from factual statements and
conditional preferences. In the next section we describe
how techniques from conditional default reasoning can
be used for just this purpose.
Another “puzzling” theorem of CO (as well as most

conditional and standard deontic logics) is the following:

I(A) ⊃ I(A ∨B)

If we read I(A) as “an agent is obligated to do A,” this
theorem seems somewhat paradoxical. From “It is oblig-
atory that you help X” one can infer that “It is obliga-
tory that you help X or kill X .” This suggests that one
may fulfill this obligation by killing X [13]. Of course,
if we adhere strictly to the reading of I as “In the most
ideal situations you help X or kill X” this is less prob-
lematic, for it does not suggest any means for fulfilling
these obligations. Furthermore, seeing to it that X is
killed (presumably) removes one from the realm of ideal
situations and did nothing to fulfill the original obliga-
tion (help X). In Sections 4 and 5 we suggest a means of
capturing this distinction. This puzzle is closely related
to the notion of free choice permission.

2.3 Representation Results

The idea of using an ordering on possible situations to
reflect deontic preference and capture conditional obli-
gations is not new. Hansson [13] provided a semantics
for CDL that is much like ours.4 While Hansson does
not present an axiomatization of his system DSDL3, we
can show that our modal semantics extends his and that
a fragment of CO provides a sound and complete proof
theory for his system. Let CO– denote the set of the-
orems in CO restricted to those sentences whose only
non-classical connective is I.5

4One key difference is the fact that Hansson invokes the
Limit Assumption: there must be a minimal (or most pre-
ferred) set of A-worlds for each satisfiable proposition A. This
has no impact on the results below [4].

5Occurrences of 2 and
←

2 must conform to the pattern in
the definition of I .

Theorem 1 ⊢CO− α iff |=DSDL3 α.

Furthermore, the power of the second modal operator is
not required. The results of [1, 3] show that the purely
conditional fragment of CO can be captured using only
the operator 2, that is, using the classical modal logic
S4.3, simply by defining

I(B|A) ≡df 2¬A ∨3(A ∧ 2(A ⊃ B)). (2)

Let S4.3– denote the conditional fragment of S4.3.

Theorem 2 ⊢S4.3− α iff |=DSDL3 α.

We note also that our system is equivalent to Lewis’s con-
ditional deontic logic VTA [17]. This shows that CDL,
as conceived by Hansson and Lewis, can be captured us-
ing only a unary modal operator. The “trick”, of course,
lies in the fact that 2 is not treated as unconditional
obligation.
Using a modal semantics of this sort suggests a number

of generalizations of Lewis’s logics. For instance, by us-
ing the modal logic S4, we can represent partially ordered
or preordered preferences. Furthermore, we can define
a version of the conditional that allows us to explicitly
(and consistently) represent conflicting preferences of the
form I(B|A) and I(¬B|A) (see [1, 6]). The logic CO*,
an extension of CO presented in [2, 4], is based on the
class of CO-models in which every propositional valua-
tion (every logically possible world) is represented. Using
CO* we can ensure that each world is ranked according
to our preference relation.

3 Defeasible Reasoning

While a standard modal logic (S4.3) suffices to represent
Hansson’s and Lewis’s notion of conditional obligation,
the added expressiveness of the logic CO can be used
to great advantage. In particular, it allows us to ex-
press various assumptions about our premises and use
the techniques of conditional default reasoning to infer
actual preferences.
Loewer and Belzer [18] have criticized Lewis’s seman-

tics “since it does not contain the resources to express
actual obligations and no way of inferring actual obli-
gations from conditional ones.” Clearly, in our exam-
ple above, we should somehow be able to conclude that
Arabella ought not call her grandmother; but we cannot
infer logically in CO that I(¬C). This is to be expected,
for the actual fact ¬V does not affect the form taken
by ideal situations. However, once ¬V is realized, one
ought to attempt to make the best of a bad situation. In
other words, actual preferences (or obligations) should
be simply those propositions true in the most preferred
worlds that satisfy the actual facts.
Let KB be a knowledge base containing statements of

conditional preference and actual facts. Given that such
facts actually obtain, the ideal situations are those most
preferred worlds satisfying KB. This suggests a straight-
forward mechanism for determining actual preferences.



We simply ask for those α such that

⊢CO I(α|KB)

If KB is the representation of Chisholm’s paradox above,
we have that I(¬C|KB) is valid. Thus, we can quite
reasonably model a type of factual detachment simply
by using nested conditionals of this sort.
We notice that this is precisely the preliminary scheme

for conditional default reasoning suggested in [9, 2]. This
mechanism unfortunately has a serious drawback: seem-
ingly irrelevant factual information can paralyze the
“default” reasoning process. For instance, let KB′ =
KB ∪ {R}, where R is some distinct propositional atom
(e.g., “it will rain”). We can no longer conclude that
Arabella ought not call, for I(¬C|KB′) is not valid. In-
tuitively, R has nothing to do with Arabella’s obligation
to call, yet, from a logical perspective, there is nothing
in the premises that guarantees that raining cannot af-
fect Arabella’s obligations. The following (incomplete)
ordering is satisfies with the original premises:

V CR < V CR < V CR

Hence, it could be that Arabella should call if it’s raining
(whether she visits or not).
Several solutions have been proposed for the problem

of irrelevance in default systems. We briefly describe one,
Pearl’s [22] System Z. Roughly, we want to assume that
worlds are as preferred or as ideal as possible, subject
to the constraints imposed by our theory of preferences.
For instance, a world where it is raining, Arabella fails
to buy a ticket and doesn’t call her grandmother violates
no more obligations (in KB) than a world where it is not
raining and the other conditions obtain. It is consistent
to assume that raining situations are no less ideal than
non-raining situations. System Z provides a mechanism
for determining the consequences of such assumptions,
and it will allow us to conclude from KB′ that Arabella
ought not call (when it is raining). Roughly, System
Z chooses a preferred model from those satisfying KB.
This model is the most “compact” model of KB, a model
where worlds are “pushed down” in the preference or-
dering as far as possible (consistent with the constraints
imposed by KB). For simple conditional theories6 there
is a unique preferred model, the Z-model. The Z-model
for KB (or KB′) above is

{V CR, V CR} < {V CR, V CR, V CR, V CR} <

{V CR, V CR}

Notice that I(C|V ∧ R) is satisfied in this model. Also
notice that visiting without calling is no “worse” than
not visiting: since our premises do not specify exactly
how bad failing to call is, it is assumed to be as “good”

6Such theories may have propositions and conditionals of
the form I(B|A) where B,A are propositional.

as possible (though it cannot be ideal, since it violates
the imperative I(C|V )).

Goldszmidt and Pearl [10, 11] have developed algo-
rithms that compute (often efficiently) the conclusions
that can be derived in this way. In [2] we describe how
the expressive power of CO can be used to axiomatize
the assumptions of System Z and describe an explicit
preference relation on CO-models that captures the cri-
terion of “compactness”. Of course, any problems with
a default reasoning scheme must be expected to carry
over to our deontic approach. System Z has the draw-
back of failing to count situations that violate more con-
ditional preferences as less ideal than those that violate
fewer (at least, within a a fixed priority level). A sim-
ple solution has been proposed in [5] for the logic CO.
Other solutions to the problem of irrelevance for condi-
tional reasoning have also been proposed. We do not
catalogue these here, but simply point out that deriving
factual obligations from a conditional KB has exactly
the same structure as deriving default conclusions from
a conditional KB (see the next section); any problems
and solutions for one will be identical for the other.

We note that recently other techniques for default rea-
soning have been proposed for deontic systems. Jones
and Pörn [16] have also proposed an extension of their
earlier deontic logics that uses some ideas from Del-
grande’s work in default reasoning. However, their sys-
tem is rather complex and quite distinct from ours.
Makinson [19] has made some preliminary suggestions
for incorporating aspects of normality and agency in the
formalization of obligations that relate to work in default
reasoning. Horty [14] proposes representing imperatives
and deriving obligations using Reiter’s default logic. Sit-
uations are “scored” according to the imperatives they
violate. This too is different from our approach, for we
take preferences to be primitive and use these to de-
rive (conditional) obligations. Naturally, constraints on
a preference ordering can be derived from imperatives as
well should we chose to view a statement I(B|A) as an
imperative. In fact, System Z can be viewed as rank-
ing situations according to the priority of the impera-
tives violated by a situation. This is one advantage of
the conditional approach over Horty’s system: priorities
on imperatives are induced by a conditional theory. In
contrast, should one situation violate two rules of equal
priority while a second violates just one, System Z views
both situations as equally preferred (this is the drawback
cited above), while Horty’s system clearly “prefers” that
fewer imperatives be violated. Again, the proposal in [5]
for default reasoning can be seen as combining these two
approaches.7

The view of conditionals (in the sense of CO) as im-

7While based on default logic, Horty’s system shares some
remarkable similarities because of the simple theories he uses
and their connection to Poole’s Theorist system, which in
turn is related to our conditional logic [5].



peratives is tenable. However, imperatives reflect much
more information than the preferences of an agent. Is-
sues of action and ability must come into play, so it is
hard to see just how a preference ordering can be derived
from imperatives without taking into account such con-
siderations. In the following sections, we explore these
issues, showing how one might determine actions appro-
priate for an agent in various circumstances (the agent’s
“imperatives”).

4 Toward a Qualitative Decision Theory

4.1 A Logic of Goals

While deontic logics concentrate on preferences related
to notions of moral acceptability or the like, it is clear
that preferences can come from anywhere. In particu-
lar, a system designer ought to be able to convey to an
artificial agent the preferences according to which that
agent ought to act. From such preferences (and other
information) and agent ought to be able to derive goals

and plan its actions accordingly.
Doyle and Wellman [28] have investigated a preferen-

tial semantics of goals motivated by a qualitative notion
of utility. Roughly, P is a goal just when any “fixed” P -
situation is preferred to the corresponding ¬P -situation.
A loose translation into our framework would correspond
to a sentence schema I(P |α) for all propositions α where
α 6⊢ ¬P . This type of goal is unconditional in the sense
that it ensures that P is ideally true: I(P ). We can
express conditional goals in their framework simply by
fixing certain other propositions, but these can certainly
not be defeasible.
Asserting P as a goal in this sense is a very strong

statement, in fact, so strong that very few goals will
meet this criterion. For P to be a goal, it must be that
no matter what else is true the agent will be better off
if P . We call such a goal absolute (whether conditional
or unconditional). However, even such strong moral im-
peratives as “Thou shalt not kill” typically have excep-
tions (for instance, self-defense). Certainly, it is the case
that we can postulate an absolute goal by considering
all exceptional situations for a goal and making the goal
conditional on the absence of exceptions. Unfortunately,
just as with the qualification problem for default reason-
ing, this leads to goals that must be expressed in a very
unnatural fashion. We should note that absolute goals
have an advantage over the defeasible goals expressible in
CO. If Q is an absolute goal conditional on P , then once
P is known by an agent it is guaranteed that ensuring
Q is the best course of action. No matter what contin-
gencies occur, Q is better than ¬Q. However, as we will
see below, such goals might provide very little guidance
for appropriate behavior, especially in the presense of in-
complete knowledge. Once again, very few realistic goals
match this specification. To use an example developed
below, an agent might have to decide whether or not to
take its umbrella to work: if it rains, taking the umbrella

is best; if not, leaving the umbrella is best. Taking or
leaving the umbrella cannot be an absolute goal for an
agent, yet clearly there may be other considerations that
make one or the other action a “real” goal. Such consid-
erations include action, ability, expected outcomes and
game-theoretic strategies.

4.2 Default Knowledge

As we have seen, the belief set of an agent provides the
context in which its goals are determined. However, we
should not require that goals be based only on “certain”
beliefs, but on any reasonable default conclusions as well.
For example, consider the following preference ordering
with atoms R (it will rain), U (have umbrella) and C

(it’s cloudy). Assuming C ∧ R is impossible, we might
have the following preferences:

{CRU,CRU} < CRU < {CRU,CRU} < CRU

Suppose, furthermore, that it usually rains when its
cloudy. If KB = {C}, according to our notion of obli-
gation in the last section, the agent’s goals are R and
U . Ideally, the agent ought to ensure that it doesn’t
rain and that it doesn’t bring its umbrella. Ignoring the
absurdity of the goal R (we return to this in the next
section), even the goal U seems to be wrong. Given C,
the agent should expect R and act accordingly.

Much like in decision theory, actions should be based
not just on the utilities (preferences) over outcomes, but
also on the likelihood (or typicality or normality) of out-
comes. In order to capture this intuition in a qualitative
setting, we propose a logic that has two orderings, one
representing preferences over worlds and one represent-
ing the degree of normality or expectation associated with
a world. The presentation is again brief and we refer to
[6] for further motivation and technical details.

The logic QDT, an attempt at a qualitative decision
theory, is characterized by models of the form M =
〈W,≤P ,≤N , ϕ〉, where W is a set of worlds (with valua-
tion function ϕ), ≤P is a transitive, connected preference

ordering on W , and ≤N is a transitive, connected nor-

mality ordering on W . We interpret w ≤P v as above,
and take w ≤N v to mean w is at least as normal a
situation as v (or is at least as expected). The submod-
els formed by restricting attention to either relation are
clearly CO-models. The language of QDT contains four

modal operators: 2P ,
←

2P are given the usual truth con-

ditions over ≤P and 2N ,
←

2N are interpreted using ≤N .
The conditional I(B|A) is defined as previously, using

2P ,
←

2P . A new normative conditional connective ⇒ is

defined in exactly the same fashion using 2N ,
←

2N :

A ⇒ B ≡df

↔

2N¬A ∨
↔

3N (A ∧ 2N (A ⊃ B)). (3)

The sentence A ⇒ B means B is true at the most nor-
mal A-worlds, and can be viewed as a default rule. This



conditional is exactly that defined in [2, 4], and the as-
sociated logic is equivalent to a number of other systems
(e.g., the qualitative probabilistic logic of [21, 11]).8

Given a QDT-model and a (finite) set of facts KB, we
define the default closure of KB to be (where LCPL is
our propositional sublanguage)

Cl(KB) = {α ∈ LCPL : KB ⇒ α}

That is, those propositions α that are normally true
given KB form the agent’s set of default conclusions. It
seems natural to ask how the ordering ≤N is determined.
Typically, we will have a set of conditional premises of
the form A ⇒ B, plus other modal sentences that con-
strain the ordering. We note that conditional deontic
sentences may also be contained in KB; but these im-
pose no constraints on the normality ordering. Unless
these premises form a “complete” theory, there will be a
space of permissible normality orderings. Many default
reasoning schemes will provide a “preferred” such order-
ing and reason using that ordering. System Z, described
above, is one such mechanism, forming the most com-
pact (normality) ordering consistent with the KB. We
make no commitment to the default reasoning scheme
we use to determine the ordering, simply that the clo-
sure Cl(KB) is semantically well-defined. We assume for
simplicity (though this is relaxed in [6]), that the default
closure Cl(KB) is finitely specifiable and take it to be a
single propositional sentence.9

We remark that similar considerations apply to the
preference ordering ≤P . One can take the ordering to
be the most compact ordering satisfying the premises
KB or use some other strategy to determine allowable
models. However, we do not require the use of a single
ordering — the definitions presented below can be re-
interpreted to capture truth in all permissible orderings
or all QDT-models of a given theory [6]. It is sufficient,
though, to define goals relative to a single model, and
then use simple logical consequence (truth in all QDT-
models of KB) to derive goals, if desired.
An agent ought to act not as if only KB were true, but

also these default beliefs Cl(KB). Assume a particular
QDT-model M . As a first approximation, we define an
ideal goal (w.r.t. KB) to be any α ∈ LCPL such that

M |= I(α|Cl(KB))

The ideal goal set is the set of all such α. In our previous
example, where KB = {C}, we have that Cl(KB) ≡

8QDT can be axiomatized using the axioms of CO for

each pair of connectives 2P ,
←

2P and 2N ,
←

2N , plus the sin-

gle interaction axiom
↔

2Pα ≡
↔

2Nα. Thus, ≤P and ≤N are
completely unrelated except that they must be defined over
the same set of worlds.

9A sufficient condition for this property is that each “clus-
ter” of equally normal worlds in ≤N corresponds to a finitely
specifiable theory. This is the case in, e.g., System Z [2].

C ∧R and the agent’s goals are those sentences entailed
by C∧R∧U . It should be clear that goals are conditional
and defeasible; for instance, given C ∧R, the agent now
has as a goal U .10

5 Ability and Incomplete Knowledge

The definition of ideal goal in the previous section is
somewhat unrealistic as it fails to adequately account
for the ability of an agent. Given C in our example
above, the derived goal U seems reasonable while the
goal R seems less so: we should not expect an agent
to make it rain! More generally, there will be certain
propositions α over which the agent has no control: it is
not within its power to make α true or false, regardless
of the desirability of α. We should not require an agent
to have as a goal a proposition of this type. Ideal goals
are best thought of as the “wishes” of an agent that finds
itself in situation KB (but cannot change the fact that
it is in a KB situation).

5.1 Controllable Propositions

To capture distinctions of this sort, we introduce a naive
model of action and ability and demonstrate its influ-
ence on conditional goals. While this model is certainly
not very general (see the concluding section), it is suffi-
cient to illustrate that conditional goals will require more
structure than we have suggested above using ideal goals.
We partition our atomic propositions into two classes:

P = C ∪ C. Those atoms A ∈ C are controllable, atoms
over which the agent has direct influence. We assume
that the only actions available are do(A) and do(A),
which make A true or false, for each controllable A. We
assume also that these actions have no effects other than
to change the truth value of A. The atom U (ensure
you have your umbrella) is an example of a controllable
atom. Atoms in C are uncontrollable. R (it will rain) is
an example of an uncontrollable atom.

Definition For any set of atomic variables P , let V (P)
be the set of truth assignments to this set. If
v ∈ V (P) and w ∈ V (Q) for distinct sets P , Q,
then v;w ∈ V (P ∪Q) denotes the obvious extended
assignment.

We can now distinguish three types of propositions:

Definition A proposition α is controllable iff, for
every u ∈ V (C), there is some v ∈ V (C) and w ∈
V (C) such that v;u |= α and w;u |= ¬α.

A proposition α is influenceable iff, for some u ∈
V (C), there is some v ∈ V (C) and w ∈ V (C) such
that v;u |= α and w;u |= ¬α.

10The “priority” given to defaults can be thought of as
assuming arbitrarily high conditional probabilities. We are
currently investigating the ability to give priority to certain
preferences (e.g., infinitely low or high utility).



Finally, α is uninfluenceable iff it is not influence-
able.

Intuitively, since atoms in C are within complete con-
trol of the agent, it can ensure the truth or the falsity
of any controllable proposition α, according to its desir-
ability, simply by bringing about an appropriate truth
assignment. If A,B ∈ C then A ∨B and A ∧B are con-
trollable. If α is influenceable, we call the assignment u
to C a context for α; intuitively, should such a context
hold, α can be controlled by the agent. If A ∈ C, X ∈ C
then A∨X is influenceable but not controllable: in con-
text X the agent cannot do anything about the truth of
A∨X , but in context X the agent can make A∨X true
or false through do(A) or do(A). Note that all control-
lables are influenceable (using a tautologous context). In
this example, X is uninfluenceable. It is easy to see that
these three types of propositions are easily characterized
according to properties of their prime implicates [6].

5.2 Complete Knowledge

Given the distinction between controllable and uncon-
trollable propositions, we would like to modify our defi-
nition of a goal so that an agent is obligated to do only
those things within its control. A first attempt might
simply be to restrict the goal set as defined in the last
section to controllable propositions. In other words, we
determine the those propositions that are ideally true
given Cl(KB), and then denote as a goal any such propo-
sition within the agent’s control (i.e., any proposition
that is influenceable in context KB). The following ex-
ample shows this to be inadequate.
Consider three atoms: L (my office thermostat is set

low); W (I want it set low); and H (I am home this
morning). My robot has control only over the atom L

(it can set the thermostat), and possesses the following
default information: ⊤ ⇒ W , L ⇒ W and H ∧ L ⇒ W .
(I normally want the thermostat set low; but if it’s high, I
probably set it myself and want it high — unless I stayed
at home and the caretaker turned it up.) The robot has
the “factual” knowledge KB = {L,H}, namely, that the
thermostat setting is high and I’m at home. The default
closure of its knowledge is Cl(KB) = {L,H,W}: most
likely I want the thermostat set low, even though it is
currently high. Finally, the robot’s preference ordering
is designed to respect my wishes:

{WL,WL} < WL < WL

(we assume H does not affect preference).
It should be clear that the robot should not deter-

mine its goals by considering the ideal situations satis-
fying Cl(KB). In such situations (since L is known), L
is true and the robot concludes that L should be true.11

This is clearly mistaken, for considering only the best
situations in which one’s knowledge of controllables is

11This is a simple theorem of our conditional logic: I(α|α).

true prevents one from determining whether changing
those controllables could lead to a better situation. Since
any controllable proposition can be changed if required,
we should only insist that the best situations satisfying
uninfluenceable known propositions be considered. We
shouldn’t allow the fact that L is known unduly influence
what we consider to be the best alternatives — we can
make L true if that is what’s best. But notice that we
should not ignore the truth of controllables when making
default predictions. The prior truth value of a control-
lable might provide some indication of the truth of an
uncontrollable; and we must take into account these un-
controllables when deciding which alternatives are pos-

sible, before deciding which are best. In this example,
the fact L might provide an indication of my (uncontrol-
lable) wish W (though in this case defeated by H).12

This leads to the following formulation of goals that
account for ability. We again assume a QDT-model M
and sets C, C. The closure of KB is defined as usual.
The uninfluenceable belief set of an agent is

UI(KB) = {α ∈ Cl(KB) : α is uninfluenceable}

This set of beliefs is used to determine an agent’s goals.
We say α is a complete knowledge goal (CK-goal) iff

M |= I(α|UI(KB)) and α is controllable

In our example above, the only atomic goal the robot
has is L (low thermostat). In the earlier example, given
C (cloudy) the goal will be U (take umbrella).
As with ideal goals, the set of CK-goals is deductively

closed. We can think of CK-goals as necessary conditions

for an agent achieving some ideal state. Usually we are
interested in sufficient conditions, some sentence that,
if known, guarantees that the agent is in an ideal state
(given UI(KB)).13 This can be captured in modal terms.
We say proposition G is CK-sufficient with respect to
KB (or “guarantees ideality”) just when G ∧ UI(KB) is
satisfiable and

M |=
↔

2P (UI(KB) ⊃
←

2P (UI(KB) ⊃ ¬G))

This simply states that any world satisfying G∧UI(KB)
is at least as preferred as any other UI(KB)-world. Thus

12If a controllable provides some indication of the truth
of an uncontrollable or another controllable, (e.g., L ⇒ W )
we should think of this as an evidential rule rather than a
causal rule. Given our assumption about the independence
of atoms in C, we must take all such rules to be evidential
(e.g., changing the thermostat will not change my wishes).
We discuss this further in the concluding section. Note the
implicit temporal aspect here; propositions should be thought
of as fluents. The theorem I(α|α) should not be viewed as
paradoxical for precisely this reason. It does not suggest that
α ought to be true if it is true, merely that it must be true
in the best situations where it is true. As we see below, ¬α
can be a goal or obligation even if α is known.

13Hector Levesque (personal communication) has sug-
gested that this is the crucial “operator.”



ensuring G is true (assuming as usual that UI(KB) can-
not be affected) guarantees the agent is among the best
possible UI(KB)-worlds.
Of course, changes in the world can only be effected

through atomic actions, so we are most interested in suf-
ficient conditions described using atomic actions. We say
an (atomic) action set is any set of controllable literals
(drawn from C). If A is such a set we use it also to de-
note the conjunction of its elements. An atomic goal set

is any action set A that guarantees each CK-goal (see [6]
for further details). We can show that any atomic goal
set determines a reasonable course of action.

Theorem 3 Let A be an atomic goal set for KB. Then

A is CK-sufficient for KB.

We note that usually we will be interested in minimal

atomic goal sets, since these require the fewest actions
to achieve ideality. We may wish to impose other metrics
and preferences on such goals sets as well (e.g., associat-
ing costs with various actions).

5.3 Incomplete Knowledge

The goals described above seem reasonable, in accord
with the general deontic principle “do the best thing
possible consistent with your knowledge.” We dubbed
such goals “CK-goals” because they seem correct when
an agent has complete knowledge of the world (or at
least uncontrollables). But CK-goals do not always de-
termine the best course of action if an agent’s knowledge
is incomplete. Consider our preference ordering above
for the umbrella example and an agent with an empty
knowledge base. For all the agent knows it could rain or
not (it has no indication either way). According to our
definition of a CK-goal, the agent ought to do(U), for the
best situation consistent with its KB is RU . Leaving its
umbrella at home will be the best choice should it turn
out not to rain; but should it rain, the agent has brought
about the worst possible outcome. It is not clear that
U should be a goal. Indeed, one might expect U to be
a goal, for no matter how R turns out, the agent has
avoided the worst outcome.
It is clear, in the presence of incomplete knowledge,

that there are various strategies for determining goals.
CK-goals (the “deontic strategy”) form merely one al-
ternative. Such a strategy is opportunistic, optimistic
or adventurous. Clearly, it maximizes potential gain, for
it allows the possibility of the agent ending up in the
best possible outcome. In certain domains this might
be a prudent choice (for example, where a cooperative
agent determines the outcome of uncontrollables). Of
course, another strategy might be the cautious strategy
that minimizes potential loss. This corresponds precisely
to the minimax procedure from game theory, described
formally here.
Complete action sets (complete truth assignments to

the atoms in C) are all of the alternative courses of action
available to an agent. To minimize (potential) loss, we

must consider the worst possible outcome for each of
these alternatives, and pick those with the “best” worst
outcomes. If A1, A2 are complete action sets, we say A1

is as good as A2 (A1 ≤ A2) iff

M |=
↔

3P (A2 ∧ UI(KB) ∧ ¬
←

3P (A1 ∧UI(KB)))

Intuitively, if A1 ≤ A2 then the worst worlds satisfying
A1 are at least as preferred in ≤P as those satisfying
A2 (considered, of course, in the context UI(KB)). It
is not hard to see that ≤ forms a transitive, connected
preference relation on complete action sets. The best

actions sets are those minimal in this ordering ≤. To
determine the best action sets, however, we do not need
to compare all action sets in a pairwise fashion:

Theorem 4 Ai is a best action set iff M |= Ai ≤ ¬Ai.

This holds because the negation of a complete action set
is consistent with any other action set. We say α is a
cautious goal iff

∨{Ai : Ai is a best action set } |= α

In this way, if (say) A ∧ B and A ∧ ¬B are best action
sets, then A is a goal but B is not. Simply doing A (and
letting B run its natural course) is sufficient. This notion
of goal has controllability built in (ignoring tautologies).
In our example above, U is a cautious goal. Of course,
it is the action sets that are most important to an agent.
We cannot expect best action sets, in general, to be suf-
ficient in the same sense that CK-goal sets are. The
potential for desirable and undesirable outcomes makes
this impossible. However, we can show that if there does
exist some action set that is sufficient for KB that it will
be a best action set.

Theorem 5 If some complete action set A is CK-

sufficient for KB, then every best action set is CK-

sufficient.

Note that the concept of CK-sufficiency can be applied
even in the case of incomplete knowledge. When it is
meaningful, it must be that possible outcomes of un-
known uncontrollable have no influence on preference
(given best action sets): all relevant factors are known.
In [6] we describe various properties of these two

strategies. In particular, we show that the adventur-
ous and cautious strategies do indeed maximize poten-
tial gain and minimize potential loss, respectively. The
cautious strategy seems applicable in a situation where
one expects the worst possible outcome, for example, in
a game against an adversary. Once the agent has per-
formed its action, it expects the worst possible outcome,
so there is no advantage to discriminating among the
candidate (best) action sets: all have equally good worst
outcomes. However, it’s not clear that this is the best
strategy if the outcome of uncontrollables is essentially
“random.” If outcomes are simply determined by the
natural progression of events, then one should be more



selective. We think of nature as neither benevolent (a co-
operative agent) nor malevolent (an adversary). There-
fore, even if we decide to be cautious (choosing from
best action sets), we should account for the fact that
the worst outcome might not occur: we should choose
the action sets that take advantage of this fact. We are
currently investigating such strategies in relation to, for
instance, the absolute goals of Doyle and Wellman [28].
Indeed, it’s not hard to see that being a cautious goal is a
necessary condition for being an absolute goal, but not
sufficient. Other strategies provide useful (closer) ap-
proximations to absolute goals. Such considerations also
apply to games where an opponent might not be able
to consistently determine her best moves and an agent
wants to exploit this fact. It should be clear that the
combination of ability and incomplete knowledge also
has a profound impact on how obligations (in the tradi-
tional deontic sense) must be defined.

5.4 Observations

It should be clear that if an agent can observe the truth
values of certain unknown propositions before it acts, it
can improve its decisions. Eliminating situations cannot
make the worst outcomes of action sets any worse (all
contingencies are accounted for in cautious goals); but
in many cases, it will make the worst outcomes better
and change the actions chosen. To continue our pre-
vious example, suppose R and C are unknown. The
agent’s cautious goal is then U . If it were in the agent’s
power to determine C or C before acting, its actions
could change. Observing C indicates the impossibility
of R, and the agent could then decide to do(U). In [6]
we formalize this notion by distinguishing two types of
uncontrollable atoms: observables (like “cloudy”) and
unobservables (like “it will rain soon”). We describe the
value of observations in terms of their effect on decisions
and possible outcomes (much like “value of information”
in decision theory [21]).

6 Concluding Remarks

We have presented a modal logic of preferences that cap-
tures the notion of “obligation” defined in the usual de-
ontic logics. We have extended this logic with the abil-
ity to represent normality and added to the system a
naive account of action and ability. Within this quali-
tative framework we have proposed various methods for
determining the obligations and goals of an agent that
account for the beliefs of an agent (including its default
beliefs), the agent’s ability, and the interaction of the
two. We have shown that goals and obligations cannot
be uniquely defined in the presence of incomplete knowl-
edge, rather that strategies for determining goals arise.

There are a number of ways in which this framework
must be extended. Clearly, the account of actions is
naive. True actions have preconditions, default or un-

certain effects, and so on.14 We are currently extending
the framework to include a representation of events and
actions that have such properties. In this way, we can ac-
count for planning under uncertainty with a qualitative
representation, and plan for conditional goals.
We would like to include observations as actions them-

selves [?] and use these to characterize (dynamic) condi-
tional goals and conditional plans. We hope to charac-
terize the changes in an agent’s belief set, due to obser-
vations and its knowledge of the effects of actions, using
belief revision and update semantics. One drawback of
this system is the extralogical account of action and abil-
ity. We hope to embed the account of action and ability
directly in the object language (e.g., using the methods
of dynamic logic). Temporal notions also have a role to
play (see, e.g., McCarty [20]).
Finally, we need to explore extensions in which cer-

tain preferences or “utilities” can be given precedence
over expectations or “probabilities.” The definition of
goal in our system has the property that an agent should
act as if every belief (including default beliefs) is true.
This seems to be reasonable for the most part. But the
consequences of being wrong for certain acts may out-
weigh the “probability” of being right (in the classic de-
cision theoretic sense). For example, even if I believe
that I can safely run across the busy freeway, the drastic
consequences of being wrong greatly outweigh the ben-
efit of being right. We would like to capture this type
of trade-off in a qualitative way. Possible methods in-
clude the “stratification” of propositions or situations to
give priority to preferences in some cases, expectations
in others; or explicitly using the ranking information im-
plicit in the ordering structure (as is done by Goldszmidt
and Pearl [10, 11]) and comparing the qualitative de-
gree of belief/expectation to the qualitative degree of
preference.15 This may lead to a concrete qualitative
proposal for decision-theoretic defaults [23], where a de-

14The default “effects” of actions need not be causal. Con-
sider the the preference relation induced by the payoff ma-
trix for the classic Prisoner’s Dilemma (where A means “our
agent” cooperates and O means the other agent cooperates):

AO < AO < AO < AO

Our agent’s best course of action for any given choice by the
other agent is not to cooperate. However, on the assumption
that the other agent reasons similarly, our agent ends up in
a suboptimal situation AO. Hence the dilemma: mutual co-
operation would have been better (AO). To incorporate the
assumption that the other agent reasons similarly, our agent
might hold two defaults: A ⇒ O and ¬A ⇒ ¬O. For these
defaults to fill the appropriate role, they must be “applied”
after the agent has made its choice: though apparently “unin-
fluenceable,” the truth value O must not persist after action.
Given this, (should both agent’s use the same defaults) we
have a model of the Prisoner’s Dilemma that accounts for
mutual cooperation.

15This final suggestion is due to Judea Pearl (personal
communication).



fault rule A → B means that “acting as if B” has higher
expected utility than not, given A.
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Noûs, 3:373–398, 1969.

[14] John F. Horty. Moral dilemmas and nonmonotonic logic.
J. of Philosophical Logic, 1993. To appear.

[15] Andrew J. I. Jones and Ingmar Pörn. Ideality, sub-
ideality and deontic logic. Synthese, 65:275–290, 1985.

[16] Andrew J. I. Jones and Ingmar Pörn. On the logic of
deontic conditionals. In Workshop on Deontic Logic in
Computer Science, Amsterdam, 1991.

[17] David Lewis. Counterfactuals. Blackwell, Oxford, 1973.

[18] Barry Loewer and Marvin Belzer. Dyadic deontic de-
tachment. Synthese, 54:295–318, 1983.

[19] David Makinson. Five faces of minimality. Studia Logica,
1992. To appear.

[20] L. Thorne McCarty. Defeasible deontic reasoning. In
Fourth International Workshop on Nonmonotonic Rea-
soning, pages 139–147, Plymouth, VT, 1992.

[21] Judea Pearl. Probabilistic Reasoning in Intelligent Sys-
tems: Networks of Plausible Inference. Morgan Kauf-
mann, San Mateo, 1988.

[22] Judea Pearl. System Z: A natural ordering of de-
faults with tractable applications to default reasoning.
In M. Vardi, editor, Proceedings of Theoretical Aspects
of Reasoning about Knowledge, pages 121–135. Morgan
Kaufmann, San Mateo, 1990.

[23] David Poole. Decision-theoretic defaults. In Proceedings
of Canadian Society for Computational Studies of Intel-
ligence Conference, pages 190–197, Vancouver, 1992.

[24] Austin Tate, James Hendler, and Mark Drummond. A
review of AI planning techniques. In J. Allen, J. Hendler,
and A. Tate, editors, Readings in Planning, pages 26–49.
Morgan-Kaufmann, San Mateo, 1990.

[25] Bas C. van Fraassen. The logic of conditional obligation.
Journal of Philosophical Logic, 1:417–438, 1972.

[26] Georg Henrik von Wright. Deontic logic. Mind, 60:1–15,
1951.

[27] Georg Henrik von Wright. A new system of deontic
logic. In Risto Hilpinen, editor, Deontic Logic: Introduc-
tory and Systematic Readings, pages 105–120. D.Reidel,
Dordecht, 1964. 1981.

[28] Michael P. Wellman and Jon Doyle. Preferential seman-
tics for goals. In Proc. of AAAI-91, pages 698–703, Ana-
heim, 1991.

Acknowledgements

Thanks to Jon Doyle, Jeff Horty, Keiji Kanazawa, Yggy
King, Hector Levesque, David Makinson, Thorne Mc-
Carty, Judea Pearl, David Poole and Michael Well-
man for very valuable discussions and suggestions. This
research was supported by NSERC Research Grant
OGP0121843.


