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Abstract

Research on coalition formation usually assumes the val-
ues of potential coalitions to be known with certainty. Fur-
thermore, settings in which agents lack sufficient knowledge
of the capabilities of potential partners is rarely, if ever,
touched upon. We remove these often unrealistic assump-
tions and propose a model that utilizes Bayesian (multia-
gent) reinforcement learning in a way that enables coalition
participants to reduce their uncertainty regarding coali-
tional values and the capabilities of others. In addition, we
introduce theBayesian Core, a new stability concept for
coalition formation under uncertainty. Preliminary exper-
imental evidence demonstrates the effectiveness of our ap-
proach.

1. Introduction

Coalition formation, widely studied in game theory and
economics [7], has attracted much attention in AI as means
of dynamically forming partnerships or teams of cooperat-
ing agents. Most models of coalition formation assume that
the values of potential coalitions are known with certainty,
implying that agents possess knowledge of the capabilities
of their potential partners, or at least that this knowledge can
be reached via communication (e.g., see [11, 12]). However,
in many natural settings, rational agents must form coali-
tions and divide the generated value without knowinga pri-
ori what this value may be or how suitable their potential
partners are for the task at hand. The case of an enterprise
trying to choose subcontractors while unsure of their capa-
bilities is only one such example. The creation and interac-
tion of virtual organizationshas been anticipated as a long
term impact of agent coalition technologies on e-commerce;
this cannot possibly be achieved without dealing with the
problem of uncertainty.

The presence of uncertainty poses interesting theoretical
questions, such as the discovery of analogs of the traditional
concepts of stability. Furthermore, it suggests opportunities

for agents to learn about each others’ abilities through re-
peated interaction, refining how coalitions are formed over
time. As a consequence, realistic models of coalition for-
mation must be able to deal with situations in which the
presence of action uncertainty and the types of the poten-
tial partners is translated into uncertainty about the values
of various coalitions.

To this end, we propose a new model of coalition forma-
tion in which agents must derive coalitional values by rea-
soning about thetypesof other agents and the uncertainty
inherent in the actions a coalition may take. We propose
a new stability concept, theBayesian core (BC), suitable
for this setting, and describe a dynamic coalition formation
process that will converge to the BC if it exists. Further-
more, since one agent will generally learn something about
the abilities of other agents via interaction with them in a
coalition, we propose areinforcement learning(RL) model
in which agents refine their beliefs about others through
repeated interaction. We propose a specific Bayesian RL
model in which agents maintain explicit beliefs about the
types of others, and choose actions and coalitions not only
for their immediate value, but also for theirvalue of infor-
mation (i.e., what can be learned about other agents). We
show that the agents in this framework can reach coalition
and payoff configurations that are stable given the agents’
beliefs, while learning the types of their partners and the
values of coalitions. We believe that these ideas could be of
value for, say, e-commerce applications wheretrust among
potential partners (e.g., where each is uncertain about the
other’s capabilities) is an issue.

We begin in Section 2 with a discussion of relevant work
on coalition formation, including recent work that deals
with dynamic coalition formation and some forms of un-
certainty. In Section 3 we propose a model for coalition
formation in which agent abilities are not known with cer-
tainty, and actions have stochastic effects. We introduce the
Bayesian core concept and a suitable dynamic formation
process. We then describe a Bayesian RL model in Section 4
that allows agents to learn about their partners through their
interactions in coalitions.



2. Background

Cooperative game theory deals with situations where
players act together in a cooperative equilibrium selection
process involving some form of bargaining, negotiation, or
arbitration [7]. Coalition formation is one of the funda-
mental areas of study within cooperative game theory. We
briefly review relevant work in this section.

2.1. Coalition Formation

Let N = {1, . . . , n}, n > 2, be a set of players. A sub-
setS ⊆ N is called acoalition, and we assume that agents
participating in a coalition may coordinate their activities
for mutual benefit. Acoalition structureis a partition of
the set of agents containing exhaustive and disjoint coali-
tions.Coalition formationis the process by which individ-
ual agents form such coalitions, generally to solve a prob-
lem by coordinating their efforts. The coalition formation
process can be seen as being composed of the following ac-
tivities [1, 10]: (a) the search for an optimal coalition struc-
ture; (b) the solution of a joint problem facing members of
each coalition; and (c) division of the value of the gener-
ated solution among the coalition members.1

While seemingly complex, coalition formation can be
abstracted into a fairly simple model [7]. Acharacteristic
functionυ : 2N → < defines thevalueυ(S) of each coali-
tion S. Intuitively, υ(S) represents the maximal payoff the
members ofS can jointly receive by cooperating effectively.
An allocation is a vector of payoffs~x = (x1, ..., xn) as-
signing some payoff to eachi ∈ N . An allocation isfeasi-
blew.r.t. coalition structureCS if

∑
i∈S xi ≤ υ(S) for each

S ∈ CS , and isefficientif this holds with equality. When ra-
tional agents seek to maximize their individual payoffs,sta-
bility becomes critical. Research in coalition formation has
developed several notions of stability, among the strongest
being thecore.

Defn 1 Let CS be a coalition structure, and let~x ∈ <n be
some allocation of payoffs to the agents. Thecore is the set
of payoff configurations

C = {(~x,CS)|∀S ⊆ N,
X

i∈S

xi ≥ υ(S)and
X

i∈N

xi =
X

S∈CS

υ(S)}

In a core allocation, no subgroup of players can guarantee
all of its members a higher payoff. As such, no coalition
would ever “block” the proposal for a core allocation. Un-
fortunately, the core might be empty, and, furthermore, it is
exponentially hard to compute.2 Apart from the core, there

1 Throughout we assume transferable utility.
2 We do not deal with complexity issues related with coalition forma-

tion in this work; we note, however, that such issues have become the
focus of recent research (e.g., [9]).

exist other solution concepts such as theShapley valueand
thekernel[7].

In recent years, there has been extensive research cover-
ing many aspects of the coalition formation problem. None
has yet dealt with dynamic coalition formation under the
“extreme” uncertainty we tackle in this paper. However, var-
ious coalition formation processes and some types of un-
certainty have been studied. We briefly review some of the
work upon which we draw.

Dieckmann and Schwalbe [5] describe adynamicpro-
cess of coalition formation (under the usual deterministic
coalition model). This process allows for exploration of
suboptimal “coalition formation actions.” At each stage, a
randomly chosen player decides which of the existing coali-
tions to join, and demands a payoff. A player will join a
coalition if and only if he believes it is in his best inter-
est to do so. These decisions are determined by a “non-
cooperative best-reply rule”, given the coalition structure
and allocation in the previous period: a player switches
coalitions if his expected payoff in the new coalition ex-
ceeds his current payoff; and he demands the most he can
get subject to feasibility. The players observe the present
coalitional structure and the demands of the other agents,
and expect the current coalition structure and demand to
prevail in the next period. The induced Markov process
(when all players adopt the best-reply rule) converges to an
absorbing state; and if players canexplorewith myopically
suboptimal actions all absorbing states are core allocations.
Konishi and Ray [6] study a somewhat related coalition for-
mation process.

Sjuis et al. [14, 13] introducestochastic cooperative
games (SCGs), comprising a set of agents, a set of coali-
tional actions, and a function assigning to each action a ran-
dom variable with finite expectation, representing the pay-
off to the coalition when this action is taken. These papers
provide strong theoretical foundations for games with this
restricted form of action uncertainty, and describe classes
of games for which the core of a SCG is nonempty (though
no coalition formation process is explicitly modeled).

Finally, Shehory and Kraus have proposed coalition for-
mation mechanisms that take into account the capabilities
of the various agents [11] and deal with expected payoff al-
location [12]. However, information about the capabilities
or resources of others is obtained via communication.

2.2. Bayesian Reinforcement Learning

Since we will adopt a Bayesian approach to learning
about the abilities of other agents, we briefly review relevant
prior work on Bayesian RL. Assume an agent is learning to
control a stochastic environment modeled as a Markov deci-
sion process (MDP)〈S,A, R, Pr〉, with finite state and ac-
tion setsS,A, reward functionR, and dynamicsPr. The



dynamicsPr refers to a family of transition distributions
Pr(s, a, ·), wherePr(s, a, s′) is the probability with which
states′ is reached when actiona is taken ats. R(s, r) de-
notes the probability with which rewardr is obtained when
states is reached. The agent is charged with constructing
an optimal Markovian policyπ : S 7→ A that maximizes
the expected sum of future discounted rewards over an in-
finite horizon:Eπ[

∑∞
t=0 γtRt|S0 = s]. This policy, and its

value,V ∗(s) at eachs ∈ S, can be computed using stan-
dard algorithms such as policy or value iteration.

In the RL setting, the agent does not have direct access
to R andPr, so it must learn a policy based on its interac-
tions with the environment. Any of a number of RL tech-
niques can be used to learn an optimal policy.

In model-based RLmethods, the learner maintains an es-
timated MDP〈S,A, R̂, P̂r〉, based on the set of experiences
〈s, a, r, t〉 obtained so far. At each stage (or at suitable in-
tervals) this MDP can be solved (exactly or approximately).
Single-agent Bayesian methods [4] allow agents to incorpo-
rate priors and explore optimally, assuming some prior den-
sity P over possible dynamicsD and reward distributions
R, which is updated with each data point〈s, a, r, t〉.

Similarly, multi-agent Bayesian RL agents [3] update
prior distributions over the space of possible models as well
as the space of possible strategies being employed by other
agent. The value of performing an action at a belief state
involves two main components: an expected value with re-
spect to the current belief state; and its impact on the current
belief state. The first component is typical in RL, while the
second captures theexpected value of information(EVOI)
of an action. Each action gives rise to some “response” by
the environment that changes the agent’s beliefs, and these
changes can influence subsequent action choice and ex-
pected reward. EVOI need not be computed directly, but can
be combined with “object-level” expected value through
Bellman equations describing the solution to the POMDP
that represents the exploration-exploitationproblem by con-
version to a belief state MDP.

3. A Bayesian Coalition Formation Model

In this section we introduce the problem of Bayesian
coalition formation, define the Bayesian core, and describe
a dynamic coalition formation process for this setting.

3.1. The Model

A Bayesian coalition formation problemis characterized
by a set of agents, a set of types, a set of coalitional actions,
a set of outcomes or states, a reward function, and agent be-
liefs over types. We describe each of these components in
turn.

We assume a set of agentsN = {1, . . . , n}, and for each
agenti a finite set of possibletypesTi. Each agenti has a
specific typet ∈ Ti, which intuitively capturesi’s “abili-
ties” (in a way that will become apparent when we describe
actions). We letT = ×i∈NTi denote the set of type pro-
files. For any coalitionC ⊆ N , TC = ×i∈NTi, and for any
i ∈ N , T−i = ×j 6=iTj. Eachi knows its own typeti, but
not those of other agents. Agenti’s beliefsBi comprise a
joint distribution overT−i, whereBi(~t−i) is the probabil-
ity i assigns to other agents having type profile~t−i. We use
Bi(~tC) to denote the marginal ofBi over any subsetC of
agents, and for ease of notation, we letBi(ti) refer toi “be-
liefs” about its own type (assigning probability 1 to its ac-
tual type and 0 to all others).

A coalitionC has available to it a finite set ofcoalitional
actionsAC . When an action is taken, it results in some out-
come orstates ∈ S. The odds with which an outcome is re-
alized depends on the types of the coalition members (e.g.,
the outcome of building a house will depend on the abili-
ties of the team members). We letPr(s|α,~tC) denote the
probability of outcomes given that coalitionC takes action
α ∈ AC and member types are given by~tC ∈ TC . Finally,
we assume that each states results in somereward R(s).
If s results from a coalitional action, the members are as-
signedR(s), which is assumed to be divisible/transferable
among the members.

Thevalueof coalitionC with members of type~tC is:

V (C|~tC) = max
α∈AC

∑
s

Pr(s|α,~tC)R(s) = max
α∈AC

Q(C, α|~tC)

Unfortunately, this coalition value cannot be used in the
coalition formation process if the agents are uncertain about
the types of their potential partners. However, eachi has be-
liefs about the value of any coalition based on its expecta-
tion of this value w.r.t. other agents’s types:

Vi(C) = max
α∈AC

∑
~tC∈TC

Bi(~tC)Qi(C, α|~tC) = max
α∈AC

Qi(C, α)

Note thatVi(C) is not simply the expectation ofV (C) w.r.t.
i’s belief about types. The expectationQi of action values
(i.e.,Q-values) cannot be moved outside the max operator: a
single action must be chosen which is usefulgiveni’s uncer-
tainty. Of course,i’s estimate of the value of a coalition, or
any coalitional action, may not conform with those of other
agents. This leads to additional complexity when defining
suitable stability concepts. We turn to this issue in the next
section. However,i is certain of itsreservation value, the
amount it can attain by acting alone:

rv i = Vi({i}) = max
α∈A{i}

∑
s

Pr(s|α, ti)R(s)



3.2. The Bayesian Core

We define an analog of the traditional core concept for
the Bayesian coalition formation scenario. The notion of
stability is made somewhat more difficult by the uncertainty
associated with actions: since the payoffs associated with
coalitional actions are stochastic, allocations must reflect
this [14, 13]. Stability is rendered much more complex still
by the fact that different agents have potentially different
beliefs about the types of other agents.

Because of the stochastic nature of payoffs, we assume
that players join a coalition with certainrelative payoff
demands[14]. Let ~d represent the payoff demand vector
〈d1, . . . , dn〉, and~dC the demands of those players in coali-
tion C. For any agenti ∈ C we define the relative demand
of agent to beri = diP

j∈C dj
. If reward R is received by

coalition C as a result of its choice of action, eachi re-
ceives payoffriR. This means that the excesses or losses
deriving from the fact that the reward function is stochastic
are expected to be allocated to the agents in proportion to
their agreed upon demands. As such, each agent has beliefs
about any other agent’s expected payoff given a coalition
structure and demand vector. Specifically, agenti’s beliefs
about theexpected stochastic payoffof some agentj ∈ C
is denoted̄pi

j = rjVi(C). If i ∈ C, i believes itsown ex-
pected payoff to bēpi

i = riVi(C).
A difficulty with using Vi(C) in the above definition of

expected stochastic payoff is that it assumes that all coali-
tion members agree withi’s assessment of the best (ex-
pected reward-maximizing) action forC. Instead, we sup-
pose that coalitions are formed using a process by which
some coalitional actionα is agreed upon, much like de-
mands. In this case,i’s beliefs aboutj’s expected payoff
is p̄i

j(α, C) = rjQi(C, α). Finally, we letp̄i
j,C(α, ~dC) de-

notei’s beliefs aboutj’s expected payoff if it were a mem-
ber of anyC ⊆ N with demand~dC taking actionα:

p̄i
j,C(α, ~dC) =

djQi(C, α)∑
k∈C dk

Intuitively, if a coalition structure and payoff allocation
are stable, we would expect: (a) no agent believes it will re-
ceive a payoff (in expectation) that is less than its reserva-
tion value; and (b) based on its beliefs, no agent will have
an incentive to suggest that the coalition structure (or its al-
location or action choice) is changed—specifically, there is
no alternative coalition it could reasonably expect to join
that offers it a better payoff than it expects to receive given
the action choice and allocation agreed upon by the coali-
tion to which it belongs.

Thus we define theBayesian core (BC)as follows:

Defn 2 Let 〈CS , ~d〉 be a coalition-structure, demand vector
pair, withCi denoting theC ∈ CS of which i is a member.

Then〈CS , ~d〉 is in theBayesian coreof a Bayesian coali-
tion problem iff, for allC ∈ CS , there exists anα ∈ AC

such that, for noS ⊆ N is there an actionβ ∈ AS and de-
mand vector~dS s.t. p̄i

i,S(β, ~dS) > p̄i
i(α, Ci), ∀i ∈ S.

In words, all agents in everyC ∈ CS believe that the coali-
tion structure and payoff allocation currently in place ensure
them expected payoffs that are as good as any they might re-
alize in any other coalition.3 Furthermore, their beliefs “co-
incide” in the weak sense that there is some coalitional ac-
tion α that they commonly believe to ensure this better pay-
off. This doesn’t mean thatα is what each believes to be
best. But an agreement to doα is enough to keepeachmem-
ber ofC from defecting.

Thecoreis a special case of the BC when all agents know
the types of other agents (which is the only way their be-
liefs can coincide, since each agent knows its own type). In
this case, all beliefs about coalitional values coincide, and
the BC coincides with the core of the induced characteris-
tic function game. Since the core is not always non-empty,
it follows that the BC is not always non-empty.

3.3. Dynamic Coalition Formation

We now propose a protocol for dynamic coalition for-
mation. The protocol is derived from the process defined
in [5], with two main differences: it deals with expected,
rather than certain, coalitional values; and it allows for the
proposal of a coalitional action during formation.

The process proceeds in stages. At any point in time, we
suppose there exists a structureCS , demand vector~d, and a
set of agreed upon coalition actions~αCS (with oneα ∈ AC

for eachC ∈ CS ).4 With some probabilityγi, agenti, the
proposer, is given the opportunity to propose a change to
the current structure. We assumeγi > 0 for eachi ∈ N ,
and permiti the following options: it can propose to stay in
its current coalition, but propose a new demanddi and/or a
new coalitional action; or it can propose to join any other
existing coalition with a new demanddi and a suggested
coalitional action. The second option includes the possibil-
ity that i “breaks away” into a singleton. Ifi proposes a
change to the current structure/demand/action, then the new
arrangement will occur only if all “affected” coalition mem-
ber agree to the change. Otherwise, the current structure and
agreements remain in force.

To reflect the rationality of the players, we impose re-
strictions on the possible proposal and acceptance deci-
sions. Specifically, we require the proposer to suggest a new

3 Note that if someS, β, and ~dS exist that makes somei ∈ S strictly
better off while keeping all otherj ∈ S equally well off, then there
must exist a~dS that makesall j ∈ S strictly better off.

4 We might initially start with singleton coalitions with the obvious
choices of actions.



demand that maximizes its payoff, while taking into con-
sideration its beliefs about whether affected agents will ac-
cept this demand. Thus for any coalition it proposes to join
(or new demand it makes of its own coalition), it will ask
for the maximum demand that it believes affected members
will find acceptable.

Let p̄i
i,C(α, di) = p̄i

i,C(α, ~dC ◦ di) denotei’s beliefs
about its expected payoff should it join coalitionC ∈ CS
with demanddi (or make a new demand of its own coali-
tion), withC ∪{i} taking actionα. When proposing to join
C, i should make the maximum demand (di andα) that is
feasibleaccording to its beliefs, in other words, that it be-
lieves the other agents will accept. More precisely, we say
〈C, di, α〉 is feasible fori if:

∀j ∈ C,
djQi(C ∪ {i}, α)∑

k∈C∪{i},s.t.k 6=i dk + di
≥ p̄i

j

If 〈C, di, α〉 is feasible fori, theni expects the members of
C to accept this demand. Of course,i does not know this for
sure, since it does not know what the members ofC believe,
but has its own estimates of their current valuesp̄i

j .5 Agent
i can directly calculate its maximum rational demand w.r.t.
C and actionα:

dmax
i (C, α) = min

j

djQi(C ∪ {i}, α) − p̄i
j

P
k∈C∪{i},k 6=i dk

p̄i
j

Assumption 1 Let0 < δ < 1 be a sufficiently smallsmall-
est accounting unit. When anyi makes a demand〈C, di, α〉
to coalition C, its payoff demanddi is restricted to the fi-
nite setDi(C, α) of all integral multiples ofδ in the closed
interval [rv i, d

max
i (C, α)].

With this model in place, we can define two related coali-
tion formation processes. In thebest reply (BR) process,
proposers are chosen randomly as described above, and any
proposeri is required to make its maximal feasible demand:

max
C

max
α∈AC

max
di∈Di(C,α)

p̄i
i,C(α, di).

If there are several maximal feasible demands,i chooses
among them with equal probability. As above, such a pro-
posal is accepted only in all members of affected coalition
are no worse off in expectation (w.r.t. their own beliefs).

This best reply process induces a discrete-time, finite-
state Markov chain with states of the form〈CS t, ~αt, ~dt〉.
This state at timet is sufficient to determine the probabil-
ity of transitioning to any new state at timet + 1.

We also consider a slight modification of the best reply
process, thebest reply with experimentation (BRE) process.

5 This poses the interesting question of how best to model one agent’s
beliefs about another’s beliefs in this setting.

It proceeds similarly to BR with the following exception:
if proposeri believes there is a coalitionS which will be
beneficial to it, but which cannot be derived starting from
the existingCS , it can propose an arbitrary feasible de-
mand in order to destabilize the current state in hopes of
reaching a better structure. More precisely, the best reply is
chosen with probability1 − ε, and some other feasible de-
mand with arbitrarily smalldi ≥ 0 is chosen with proba-
bility ε (each with equal probability). This can be viewed
as a “trembling” mechanism or as explicit experimentation.
Furthermore, any agentj that is part of an affected coalition
will choose to accept a demand fromi that lowers its pay-
off with probabilityε iff j believes there exists some coali-
tion S, with i, j ∈ S, such that all members ofS are better
off than currently (i.e.,Vj(S) >

∑
k∈S p̄j

k).
The BRE process has some reasonable properties. First

we note that absorbing states of the process coincide with
Bayesian core allocations.

Theorem 1 The set of demand vectors associated with an
absorbing state of the BRE process coincides with the set
of BC allocations. Specifically,ω = 〈CS , ~d, ~αCS 〉 is an ab-
sorbing state of the BRE process iff〈CS , ~d〉 ∈ BC and each
αC , C ∈ CS satisfies the stability requirement.

Proof sketch:Part(i): If a stateω is in the BC, no agent be-
lieves that he can gain either by switching coalitions or by
changing his demand. Moreover, as no agent believes that a
“blocking” coalition exists, no agent experiments.

Part(ii): Suppose thatω = 〈CS , ~d, ~αCS 〉 is a non-BC
absorbing state of the BRE process. Since it is not in the
BC, then there exists somei that believes there exists anS
andα′ s.t.p̄i

i,S(α′) > p̄i
i,C(αi

CS). Consequently, with prob-
ability ε, at leasti will experiment, potentially asking for
zero payoff. Thus, there exists a positive probability thatω
will be left, which contradicts the statement thatω is ab-
sorbing.

Theorem 1 does not guarantee that a BC allocation will
actually be reached by the BRE process. However, we can
prove the following theorem:

Theorem 2 If the BC is non-empty, the BRE process will
converge to an absorbing state with probability one.

Proof sketch: The proof is completely analogous to the
proof for the deterministic coalition formation model [5].
The basic idea is that when the BC is not empty, all ergodic
sets reached by the BRE process are singletons, therefore
the BRE process will converge to an absorbing state.

Theorems 1 and 2 together ensure that if the BC is not
empty then the BRE process will eventually reach a BC al-
location, no matter what the initial coalition structure.

To test the validity of this approach empirically, we ex-
amined the BRE process on several simple Bayesian coali-



tion problems. The first test was very simple: a game with
three agents, each having common beliefs about coalition
values. We start the BRE process in an absorbing state of
the best reply (withoutexperimentation) process, but which
is not in the BC. Unsurprisingly, the BR process never left
the absorbing state, while the BRE process always (30/30
runs) converges to an absorbing configuration in the BC. In
19 runs, the process converged in fewer than fifty propos-
als (typically less than 25) but in one case took 207 rounds.

For interest, we tested BRE on the 3-player majority
game [5, 7], a well-known example of a game having an
empty core. The agents shared common beliefs about the
coalitional values to mimic a standard characteristic func-
tion game. As expected, neither the BR nor the BRE pro-
cess converged to a stable configuration.

We also tested a game having a non-empty BC in which
the initial beliefs of the three agents differed and each coali-
tion had three actions available to it. The BRE process man-
aged to reach a BC configuration in all 30 runs tested. The
greatest number of negotiation rounds to convergence was
292, however, a BC configuration was typically reached
in less than 100 rounds. In five of the 30 runs, the agents
reached a BC configuration almost instantaneously (in less
than five rounds). The BR process, on the other hand, con-
verged to a BC configuration in only 19/30 runs. Interest-
ingly, in all runs it did reach a coalitionstructurein the BC,
but not always with an appropriate payoff allocation.

4. A Bayesian RL Framework

While the core and related stability concepts provide firm
foundations for cooperative games when all coalitions have
known value, their applicability in realistic settings must be
called into question. Generally, agents will face the types
of uncertainty described above. One may ask, of course, if
agents are faced with the possibility of repeated interaction,
would most uncertainty about agent types eventually van-
ish? We argue that in fact, not only is it generally infeasi-
ble for “type uncertainty” to vanish, but furthermore that
agents often have no incentive to engage in actions (or in-
teractions) that would reduce this uncertainty.

In this section, we describe an RL model in which agents
repeatedly form coalitions and take coalitional actions. This
gives agents the opportunity, through observation of the out-
come of coalitional actions, to update their beliefs about
the types of their partners. This will, using notions like the
BC, influence future coalition formation decisions. With a
Bayesian approach torepeated coalition formation, agents
are often satisfied not to learn about the abilities of poten-
tial partners, if the costs of doing so outweigh the antici-
pated benefits (orvalue of information).

We suppose a standard Bayesian coalition problem as be-
fore, withN players, each havinginitial beliefsBi. The RL

process proceeds in stages: at each staget, the agents en-
gage in some coalition formation process, based on their
current beliefsBt

i .
6 Once coalitions are formed, eachC ∈

CS t takes its agreed upon actionαt
C and observes the re-

sulting states. Each member of the coalition then updates
its beliefs about its partners’ types:

Bt+1
i (~tC) = z Pr(s|α,~tC)Bt

i (~tC)

wherez is a normalizing constant (we sometimes denote the
updated belief state asBs,α

i ). The process then repeats.
We adopt an approach to optimal repeated coalition for-

mation that usesBayesian exploration. As demonstrated in
our approach to multiagent RL [3], Bayesian agents in mul-
tiagent interaction can balance exploration with exploita-
tion, effectively realizingsequentialperformance that is op-
timal with respect to their beliefs about other agents.7 We
cast the problem of optimal learning as a partially observ-
able MDP (POMDP), or abelief-state MDP.

If we assume an infinite horizon problem, with discount
factor0 ≤ γ < 1, it is reasonably straightforward to formu-
late the optimality equations for the POMDP; however, cer-
tain subtleties will arise because of an agent’s lack of knowl-
edge of other agent beliefs. Let agenti have beliefsBi about
the types of other agents. LetQi(C, α, ~dC , Bi) denote the
(long-term) valuei places on being a member of coalitionC
that has agreed actionα and demands~dC , realizing that af-
ter this action is taken, the coalition formation process will
repeat. This is defined as:

Qi(C, α, ~dC , Bi) =
X

s

Pr(s|C, α, Bi)[riR(s) + γVi(B
s,α
i )] (1)

=
X

~tC

Bi(~tC)
X

s

Pr(s|C, α,~tC)[riR(s) + γVi(B
s,α
i )]

Vi(Bi) =
X

C|i∈C,~dC

Pr(C, α, ~dC |Bi)Qi(C, α, ~dC , Bi) (2)

Unlike the typical Bellman equations, the value function
Vi cannot be defined by maximizing Q-values. This is be-
cause the choices that dictate reward, namely, the coali-
tion that is formed, are not in complete control of agent
i. Instead,i must predict, based on it beliefs, the probabil-
ity Pr(C, α, ~dC |Bi) with which a specific coalitionC (to
which it belongs) and agreement〈α, ~dC〉 will arise as a re-
sult of negotiation. However, with this in hand, the value
equations provide the means to determine thelong-term
valueof any coalitional agreement. Specifically, it accounts
for how i’s beliefs will change in the future when decid-
ing how useful a specific coalition is now.

6 The model can be extended by allowing state transitions—we sim-
ply let the value of any coalitional action depend on the current state.
This would allow for a sequential environment model (an underlying
MDP). We don’t consider this here, instead focusing on the sequen-
tial nature of repeated coalition formation itself.

7 Of course, this draws heavily on methods for optimal Bayesian explo-
ration in bandit problems and single-agent RL [2, 4].



We now consider four types of reinforcement learn-
ers. The first areNon-myopic/full negotiation (NM-FN).
Agents in this class employfull negotiationwhen form-
ing coalitions, attempting to find a BC structure and allo-
cation before engaging in their actions. For instance, they
might use the dynamic process described above to deter-
mine suitable coalitions given theircurrent beliefs. Fur-
thermore, they employ lookahead, or sequential reason-
ing, in their attempt to solve (possibly approximately) the
POMDP described by Eqs. 1 and 2. Several difficulties
face non-myopic RL agents. One bottleneck is calculating
Pr(C, α, ~d|Bi) in Eq. 2, the probability of negotiation end-
ing with the agent in a specific coalition in a specific state of
the coalition formation process Markov chain (i.e., in a spe-
cific coalition structure under a specific agreement). While
the Markov chain can be analyzed readily (thus determining
the steady state distribution) if the parameters are known,
agenti does not have full knowledge of it, since it is un-
aware of other agents’ beliefs. However, these beliefs can
be approximated in a variety of ways, and the approximate
Markov chain solved.

A second difficulty facing NM-FN agents is the difficulty
of solving the optimal exploration POMDP. Several compu-
tational approximations can be used in order to make this
tractable. Instead of dealing with every possible future be-
lief state, we may instead use “one-step lookahead”, deal-
ing only with immediate successor states. Alternatively, we
can employVPI sampling, a method developed in [4], and
adapted to the multiagent RL context in [3]. This technique
estimates the (myopic) value of obtaining perfect informa-
tion about a coalitional action given current beliefs. In ei-
ther case, the sequential value of any coalitional action, ac-
counting for its value of information, is then used in the for-
mation process.

Myopic/full negotiation (M-FN)agents use full negotia-
tion to determine coalitions at each stage. However, they do
not reason about future (belief) states when assessing the
value of coalitional moves. Essentially, M-FN agents en-
gage in repeated application of a myopic formation pro-
cess (e.g., the straightforward proposal process described
above), choose actions, and repeat.

Myopic/one-step proposers (M-OSP)are agents that are
myopic regarding the use of their beliefs when estimating
coalition values (like M-FN), but do not employ full negoti-
ation to form coalitions. Rather, at each stage of the RL pro-
cess, one random proposer is chosen, and once a proposal
has been made and accepted or rejected, no further negoti-
ations take place: the coalitional action is executed after a
singleproposal.Non-myopic/one-step proposers (NM-OSP)
are, naturally, the obvious combination of NM-FN and M-
OSP agents.

When comparing these approaches, we see that FN ap-
proaches have the advantage that at the end of each RL

stage, before actions are executed, the coalition structure is
in a stable state, provided that a coalition formation pro-
cess which ensures this is employed (e.g., if the BC in non-
empty and BRE is used). Another advantage of FN is that
agents have the opportunity to update their beliefs regard-
ing other agents’ types during the negotiation itself (though
we do not explore the possibility here). In contrast, OSP
approaches, have the advantage of giving more flexibility
to the agents to investigate the space of structures, trying
out different coalitions without being bound to reach a sta-
ble structure at each stage before acting (and gaining infor-
mation). Finally, OSP methods have the obvious advantage
that they apply best in situations where “real-time” perfor-
mance is an issue (since no lengthy negotiations are used af-
ter each RL stage). One can show, in fact, OSP methods will
converge to the BC of a game (if it is nonempty): it is suffi-
cient to ensure that agents’ beliefs regarding coalitional val-
ues stabilize over time.

We have to date only experimented with myopic ap-
proaches, but experiments with non-myopic approaches are
under way. We should also note that we allowed for observ-
ability of occurring outcome states by both the members
and non-members of an acting coalition, even though this is
not required by our model.

To test M-FN and M-OSP, we first ran an experiment
with three agents, two types per agent, three actions per
coalition and three outcomes per action. When an M-FN ap-
proach was used, 1000 steps were used for the coalition for-
mation process at each RL step. In many cases, these steps
are sufficient for the agents to converge in the BC even with-
out their beliefs having converged to true values regard-
ing partners’ types and coalitional values. After an aver-
age of 31 RL steps (in 30 runs), the agents’ beliefs con-
verge to such values that they always reach BC configura-
tions in all subsequent coalition formation attempts. As ex-
pected with full negotiation, agents do not get to know with
certainty the true types of all players. However, the agents’
beliefs (after 100 RL steps) do converge on thetrue typesof
their partners in the BC coalitions to which they have con-
verged, and the true values of coalitions with these partners.
For “non-partners,” At convergence, each agent has on av-
erage a degree of belief 0.7 regarding the true types of its
“non-partners.” On the other hand, agents using an M-OSP
approach have the opportunity to explore the space of coali-
tion structures more broadly. In this small problem, it takes
on average 392 RL steps for their beliefs to stabilize, af-
ter which they converge to BC configurations. Furthermore,
they eventually learn the true types ofall other agents.

We also tested our approach in a setting with 5 agents, 10
types/agent, 3 actions/coalition and 3 outcome states/action.
The agents form companies to bid for software development
projects. There exist 3 “major” types having 3 or 4 “quality”
types each:interface designer= 〈bad, average, expert〉,



programmer= 〈bad, average, good, expert〉 and systems
engineer= 〈bad, average, expert〉. The companies can bid
for a large, average-sized or small project, and they ex-
pect to make large, average or small profit, given their
choices and their members’ types. In general bidding for
large projects is less likely to be rewarding, but the more
members a coalition has, the more likely it is that it will be
successful in getting higher profits if it tries to bid for large
projects. Coalitions with competent members of different
major types have more potential for high reward, in con-
trast to coalitions with incompetent members. The actual
types of the agents were set toa1 = bad programmer, a2 =
good programmer, a3 = expert programmer, a4 = bad in-
terface designeranda5 = bad systems engineer. The agents
know the major type of their opponents, but not their qual-
ity types. The most profitable coalition structure in our sce-
nario was{〈a1〉, 〈a2, a3〉, 〈a4〉, 〈a5〉}, where the two “com-
petent” programmers form a coalition and bid for average-
sized projects.

After 30 runs of 200 RL steps, FN-agents learn the ac-
tual types of the opponents with certainty 20/30 times. In
these cases, they manage to converge to the most profitable
coalition structure. In addition, they manage to converge
to BC configurations in 20/30 runs, on average within 118
RL steps, behaving optimally to the best of their knowl-
edge. The 10 runs that do not converge to BC configura-
tions, have nevertheless converged to stable coalition struc-
tures, but slight changes in their beliefs make some agents
occasionally unsure about their payoff allocation, and this
results to the agents alternating between BC configurations
and non-BC configurations.

We also chose to employ the OSP approach with only
200 RL steps for this time-consuming problem. The OSP
agents manage to discover and converge to the most prof-
itable CS in 15/30 runs—but they are not (yet) really “con-
vinced”: they converged to BC configurations in only 6/30
runs.

5. Conclusions

We proposed a new model for coalition formation with
type uncertainty reflecting uncertain knowledge about the
abilities of potential partners. The Bayesian core concept
seems fairly natural, and we also described a dynamic coali-
tion formation process and an RL model for learning about
potential partners through repeated interaction, which is of
great applicability in real-world situations. Note that the
proposed Bayesian RL framework is independent of the un-
derlying negotiation process, or the requirement to conver-
gence to a specific stability concept. It enables agents to
weigh their need to explore the abilities of their potential
partners with their need to exploit knowledge acquired so
far.

There are several interesting directions we intend to pur-
sue. Among these are extending the BC concept so that it
provides for “meta-reasoning” regarding one’s beliefs about
the beliefs of others. We are also interested in deriving con-
ditions under which the BC is non-empty, as well as recast-
ing the ideas presented here to coalitional bargaining with
discounted payoffs in the presence of uncertainty, deriving
Bayes-Nash equilibria of the negotiation process [8].
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