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Abstract

Belief revision and belief update have been proposed as two types of belief change serving
different purposes, revision intended to capture changesin belief state reflecting new information
about a static world, and update intended to capture changes of belief in response to a changing
world. We argue that routine belief change involves elements of both and present amodel of gen-
eralized update that allows updates in response to external changes to inform an agent about its
prior beliefs. This model of update combines aspects of revision and update, providing a more
realistic characterization of belief change. We show that, under certain assumptions, the origina
update postul ates are satisfied. We aso demonstrate that plain revision and plain update are spe-
cia cases of our model. We aso draw paralels to models of stochastic dynamical systems, and
use thisto develop a model that deals with iterated update and noisy observationsin (qualitative
settings) that is analogous to Bayesian updating in a quantitative setting.

*Some parts of this report appeared in preliminary form in “ Generalized Update: Belief Changein Dynamic Settings,”
Proc. of Fourteenth International Joint Conf. on Artificial Intelligence (1IJCAI-95), Montreal, pp.1550-1556 (1995).



1 Introduction

An underlying premise in much work addressing the design of intelligent agents or programsis that
such agents should (either implicitly or explicitly) hold beliefs about the true state of the world. Typ-
ically, these beliefs are incomplete, for there is much an agent will not know about its environment.
In redlistic settings one must also expect an agent’s beliefs to be incorrect from time to time. If an
agent isin aposition to make observations and detect such errors, a mechanism is required whereby
the agent can change its beliefs to incorporate new information. Finally, an agent that findsitself in a
dynamic, evolving environment (i ncluding evol ution brought about by itsown actions) will be required
to changeits beliefs about the environment as the environment evolves.

Theoriesof belief changehavereceived considerableattentioninrecent yearsinthe Al community,
aswell as other areas such as philosophy and database systems. One crucial distinction that has come
to light in thiswork isthat between belief revision and belief update. The distinction can be best un-
derstood as one pertaining to the source of incorrect beliefs. On the one hand, an agent’s beliefs about
theworld may simply be mistaken or incomplete, for instance, inthe case where it adopts some default
belief. If an agent observesthat thisbelief ismistaken, it must take stepsto correct the misconception.
Such a processis know as belief revision, of which the theory of Alchourron, Gardenfors and Makin-
son [2, 15] is the best-known characterization. On the other hand, an agent’s beliefs, while correct at
one time, may have become inaccurate due to changesin the world. Asevents occur and other agents
act, or asthe agent itself takes actions, certain facts become true and othersfalse. An agent observing
such processes or their results must take stepsto ensure its state of belief reflects these changes. This
processis known as belief update, as proposed by Winglett [33] and Katsuno and Mendelzon [21].

Onthe surface, formalizationsof revision and update are quite similar: in both cases, the objective
isto define afunction that, given the agent’sbelief state and an “observed” proposition, returns a new
belief state. However, conceptually these two processes have been treated distinctly, and the axioms
and semantic models proposed to capture revision and update are, for the most part, incompatible—
that is, we cannot treat update as aform of revision, nor can wetreat revision asaform of update. The
properties of these processes are, we shall argue, fundamentally different.

Onedifficulty with the separation of revision and update isthe fact that routine belief change, that
isthe change of an agent’sbelief state in response to some observation, typically involves elements of
both. We will support below the claim that agiven observation often callsfor belief changethat reflects
aresponse to changes in the world as well as incorrect or incomplete prior beliefs. In this paper, we
describe a semantic model for belief change that unifies the two types of belief change. In particular,



we generalize classical belief updateto incorporate aspects of belief revision. Theaim of thismodel is
twofold. First, we provideaunifying and natural semanticsfor both revision and updatethat highlights
the orthogonal roles both have to play in routine belief change. Second, we attempt to provide a more
compelling account of belief update to deal with observations of changes in the world that provide
information about the prior world state (i.e., about the agent’s prior beliefs). This second objectiveis
aresponse to difficulties with the classical view of update, which we outline bel ow.

The result of thisunion is a more robust and realistic notion of update in which observations of
change can inform an agent’sprior beliefs and expectations. Such observationsare pervasive; consider
the following example. A warehouse control agent believesit is snowing on Route 1 after yesterday’s
weather forecast, and expects the arrival of a number of trucks to be delayed. Now suppose a certain
truck arrives, causing the agent to updateits beliefs; furthermore, contrary to itsexpectations, thetruck
arrives on time. There are two possible explanations: either the truck was able to speed through the
snow or it did not snow after al. If the latter explanation is more plausible, current update theories
cannot arrive at the desired update in a natural way. The observation of the change in theworld’s state
(arrival of thetruck) indicatesthat the agent’s prior beliefs (e.g., that it is snowing) were wrong. The
update should not simply involve changes that reflect the evol ution of theworld, but should place these
changes in the context of the corrected or revised prior beliefs. The agent should revise its beliefs to
capture the fact that it is did not snow and adjust its expectations regarding the arrival of other trucks
accordingly. Routine belief changes often involve aspects of revision (correcting or augmenting one's
beliefs) and update (allowing beliefs about the world to “evolve”).

The general model we present to capture such considerationstakes as a starting point the notion
of ranked or structured belief sets. By ranking situations according to their degree of plausibility, we
obtain a natural way of assessing degrees of belief and a very natural semantics for belief revision.
Such models have been used extensively for revision [20, 15, 6]. To thiswe add the notion of atran-
sition or evolution from one world state to another. As proposed by Katsuno and Mendelzon (KM),
updates reflect changesin the world, and transitions can be used to model such changes. However, in
contrast to the KM model and following our earlier work [8], we assume that the relative plausibility
of transitions (and hence possible updates) is not something that is judged directly; rather we assume
that events or actions provide the impetus for change. The plausibility of atransitionis a function of:
(a) the plausibility of possible causing events; and (b) the likelihood of that event having the specified
outcome. Inthisway, we can model eventsor actionsthat have defeasible effects (which can bejudged
asmore or lesslikely).

Finally, in response to an observation, an agent attempts to explain the observation by postulating



conditions under which that observation is expected. An explanation consists of three components:
initial conditions, an event (or action), and an outcome of that event. Thekey aspect of our model isthe
ranking of such explanations— an explanationis more or less plausible depending on the plausibility
of theinitial conditions, the plausibility of the event given that starting point, and the plausibility of the
event’s outcome. The belief change that results provides the essence of the generalized update (GU)
operator: an agent believes the consequences of the most plausible explanations of the observation.

Unlike other theories of update, our model allows an agent to trade off the likelihood of possible
events, outcomes and prior beliefs in coming up with plausible explanations of an observation. Of
course, by allowing prior beliefs to be “changed” during update, we are essentially folding belief re-
vision into the update process (as we elaborate below). We thus generalize the KM update model to
work on structured (rather than flat) belief sets. Furthermore, theinformation required to generate such
explanationsisvery natural and readily available. We are much morewillingtojudgetherelative plau-
sibility of events and their outcomes than the plausibility of transitionsdirectly. The resulting change
in belief, consisting of the consequences of the explanation, isvery intuitive.

In Section 2 we present the AGM theory of revision and the KM theory of update, focusing pri-
marily on the semantic model s that have been proposed. In our presentation, we adopt the qualitative
probabilistic model of [31, 18, 19]. In Section 3 we present our model of generalized update, with
an emphasis on semantics, and contrast it with the “flat” KM model. We describe two examples to
illustrate the key features of the model.

In Section 4 we analyze the GU operator in detail. We describe the formal relationship between
revision, update and GU. We show that under certain assumptions GU satisfies the KM postul ates,
though we argue that these assumptions are not appropriate in many settings (thus calling into ques-
tion the generality of the KM postulates). In addition we show that both “flat” KM update and AGM
revision are special cases of GU. In particular, the connection formally verifies theintuitionthat AGM
revision is due to changesin belief about a static world, while update reflects belief change about an
evolving world.

In Section 5, we briefly discuss the importance of iterated revision in this model, and emphasize
connections between GU and Bayesian update in stochastic dynamical systems. We also discuss the
role of observations and weight of evidence, and present amoddl (as well as several adternative sug-
gestions) for dealing with “noisy” observationsin belief revision. Thisis one area of belief revision
and belief update that has received virtually no attention.

There have been attemptsto provide general semanticsfor belief change operators(e.g., [12]); but
often these model s are such that under certain assumptionsthe changeisarevision and under othersit
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isan update. In Section 6 we compare some of these related models to GU. We concludein Section 7
with some directions for future research. Proofs of the main results are found in the appendix.

2 Classical Belief Revision and Belief Update

In this section we review, in turn, the AGM and KM theories of belief change. We present both the
syntactic postulates and the semantic models that characterize these theories and describe briefly the
r-calculus of [31, 18, 19], which provides an aternative model for the ordering relationships used by
both theories.

Throughout, weassumethat an agent hasadeductively closed belief set /', aset of sentencesdrawn
from somelogical language reflecting the agent’ s beliefs about the current state of theworld. For ease
of presentation, we assume alogically finite, classical propositional language, denoted Lcp , and con-
sequence operation Cn.! The belief set K will often be generated by some finite knowledge base KB
(i.e, K = Cn(KB)). Theidentically true and false propositions are denoted T and L, respectively.
Given aset of possibleworlds (or valuationsover Lep ) W and A € Lep, we denote by || A|| the set
of A-worlds, theelementsof W satisfying A. Theworlds satisfyingall sentencesinaset K isdenoted
1.

2.1 Bedlief Revison

Given abelief set K, an agent will often obtain information A not presentin K. In thiscase, K must
be revised to incorporate A. If A isconsistent with K, one expects A to simply be added to K: we
cal K} = Cn(K U {A}) the expansion of K by A. More problematic is the case when K + —4;
certain beliefs must be given up before A isadopted. The AGM theory provides a set of guidelines, in
the form of the following postulates, governing this process. We use K7 to denote the revision of i
by A.

(R1) K isabelief set (i.e, deductively closed).
(R2) A€ K7,

(R3) K C K.

! anguageswith adenumerableset of atomic variables, or first order languagespose no special difficulties (e.g., seework
on first-order conditional logics).



(R4) If ~A ¢ K then K} C K.

(R5) K% =Cn(L) iff - -A.

(R6) If E A= Bthen K, = Kj.

(R7) Kinp € (K35

(R8) If =B ¢ K* then (K%)% C K3, 5.

Unfortunately, whilethe postul ates constrain possiblerevisions, they do not dictate the precise be-
liefsthat should beretracted when A isobserved. An aternative model of revision, based onthenotion
of epistemic entrenchment [15], has a more constructive nature. Given abelief set K, we can charac-
terizetherevision of K by ordering beliefs according to our willingnessto givethem up. If one of two
beliefs must be retracted in order to accommodate some new fact, the less entrenched belief will be
relinquished, while the more entrenched persists.

Semantically, an entrenchment relation (hence arevision function) can be modeled using an order-
ing on possible worlds reflecting their relative plausibility [20, 6]. However, rather than use a quali-
tative ranking relation, we adopt the presentation of [31, 18] and rank all possible worlds using a «-
ranking. Such aranking » : W — N assignsto each world anatural number reflecting its plausibility
or degree of believability. If x(w) < x(v) then w ismore plausible than v or “more consistent” with
the agent’s beliefs. We insist that =1 (0) # (), so that maximally plausible worlds are assigned rank
0. These maximally plausible worlds are exactly those consistent with the agent’s beliefs; that is, the
epistemically possible worlds according to K are those deemed most plausiblein x (see [31] for fur-
ther details). We sometimes assume « isapartial function, and loosely write x(w) = oo to mean x(w)
isnot defined (i.e., w isnot in the domain of «, or w isimpossible).

Rather than modeling an agent’s epistemic state with a“flat” unstructured belief set K, we use a
r-ranking to capture objectivebdiefs K aswell as entrenchment information that determines how an
agent will revise K. An epistemic state » induces the (objective) belief set

K ={A€Lep:x(0) C ||A|l}

In other words, the set of most plausible worlds (those such that «(w) = 0) determine the agent’s be-
liefs. Theranking x alsoinducesarevisionfunction: toreviseby A an agent adoptsthe most plausible



o | Inside(B),Patio(G)
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Figure 1: A Revision Mode

A-worlds as epistemically possible. Thus, using min (A, ) to denote this set, we have
K ={B € Lcp. : min(A, &) C ||B||}

If |A|NW =0, weset min(A, k) = § and K% = LcpL (theinconsistent belief set). It isnormally
assumedthat || A||NW # () for every satisfiable A — thusevery propositionisaccorded some degree of
plausibility. It iswell-known that thistype of model inducesthe class of revision functions sanctioned
by the AGM postulates[20, 6, 18].2

Theranking function « can naturally beinterpreted as characterizing the degree to which an agent
iswilling to accept certain alternative states of affairs as epistemically possible. Assuchit seemsto be
appropriate for modeling changes in belief about an unchanging world. The most plausible A-worlds
in our assessment of the current state of affairs are adopted when A is observed.

Asan example, consider the ranking shownin Figure 1, which reflects the epi stemic state of some-
one who believes her book and glasses are on the patio. If she were to learn that in fact her book is
inside, shewould also believe her glasses are inside, for the most plausible Inside( B)-world (x = 1)
aso satisfies Inside((). Thismodel captures that fact that she strongly believes sheleft her book and
glasses in the same place; that is, the belief Patio(B) = Patio((') is more entrenched than either of
the beliefs Patio( B) or Patio(().

2Werefer to [4, 6, 12, 19] for adiscussion of languageswith which one can express properties of belief sets and revision
functions. These languages can be used to express belief, degrees of entrenchment and plausibility, conditional belief, and
SO on.



We can a'so view x-rankings as assigning degrees of plausibility to propositions; we define

A) = mi
K(A) g;g{ﬁ(w)}
This can beinterpreted as the degree to which proposition A isaccepted asplausible (where x(A) = 0
means A ismaximally plausible, or consistent with the agent’s beliefs). We will aso have occasion to
use the notion of conditional plausibility; we define

k(B|A) = k(AN B) — k(A)

Intuitively, this denotes the degree to which B would be considered plausibleif A were believed.

These notions are strongly reminiscent of standard concepts from probability theory. In fact, a
r-ranking can be interpreted as a semi-qualitative probability distribution. Using the -semantics of
Adams|[1], Goldszmidt and Pearl [17] show how one can interpret the (unconditional and conditional)
x values of propositions as “order of magnitude” probabilities. Under thisinterpretation, oneis able
to define anal ogs of various probabilistic operations, including conditionalization (see Section 5). We
do not delve into the details of “x-arithmetic” here, nor the details of the precise relationship of these
ranking functionsto probability distributions. Werefer to[31, 17, 19] for details. We do note, however,
that addition, multiplication and division of probabilities correspond to the minimum, addition and
subtraction operations, respectively, for x-rankings. Thusthe definition of x(B|A) above can be seen
as adirect counterpart of the usual definition of conditional probability.

Much of the semanti cswe define below could bereinterpreted in apurely qualitativeframework for
belief revision (and belief update) inwhich asimpleordering relation < isused torank possibleworlds.
However, as will become evident in Sections 4 and 5, much of what we do relies on the expressive
power afforded by a quantitativeranking. In particular, our semantics will require that one be able to
combine plausibilitiesthat are specified using severa distinct rankings. With quantitative «-rankings,
this is straightforward, whereas qualitative rankings do not permit this unless explicit “calibration”
information is provided. We elaborate on thisin Sections4 and 5.

2.2 Bédlief Update

Katsuno and Mendel zon [21] have proposed ageneral characterization of belief update that seems ap-
propriate when an agent wishes to change its beliefs to reflect changes in, or evolution of, the world.
The KM theory is aso captured by a set of postulates and an equivalent semantic model. Following



[21], we describe update in terms of a knowledge base KB rather than a deductively closed belief set
K.

If some new fact A isobserved in response to some (unspecified) change in the world (i.e., some
action or event occurrence), then the formula KB ¢ A denotes the new belief set incorporating this
change. The KM postul ates governing admissible update operators are:

(Ul) KBo A+ A

(U2) If KBF AthenKBo A = KB

(U3) If KBand A are satisfiable, then KB ¢ A issatisfiable

(U4) If - A= B,KB; = KB, thenKB; ¢ A = KBy o B

(US) (KBo A) A B+ KBo(AAB)

(UB) IfKBo A BandKBo B+ AthenKB¢ A =KBo+ B

(U7) If KBiscompletethen (KB A) A (KBo B) - KB (AV B)
(U8) (KB; VKBy) oA = (KB oA)V (KByo A)

The equivalent semantic model of KM shedsmore light on theintuitionsunderlying update. || KB||
represents the set of possibilitieswe are prepared to accept as the actua state of affairs. Since obser-
vation A isthe result of some change in the actual world, we ought to consider, for each possibility
w € ||KB]|, the most plausible way (or ways) in which w might have changed in order to make A
true. That is, we want to consider the most plausible evolution of world w into a world satisfying
the observation A. To capture thisintuition, Katsuno and Mendelzon propose a family of preorders
{<w:w € W}, whereeach <,, isareflexive, transitiverelation over 1. We interpret each such rela-
tionasfollows: if © <,, vthenu isat least as plausiblea changerelativeto w asisv; that is, situation
w would more readily evolveinto « than it would into v.

Finally, afaithfulnessconditionisimposed: for every world w, the preorder <,, has w as amini-
mum element; that is, w <, v forall v # w. Naturally, the most plausible candidate changesin w that
result in A are those worlds v satisfying A that are minimal in therelation <,,. The set of such min-
imal A-worlds for each relation <,,, and each w € ||KB||, intuitively capture the situations we ought
to accept as possible when updating KB with A. In other words,

IKBoAll= | {min(4,<u)}
we||KB]|

9
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Figure 2: An Update Mode

where min (A4, <,,) isthe set of minimal elementsin || A[| (w.r.t. <,).

Update operators determined by any family of preorders{<,,: w € W} satisfy theKM postul ates.
The converse aso holds: any KM operator can be represented by such a semantic model. Moreover,
if the orderings <,, aretotal preorders(so that all elements are comparable€), then update operators are
characterized by (U1)—(U9) (see[21, 8]):

(U9) If KBiscomplete, (KBo A) t/ =B and (KBo A) - C then (KBo (A A B)) FC

We assume for the most part that we are dealing with such total update operators (but we discussthis
further in Section 4). It should be clear how this(total) model can berecast interms of x-rankings: we
simply associate aranking x,, with each world w (such that x,! (0) = {w}) and use min (A4, «,,) to
update by A. Note that the use of x-rankings requires that the orderings be total.

As aconcrete example, suppose that someone observesthat the grassin front of her houseis wet.
Prior to the observation, she believed that she left her book outside on the patio and that the grass
and book were dry (see KB in Figure 2). As shown in the figure, the most plausible evolution of the
epistemically possible world w, given the wet grass, is v; hence she believes her book got wet too.
Thismay be dueto thefact that the most likely cause of wet grassisrain, which dampensthingson the
patio aswell. A lessplausibletransition (world «) is caused by the sprinkler being activated. However,
had she observed Dry(B) in addition to Wet(G), she would have accepted this|ess plausible sprinkler
explanation—that the sprinkler had been turned on—and any of its additional consequences, such as
her glasses being dry if they are with her book.
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2.3 An Event-Based Semanticsfor Update

One of the difficulties with the KM update semantics is the interpretation of the orderings <,,. This
semantics supposes that it is “natural” to directly rank possible evolutions of a world w. In [8] we
argue that evolutions or changes in the world should not be ranked directly. We suppose that events
or actions provide the impetus for change, and the plausibility of a given evolution is determined by
the plausibility of the event that caused the change. Thisapproach ismotivated by the observation that
users can often more readily assess the relative plausibility of an event (in a given context) and the
effects of that event, as opposed to directly assessing the plausibility of an evolution.

Apart from providingamoreintuitivesemantic foundationfor belief update, thisevent-based model
is more general than the KM model, and can be used to show that some of the KM postulates are too
restrictive to be viewed as a general characterization of the process of belief update [8]. In order to
unify update and revision, rather than generalizing the KM update semantics directly, we will base
our unifying model on the event-based semantics of [8]. We briefly review the basic elements of this
semantics.’

We assume a set of events F. An event e maps each world into another world, and can be viewed
as afunction (perhaps partial), e : W — W. Theworld e(w) is the outcome of event e at world w.
Events such as these are therefore deterministic.*

Since an agent making an observationwill often not know a priori what event caused the observed
fact to hold, we assume that each world has associated with it an event ordering p(w) that describes
the plausibility of various event occurrences at that world. Formally, i : W — (F — N); we write
K., to denote theranking p(w). Intuitively, ., (e) capturesthe plausibility of the occurrence of event
e atworld w. Again, weassume x,, isapartial functionover F, with x,,(e) = oo takento mean that e
cannot occur at w. For each w, werequire that ., (¢) = 0 for some event e (perhaps severa), so that
at least one event is considered most plausible. We take the set of events and the ranking functions x,,
to constitute an event model EM.

With an event ordering in hand, one can easily rank the possibleevol utionsof aworld w according
to the relative plausibility of the events that could cause that evolution. In particular, we can define
an outcome ranking A, for world w over the set 1V, where A, (v) denotes the degree of plausibility

30ur presentationwill rely on the use of x-rankings (which imposetotal preorders), whereasthe semanticsin [8] is purely
qualitative (and permits preorders as plausibility relations). In the few placeswhere thisinfluencesresults, we will make the
distinction clear.

4In [8], nondeterministic actions are captured by allowing set-valued outcomes. In Section 3 below, we will want to
generalize this further to allow these nondeterministic outcomes to be ranked according to plausibility.
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associated with the transition of world w to world ». This can be defined as

Aw(v) = Eréi}gl{mw(e) ce(w) = v}

In other words, the evolution of w into v is exactly as plausibleas the most plausibleevent that causes
w to evolveinto v.
In the case of a deterministic event model, we can define a belief update operator as follows:

IKBogm All= | {min(A4, \w)}
we||KBj|

In other words, we simply use the ranking A,, as we would the plausible change ordering <,, in the
KM model. One distinctionisthat for any observation A, one can usethe event model to generate an
explanation for that observation. In other words, one can determine the event-condition pairs, for any
condition consistent with KB, such that event e is the most plausible cause of the observation A. To
revisit the example above, the ordering <,, in Figure 2 may be induced by the event ranking where
Ky (rain) = 0 and k., (sprinkler) = 1. Not only is the belief Wet(B) a consequence of observation
Wet(G), but the explanation “It rained” is also forthcoming. Werefer to [8] for further details.

One can show that the event-based semanticsfor update generalizesthe KM model. Under partic-
ular assumptions, the classes of update operators determined by each semantics coincide, though some
of the necessary requirements on event models may, in certain cases, be unnecessarily restrictive [8].
We defer discussion of thisissueuntil we examine our generalization of thisevent-based semanticsbe-
low. A fina advantage of thismodel isthat it lendsitself readily to the generalizationsrequired to deal
with nondeterministic events with outcomes of varying plausibilities, as well as the incorporation of
belief revisioninto the pictureto provide aunifying semantics of belief change in dynamica systems.

3 Generalized Update

In this section we first describe some of the difficulties with the KM theory of update, as well asthe
event-based semantics described above, when it comesto dealing with the routine belief change of an
agent embedded in a dynamical system. We then present the generalized update model, and illustrate
the basic intuitions by means of two examples. We defer aformal analysis of its properties until the
following section.
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3.1 Difficultieswith KM Update

One difficulty with the KM theory of updateis that it does not alow an observation to force revision
of an agent’s beliefs about the state of the world prior to the observation. Thisisacrucia drawback,
for even though one may not care about outdated beliefsdirectly, information gained about one’s prior
state of belief can influence updated beliefs.

Even simple tasks such as modeling information gathering actions are beyond the scope of KM
update. Consider, for example, Moore's [26] litmus test: the contents of a beaker are unknown and
one dipslitmus paper into it to determineif it isan acid or abase. The prior state of belief is captured
by two possibleworlds—in both of these worlds, the litmus papersis some neutra color (say, yellow),
and in one the proposition acid holds, whilein the other base istrue. The color of the paper after the
test action should rule out one of the possibilities. Unfortunately, the KM theory does not alow this
to take place; the semantics of update requires that both prior possibilities be updated to reflect the
observed color (e.g., blue). Oneisforced to accept that, if the contents were acidic (in which case it
should turn red), some extraordinary change occurred (the test failed, the contents of the beaker were
switched, etc.). Note that one cannot escape the dilemma by supposing there is no such transition, for
postulate (U3) ensures that updating acid by blue is consistent [8].

We can relax the KM update model to alow certain KB-worlds to be ruled out if the observation
is not reachabl e through any “reasonable” transition from that world. Thiswould dictate the addition
of machinery to give a meaningful interpretation to the term “reasonable.” But we must go further.
It may be that an observation “conflicts’” with all KB-worlds. To continue the example, imagine the
contents of the beaker are not unknown, but are believed to be acidic. If thetest result isblue, the KM
model requires the agent to postul ate some (very unusual) transition from a world where the beaker
contains an acid to a world where the paper is blue. Of course, the right thing to do is simply admit
that the beaker did not, in fact, contain an acid—the agent should reviseits beliefs about the contents
of the beaker. In order to do this, we must extend the model of updateto deal with structured or ranked
belief sets so that we have some guidance for the revision of our beliefs. In generd, belief change will
involve certain aspects of both revision and update.

3.2 Generalized Update Semantics

Rather than generalizing the KM update semantics directly, we adopt the event-based approach de-
scribed in Section 2.3. As above, we assume a set of events /2. However, we allow these events to be
nondeterministic, and each possible outcome of an event is ranked according to its plausibility. For
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example, an attempt to pick up ablock will likely result in aworld where the block is held, but occa-
sionally will fail, leaving the agent empty-handed.

Definition 3.1 An event e maps each world into a (partia) x-ranking over worlds, e : W — (W —
N). We use x,, . to denotetheranking e(w).

Intuitively, ., (v) describes the plausibility that world v results when event e occurs at world w. We
say v isapossibleoutcomeof e at w iff x,, . (v) isdefined (i.e., if x,, . (v) # c0). Wecall thisevolution
of w into v, under the specified event ¢, a transition, which we write w 5 . We note that since
Ky, 1ISak-ranking, we must have ., . (v) = 0 for some v; that is, some outcome of event e must be
most plausible. We occasionally assume the existence of the null event », such that &, , (w) = 0 and
Kwn (V) = oo if w # v. Thenull event ensures (with certainty) that the world does not change.

Asinthe original event-based semantics, we will assume each world has an event ordering asso-
ciated with it that describesthe plausibility of various event occurrences at that world.

Definition 3.2 An event ordering p» maps each world into a (partial) x-ranking over the set of events
E,pn: W — (F— N). Wewrite,, to denote theranking (w).

Toreiterate, x,, () capturesthe plausibility of the occurrence of event e at world w. Again, we assume
K. 1Sapartia functionover £, with s, (e) = oo taken to mean that e cannot occur at w. We also note
againthat ., (e) = 0 for somee (i.e., some event ismost plausible).

Finally, we assume that an agent’s epistemic state, its beliefs about the current state of the world,
are reflected in a straightforward x-ranking ~ over W. The plausibility accorded to world w is just
k(w). These three components are put together to form a generalized update model .

Definition 3.3 A generalized update model has the form M = (W, k, E, i), where W is a set of
worlds,  isa x-ranking over W (the agent’s epistemic state), F/ is a set of events (mappings
Kuw,e OVer W), and ;1 isan event ordering (a set of mappings «,, over £). We assumethat K is
the belief set induced by «.

In summary, an agent must have information about the nature of the current state of world (), what is
likely to happen or not (), and the effects of those event occurrences (F). Such models contain the
information necessary to update K in responseto an observation A; we denote the resulting belief set
K. We now describe the update process.

To begin, we suppose that one “tick of the clock” has passed and that the agent must update its
ranking  to reflect the possible occurrence of certain events, without the benefit of observation. In-
tuitively, the posterior plausibility of aworld v depends on the plausibility of the transitionsthat |ead
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to v. The plausibility of atransition w — v depends on the plausibility of w, the likelihood that e
occurred, and the likelihood of outcome v given w, e. In other words:®

[

K(w = 0) = Ky e (V) + Ky (€) + 5(w) (@)
With thisin hand, an updated ranking ~° can be given by

K0) = min k(o) + Ro(e) k(@) = min {r(w 5 ) @

This epistemic state essentially captures the notion that the world has evolved one “step” but that the
agent has no information about the nature of thistransition (other than that contained in the model M).
We note that the agent’s actua beliefs are determined by the minimal worldsin ¢ (i.e., those v such
that x°(v) = 0). We sometimes refer to «° as the anticipated or predicted updated ranking.

Aswith KM update, updates usually occur in response to some observation, with the assumption
that something occurred to cause this observation. After observing A an agent should adjust its be-
liefs by considering that only the most plausibletransitionsleading to A actually occurred. The set of
possible A-transitionsis:

Tr(A) ={w S v:vkEA and k(w S v) # oo}

The most plausible A-transitions, denoted min (Tr(4)), are those possible A-transitionswith the min-
imal x-ranking. Giventhat A has actually been observed, an agent should assume that one of these
transitions describes the actua course of events. The worlds judged to be epistemically possible are
those that result from the most plausible of these transitions:

result(A) = {v : w = v € min(Tr(4))}

Definition 3.4 Let K bethe belief set determined by update model M. The generalized update of K
by A (w.rt M) is
K§ ={B:result(A) C ||B]|}

®We note that this formula is the qualitative analog of the probabilistic equation Pr(w = v) = Pr(v|w,e) - Pr(e|w) -
Pr(w) asdescribed in Section 2.1.
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In other words, an agent updating by observation A believeswhat istrue at the states that result from
the most plausible A-transitions.®

Thismodel views generalized update by A as the process of determining the most plausible ways
inwhich A may have been brought about. It isnot hard to see that the very same belief change operator
is dictated by the process of first determining the predicted updated ranking ¢ followed by (standard
AGM) revision by A with respect to x°.

Proposition 3.1 result(A) = min(A, x°); or, equivalently, K4 = {B : min(A4, x°) C || B]|}

This conforms to our intuitions about the updating process: the direct update of K by A, K¢, deter-
mines the same belief set as the process of first updating one's entire epistemic state « to get «°, and
then performing belief revision of x° by the observation A. Loosely, we might say (K°)% = K.

This notion of update naturally gives rise to the notion of an explanation for observation A. We
can view updating by A as a process of postulating the most likely explanationsfor A and adopting
the consequences of these explanationsas our new beliefs. Unlike update of unstructured belief sets,
explanationsmust consider (and trade-off) plausibleinitial conditions, events and event outcomes that
lead to A.

Definition 3.5 An explanationfor A (givenmodel M) isany triple (w, e, v) suchthatw = v € Tr(A)
(whichimplies x(w = v) < o0).

An explanation thus takes the form “It is possible that ¢ occurred at w, leading to v and resulting in
A" Of course, many of these explanation can be highly implausible.

Definition 3.6 Thetriple (w, e, v) isamost plausible explanation for A iff w = v € min(Tr(A)).

In other words, the most plausible explanations are those explanationswith minimal «-ranking.

If Aisexplainable (i.e, if the set of explanationsis not empty), then the most plausible expla-
nations correspond to the most plausible A-transitions: thus generalized update can be interpreted as
an abductive process. Given observation A, we can determine our updated belief set by first finding
the most plausibleexplanationsfor A, and then adopting the“ consequences” of these explanationsare
our new belief set. Itissimply theform of the explanation—" somethingwastrue, something occurred,
and it had this outcome leading to observation A”— that is more complex than in many other forms
of abduction. Note, however, that Proposition 1 means we are not required to generate explanations
explicitly in order to produce the updated belief set.

5Note that the exact form of © depends on the entire generalized update model A/. To keep notation simple, we do not
subscript the operator; the update model defining ¢ should always be clear from context.
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Figure 3: Generdized Update with Multiple Events

3.3 Examples

Before considering the formal properties of thismodel, weillustrateits nature with two examples. To
keep the treatment simple, in the first example we use only deterministic events, whilein the second
we assume a single nondeterministic event (the agent’s action).

Figure 3illustratesthe prior belief state of an agent who believes her book is on the patio and that
both the grass and her book are dry. However, if her book is not on the patio, she believes she has | eft
itinside (x(Inside(B)) = 1). We omit other less plausible worlds. We assume three events: it might
rain, the sprinkler might be turned on, or nothing happens (the null event). She judges ., (null) = 0,
Ky (rain) = 1 and k,, (sprinkler) = 2, so rain ismore plausible than sprinkler (we assume a“global”
ordering, suitablefor al w). The outcomes of these events are deterministic— in particular, both rain
and the sprinkler will makethe grass wet, but the book will only get wet if it rainsand it is on the patio.
Now, if wet grassis observed, our agent will update her beliefs to accept Wet(G). A consequence of
thisisthat she will now believe her book iswet: the most likely explanation is simply that it rained.
If Wet(G) A Dry(B) are both observed (for instance, if sheistold the book is safe), there are two most
plausible posterior worlds satisfying the observation (i.e., x (Wet(G) A Dry(B)) = 2). Thiscorresponds
to the existence of two plausible explanations: either the book ison the patio (x = 0) and the sprinkler
turned on (x = 2); or thebook isinside(x = 1) and it rained (x = 1). Theresult of thisupdate on the
agent’s state of belief is such that the agent is no longer sure where the book is. If we had instead set
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r(sprinkler) = 3, observing Wet(G) A Dry(B) would have caused the agent to believe that the book had
been inside all along. The sprinkler explanation for the dry book becomes less plausible than having
left thebook inside. We seethen that observing certain changesintheworld can causean agent torevise
its beliefs about previous states of affairs. These revisions can impact on subsequent predictions and
behavior (e.g., if the book isinside then so are her glasses).’

A second example is shown in Figure 4. We assume only one possible event (or action), that of
dippinglitmuspaper in abeaker. Thebeaker isbelievedto containeither anacid or abase(x = 0); little
plausibility (x = r) isaccorded the possibility that it contains some other substance (say, kryptonite).
The expected outcome of the test isa color change of the litmus paper: it changes from yellow to red
if the substanceisan acid, to blueif it isabase, and to green if it iskryptonite. However, the litmus
test can fail some small percentage of thetime, in which case the paper a so turnsgreen. Thisoutcome
is also accorded little plausibility (x = ¢). If the paper is dipped, and red is observed, the agent will
adopt the new belief acid. Unlike KM update, generalized update permits observations to rule out
possible transitions, or previously epistemically possibleworlds. Assuch, it is an appropriate model
for revision and expansion of beliefs due to information-gathering actions. An observed outcome of
green presents two competing explanations. either the test failed (the substance is an acid or a base,
and we still don’t know which) or the beaker contains kryptonite. The most plausible explanation and
the updated belief state depend on the relative magnitudes of ¢ and r. The figure suggeststhat ¢ < r,
so theatest failureis most plausibleand the belief acid v baseisretained. If test failuresare morerare

"The world satisfying Inside( B), Dry(B), Wet(G) at x = 3 is shown for illustration. Technically, that world has rank 1
sinceit occursbelow, and the explanation “ sprinkler and book inside” will never be adopted, unlessfurther propositions and
observations can distinguish the two worlds (e.g., other effects of the eventsin question).
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(r < g), then this outcome would cause the agent to believe the beaker held kryptonite.

4 Relationship to Revison and Update

We now turn to the question of the relationship of GU to the classical AGM revision and KM update
models. The analysis of the update postulatesisin many ways similar to that presented in [8], where
the simple event-based semantics of Section 2.3 was developed. There we showed that under certain
assumptions this event-based operator satisfies the KM postulates, though we argued that these as-
sumptionsare not aways appropriate. Thekey difference hereisthat the abductive approach has been
generalized to allow ranked outcomes of events, and more importantly, ranked belief structures. This
has surprisingly littleimpact on the analysis of the KM postul ates—the basic model s satisfy the same
postulates and the same assumptions can be used to ensure satisfaction of addition postulates—with
one significant exception: the postulate (U8) becomes (in a certain sense) meaninglessunder GU. We
elaborate on this below.
We first note that our model satisfies a number of the KM postulates.

Proposition 4.1 If « isthe GU operator induced by some GU model then < satisfies postulates (U1),
(U4), (U5), (UB), (U7) and (U9).

We note that GU satisfiesthe al of the same update postul ates as the basic event-model for flat belief
states[8].

One key difference between the GU model and the KM model isreflected in (U2), which asserts
that KB ¢ A isequivaent to KB whenever KB entails A. This cannot be the case in general, for even
if KB = A, the most plausible event occurrence may be something that changes another proposition
whileleaving A true. Observing A may simply mean that the change proceeded as expected.? (U2) is
appropriateonly if we are willing to assume per sistence of propositions, that changes (are believed to)
occur only if evidence for them is observed. While appropriatein some settings, thisisnot auniversal
principle suitable for belief change. Nevertheless, we can model it by assuming inert update models,
in which the null event isthe most plausiblein any situation.

Definition 4.1 A GU model M = (W, k, F, ) isinertif E containsthe null event n and x,,' (0) =
{n} fordlweW.

8 Asan example, consider an assembly line monitor that observesa“ statusOK” signal. Thismay well already bebelieved;
but the agent should still updateits belief state by changingits belief about the number of parts that have been produced.
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Proposition 4.2 If ¢ isinduced by aninert GU model then < satisfies (U2).

Thesecond key differenceisreflected in thefailure of (U3), which assertsthat KB« A issatisfiable
if Ais. Inour model, this correspondsto every A being explainable no matter what beliefs are held.
GU models need not satisfy (U3). Consider the case where no event can result in an A-world (i.e,
where Tr(A) = 0): the observation of A is then unexplainable, and K§ = Lcp., the inconsistent
belief set. To prevent this, we can simply insist that every satisfiable sentence A isexplainable.

Definition 4.2 A GU model (W, x, F, 1) iscompleteiff for any satisfiable A € Lcp , therearew, v €
W, e € IJsuchthat k(w) < 00, Ky (€) < 00, Ky (V) < 0o andv = A.

Proposition 4.3 If ¢ isinduced by a complete GU model then < satisfies (U3).

In [8] we criticized (U3) as inappropriate for the update of flat belief sets. For example, if our
beliefs corresponded to a single world where acid is believed, (U3) forces the observation of blue to
behave quite poorly (as described above). However, such amaxim is much more reasonablein gener-
alized update. 1t does not force oneto propose wildly implausibletransitionsfrom prior epistemically
possible states; instead one can revise one's beliefs to account for the observation. In this case, we
simply give up the belief acid. For thisreason, (U3) may be seen as areasonable postulatefor GU, in
which case we might take complete GU modelsto providethe appropriate semanti c underpinningsfor
belief revision and update.

There are a number of systematic ways in which one can enforce the condition of completeness
such as requiring the existence of “miraculous’ eventsthat can cause anything [8]. In our setting, one
quite reasonable condition we might impose is that all worlds have some plausibility (i.e.,  is ato-
tal function on W) and that the null event is possible (though not necessarily very plausible) at each
of those. The first requirement is usually assumed of epistemic states (e.g., in the belief revision lit-
erature), and the second simply ensures that all worlds persist with some degree of plausibility. Thus
while explanationsof A may be implausiblethey will not be impossible.

Finally, putting Propositions 4.1, 4.2, and 4.3 together we have:

Theorem 4.4 If ¢ isinduced by a complete, inert GU model then < satisfies (U1)—«(U7) and (U9).

We note that the converse of thistheorem and the preceding propositionsis easy to verify, though not
especialy interesting. Primarily, we are interested in determining the nature of belief change given
information about beliefs, events and event orderings, rather than the construction of model s that cor-
roborate arbitrary operators satisfying the postul ates. We a so note that our characterization theorem
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includes (U9) because of our useof x-rankings, which totally order eventsand worlds. Oneof themain
reasonsfor using such rankings, as discussedin Section 2.1, isthat they alow the scales of plausibility
used to rank worlds, events and outcomesto be compared and added. In general, the use of qualitative
ranking rel ations does not admit this flexibility unless oneiswilling to postulatea“metric” by which
a combination of preorders can be compared. Thisisnot a difficult task, but is somewhat more cum-
bersome than the approach provided here. Equivalent results should be obtainablein the more genera
setting of arbitrary preorders.

There aretwo special cases of GU that are worth mentioningin passing. First, we notethat “plain”
KM update of unstructured belief setsis easily captured in our model by the simple restriction of s
to rank worlds only as plausible (v« = 0) or impossible (x = o). Second, reasoning about agent-
controlled action (and observations) is also possible, asindicated in the litmus example. To do so, we
simply view an agent’s actions as events: we associate with each action « a x-ranking ., , that ranks
outcomes of action « at world w. We take the key difference between actions and events (at least, as
far as belief change is concerned) to be that actions are within the agent’s control so that it has direct
knowledge of their occurrence. As such, actions need not be ranked according to their plausibility of
occurrence, nor do they need to be postulated as part of an explanation. Observations can only be ex-
plained by supposing the action had a particular (perhaps unexpected) outcome, or by revising beliefs
about the initial conditions, or both.®

To complete our anaysis of the KM postulates, we turn our attention to (U8). None of our char-
acterization resultsinvolve (U8) because it cannot be enforced in areasonable way in our model. The
reason for thisis our move to ranked model s of epistemic statesand our ability to explain (even “ most
plausibly” explain) an observation using initial conditionsthat conflict with our beliefs—that is, our
ability to have observationsrevise our initial beliefs.

(U8) isthe only update postul ate that relates the update of different initial states of belief, namely
KB;, KB, and KB, Vv KBs. For a given observation A, the update of KB; will generate a set of most
plausible explanations w = v, where v |= A. Unfortunately, unlessall of these explanationsare such
that w € [|KBy||, the properties of KB; < A are determined not only by KB, (together with the event
model), but also by the ranking « that represents our initial epistemic state. Unless we impose strong
and unnatural conditions on the relationships of the rankings  upon which our updates of KB,, KB,
and KB, Vv KB, are based, very little can be said about the relationship asserted by (U8). Indeed, we

9Concurrent eventsand actionsrequire special attention, however, and are beyond the scopeof this paper. Our framework
is certainly compatible with standard treatments of concurrency.
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must alow updateto proceed for the many distinct epistemic states x that determineagiven knowledge
base KB.

We notethat for afixed event modd (i.e., afixed £’ and ), we can relate the update of KB, KB,
and KB, Vv KB, under the following condition: the updated belief state G isafunction of theinitial
belief state ' (e.g., KBy, KB, or KB; Vv KB;) and not of the ranking «. If thisis the case, it is easy
to verify that (U8) will be satisfied. However, the only circumstance under which this condition will
hold isif acategorical preference is given to explanationsfor A of theform w = v wherew € || K||.
But this simply means that oneis unwilling to revise ones prior beliefs to account for an observation.
In other words, postulate (U8) only makes sense when we are dealing with flat, unstructured epistemic
states—precisely the types of models whose weakness GU is designed to counteract!

Wewrap up by consideringhow AGM belief revision can be modeled in our framework. The com-
mon folklore states that belief revisionis aform of belief change suitable when the world is static or
unchanging. To verify thisintuition, we propose static update models.

Definition 4.3 Anupdatemodel M = (W, k, I, ) isstaticif £ = {n} wheren isthenull event ».1°

Assuming, asisusual inthebelief revision literature, that ~ isatotal functionover W (i.e., x(w) < oo
for all w € W), we obtain the following result:

Theorem 4.5 If ¢ isinduced by a static GU moddl then < satisfies (R1)—(R8).

Static event models have as the only possible transitions those of the form w = w with plausibility
k(w). Thus, theinformal intuitionabout belief revision (and the AGM model) can beverified formally:
AGM revisionisaparticular form of GU suitablefor a*“static” system. (The converse of Theorem 6
iseasily verified.)

We note that the assumption of staticnessisin fact much stronger than is needed to prove satis-
faction of the AGM postulates. Indeed, simple inert models will satisfy this condition as well (as we
see in Section 5.1). The reason we consider static models to be the correct speciaization of GU for
modeling revision will become clear once we discussiterated belief updatein Section 5.1.

5 Iterated Belief Update and Observations

Themodel we havedescribedisstrongly related to standard Bayesian model sof belief updatein stochas-
tic dynamica systems. Roughly, in these models, an agent’s epistemic state is captured by a prob-

19As ahovewe assume x isatotal function on 1.
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ability distribution. The probabilities associated with various event occurrences and the outcomes of
actionsand events can be used in aBayesian updating processto determine how to update thisdistribu-
tion given a specific observation. The updated distribution characterizes the agent’ s updated epistemic
state, which then may be subject to update given subsequent observations.

While the connections to generalized update are quite strong,** there is one key difference: the
stochastic dynamica system view shows how to produce an updated epistemic state, not just asimple
belief state. The GU model, as described above, gives a characterization of the agent’s updated belief
state in response to an observation. The belief state itself does not provide guidance for changesin
belief due to subsequent observations.

We address this problem, that of iterated belief change in this section. We first elaborate on the
issues of iterated change and update of epistemic states. We then provide a short description of the
basic partially observable, stochastic dynamical system model. Finally, we show how theintuitionsof
the quantitative dynamical system model can be captured in several different waysin our qualitative
model (some of these being more direct than others).

5.1 Iterated Belief Change

To illustrate the need for a more elaborate specification of generalized update, we consider the rain-
ing example of Section 3.3. GU specifies that an agent with an epistemic state x given by the initial
rankingin Figure 3 and who observes Wet(G) will possessthe belief state { Patio( B), Wet(B), Wet(G)}.
This corresponds to the revision of the updated ranking x° by the observation Wet(G). Unfortunately,
whileit specifies an updated belief state, GU fails to dictate an updated epistemic state (see Figure 5).
Thus, the agent has no idea how to incorporate subsequent observationsin general. For example, if the
agent now observes Dry(B), it requires a legitimate epistemic state (e.g., aranking) in order to revise
or updatethisnew belief stateto account for the new observation. With only the basic belief stateinits
possession, the new observation is simply inconsistent, unless there is some miraculous book drying
event.

We note that this problem is strongly related to the problem of iterated belief revision: given an
epistemic state and an observation by which an agent’sbeliefs are to be revised, how should this epis-
temic state change (not just the belief state). It has been observed by a number of authors that the

I ndeed, the equationsdefining an updated ranking and the belief state induced by a specific observation can be viewed as
qualitative analogsof the quantitativerelations used for partially-observablestochastic dynamical systems. Thiswill become
apparent below.
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Figure 5: The Problem of Iterated Update

AGM theory of revision haslittleto say in thisrespect [23, 27]. Asaresult, anumber of proposal for
extending theories of belief revisionto dictate revised rankings or epistemic states have been proposed
[31,5,9,32,11]. Infact, it isthe“revision component” of GU (as opposed to the“ update component”)
that failsto adequately characterize the required change in epistemic state. Thiscan be seen clearly in
Figure 5: the model of the system dynamics allows one to update the entire ranking, while the revi-
sion of the updated ranking simply produces abelief set. Thus, areasonable theory of belief revision,
that specifies how one should revise an epistemic state, will automatically dictate how to apply GU to
epistemic states.

We will describe several methods of effecting iterated revision (and, in particular, revision of epis-
temic states) within the GU framework below. In particular, two model s of iterated revision withinthe
theory of x-rankings, as developed by Spohn [31] (and further investigated by Goldszmidt and Pearl
[18, 19]), can be applied almost directly to GU. However, the application of these techniquesto GU
can be better motivated by illustrating the connections of GU to stochastic dynamical systems, which
we do in the next section. We note that in a purely qualitative setting (with arelation < of relative
plausibility replacing aranking function «), iterated revision is especially problematic.> However, at
one of the models devel oped below can be applied in such a setting.

Before proceeding with our account of iterated GU, we pause to reflect on the new light shed on

For adiscussion of some of the difficulties, see [23,9, 7, 11].
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Figure 6: Iterated Revision with (a) Static and (b) Inert GU Models

Theorem 4.5, the relationship of GU and belief revision, by thisview of iterated revision. Theorem 4.5
shows that if our GU-model is static (i.e., if the null event is the only plausible event), then GU will
satisfy the eight AGM postulatesfor belief revision. The intuitionsunderlying such static models are
clear, and areillustrated graphically in Figure 6(a): the update portion of GU leaves the ranking unal-
tered, thus allowing the revision component to proceed on the original ranking.

However, because of theweakness of the AGM postul ates, the conditionsof Theorem 4.5 are much
stronger than necessary. For example, suppose we have an inert model, one where the null event is
more plausiblethan other events (see Figure 6(b)). In such amodel, other events can occur, but some
“preference” is given to explanationsof observationsthat require no changesin theworld. Dueto the
fact that the AGM theory doesn’t impose strong restrictions on the form of updated rankings, we have
the following result:

Proposition 5.1 If ¢ isinduced by aninert GU model then < satisfies (R1)—(R8).

Intuitively, the only requirement of the AGM postul atesis that the agent’s epistemic stateis character-
ized by some ranking in which worlds consistent with its beliefs form the set of most plausibleworlds.
In Figure 6(b) we can see that the update portion of GU preserves the agent’s belief state, just like a
static model. Thismeans that the revision portion of GU will satisfy the AGM postul ateswith respect
totheoriginal belief state. Unfortunately, theinert model, unlikethe static model, can shift therelative
plausibility of all worlds other than those with rank 0. This means that generalized update by an ob-
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servation that is not consistent with the agent’s original belief set does not generally produce the same
belief set that would be obtained by straightforward revision with respect to the original ranking.

Although the AGM postulates are satisfied, we should not consider “inert generalized update” to
be the “specia case” of GU corresponding to revision. Since the model is not truly static, one can
produce truly bizarre results that we would not expect of belief revision. For instance, given aninitial
belief set I, it is quite possible with an inert model that K is very different from (K$)¢. In other
words, updating by a null observation followed by A can result in a different belief set than updating
immediately by A. Thisis, of course, not surprising, given that the world can change. It is, however,
surprising that it should satisfy the AGM postulates if these postulates are intended to characterize
revision in static environments. Again, we emphasize that thisis due to the fact that the AGM theory
say's nothing substantial about iterated revision or the revision of epistemic states.

We note that recent proposalsfor dealing with iterated revision (e.g., see Boutilier’sMC-revision
model [9], or the postulates of Darwiche and Pearl [11]) al insist that revision by T not affect the
agent’s epistemic state. It is clear that an inert model does not satisfy this requirement. However,
static models do. Thus we legitimize the claim that, in fact, static GU models exactly capture the in-
tuitions underlying belief revision, and formally verify the conventiona wisdom that belief revision
correspondsto belief change about static environments.

5.2 Stochastic Dynamical Systemsand GU

We beginwith avery brief description of asimplemodel of apartialy observable, stochastic dynamical
system.’® As above, a system can bein anumber of possible states S.14 The system dynamics can be
characterized by two families of probabilitiesfunctions. Event probabilitiesrefer to the probability of
a particular event occurring at a given state: Pr(e|s) refers to the probability of e occurring in state
5.15 Outcome probabilitiescapture the probability of a particular statet resulting from the occurrence
of an event ¢ at state s, and are denoted Pr(¢|s, €).

An agent’s epistemic state is represented by adistribution over states, Pry (s) denoting the agent’s
degree of belief that the systemisin state s at time k. The agent can update its distribution using its

BTheinterested reader can consult [25, 10, 3, 30, 24] for more detailed models, discussions of control, etc.

14We will use the term “state” in the context of stochastic dynamical systems, and “world” when discussing GU.

BTechnically, Pr(e|s) is not a conditional probability, but a distribution over F as afunction of s, Pr.(e). We usethis
notation for its suggestivenessand familiarity. (Similarly for Pr(¢|s, ) defined below.)
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model of the dynamicsasfollows:

Pripa(t) => ) Pri(s) Pr(els) Pr(i]s, €) ?3)
e€l seS
This corresponds to the agent’s predications about how the system will evolvein one “clock tick.”

In order to account for observationsthe agent might make of the system state, we assume an obser-
vation model: we have aset of possibleobservations O together with afamily of distributionsPr(o|s)
representing the probability of making an observation o € () when the true system state is 5.2 When
an agent makes an observation o a time & + 1, we can view the change of its epistemic state as a
two-stage process: first, it updates its distribution to form Prj,, as above; second, it conditionsthis
distribution on the observation o to obtain Pry,, ;. Thissecond phase can be computed using a simple

application of Bayes Rule: Pr(ofs) P
o rio|s) Prryiq(s
) = S b “
We now turn our attentionto therel ati onshi pbetween GU and thismode of belief updatein stochas-
tic dynamical systems. Wefirst note that straightforward predictive update, the updating of aranking,
follows exactly the same “rules’ as the update of a probability distribution, the distinction being that
qualitativeprobabilities(“kappas’) are used in GU. In particular, Equation 2 isprecisely the qualitative
analog of Equation 3.

Accounting for observationsis not quite so straightforward. The assumption underlying al work
in belief revision and update, including the GU model as presented, isthat the agent observes proposi-
tionsdirectly. Unlikethe standard dynamical system model, observationsare actually part of the state
(i.e., apropositionthat isdetermined by the state). Thismakesit difficult to deal withfallibleor “noisy”
observations (though not impossible—see the next section). In order to account for such determinis-
tic observations, we will specialize the dynamica system model by assuming that each state dictates
precisely the observation that will be made. In other words, we assumethat Pr(o|s) = 1if s = 0o and
Pr(o|s) = 0if s |~ o. In order to make sense of this, we must consider the proposition or variable
that the agent i s attempting to observe, otherwisethereis no reason the agent cannot observethe entire
state. Therefore, we make atacit assumption that an agent explicitly actsto observe the truth va ue of
aparticular proposition. This action does not change theworldin any way (itisanull event), but tells

181n more general models, one can allow the observation to depend on state transitions or on the action taken by the agent.
Such complications are not germane to the discussion here.
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the agent whether the propositionistrue or false.!” We will relax the assumption that this observation
processisinfaliblein the next section.

With this deterministic observation model in hand, we note that updating by Bayes Rule in Equa-
tion 4 simplifies to simple conditioning by the observation o. In other words,

Pl
PI’Z_H (S) = > {Priyq1 (¢):tEo} if s ): o (5)

0 it s o
Generalized update can be used to produce anew «-ranking by conditioningin an entirely analogous

way. Recall that x° refersto the updated ranking before revision by the operation (as defined by Equa-

tion 2). We define

R ) s(w) = r%(A) i wEA
HA(w)_{ 00 if whkA ©

This process of conditioning (in astatic context) isdescribed in[19]. Intuitively, the agent’sinitia
rankingisupdated, then the observation A isappliedtotheupdated ranking by removing all —.A-worlds
(the remaining worlds are normalized by subtracting x°(A) so that a legitimate ranking results). We
dub this process infallible GU because all observations are treated as being certain. The process of
infalible GU naturally lendsitself to iteration, since generalized update by an observation A results
in an updated ranking. Theresult of infallible update by the observation Wet(G) in therain exampleis
illustrated in Figure 7. We note that conditioningis an especially simpleform of updating an epistemic
state in response to an observation. It can be be applied directly to purely quaitative ranking in the
obviousway.

5.3 Noisy Observationsin GU

The key difficulty with theinfallible model of GU, in other words, conditioning directly on observed
propositions, is the assumption that propositionsin the domain are directly observable without error.
For instance, given the infallible update by Wet(G) in the previous example, an agent cannot subse-
guently meaningfully update his epistemic state by the observation Dry(G) unlessthere isan explain-
ing event that immediately causes the grassto dry. In no way will an explanation of Dry(G) include
the possibility that the earlier observation was incorrect.

such actions might take the form of Scherl and Levesque’s[28] senser actions. This action returns an observation of
the form P or =P for a particular proposition P. Thisisthe sensein which states “determine” observations (relative to a
given sensing action).
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Figure 7: Conditioning and Infallible Generalized Update

Onecan deal withthisdifficulty in arather obviousway: simply add propositionsto thedomain that
refer to the observationsthat have been or can be made by theagent. Thefact that an observation of the
proposition Wet(G) isfallible can be modeled by relating the conditional degree of belief a proposition
describing the observation (say obsWetG) to the propositionitself. For instance, an agent’s epistemic
state might reflect the fact that any state in which Wet(G) A obsWetG holds is more plausible than the
corresponding world satisfying Wet(G) A obsDryG (e.g., by some amount «(obsDryG|Wet(G))). In
this sense, while conditioning by the observation obs\WetG does preclude the fact that you might have
made observation obsDryG, it does not rule out the possibility Dry(G); it merely makes it less plau-
sible. Of course, in order to fully develop this model of conditioning by observations, we would be
forced to deal with timein some way or another. For example, conditioning on obsWetG rules out any
worldsin which obsDryG istrue. However, one could subsequently make a contradictory observation
of dry grass. In order to condition on this new observation, we would require a different (but related)
propositionthat refersto obsDryG at the next pointintime.'® We could, for instance, usetime-stamped
observational propositions. In order to specify such a model in a convenient way, we would have to
devel op additional machinery. We do not pursuethis here, thoughit could be developed in aless awk-
ward fashion in the run-based model of Friedman and Halpern [12] (which is described below).

Instead, we will present a second alternative, based directly on standard stochastic observation

18/ distinct observational proposition is necessary, since conditioning on obsWetG removes all worlds where obsDryG
holds. Subsequent conditioning on obsDryG would result in inconsistent beliefs.
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models. We assume that there exists a set of observations O that are related in anondeterministic way
to possible worlds. The observation model p describes the plausibility of various observationsin dif-
ferent world states. Formally, p : W — (O — N) maps worlds into x-rankings over the observation
set. Theranking p(w) describeshow likely the agent isto observeagiveno € O inworld w. Wewrite
k(o|w) for p(w) (o). Asusual, for each w, thereis at least one o such that x(o|w) = 0.

Once again, we do not assume that an observation is dictated solely by the true state of the world,
but isinfluenced by the observation action taken by the agent. For instance, if the agent executes an
“observe grass’ action, the appropriate observation set might be {obsWetG, obsDryG}, and the ob-
servation model might be specified as follows: (0bsWetG|Wet(G)) = 0; x(obsDryG|Wet(G)) = 2;
#(0bsWetG|Dry(G)) = 3; #(obsDryG|Dry(G)) = 0.1° To keep the presentation a bit simpler, we
suppress any conditioning of observation models on the observational action being taken, especially
since thisimpacts little on the devel opment (and the extension is obvious). We simply assume that an
appropriate observationis (actively or passively) obtained by some means.

With this model of “fallible” observations, we can extend GU to a form of fallible generalized
update much aswedid to obtaininfallible GU. To do thiswe will usethe analog of Equation 4 directly
(recall, that in the infallible/conditioning case, this application of Bayes Rule reduced to the simpler
form given by Equation 5). Recall that «° referstothe updated ranking before revision by the operation
(as defined by Equation 2). We define, for any observation A:

ra(w) = K(Alw) + £°(w) = £°(A) (7
We note that the last term reflects the absol ute plausibility of making observation A and is defined as:

A(A) = min{x(v) + s(A[v)}

Intuitively, this model does precisely what one expects. given an observation A, each world be-
comes more or less plausible according to the degree to which it givesriseto A. Worlds for which
A is expected (k(A|w) = 0) keep the same relative rank, while worlds for which A is unexpected
(k(Alw) = k > 0) become less plausible by the degree & to which A was surprising. Finaly, the
normalization term (A) is subtracted to ensure that an appropriate ranking (with minimal elements
having rank 0) isabtained. We note that if observations are deterministic, or embedded in the world

BThis method of specification summarizes the observation model; e.g., »(ObsWetG|Wet(G)) = 0 means that
(OobsWetG|w) = 0 for all w = Wet(G).

30



[. Kryp Green ] k=2

@ Kryp Green
O Acid Green -1 © Acid Red 1
O Base Green - O Base Blue
Observe
Green
© Acid Red o © Acid Green k=0
O Base Blue - O Base Green B

Figure 8: Uncertain Observations and Fallible Generalized Update

state description, then Equation 7 reduces exactly to Equation 6 and is nothing more than conditioning.

Toillustrate the process, consider the litmus example of Figure4. Now imagine that observations
of color are imperfect, so that false readings are implausibleto degree 2; that is, ~ (obsColor1|Color2)
isOQif thetrue color and observed color are the same, and is 2 if they are different. Theresult of fallible
update by the observation obsGreen given this observation model isillustrated in Figure 8

We note that this model of noisy observations cannot be used, at least in its full generality, in a
purely qualitativesetting (though see remarksin Section 7). A key element of the observationmodel is
the ability to specify that certain observationsoccur with varying degrees of plausibility, and the ability
to compare (and combine) the degrees of plausibility accorded to particular worlds by an observation
with their prior degrees of plausibility.

Finally, we point out athird way in which noisy observations can beincorporated, through the use
of strength of evidence. In the original development of x-functions, Spohn [31] does not emphasize
conditioning by observations, but a-conditioning, where a proposition A is observed with a certain
(integer) strength «. Intuitively, the relative plausibility of all A-worldsis shifted by « (sothat if « is
positive, A becomes more plausible). This processis dubbed ./-conditioningin [19] (asit is exactly
analogous to Jeffrey conditioning of a probability distribution). In [19] asimilar processknown as /.-
conditioning is also proposed, whereby A does not become « degrees more plausible, but A is made
to plausible to degree «.

Instead of having an explicit observation model, one could directly observe propositionsin the do-
main, and account for the uncertainty of these observationsby attaching strengthsto them. Inthisway,
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instead of direct conditioning by A (and its attendant difficulties), ./-conditioning or -conditioning
may be used. We do not pursue this suggestion here; the reader is referred to [31, 19] for details of
this type of conditioning. The application of these ideas to GU is straightforward. However, a key
guestion that arisesisthe following: how does one determine the strength of an observation? The ob-
viousanswer isthat one must have an observation model. For thisreason, we find the mode! of fallible
generalized update to be the most compelling of qualitative belief changein dynamic settings.

6 Related Work

6.1 Trajectory-based Semantics

There are anumber of ideas that have directly influenced the generalized update model, including the
work cited aboveon belief revision, belief update, x-rankings, iterated revision, reasoning about action
and dynamical systems. However, there have been few attemptsto tie all of these ideas together in
a comprehensive, qualitative framework. There is one framework in which belief update and belief
revision can both be expressed, namely, the run-based (or trajectory-based) model of Friedman and
Hapern [12]. Thismodd issimilar to ours, especidly in its general outlook on revision and update
and its adoption of a dynamical systems perspective.

In therun-based framework, an agent imposesaqualitative plausibility relation (serving therol e of
ax-function) not over possibleworlds, but on possible systemtrajectoriesor histories. Each trajectory
corresponds to a sequence of transitions, or states the world might have passed through. The relative
plausibility of atrajectory captures the degree to which an agent thinks that trajectory might be (or
has been) realized. When an observation ismade at a particular point in time, anormal belief revision
process can be applied. Themost plausibletrajectories after revision by a particular observation make
up the agent’s new belief state. As such, an agent can have beliefs that extend over time. Friedman
and Hal pern a so show that under certain assumptionsbelief changein thismodel satisfiesthe revision
postulates and under certain assumptions satisfiesthe KM update postul ates.

One impediment to the use of a tragjectory-based model is determining an initia ranking of en-
tire trajectories. While Friedman and Hal pern do not emphasize this point, it isclear that the individ-
ua (state-to-state) transitionswithin atrajectory should correspond to the occurrence of events within
the system, and that the (initial) relative plausibility of atragjectory should simply be afunction of the
(prior) plausibility of itsinitial state and the plausibilities of the individua event occurrences along
the trajectory (together with the plausibility of the corresponding event outcomes). In this respect, it
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is easy to see how GU can be embedded in the Friedman-Halpern model. The distinctionsliein em-
phasis. we focus on the source of trgjectory plausibilitiesasafunction of individual events, actions, or
their outcomes, while Friedman and Hal pern emphasize the relative plausibility of entire trgjectories.

Viewed in thislight we can a so see some of the technical assumptionsimplicit in the GU model.
First, our observation and system dynamics models treat the plausibility of observations, events and
event/action outcomes as afunction of world state; the actual history an agent has passed through does
not influence the agent’s estimate of action outcome or observation likelihoods. Thus, we are mak-
ing the Mar kovian assumption: dynamics are independent of history. For thisto provide an accurate
model of adomain, our states or worlds must contain enough information to render predictions of the
future independent of the past. Thisis generally not very restrictive, and is the assumption underlying
amost all work in Al on planning and reasoning about action. However, thetrajectory-based moddl is
more genera inthisrespect. Non-Markovian systemsare easily representabl ein the Friedman-Hal pern
model. Furthermore, we have made an assumption of stationarity: the system dynamics and observa-
tion model do not change over time. Again, while this assumption is relatively uncontroversid, the
Friedman-Hal pern model can very easily deal with nonstationary systems.

We note that in subsequent work [14], Friedman and Hal pern address the difficulty of associating
plausibility with entire trgjectories and come to precisely the same conclusions: the Markovian and
stationarity assumptions are very natural and provide great leverage in specifying system dynamics
(and for their model, easily alow one to determine the plausibility of trajectories). The assumptions
that frameworks for qualitative belief change, like GU and the Friedman-Hal pern system, show to be
effective in modeling belief change are exactly thosethat have been adopted in the dynamical systems
community for years. Finaly, we note that Geffner [16] hasrecently devel oped amodel for reasoning
about action using the x-cal culusto represent the defeasibility of action effects. By making the Markov
assumption explicit, he uses this model to determine the plausibility of system trajectories.

To illustrate the power of GU (as well as the implications of assumptions such as Markovian dy-
namics), we consider the stolen or borrowed car problem.?° The setting is as follows: you arrive at a
very expensiverestaurant, and leave your very expensive car with theval et to be parked. At theend of
the evening you pick up your car from the parking lot and begin to drive home. A few mileslater, you
notice that the odometer reading is extremely high (say 50 miles higher than when you arrived at the
restaurant; it’s avery expensive car and you are obsessive about the mileage!). How will your belief

DThe borrowed car problemis developed by Friedman and Halpern in their trajectory-based model, but the example is
attributed to the author. The related stolen car problem is dueto Kautz [22].
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Figure 9: The Borrowed or Stolen Car Problem
state change?

Intuitively, what we are after in thisexampl eisthe explanation that theval et took your car out for a
joyridewhileyou were eating. To see how thismight arise, we consider an event model in whichthere
are several possibleevents, including the null event (where your car stays put), the steal event (where
your car isstolen from thelot), and thejoyride event (whereyour car isborrowed by the valet for some
period of time). Furthermore, we might have some estimate of the length of time for which the valet
might borrow the car, which could be model ed using areturn event (the valet returnsthe car to thelot).
One possible event model isillustrated in Figure 9, long with an initial belief statein which you are
certain the car isin the lot with low mileage.

We consider severa possible observations and updates of epistemic state one could make. Sup-
pose at time 1 you unexpectedly return to the parking lot to pick up the car and find it missing. The
most plausible explanation isthe steal event, and you will believe the car has been stolen (as well, the
mileageis high). If you make no such observation at time 1 (e.g., any observation actions taken—see
Section 5.2 and 5.3—were unrelated to these propositions), then any of the models of GU that deal
with iteration (as presented in Section 5) will leave you in the epistemic state (and associated belief
state) given by theranking at time 1.
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Supposeyoutry to pick up the car at time 2 and find the car missing (that is, not parked). The most
plausible explanation isthat the car was stolen (but note thereis no preference asto when the car was
stolen, at time 0 or time 1). If the car is till in the lot, and you observe Parked, you will assume that
nothing strange has happened. Should you aso observe that the mileage is High at time 2, then you
have no choice but to conclude that the car was joyridden and returned.?!

Suppose, now, that after returning at time 2 to find the car parked (but not yet observingthe mileage),
you begin to drive home and notice High halfway home, at time 3. Your belief at time 2 that nothing
unusua happened is now revised: again you must believe that the car was joyridden at time O at re-
turned at time 1. Notethat thisevent model assertsthat if acar isbeingjoyridden, the most likely event
isthereturn of the car, with a continuation of the ride being unlikely. If you had found the car missing
at time 2, and for some reason were convinced that it wasn’t stolen, the most plausible explanation
would bethat it was joyridden at time 1, not at time O: had it been taken at time 0, it would most likely
have been returned by now. Thus, unlike the explanations of a stolen car (where no preference for the
time of stealingis given), the joyride explanation comes with apreference for amorerecent ride. This
isdue solely to the fact that our model of the processimplicitly provides a duration. Should continue
be just aslikely as return, this chronological preference would disappear.

It is worthwhileto point out some of the demands made by the Markov and stationarity assump-
tionsin an example like this. Note that we have added propositions like joyridden and stolen to the
description of theworld. In a certain sense, these propositions encode the history of past events. As
such, we don't need to keep track of history explicitly, but only the relevant bits of history that we de-
cide to represent in our propositional language. This makes a model based on epistemic states about
the “current” state of affairs more attractive than a trgjectory-based model: history can be accounted
for, but one has the option of distinguishing only relevant historical facts as opposed to considering
arbitrary distinctionsbetween entire trgjectories.

6.2 Distance-based Semantics

Recently, a model of belief revision based on a distance semantics was proposed [29]. Roughly, we
assume the existence of ametric d over W that specifies the “distance” between possibleworlds. In-
tuitively, d(w, v) reflects the degree of difficulty or cost to change from situation w to v. One key
assumptionisthat d(w, v) isminimum exactly when w = v. Given abelief set K, and an observation

2To keep the diagram simple, we have “folded in” the effect of the “return to pick up car” action with the effects of the
other actions (e.g., it causesInCar to hold if the car is present).
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A, those A-worlds closest (according to d) to some element of || /|| determine the set 7. Since d is
fixed, thismoddl alowsfor iteration as well.

It is shown in [29] that, under certain assumptions, such a semantics is equivalent to the AGM
model of revision (that is, it satisfies the AGM postulates, and can represent any operator that satis-
fies the postulates). In one sense, this result may seem surprising, for the intuitions underlying the
semantics are much like that of update semantics. Indeed, we might view the basic GU semantics as
providing adistance metric that can be used in thisregard: we can take d(w, v) to bethe plausibility of
the most plausibletransition from w to v. Under the assumption of inertnessdescribed in Section 5.1,
we can seethat d(w, w) (for any w) isminimum. Of course, it was just this inertness assumption that
allowed us to show that GU satisfied the AGM postulates (Proposition 5.1). However, as we argued
there, thisassumptionis not the correct way to think about belief revision (as opposed to update). That
it satisfiesthe AGM postulatesis a sign of the weakness of these postulates, not of the suitability of
inert models as a semantics for revision. As aresult, the fact that a distance semantics can be made
to satisfy the postulates does not mean revision can be thought of productively in these terms. We do
note that distances do play arolein belief update however; we can view the relative plausibility of
transitions as a form of distance between worlds.??

7 Concluding Remarks

We have provided amodel for generalized belief update that extends both the classical update and re-
vision models, combining the crucial aspects of both, and retaining both as specia cases. The main
feature of GU is itsinsistence one be allowed to both revise and update one's beliefs about the world
in response to an observation. In addition, we have provided an abductive interpretation of update as
the process of explaining observationsin terms of what was initially true, what event or action may
have occurred and the outcome that event may have had. We presented amodel for dealing with noisy
observationsin belief revision, treating a problem that has been virtually ignored in the belief revi-
sion and reasoning about action communities. Finally, we have shown the strong connections between
the GU mode (especialy as augmented with observation models) and the well-understood model s of
stochastic dynamical systems. Indeed, GU can be viewed as a qualitative form of Bayesian update,
with the k-calculus playing the role of probabilistic laws.

In this paper, we have focused exclusively on the semantics of generalized update. Appropriate

2Djstances of this type are, however, not generally symmetric.
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representation languages for the concise expression of events (with defeasibl e effects), defeasible be-
liefs and other aspects of the model must still be developed. The specification language proposed by
Geffner [16] would seem to be a useful way of representing the system dynamics component of a GU
model. Many of the other components of such languagesare already in place, based primarily on con-
ditional and dynamic logics, and other languages for actions and defeasible beliefs. However, anum-
ber of details regarding compact and natural representation languages and their feasibility are sure to
require some subtlety. This undertaking is especialy important when the ability to reason about in-
completely specified systemsis required.

One issue that has remained unexplored to a large extent is that of revising beliefs about system
dynamics (event and outcome plausibilities). The GU model supposes that events and outcomes are
specified independently of an agent’sbeliefs, and that the dynamics of the systemin question are fixed
and known. The same holds true for an agent’s observation model. In genera, however, one might
expect an agent to have beliefs about these entities which are themselves subject to revision. While
not inconsistent with our model, a more elaborate treatment requires alanguage in which (defeasibl€)
beliefs about events, outcomes, and so on can be expressed.

Onefinal stumbling block to agenera treatment of qualitativebelief change hasto do with purely
ranked modelsin which x-like ranking information is not available. The x values of different worlds
and events provided us with a direct means of determining (for instance) the relative plausibility of
various transitions by permitting the addition of the component xs. Models based on pure ranking
information, without quantitative degrees of belief, are often used in belief revision (see, for instance,
the semantics for AGM revision given in [20, 6] or the plausibility measures of [13]). To compare
the relative plausibility of transitionsin such a setting, we must have a way of trading off therelative
likelihoods of initial conditions, events, event outcomes, and so forth. Simple ranking information
does not allow one to do so; direct judgementsof the plausibility of these combinationsmust be made.
A more general qualitative theory would do just that—an example of such atheory isthe plausibility
measure approach recently proposed in [14]. The k-approach presented here is a special case of this
more general model. However, the essential spirit of such aproposal isidentical to that underlying our
presentation.
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A

Proofs of Main Results

Proposition 3.1 result(A) = min(A, x°); or, equivalently, K4 = {B : min(A4, x°) C || B]|}
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Proof Thisfollows amost immediately from the definitions of result(A) and x°. If Tr(4) = () then
result(4) = 0 and min (A, k°) = (). Otherwise,

min (A4, k%) = {v:w = v € min(Tr(A))} = result(A)
u

Proposition 4.1 If « isthe GU operator induced by some GU model then < satisfies postulates (U1),
(U4), (U5), (UB), (U7) and (U9).

Proof Assumeaneventmodel M = (W, x, I, i) and associated update operator < (for simplicity we
drop the subscript). We show in turn that each of these postulatesis satisfied.

(U1) By definition, result(A) C ||A]|. Immediately wehave KB o A = A.

(U4) Suppose = A = B. ThenTr(A) = Tr(B) and result(A) = result(B). Thus, KB o A =
KB¢ B.

(U5) Letw = v beamost plausible A-transitionsuchthat v = B. (If nosuchv exists, (KBoA)A
B isunsatisfiableand (U5) holdstrivially.) Clearly, w = v isamost plausible A A B-transition,
since a strictly more plausible A A B-transition (which isan A-transition) contradicts the fact
that w < v ismost plausible. Thus, result(A4) N || B|] C result(A A B) and (KBo A) A B =
KBo (A A B).

(U6) Suppose KB« A = B andKB¢ B = A. Thenwehaveresult(A) C || B|| and result(B) C
|| Al If v € result(A), there must exist amost plausible A-transition of theform w = v (where
v |= A). However, sincev € || B||, w = v isa B-transitionaswell. If w % v € min(Tr(B)),
there must exist a most plausible B-transition w’ s o such that K(w' % V') < K(w S v);
but since result(B) C ||A||, this contradicts the fact that w = v € min(Tr(A)). Hence, v €
result(B) and result(A) C result(B). A similar argument showsresult(B) C result(A); hence

KBo A=KBo B.

(U7) Suppose v € result(A) Nresult(B). (If thereisno such v then (KB o A) A (KB o B) is
inconsistent and (U7) holdstrivialy.) Then thereis some e such that w — v isamost plausible
A-transition and a most plausible B-transition. This ensures that w — v is amost plausible
AV B-transition and that v € result(A Vv B). Hence, result(A) N result(B) C result(A Vv B).
Therefore, (KB A) A (KBo B) = KB« (A V B). (Notethat this proof does not require that
KB be complete, in contrast to the conditions put on (U7) in the KM postulates.)
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(U9) Let KB be complete with ||KB|| = {w}. Suppose KB A = =B and KBo A = C. Then
result(A) C ||C|| and result(A) N || B|| # 0. Now if v € result(A A B), thenw = v must
be amost plausible A-transition (since v = A and any less plausibletransition is dominated by
w S v’ for some v’ € result(A) N || BJ). Hence, result(A A B) C result(A) N || B|| € ||C|| and
KBo (AANB) EC.

[ |
Proposition 4.2 If ¢ isinduced by aninert GU model then < satisfies (U2).

Proof Assumethat M = (W, k, E, u) isaninert model, inducing update operator < (for simplicity
we drop the subscript). Suppose KB = A. Then {w = w : w € ||KB||} forms the set of
most plausible A-transitions (where n isthe null event). Thusresult(A4) = ||KB|| and KB¢ A is

equivalent to KB; (U2) is satisfied. B

Proposition 4.3 If ¢ isinduced by a complete GU model then < satisfies (U3).

Proof Assumethat M = (W, k, F, u) isaninert model, inducing update operator < (for simplicity
we drop the subscript). Since M is complete, any satisfiable A isexplainable (i.e., Tr(A) # 0).
Soif KBissatisfiable, result(A) # () and KB ¢ A issatisfiable; (U3) is satisfied. W

Theorem 4.5 If ¢ isinduced by a static GU moddl then < satisfies (R1)—(R8).

Proof Let M = (W, k, F, 1) beastatic model, inducing update operator « (for simplicity wedropthe
subscript). Since M isstatic, wehave x = k° (i.e., the predicted updated ranking isidentical to
the original). By Proposition 3.1,

K5 = {B:min(A,x) | B}

Thus
K5 = {B:min(A,5) C||B||}

The standard AGM representation resultsfor x-rankings ensure the revision postul ates are sat-
isfied. (Note: we assumethat » istotal; i.e., k(w) < oo fordl w.) W

42



Proposition 5.1 If ¢ isinduced by aninert GU model then < satisfies (R1)—(R8).

Proof Let M = (W, k, F, 1) be aninert model, inducing update operator < (for simplicity we drop
the subscript). By Proposition 3.1,

K5 = {B:min(A,x) | B}

Thefact that M isinert ensuresthat min(x°) = min(x) (i.e., the most plausible worlds-those
determining the belief set K—are identical in the original and updated rankings). Since for any
x (and induced K), the updated ranking x° is arevision model for K, the standard AGM rep-
resentation results ensure the revision postul ates are satisfied. (Note: we assume that « istotal;
i.e, r(w) <ocoforalw.) W
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