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Abstract

Recently, conditional logics have been developed for ap-
plication to problems in default reasoning. We present
a uniform framework for the development and investi-
gation of conditional logics to represent and reason with
“normality”, and demonstrate these logics to be equiv-
alent to extensions of the modal system S4. We also
show that two conditional logics, recently proposed to
reason with default knowledge, are equivalent to frag-
ments of two logics developed in this framework.

Introduction

It is widely acknowledged that commonsense reasoning
is nonmonotonic, or defeasible. Given a certain body
of knowledge, the facts one infers may not be accepted
if this knowledge is augmented with new information.
One reason for this defeasibility is that we often reason
by default, or jump to conclusions by assuming that
the state of affairs represented by our knowledge is in
some sense typical or normal. Default reasoning lies
at the heart of a theory of AI, and much effort has
been expended in developing formalisms to represent
and reason with “default” knowledge (see (Reiter 1987)
for a survey).
Recently, the use of conditional logics in nonmono-

tonic reasoning has been explored (see, e.g., (Bell
1990; Boutilier 1988; Delgrande 1987; Delgrande 1988;
Lehmann 1989; Kraus, Lehmann and Magidor 1990;
Nute 1984)). Conditional logics were originally devel-
oped to account for properties of conditional statements
in natural language. These logics consist of the classical
propositional logic (CPL) augmented with a conditional
connective, often written >. This additional connective
is necessitated as it is generally agreed that the mate-
rial conditional does not adequately reflect linguistic
usage of “if-then” constructs. Logics for subjunctive
conditionals have been widely studied (e.g. (Stalnaker
1968; Lewis 1973)) and are frequently based on possible
worlds semantics which follow (roughly) the suggestion

of Stalnaker (1968): determine the truth of a condi-
tional in a certain situation by evaluating the truth of
the consequent in the most similar situation in which
the antecedent is true. These logics possess a number
of properties which are not only intuitively valid of sub-
junctives, but also reasonable for an account of “default
rules”. For instance, strengthening and transitivity are
not generally valid for the conditional connective:

Str From B > C, infer (A ∧B) > C

Tran From A > B and B > C, infer A > C.

One cannot infer that a wet match would light, given
that a match would; neither can one infer that penguins
fly, given that penguins are birds and birds fly.
Writing the conditional connective as ⇒ (to distin-

guish it from the subjunctive interpretation), we will
interpret a sentence A ⇒ B is as meaning “In the most
normal course of events in which A holds, B holds as
well”, or “A normally implies B”. Rather than evalu-
ating the truth of the consequent in the most similar

situation where the antecedent holds, we intend to eval-
uate it in the most normal situation. Arguably, much
of our default knowledge can be interpreted as being of
this form.
In (Boutilier 1988), the conditional logic E was pre-

sented as an extension of Delgrande’s (1987) logic N,
and was investigated as a basis for default reasoning.
There a connection was shown to exist between E and
the modal system S4.3. In this note, we will develop
this connection further, between conditional logics of
normality (CLNs) and modal logic. In the next sec-
tion, we will provide a uniform framework for exploring
CLNs and discuss several such logics. In particular, we
will show these logics to be equivalent to extensions of
the modal system S4 (KT4). This contrasts with the
analysis of subjunctives discussed above, for as Lewis
(1973) points out, > cannot be defined in terms of the
standard unary modal operator 2 and truth-functional



connectives. In the following section, we will show that
two conditional logics for default reasoning recently pre-
sented in the literature are equivalent to fragments of
logics developed here (those fragments without nested
occurrences of the conditional connective), and hence
to fragments of S4-systems. We will conclude by dis-
cussing some advantages of viewing CLNs in the man-
ner proposed. Complete proofs of theorems can be
found in (Boutilier 1989).

Conditional Logics of Normality

In this section, we will present a possible worlds se-
mantics for CLNs. The sentence A ⇒ B is intended to
represent “A normally implies B”. We will take this to
mean that B holds at the most normal (or least excep-
tional) worlds at which A holds. The concept of nor-
mality will be represented by an accessibility relation R

between possible worlds. World v will be accessible to
world w if v represents a state of affairs which is at least
as unexceptional (or normal) as that represented by w.
There are some restrictions which should be placed on
any R intended to be interpreted in this manner. We
will insist that R be reflexive, so that a state of affairs is
no more exceptional than itself, and transitive. Given
these restrictions on R, we can be more precise about
the meaning of A ⇒ B. If A ⇒ B is true at some
world w, then in those least exceptional worlds (as seen
by w) where A holds, B holds as well. This means, at
any more normal state of affairs, either A is necessar-
ily false at all less exceptional worlds, or there exists a
less exceptional world where A and B hold, and A ⊃ B

holds at all worlds more normal than that one. In the
language of modal logic, A ⇒ B holds iff the following
does:

2(2¬A ∨3(A ∧ 2(A ⊃ B))).

This seems to capture the notion of least-exceptional
A-worlds. We will now formalize these ideas.
The language of CLNs (denoted LC) is formed from a

denumerable set P of propositional variables, together
with the connectives ¬, ⊃ and ⇒. The connectives ∧,
∨ and ≡ are defined in terms of these in the usual way,
and we define α 6⇒ β as ¬(α ⇒ β). As is customary
(e.g. (Stalnaker 1968)), 2α is defined to be ¬α ⇒ α,
and 3α is ¬(α ⇒ ¬α).

Definition A CT4-model is a triple M = 〈W,R,ϕ〉,
where W is a set (of possible worlds), R is a reflex-
ive, transitive binary relation on W (the accessibility
relation), and ϕ maps P into 2W (ϕ(A) is the set of
worlds where A holds).

Definition Let M = 〈W,R,ϕ〉 be a CT4-model, with
w ∈ W . The truth of a formula α at w in M (where

M |=w α means α is true at w) is defined inductively
as:

1. M |=w α iff w ∈ ϕ(α) for atomic sentence α.

2. M |=w ¬α iff M 6|=w α.

3. M |=w α ⊃ β iff M |=w β or M 6|=w α.

4. M |=w α ⇒ β iff for each w1 such that wRw1 either

(a) there is some w2 such that w1Rw2, M |=w2
α,

and for each w3 such that w2Rw3, M 6|=w3
α or

M |=w3
β; or

(b) for every w2 such that w1Rw2, M 6|=w2
α.

It is easy to verify that the connectives 2 and 3, intro-
duced by definition, have the following familiar truth
conditions:

1. M |=w 2α iff M |=w1
α for each w1 such that wRw1.

2. M |=w 3α iff M |=w1
α for some w1 such that wRw1.

2α can be interpreted as “In all less exceptional worlds
α holds”, and 3α as “In some less exceptional world α

holds”.

Definition A CT4-model M = 〈W,R,ϕ〉 satisfies a
sentence α (written M |= α) iff M |=w α for each
w ∈ W . A sentence α is CT4-valid (written |=CT4 α)
just when M |= α for every CT4-model M .

We will now define the logic CT4. Since the modal
system S4 is characterized by the class of reflexive, tran-
sitive models, we will base our axiomatization on a stan-
dard one for S41. Completeness will follow quite easily
from the completeness of S4 and the interdefinability of
⇒ and 2.

Definition The conditional logic CT4 is the smallest
S ⊆ LC such that S contains CPL and the follow-
ing axioms, and is closed under the following rules of
inference:

K 2(A ⊃ B) ⊃ (2A ⊃ 2B)

T 2A ⊃ A

4 2A ⊃ 22A

C (A ⇒ B) ≡ 2(2¬A ∨3(A ∧ 2(A ⊃ B)))

Nes From A infer ¬A ⇒ A.

MP From A ⊃ B and A infer B.

US From A infer A′, where A′ is a substitution in-
stance of A.

Definition A sentence α is provable in CT4 (written
⊢CT4 α) iff α ∈ CT4. α is derivable from a set Γ ⊆
LC (written Γ ⊢CT4 α) if there is some finite subset
{α1, . . . , αn} of Γ such that ⊢CT4 (α1∧ . . .∧αn) ⊃ α.

1See, e.g., (Hughes and Cresswell 1984). We use the
abbreviation 2 in the axiomatization for clarity.



Theorem 1 The system CT4 is characterized by the

class of CT4-models; that is, ⊢CT4 α iff |=CT4 α.

The connection between CT4 and S4 is now quite
clear. The semantics of CT4 is based on the same class
of models as that of S4, and the axiomatic basis of CT4
is merely an adaptation of one for S4 (plus the “charac-
teristic” conditional axiom C). In fact, in a very strong
sense, these two logics are equivalent. We can translate
sentences from LC into the language of modal systems,
LM , and conversely, as follows:

Definition For α ∈ LC , the translation of α into LM

(denoted α◦) is defined inductively as follows:

1. α, if α is atomic.

2. ¬β◦, if α has the form ¬β.

3. β◦ ⊃ γ◦, if α has the form β ⊃ γ.

4. 2(2¬β◦ ∨3(β◦ ∧ 2(β◦ ⊃ γ◦))), if α has the form
β ⇒ γ.

Definition For α ∈ LM , the translation of α into LC

(denoted α∗) is defined inductively as follows:

1. α, if α is atomic.

2. ¬β∗, if α has the form ¬β.

3. β∗ ⊃ γ∗, if α has the form β ⊃ γ.

4. ¬β∗ ⇒ β∗, if α has the form 2β.

These mappings induce isomorphisms between the Lin-
denbaum algebras of the logics CT4 and S4, and each
induces the inverse of the other (see (Boutilier 1989)).
So reasoning done with one logic can just as easily be
done with the other. In this sense, the logics are equiva-
lent. In fact, they can be viewed as definitional variants
of each other.

Theorem 2 ⊢CT4 α ≡ (α◦)∗ and ⊢S4 α ≡ (α∗)◦.
Also, ⊢CT4 α ⊃ β iff ⊢S4 α◦ ⊃ β◦. In other words,

CT4 and S4 are equivalent.

CT4 does capture many of the properties expected of
a logic of normality. For instance, each of the following
sentences or rules (see, e.g., (Delgrande 1987; Lehmann
1989)) is valid in CT4:

ID A ⇒ A

CC ((A ⇒ B) ∧ (A ⇒ C)) ⊃ (A ⇒ (B ∧ C))

RT (A ⇒ B) ⊃ (((A ∧B) ⇒ C) ⊃ (A ⇒ C))

CC′ ((A ⇒ C) ∧ (B ⇒ C)) ⊃ ((A ∨B) ⇒ C)

RCM From 2(B ⊃ C), infer (A ⇒ B) ⊃ (A ⇒ C)

CM From A ⇒ B and A ⇒ C, infer (A ∧B) ⇒ C

Furthermore, neither of Str or Tran is valid, and the
connective ⇒ is exception-allowing, as the following set
is consistent in CT4.

{Bird,Bird ⇒ Fly,¬Fly}

As well, the sentence

3A ∧ A 6⇒ B ∧ A 6⇒ ¬B

is satisfiable2, showing that A need not normally indi-
cate an attribute B or its negation; but, the sentence

3A ⊃ ((A ⇒ B) ⊃ (A 6⇒ ¬B))

is valid, meaning A cannot normally imply both an at-
tribute and its negation (unless A is not possible). An
interesting fact is that A ⇒ B ≡ 2(A ⇒ B) is a the-
orem of CT4; if A normally implies B in some state
of affairs, then in all less exceptional states, it should
continue to hold.
While CT4 captures many aspects of normal implica-

tion, there are some theorems, intuitively valid in many
circumstances, which fail to hold. For instance, the rule
of Rational Monotony (Lehmann 1989), and the related
axiom CV (Delgrande 1987), are not valid in CT4.

RM From A ⇒ C and A ∧B 6⇒ C, infer A ⇒ ¬B

CV (A 6⇒ B) ⊃ ((A ⇒ C) ⊃ (A ∧ ¬B ⇒ C))

In order to discover conditional logics which validate
these schemata, we will allow any system in the lan-
guage LC which extends CT4 to be called a conditional
logic of normality.

Definition A conditional logic of normality (CLN) is
any system S ⊆ LC closed under the inference rules
Nes, MP and US, such that CT4 ⊆ S.

Corollary 1 Any modal system which extends S4 is

equivalent to some CLN, and any CLN is equivalent

to some modal system which extends S4.

Of particular interest is the system CT4D, or CT4
plus the axiom D:

D 2(2A ⊃ B) ∨ 2(2B ⊃ A).

CT4D was first studied as the logic E in (Boutilier
1988), and was presented there as an extension of Del-
grande’s (1987) system N3. Of course, the axiom D is

2Contrast this with Stalnaker’s (1968) semantics, which
validates the Conditional Law of Excluded Middle (A >
B) ∨ (A > ¬B).

3CT4D extends N in that it treats sentences properly
which have nested occurrences of the conditional connective,
and it validates the rule CM, which N does not.



one used to extend the modal system S4 into S4.3 (or
KT4D), so it is not surprising that CT4D is charac-
terized by the class of connected CT4-models, or that
CT4D is equivalent to S4.3.

Definition M = 〈W,R,ϕ〉 is a CT4D-model iff M is a
CT4-model and R is a connected relation (that is, if
uRv and uRw, then either vRw or wRv).

Theorem 3 |=CT4D α iff ⊢CT4D α.

Theorem 4 CT4D and S4.3 are equivalent.

Theorem 3 is also proven in (Boutilier 1988), as is the-
orem 4, which uses the mappings ∗ and ◦.
By insisting on a connected relation, we require that

any (accessible) situations be comparable. If neither of
w1 or w2 is more normal than the other, then they must
be equally normal (rather than incomparable). CT4D
validates both RM andCV, and enjoys the other prop-
erties described above as belonging to CT4. It seems to
be a very suitable logic for reasoning with default and
prototypical properties. Of course, it is not the only ex-
tension of CT4 which merits examination. Many other
CLNs extending CT4 (and hence modal systems ex-
tending S4) may prove interesting and useful as logics
of normality. For instance, consider CT4G, equivalent
to S4.2, which is CT4 plus the axiom G:

G 32A ⊃ 23A.

This logic, contained in CT4D, fails to validate RM

but does include a weaker version of it:4

WRM From A ⇒ C and A ∧ B 6⇒ C, infer (A ⇒
¬B) ∨ (⊤ ⇒ ¬A)

The logic CT45 has as an additional axiom 5:

5 3A ⊃ 23A.

Equivalent to S5, its application as a CLN appears to
be somewhat limited in that normal implication reduces
to strict implication in this system. That is,

⊢CT45 (α ⇒ β) ≡ 2(α ⊃ β).

Preferential and Rational Consequence

Relations

In this section, we will examine the nonmonotonic
consequence relations of Kraus, Lehmann and Magi-
dor (Lehmann 1989; Kraus, Lehmann and Magidor
1990), and show their relationship to particular CLNs.

4
⊤ is the identically true proposition (e.g., any truth

functional tautology). ⊤ ⇒ A is interpreted as “Normally
A”.

Gabbay (1985) has proposed studying nonmonotonic
reasoning systems as consequence relations5, and this
approach has been developed by Besnard (1988) and
Lehmann et al. (1989; 1990), among others. The lan-
guage of this approach is that of CPL together with a
binary relation symbol |∼. For any propositional formu-
lae α and β, α|∼ β is called a conditional assertion and
is intended to mean that if α is known, one may sensibly
conclude β. In (Lehmann 1989; Kraus, Lehmann and
Magidor 1990), a consequence relation is defined as any
binary relation R between propositional formulae for
which certain properties hold. If the pair 〈α, β〉 is in R,
then using this notion of consequence, one may sensibly
conclude β given α, and we write α|∼ β. α|6∼ β means
〈α, β〉 is not in R. In particular, two types of conse-
quence are studied in (Lehmann 1989; Kraus, Lehmann
and Magidor 1990).

Definition (Lehmann 1989) A preferential conse-

quence relation is a consequence relation which sat-
isfies the following rules of inference (some of which
are renamed):

LLE From |=CPL α ≡ β and α|∼ γ, infer β|∼ γ

RCM From |=CPL α ⊃ β and γ|∼ α, infer γ|∼ β

ID α|∼ α

And From α|∼ β and α|∼ γ, infer α|∼ β ∧ γ

Or From α|∼ γ and β|∼ γ, infer α ∨ β|∼ γ

CM From α|∼ β and α|∼ γ, infer α ∧ β|∼ γ

Definition (Lehmann 1989) A rational consequence

relation is a preferential consequence relation which
satisfies the following rule of inference:

RM From α|∼ γ and α ∧ β|6∼ γ, infer α|∼ ¬β

Families of models are proposed to characterize these
notions of consequence. These models only determine
the truth of conditional assertions.

Definition (Lehmann 1989) Let 〈X,≺〉 be a poset.
V ⊆ X is smooth iff for each v ∈ V , either v is mini-
mal in V (that is, there is no x ∈ V such that x ≺ v)
or there is some element w minimal in V such that
w ≺ v.

Definition (Lehmann 1989) A preferential model (P-
model) M is a triple 〈S, ϕ,≺〉 where S is a set (of
possible worlds), ϕ maps propositional formulae into

5While the original notions of consequence studied by
Tarski and Scott (cf. (Czelakowski and Malinowski 1985))
require relations to be monotonic, Gabbay’s (1985) proposal
is to generalize these ideas by allowing nonmonotonic con-
sequence relations, and thus provide logical foundations for
nonmonotonic reasoning.



2S so as to respect the interpretation of connectives
(ϕ(α) is the set of worlds where α holds, denoted
||α||M ), and ≺ is a strict partial order on S such that
for all propositional formulae α, ||α||M is smooth.

Definition (Lehmann 1989) A ranked model (R-
model) is a preferential model M = 〈S, ϕ,≺〉 where
the relation ≺ is such that there exists a totally or-
dered set 〈T,<〉 and a function f : S → T , where
s ≺ t iff f(s) < f(t).

Definition (Lehmann 1989) A P-model or R-model
M = 〈S, ϕ,≺〉 satisfies a conditional assertion α|∼ β

(written α|∼M β) iff for any ≺-minimal s in ||α||M ,
s ∈ ||β||M . |∼M is the consequence relation defined

by M .

The following completeness results are also obtained.

Theorem 5 (Lehmann 1989) |∼ is a preferential con-

sequence relation iff it is the consequence relation de-

fined by some P-model. |∼ is a rational consequence re-

lation iff it is the consequence relation defined by some

R-model.

The logic defined by preferential consequence relations
is denoted P in (Lehmann 1989; Kraus, Lehmann and
Magidor 1990). We will denote the logic of rational
relations by R. An apparently discouraging result pre-
sented in (Lehmann 1989) states that an assertion α

follows in P from a set of assertions KB iff α follows
in R from that set. This result, however, is due to the
limited language in which reasoning is done. KB∪{α}
must contain only sentences of the form β|∼ γ. In par-
ticular, one cannot assert as a premise, nor derive as a
consequence, propositions or boolean combinations of
assertions such as ¬(α|∼ β) or (α|∼ β) ∨ (α|∼ γ). How-
ever, P and R can be extended in an obvious way to
include this enriched language: we will allow as well-
formed formulae any propositional formula, any con-
ditional assertion formed from propositional formulae,
and any boolean combination of these. In particular,
only nested conditional assertions, of the form, say,
α|∼ (β|∼ γ) are disqualified. Such well-formed formulae
will be called extended conditional assertions. In order
to capture reasonable inferences using this language of
extended assertions, we must enhance the systems R
and P to reason with propositions. P* and R* will de-
note the systems obtained by augmenting P and R with
the axiom and rule schemata of CPL together with the
axiom (¬A|∼ A) ⊃ A6. The notions of satisfiability and
validity in P-models will be adjusted as follows:

6CPL allows propositional reasoning and the new ax-
iom captures the interaction between propositions and
assertions.

Definition Let M = 〈S, ϕ,≺〉 be a P-model, and let
s ∈ S. The truth of an extended conditional assertion
α at s (M |=s α means α is true at s) is defined
inductively as follows:

1. M |=s α iff s ∈ ϕ(α) for atomic sentence α.

2. M |=s ¬α iff M 6|=s α.

3. M |=s α ⊃ β iff M |=s β or M 6|=s α.

4. M |=s α|∼ β iff α|∼M β.

M satisfies α (M |= α) iff M |=s α for each s ∈ S. α
is P*-valid (|=P∗ α) iff M |= α for each P-model M .
α is R*-valid (|=R∗ α) iff M |= α for each R-model
M .

It is not hard to see P* and R* correspond to the
classes of P-models and R-models, respectively, using
this extended notion of validity, and that these logics
extend P and R in a very natural way. In fact, P* and
R* are not much more interesting than P and R, except
they will allow us to show a correspondence between the
notions of consequence described in (Lehmann 1989;
Kraus, Lehmann and Magidor 1990) and CLNs.
The language of LC allows nested occurrences of the

conditional connective, something which is forbidden in
the language of extended assertions, so we will define
L−

C
to be the conditional language without such nesting.

For any CLN S, S– will denote S restricted to sentences
of L−

C
. To show the connection between CLNs and the

notions of preferential and rational consequence, we will
consider the logics P* and R* to be as before with the
relation symbol |∼ replaced by the connective ⇒ in
every sentence of the language of extended assertions.

Theorem 6 Let α ∈ L−

C
. |=P∗ α iff |=CT4− α.

Theorem 7 Let α ∈ L−

C
. |=R∗ α iff |=CT4D− α.

The “only if” half of these theorems is easy to show
by demonstrating the validity of the inference rules of
P* (R*) in CT4 (CT4D). The “if” portion is proven by
showing any P*-satisfiable (R*-satisfiable) sentence is
satisfiable in CT4 (CT4D). The interesting case is for
conditional sentences and proceeds by constructing a
CT4-model (CT4D-model) which satisfies the same ex-
tended assertions (or unnested conditionals) as a par-
ticular P-model (R-model).
These theorems show that P* and R* are equivalent

to the “flat” portions of CT4 and CT4D, respectively,
and hence are equivalent to the “flat” portions of the
modal systems S4 and S4.37. This is somewhat surpris-
ing. That two independently motivated and developed

7A fortiori P and R are equivalent to even smaller frag-
ments of these logics, those which only allow “conditional
assertions” of the form α ⇒ β.



conditional logics for default reasoning should turn out
to be equivalent to standard modal systems is rather
unexpected.

Concluding Remarks

The framework presented for conditional logics of nor-
mality seems very general and intuitively appealing.
However, its generality and applicability is reinforced
by the fact that logics within the literature, while inde-
pendently motivated, turn out to be equivalent to the
“unnested” fragments of logics developed in this frame-
work.

Viewing CLNs as extensions of CT4 provides a num-
ber of conceptual and practical advantages from the
standpoint of default reasoning research. This per-
spective suggests a wide variety of conditional logics,
which may determine useful interpretations of “normal-
ity”. The correspondence with standard modal systems
provides a widely-studied, and well-developed and un-
derstood, semantics for such logics. Furthermore, this
relationship allows the appropriation of a host of ready-
made results for these logics, results regarding axiom-
atizability, axiomatic bases, decision procedures and
their complexity, and the like. For example, Lehmann
(1989) showed that deciding whether K |=P α|∼ β is a
problem in co-NP when K is a finite set of assertions.
Using the correspondence between R* and CT4D, and
the fact that the problem of deciding S4.3-satisfiability
is NP-complete (Ono and Nakimura 1980), we can state
the following stronger result.

Corollary 2 For a finite set of extended assertions K∪
{α}, deciding whether K |=R∗ α is in co-NP.

As well, the validity problem for CT4D– is in co-NP
and that of CT4D is co-NP-hard.

Regarding conditional logics as CLNs not only pro-
vides a uniform basis for comparison of such logics, but
also extends the sort of reasoning that can be performed
using conditional logics, as they typically appear in the
literature. More specifically, conditional logics, includ-
ing those of (Delgrande 1987; Delgrande 1988; Lehmann
1989; Kraus, Lehmann and Magidor 1990; Nute 1984),
do not allow nested occurrences of the conditional con-
nective in the language or do not provide an adequate
semantic account of such sentences. CLNs, on the other
hand, do allow such sentences, which are of some value.
For example, the following sentences are theorems of
CT4 and its extensions:

(A ∧ (A ⇒ B)) ⇒ B,

(A ⇒ C) ⇒ ((A ∧B) ⇒ C).

The first sentence appears to embody a rough version of
the probabilistic principle of direct inference (cf. (Bac-
chus 1988)) whereby the degree of belief associated with
a sentence B, given that A holds, is equal to the con-
ditional probability P (B|A). Here we do not deal with
degrees of belief or numerical probabilities, but rather
with acceptance or rejection of facts, assuming “nor-
mality”. So when A and A ⇒ B hold, we are willing to
conclude B (in normal circumstances).
The latter sentence is important when dealing with

a “principle of irrelevance” (see (Delgrande 1988;
Lehmann 1989; Pearl 1988)), which states that unless
otherwise informed, assume that attributes are irrel-
evant or independent of one another. This principle
allows one to conclude, for instance, that yellow birds
normally fly, given that birds normally fly. This in-
ference is problematic for most logics of normality (and
probabilistic logics (Pearl 1988)) and requires the meta-
inference of irrelevance. This theorem of CT4 can be
seen as justifying this principle as being true in the
normal state of affairs, and therefore “irrelevance” (or
“independence” in probabilistic terms) is just another
default inference. This idea has been used to develop
an account of default reasoning with conditionals based
on the notion of minimal or preferred models (Boutilier
1988). This system is similar in spirit to those of (Del-
grande 1988; Lehmann 1989), except the “supported”
sentences which characterize independence are deriv-
able from the more standard assumption of normality,
whereby one concludes A ⊃ B from A ⇒ B. Thus,
independence derives from theorems in the form of the
second sentence above.
Several avenues for future study of CLNs remain

open. One concerns weaker notions of normal impli-
cation. These may be investigated by studying logics
weaker than CT4, or by allowing weaker definitions of
the connective ⇒. For instance, in CT4D, A ⇒ B is
equivalent to

2¬A ∨3(A ∧ 2(A ⊃ B))

which is weaker than its definition for CLNs in gen-
eral. This weaker notion of normal implication may be
interesting in subsystems of CT4D. In CT4, for exam-
ple, this definition allows A ⇒ B and A ⇒ ¬B to be
consistent with A, and has possibly useful interpreta-
tions. Also, the connection between the logic P and the
notion of probabilistic entailment (Adams 1975; Pearl
1988) has been discussed by Lehmann (1989). These re-
sults show that probabilistic entailment is reducible to
“flat” S4. This suggests a deeper connection, as yet un-
explored, between probabilistic entailment and certain
modal systems.
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