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Abstract

Significant recent work has focused on using linear represen-
tations to approximate value functions for factored Markov
decision processes (MDPs). Current research has adopted lin-
ear programming as an effective means to calculate approxi-
mations for agivenset of basis functions, tackling very large
MDPs as a result. However, a number of issues remain un-
resolved:How accurate are the approximations produced by
linear programs? How hard is it to produce better approxi-
mations?andWhere do the basis functions come from?To
address these questions, we first investigate the complexity
of minimizing the Bellman error of a linear value function
approximation—showing that this is an inherently hard prob-
lem. Nevertheless, we provide a branch and bound method
for calculating Bellman error and performing approximate
policy iteration for general factored MDPs. These methods
are more accurate than linear programming, but more expen-
sive. We then consider linear programming itself and inves-
tigate methods for automatically constructing sets of basis
functions that allow this approach to produce good approxi-
mations. The techniques we develop are guaranteed to reduce
L1 error, but can also empirically reduce Bellman error.

1 Introduction
Markov decision processes (MDPs) pose a problem at the
heart of research on optimal control and reinforcement
learning in stochastic environments. This is a well stud-
ied area and classical solution methods have been known
for several decades. However, the standard algorithms—
value-iteration, policy-iteration and linear programming—
all produce optimal control policies for MDPs that are ex-
pressed in explicit form; that is, the policy, value function
and state transition model are all represented in a tabular
manner that enumerates the entire state space. This renders
classical methods impractical for all but toy problems. The
real goal is to achieve solution methods that scale up reason-
ably in the size of thestate description, not the size of the
state space itself (which is usually either exponential or in-
finite). Justifiably, most recent work in the area has concen-
trated on scaling-up solution techniques to handle realistic
problems.

There are two basic premises to scaling-up: (1) exploit-
ing structure in the MDP model (i.e. structure in the reward
Copyright c© 2002, American Association for Artificial Intelli-
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function and the state transition model); and (2) exploiting
structure in an approximate representation of the optimal
value function (or policy). Most credible attempts at scaling-
up have exploited both types of structure. Even then, it is
surprisingly hard to formulate an optimization method that
can handle large state descriptions while reliably producing
value functions or policies with small approximation errors.

Initial research on expressing MDPs compactly has con-
sidered representations such as decision trees or decision
diagrams to represent the state transition model and re-
ward function in a concise manner (Boutilier, Dearden, &
Goldszmidt 2000; Boutilier, Dean, & Hanks 1999). An-
other recent approach has investigated using factored-table
state transition and reward models, where the state vari-
ables exhibit limited dependence and have localized influ-
ence (Koller & Parr 1999). Both representational paradigms
allow complex MDPs to be represented in a compact form.
Unfortunately, neither ensures that the optimal value func-
tion (or policy) has a compact representation (Koller & Parr
1999). Thus, it appears that one still has to consider compact
approximations to the value function (or policy) to make
progress.

Numerous schemes have been investigated for represent-
ing approximate value functions and policies in a compact
form, including: hierarchical decompositions (Dietterich
2000), decision trees and diagrams (Boutilier, Dearden, &
Goldszmidt 2000) generalized linear functions (Koller &
Parr 1999; 2000; Guestrin, Koller, & Parr 2001a), splines
(Trick & Zin 1997), neural networks (Bertsekas & Tsitsiklis
1996), and products of experts (Sallans & Hinton 2000).

This paper focuses on using factored-table MDP repre-
sentations in conjunction withlinear value function approxi-
mators. Linear approximators have the advantage of provid-
ing universal approximation ability (given a sufficient ba-
sis) and allowing the widest array of computational tech-
niques to be brought to bear. Moreover, linear approxima-
tions interact very well with factored MDP representations
(Koller & Parr 1999; 2000). This combination allows ap-
proximation methods to be devised which can be feasibly
applied to very large MDPs. Two recent examples of this
are the approximate policy iteration technique of (Guestrin,
Koller, & Parr 2001a) and the approximate linear pro-
gramming approaches of (Guestrin, Koller, & Parr 2001b;
Schuurmans & Patrascu 2001). Many researchers have be-



gun to adopt linear programming as a particularly conve-
nient method for generating value approximations for large
MDPs (de Farias & Van Roy 2001). A few issues remain
unclear, however. First, the extent to which linear program-
ming sacrifices approximation accuracy for computational
expedience is not well understood. Second, there is a need
for a systematic method for improving approximation accu-
racy in cases where it is insufficient. Finally, previous re-
search has not significantly addressed the question of where
the basis functions come from in the first place. We attempt
to address these three questions here.

2 Background
We will consider MDPs with finite state and action spaces
and assume the goal of maximizing infinite horizon dis-
counted reward. We assume states are represented by vec-
torss = s1, ..., sn of lengthn, where for simplicity we as-
sume the state variabless1 , ..., sn are in{0, 1}; hence the
total number of states isN = 2n. We also assume that there
is a small finite set of actionsA = {a1, ..., a`}. An MDP is
then defined by: (1) a state transitionmodelP (s′|s, a) which
specifies the probability of the next states′ given the current
states and actiona; (2) a reward functionR(s, a) which
specifies the immediate reward obtained by taking actiona
in states; and (3) a discount factorγ, 0 ≤ γ < 1. The prob-
lem is to determine an optimal control policyπ∗ : S → A
that achieves maximum expected future discounted reward
in every state.

To understand the classical solution methods it is useful
to define some auxiliary concepts. For any policyπ, the
value functionV π : S → IR denotes the expected future
discounted reward achieved by policyπ in each states. This
V π satisfies a fixed point relationshipV π = BπV π , where
Bπ operates on arbitrary functionsv over the state space

(Bπv)( s) = R(s, π(s)) + γ
∑

s′ P (s′|s, π(s))v(s′)

Another important operator,Ba, is defined for each action

(Bav)( s) = R(s, a) + γ
∑

s′ P (s′|s, a)v(s′)

The action-value functionQπ : S×A→ IR denotes the ex-
pected future discounted reward achieved by taking action
a in states and following policyπ thereafter; which must
satisfyQπ(s, a) = (BaV π)(s). Given an arbitrary func-
tion v over states, the greedy policyπgre(v) with respect
to v is given byπgre(v)(s) = arg maxa (Bav) (s). Fi-
nally, if we letπ∗ denote the optimal policy andV ∗ denote
its value function, we have the relationshipV ∗ = B∗V ∗,
where (B∗v) (s) = maxa (Bav) (s). If, in addition, we
define Q∗(s, a) = BaV ∗ then we also haveπ∗(s) =
πgre(V ∗)(s) = arg maxa Q∗(s, a). Given these definitions,
the three fundamental methods for calculatingπ∗ can be for-
mulated as:

Policy iteration: Start with someπ(0). Iterateπ(i+1) ←
πgre(V π(i)

) until π(i+1) = π(i). Returnπ∗ = π(i+1).

Value iteration: Start withv(0). Iteratev(i+1) ← B∗v(i)

until ‖v(i+1) − v(i)‖∞ < tol. Returnπ∗ = πgre(v(i+1)).

Linear programming : CalculateV ∗ = arg minv

∑
s v(s)

s.t. v(s) ≥ (Bav) (s) for all a, s. Returnπ∗ = πgre(V ∗).

All three methods can be shown to produce optimal poli-
cies for the given MDP (Bertsekas 1995a; Puterman 1994)
even though they do so in very different ways. However, to
scale up it is necessary to exploit substantial structure in the
MDP while also adopting some form of approximation for
the optimal value function and policy.

2.1 Factored MDPs and linear approximators
A factoredMDP is one that can be represented compactly
by an additive reward function and a factored state tran-
sition model (Koller & Parr 1999; 2000). Specifically,
we assume the reward function decomposes asR(s, a) =∑m

r=1 Ra,r(sa,r) where each local reward functionRa,r is
defined on a small set of variablessa,r. We assume the state
transition modelP (s′|s, a) can be represented by a set of dy-
namic Bayesian networks (DBNs) on state variables—one
for each action—where each DBN defines a compact tran-
sition model on a directed bipartite graph connecting state
variables in consecutive time steps. Letsa,i denote the par-
ents of successor variables′i in the DBN for actiona. To
allow efficient optimization we assume the parent setsa,i

contains a small number of state variables from the previ-
ous time step. (It is possible to allow parents from the same
time step, but we omit this possibility for simplicity.) Given
this model, the probability of a successor states′ given a
predecessor states and actiona is given by the product
P (s′|s, a) =

∏n
i=1 P (s′i|sa,i, a). The main benefit of this

representation is that it allows large MDPs to be encoded
concisely: if the functionsRa,r(sa,r) andP (s′i|sa,i, a) de-
pend on a small number of variables, they can be repre-
sented by small tables and efficiently combined to determine
R(s, a) andP (s′|s, a). It turns out that factored MDP rep-
resentations interact well with linear functions.

We will approximate value functions with linear functions
of the formvw(s) =

∑k
j=1 wjbj(sj), whereb1, ..., bk are

a fixed set of basis functions andsj denotes the variables
on which basisbj depends. For this approach to be effec-
tive the variable sets have to be small and interact well with
the MDP model. Combining linear functions with factored
MDPs provides many opportunities for feasible approxima-
tion. The first significant benefit of combining linear ap-
proximation with factored MDPs is that the approximate
action-value(Q) function can also be represented concisely.
Specifically, definingqw(s, a) = (Bavw)(s) we have

qw(s, a) =
∑m

r=1 Ra,r(sa,r) +
∑k

j=1 wjha,j(sa,j) (1)

whereha,j(sa,j) = γ
∑

s′j
P (s′j|a, sa,j)bj(s′j) and sa,j =⋃

s′
i
∈s′

j
sa,i. That is,sa,i are the parent variables ofs′i, and

sa,j is the union of the parent variables ofs′i ∈ s′j. Thus,ha,j

expresses the fact that in a factored MDP the expected fu-
ture value of one component of the approximation depends
only on the current state variablessa,j that are direct par-
ents of the variabless′j in bj. If the MDP is sparsely con-
nected then the variable sets inq will not be much larger than
those inv. The ability to represent the state-action value



function in a compact linear form immediately provides a
feasible implementation of the greedy policy forvw, since
πgre(vw)(s) = arg maxa qw(s, a) by definition ofπgre,
andqw(s, a) is efficiently determinable for eachs anda.

2.2 Approximate linear programming
The combination of factored MDPs and linear approxima-
tors allows one to devise an efficient linear programming
approach to generating value function approximations on a
given basis. We refer to this as “approximate linear pro-
gramming,” or ALP for short.

ALP 1: Calculatew = arg minw

∑
s vw(s) subject to

vw(s)− qw(s, a) ≥ 0 for all s, a. Returnqw.

Although this approach has been known since (Schweitzer &
Seidman 1985) it has only recently been exploited with fac-
tored MDPs and linear approximators—resulting in feasi-
ble techniques that can scale up to large problems (Guestrin,
Koller, & Parr 2001a; Schuurmans & Patrascu 2001). To un-
derstand how scaling-up is facilitated, first note that the LP
objective can be encoded compactly
∑

s vw(s) =
∑k

j=1 wjyj whereyj = 2n−|sj| ∑
sj

bj(sj)
(2)

Here theyj components can be easily precomputed by enu-
merating assignments to the small sets of variables in ba-
sis functions. Second, even though there are an exponen-
tial number of constraints—one for each state-action pair—
these constraints have a structured representation that allows
them to be handled more efficiently than explicit enumera-
tion. Note that the constraintvw(s) − qw(s, a) ≥ 0 can be
rewritten asc(s,a) ·w ≥ r(s,a) where

c(s,a),j = bj(sj)− ha,j(sa,j) for j = 1, ..., k

r(s,a) =
∑

r Ra,r(sa,r) (3)

(recall the definition of ha,j in (1) above). This allows one
to rewrite the linear program in a more conventional form:

ALP 2: Calculatew = arg minw y · w subject toc(s,a) ·
w ≥ r(s,a) for all s, a. Or in matrix notation: w =
arg minw y>w subject toCw ≥ r.

The easy part to solving this linear program is handling the
objectivey. The hard part is handling the large number of
constraints. However, this can be simplified by noting that
one can checkw for constraint violations by determining
mins,a (c(s,a) · w − r(s,a)). This can be calculated by con-
ducting a search over state configurations, one for each ac-
tion, each of which can be solved efficiently by solving a
cost network. Overall, this observation allows one to either
re-represent the entire set of constraints in a compact form
(Guestrin, Koller, & Parr 2001a), or efficiently search for a
most violated constraint in a constraint generation scheme
(Schuurmans & Patrascu 2001). Either approach yields rea-
sonable approximation methods for factored MDPs.

2.3 Approximation error
One important issue is to ascertain the approximation error
of the solutions produced by linear programming. Here one

can show that ALP calculates a weight vectorw that mini-
mizes theL1 error betweenvw andV ∗, subject to the con-
straints imposed by the linear program (de Farias & Van Roy
2001): Recall that theL1 error is given by

∑
s |vw(s)− V ∗(s)| (4)

and note that the linear program constraint impliesvw ≥
V ∗ (Bertsekas 1995a). Then,

∑
s |vw(s) − V ∗(s)| =∑

s vw(s)− V ∗(s) =
∑

s vw(s)− C for C =
∑

s V ∗(s).
Unfortunately, theL1 error is not the best objective

to minimize in this context. Normally we are inter-
ested in achieving a smallL∞ error, which is given by
maxs |vw(s) − V ∗(s)|. Although minimizingL∞ error
is the ultimate goal, there are no known techniques for min-
imizing this objective directly. However, progress can be
made by considering the closely relatedBellman error

max
s
|vw(s) −max

a
qw(s, a)| (5)

Although Bellman error is much more convenient to work
with thanL∞ error, it is still much harder minimize than
theL1 objective

∑
s vw(s). However, reducing Bellman er-

ror remains an important research question because it is di-
rectly related to theL∞ error by the well known inequality:
L∞ error ≤ γ

1−γ Bellman error(Williams & Baird 1993).

3 Minimizing Bellman error
The first contribution of this paper is to show that some
progress can be made in attacking Bellman error within the
linear value function approach. However, dealing with Bell-
man error poses significant challenges. The first observation
is that given afixedweight vectorw, simply determining the
Bellman error ofvw is a hard problem.

Theorem 1 It is co-NP-completeto determine whether the
Bellman error ofvw for givenw is less than a givenδ.1

Proof sketch. The idea is to show that the complementary problem
of deciding whether Bellman error is at leastδ is NP-complete.
First, it is easy to show the problem is in NP because a witness state
can be used to certify a large Bellman error, and this can be verified
in polynomial time using the structured computation (1). Next, to
show the problem is NP-hard one can use a simple reduction from
3SAT: Given a 3CNF formula, let the state variables correspond to
the propositional variables. Construct a basis functionbj for each
clause, such thatbj indicates whether the clause is satisfied by the
state assignment. Set the rewards to zero and the transition model
to identity foreach action, and setγ = 0 andw = 1. The Bellman
error (5) for this setup becomesmaxs

∑k

j=1
bj(sj). If k is the

number of clauses, then the Bellman error will bek if and only if
the original 3CNF formula is satisfiable.

Of course, the real goal is not just to evaluate Bellman error,
but to minimizeBellman error. This, however, appears to
pose an even greater computational challenge.

Theorem 2 It is NP-hardto determine whether there exists
a weight vectorw such thatvw has Bellman error less than

1Although Theorems 1 and 2 do not directly follow from the
results of (Lusena, Goldsmith, & Mundhenk 2001; Mundhenket
al. 2000), the proofs are straightforward.



δ for a givenδ. The problem, however, remains inNPco-NP.
(We conjecture that it is complete for this harder class.)

Proof sketch. First, to establish that the problem is inNPco-NP,
one can note that an acceptablew can be given as a certificate of
small Bellman error, and this can then be verified by consulting
a co-NP oracle. Second, NP-hardness follows from a trivial re-
duction from 3SAT: Given a 3CNF formula, let the state variables
correspond to the propositional variables, and construct a local re-
ward functionrj for each clause that is the same for each action,
whererj is set to be the indicator function for satisfaction of clause
j. Choose a single trivial basis functionb0 = 0. Set the transition
model to be identity foreach action and setγ = 0. The Bell-
man error (5) in this setup becomesmaxs

∑k

j=1
rj(sj). If k is the

number of clauses, thenminw maxs

∑k

j=1
rj(sj) yields valuek

if and only if the original 3CNF formula is satisfiable.

Thus, dealing with Bellman error appears to involve tackling
hard problems. Nevertheless, we can make some progress
toward developing practical algorithms.

First, for the problem of calculating Bellman error, an
effective branch and bound strategy can easily be derived.
Note that the Bellman error (5) reduces to two searches

min
s

(
vw(s)−max

a
qw(s, a)

)

max
s

(
vw(s) −max

a
qw(s, a)

)
(6)

The first search is easy because it is equivalent to
mina mins vw(s)− qw(s, a) and can be calculated by solv-
ing a cost network for each action (similar to the ALP prob-
lem above). However, the second search is much harder be-
cause it involves a maxi-min problem:maxs mina vw(s) −
qw(s, a). Nevertheless, we can calculate this value by em-
ploying a branch and bound search over states foreach ac-
tion. The key observation is that (6) is equivalent to

max
a

max
s:s∈π−1

w (a)
vw(s)− qw(s, a)

That is, for each state the minimum action is determined by
the policyπw(s) = arg mina qw(s, a) defined byw, and
therefore for each actiona we can restrict the search over
states to regions of the space wherea is the action selected
by πw. That is, for a given action, saya1, we search for a
constrained maximum

max
s

vw(s)− qw(s, a1) s.t. qw(s, a1) ≥ qw(s, a2)
...
qw(s, a1) ≥ qw(s, a`),

(7)

and similarly for actionsa2, ..., a`. An exhaustive search
over the state space could determine this quantity foreach
action. However, we can implement a much more efficient
branch and bound search by calculating upper bounds on the
maximum using the Lagrangian:

L(s, µ) = vw(s)−qw(s, a1) + µ2[qw(s, a1) − qw(s, a2)]
...

+ µ`[qw(s, a1)− qw(s, a`)]

Cycle problem
n = 12 15 18 20 24 28 32
N = 4e4 3e5 3e6 1e7 2e8 3e9 4e10
Nodes 194 288 384 392 466 832 700
Time (s) 63 131 225 279 451 959 1086
B.Err. 8.1 9.6 12.3 13.8 16.7 19.5 22.4

3legs problem
n = 13 16 19 22 25 28
N = 8e4 7e5 5e6 4e7 3e8 3e9
Nodes 2150 802 6950 1327 18394 3124
Time (s) 525 291 3454 866 14639 2971
B.Err. 8.6 12.9 12.9 17.2 17.2 21.5

Table 1: Bellman results: singleton bases2

It is easy to show thatmaxs L(s, µ) gives an upper bound
on the constrained maximum (7) for anyµ ≥ 0. (The un-
constrained maximum is clearly an upper bound on the con-
strained maximum, and if the constraints are satisfied we
must again have an upper bound sinceµ is nonnegative.)
What is crucial about this upper bound is that it can be effi-
ciently calculated for fixedµ by solving a cost network over
state variables (because it is just a weighted sum of func-
tions that in principle share the same structure). By choosing
good penaltiesµ (and adapting them using standard subgra-
dient optimization (Bertsekas 1995b)) we obtain an effec-
tive pruning strategy that can solve for the Bellman error in
far less time than explicit enumeration. For example, Ta-
ble 1 demonstrates results on two problems from (Guestrin,
Koller, & Parr 2001a) where in one case the Bellman error is
calculated by only expanding 700 search nodes even when
the problem has 4 billion states and 33 actions.2 Overall,
this appears to be a practical algorithm, and we use it to cal-
culate the Bellman error for all of the value approximations
we produce below.

The second question—minimizing Bellman error—
remains an open problem to the best of our knowledge, and
we do not have an exact method. Nevertheless, a similar
branch and bound search strategy can be used to implement
an approximate policy iteration scheme.

API : Start with an arbitraryw(0). Iterate(w(i+1), δ) ←
arg min(w,δ) δ subject to−δ ≤ vw(s)−qw(s, πw(i)(s)) ≤ δ

for all s andδ ≥ 0, until w(i+1) .= w(i).

This procedure uses a linear program to recover the weight

2We conducted most of our experiments on the computer net-
work problems described in (Guestrin, Koller, & Parr 2001a;
2001b). For these problems there is a directed network of com-
puter systemss1, ..., sn where each system is either up (si = 1)
or down (si = 0). Systems can spontaneously go down with some
probability ateach step, but this probability is increased if an im-
mediately preceding machine in the network is down. There are
n + 1 actions: do nothing (the default) and reboot machinei. The
reward in a state is simply the sum of systems that are up, with
a bonus reward of 1 if system 1 (the server) is up. The transition
probabilities of the state of a computer depend only on its previous
state and the state(s) of any parent computers in the network. The
two network topologies reported here are “cycle” and “three legs.”



ALP API
n B.Err. time (s) B.Err. time (s) Iters.

cycle problem, singleton bases
5 2.8 2 0.9 160 10
8 4.1 8 1.8 1,600 16

10 6.7 14 2.4 5,672 22
3legs problem, singleton bases

4 1.8 1 0.6 383 7
7 4.0 3 1.0 697 14

10 3.9 9 1.8 16,357 19

Table 2: API versus ALP results2

vectorw(i+1) that minimizes the one step error in approxi-
mating the value of the current policyπw(i) defined byw(i).
Here a branch and bound search is used to generate con-
straints for this linear program. The overall procedure gener-
alizes that of (Guestrin, Koller, & Parr 2001a), and produces
the same solutions in cases where both apply. However, the
new technique does not require the additional assumption of
a “default action” nor an explicit representation of the inter-
mediate policies (in their case, a decision list). The draw-
back is that one has to perform a branch and bound search
instead of solving cost networks to generate the constraints.
Figure 2 shows that the new API procedure is much more
expensive than ALP, but clearly produces better approxima-
tions given the same basis. However, API does not fully
minimize the Bellman error of the final weight vector. In-
stead it achieves a bounded approximation of the Bellman
error of the optimal weight vector (Guestrin, Koller, & Parr
2001a). Overall, this method appears to be too costly to jus-
tify the modest gains in accuracy it offers.

4 Minimizing L1 error
Attacking Bellman error directly with API may yield rea-
sonable approximations, but comes at the expense of solv-
ing many linear programs (one per policy iteration) and per-
forming branch and bound search. Clearly the direct ALP
approach is much faster, but unfortunately produces notice-
ably worse Bellman error than API. This raises the question
of whether one can improve the approximation error of ALP
without resorting to branch and bound. A related question
is understanding how the basis functions might be selected
in the first place. To address both questions simultaneously
we investigate strategies forautomaticallyconstructing sets
of basis functions to achieve good approximation error. We
will follow the generic algorithm of Figure 1.

The three unknowns in this procedure are (1) the proce-
dure for generating candidate domains, (2) the procedure for
constructing a basis function given a candidate domain, and
(3) the procedure for scoring the potential contribution of a
basis function to reducing approximation error.

4.1 Scoring candidate bases
The first issue we tackle is scoring the potential merit of a
basis functionbk+1 given a current basis and weight vector.
Ideally, we would like to measure the new basis function’s

Greedy basis function selectionStart with constant func-
tion b0(∅) and initial solutionw0, and iterate:
Given a current basisb1(s1), ..., bk(sk) and weightsw, note
that each basis functionbj is defined on a subset of the state
variables,sj ⊆ {s1, ..., sn}, which we refer to as itsdomain.
(1) Generate a set of candidate domainss′1, ..., s′J from the
current domains.
(2) For each candidate domains′j construct a basis function.
(3) For each basis function, score its ability to reduce ap-
proximation error. Add the best candidate to the basis, and
re-solve the LP to calculate new weights on the entire basis.

Figure 1: Greedy basis function selection procedure

effect on Bellman error. However, we have seen that mea-
suring Bellman error is a hard problem. Moreover, the ALP
procedure does not minimize Bellman error, it only mini-
mizesL1 error. Therefore, we are really only in a position
to conveniently evaluate a basis function’s effect onL1 error
and hope that this leads to a reduction in Bellman error as a
side effect. Our experimental results below show that this is
generally the case, although it is clearly not always true. For
now we focus on attackingL1 error.

The first issue is determining whether a new basis func-
tion will allow any progress to be made in the linear program
at all. To do this note that the dual of the linear program in
ALP 2 is

max
λ

λ>r subject toλ>C ≤ y>, λ ≥ 0

(Technically we must restrictw ≥ 0, but this does not pose
any insurmountable difficulties.) Imagine that we have re-
stricted attention to some basis setb1, ..., bk and solved the
linear program with respect to this set (thus fixingwj = 0
for j > k). Let (w, λ) be a solution pair to this linear pro-
gram and letB = {i : λi > 0} be the indices of the active
primal constraints. Then by complementary slackness we
must haveCBw = rB and hencew = C−1

B rB whereCB

is square and invertible. By a further application of com-
plementary slackness we haveλ>

BCB = y> and therefore
λ>

B = yT C−1
B . Now, consider what happens if we wish to

add a new basis functionbk+1 to {b1, ..., bk}. This new ba-
sis function generates a new column ofC which imposes a
new constraintλ>c:,k+1 ≤ yk+1 on λ. If the currentλ is
feasible for the new constraint, thenλ is already a global so-
lution to the dual problem involving this basis function, and
we can make no further progress on improving the primal
LP objective. This immediately yields an efficient test of
whetherbk+1 allows any progress to be made: Ifbk+1 gen-
erates a columncB,k+1 on the active constraints such that
the dual constraintλ>

BcB,k+1 > yk+1 is violated, thenbk+1

allows some progress. On the other hand, ifbk+1 satisfies
the dual constraint it is useless. This provides an efficient
test because the columncB,k+1 can easily be computed for
bk+1 on thek active constraints inB.

Next to quantifythe potential improvement of adding a
basis function we consider plausible ways to score candi-
dates. Note that any scoring function must strike a com-
promise between accuracy and computational cost that lies
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Figure 2: Basis function selection results on the cycle prob-
lem (n = 10).2 Legend shows combinations of basis construction
strategies.Scores: d = dual, p = partial, f = full.Basis: x = XOR,
o = optimized.Domain: s = sequential, l = lattice, n = neighbor.

between two extremes: The cheapest scoring function is just
the degree of dual constraint violationλ>

BcB,k+1 − yk+1,
which we refer to as thedual score. In this case a larger dual
constraint violation means that, to the first degree, the ba-
sis function will decrease the linear program objective faster
than another basis function with a smaller degree of con-
straint violation. However, the dual score ignores the pri-
mal constraints and therefore may not always be predictive.
Clearly, the most accurate, but most expensive scoring tech-
nique is simply to re-solve the entire linear program with
the new basis function to determine its exact effect. We re-
fer to this strategy as thefull LP score. Our experimental
results show that the full LP score does not yield noticeable
improvements in approximation over the dual score and is
much more expensive; see Figures 2 and 3. (We also exper-
imented with an intermediate alternative,partial LP score,
but it also yielded no noticeable benefit, so we omit a de-
tailed description.) Since the dual score achieves compara-
ble reductions to the more expensive scoring methods in our
experiments, we concentrate solely on this cheap alternative
below.

4.2 Constructing candidate bases
Next we turn to the problem of constructing the basis func-
tions themselves. Assume a set of domain variables has
already been selected. (Below we consider how to choose
candidate domains.) Any new function we construct on the
given set of variables must be nonlinear to ensure that it has a
non-vacuous effect. Here one could consider a wide range of
possible representations, including decision trees and deci-
sion diagrams, neural networks, etc. However, for simplicity
we will just focus on table-based representations where a ba-
sis function is just represented as a lookup table over assign-
ments to the given variables. A useful advantage of the table-
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Figure 3: Basis function selection results on the 3legs prob-
lem (n = 10).2 Legend shows combinations of basis construction
strategies.Scores: d = dual, p = partial, f = full.Basis: x = XOR,
o = optimized.Domain: s = sequential, l = lattice, n = neighbor.

based representation, particularly in the context of ALP, is
that one canoptimizethe lookup table values themselves to
yield a basis functionbk+1 that maximizes the dual score.
This can be done by solving a small auxiliary linear pro-
gram. (Unfortunately we have to omit the derivation in this
shortened paper.) The interesting thing about this approach
is that it implicitly considers an infinite space of basis func-
tions to select the best candidate. We refer to this approach
as theoptimized basis. We compared the optimized basis ap-
proach to a simpler method that just considered a fixed basis
function for each domain. In particular we considered the
XOR basisfor two-valued state variables,si ∈ {0, 1}, which
is defined byb(si) = (−1)si , b(si, sj) = (−1)si(−1)sj ,
b(s1, .., sk) = (−1)s1 · · · (−1)sk , etc. Figures 2 and 3 show
that the optimized basis yields noticeable benefits in reduc-
ing the linear program objective with little additional cost to
the fixed XOR basis.

4.3 Selecting candidate domains

The final issue we consider is how to select the candidate do-
mains on which to build new basis functions. A constraint
we wish to maintain is to keep the domain sizes small so
that the cost networks do not become unwieldy. We con-
sider three approaches that differ in how tightly they control
the growth in domain size. The most conservative approach,
which we refer to assequential, only considers a domain
once every smaller sized domain has been used. That is,
after the trivial constant basis, it then considers only single-
ton domains, and then considers pairs of state variables only
once the singletons are exhausted, etc. A slightly less con-
servative approach, which we calllattice, allows a candidate
domain to be considered if and only if all of its proper sub-
sets have already been added to the current basis. Finally,
the least conservative approach,neighbors, allows a candi-
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Figure 4: Basis function selection results on the resource alloca-
tion problem (2 resources, 4 tasks, 16 actions).3

date domain to be considered as soon as it can be constructed
as the union of a current domain plus one new state variable.
Figures 2 and 3 compare each of these three methods. Sur-
prisingly, the least expensive sequential strategy matches the
others in reducing the linear program objective.

4.4 Observations
Overall, the experiments exhibit interesting trends; see Fig-
ures 2–4.3 The optimized basis approach is clearly the most
effective at improving the linear program objective, although
it shows a surprising “over-fitting” effect on Bellman error.
Most of the remaining methods produce indistinguishable
results, except in runtime. The results are somewhat promis-
ing in that the adaptive basis selection technique reduced the
Bellman error of the fixed singleton basis used in the ear-
lier experiments (6.7 to 5 for the cycle problem; 3.9 to 3.8
for the 3legs problem). Also, in every case substantial re-
ductions were achieved in the linear programming objective;
particularly using the optimized basis functions. However,
these results still do not match that of the computationally
much more expensive API method of Section 3. It seems
apparent that for the ALP approach to achieve comparable
Bellman error, one may have to add a substantial number of
basis functions. Investigating the number of basis functions
necessary to make ALP truly competitive with API in terms
of Bellman error remains future work.

3We conducted an additional experiment in a generic resource
allocation domain, where the problem is to allocate resources to a
number of heterogeneous tasks. In this case, the state of the MDP
is described byn taskandm resourcebinary variables. If taskTi,
i = 1, . . . , n, is not active at the current time step, then it activates
at the next time step with a probability that need not be the same
for each task. At every stage resource variableSj , j = 1, . . . , m,
is replenished or depleted (if currently applied to a task) stochasti-
cally. Applying a number of resources to an active task may fail to
bring the task to completion, thus acting in a simple noisy-or fash-
ion. Completed tasks result in rewards which are summed together.
Actions assign free resources to needy tasks at a cost linear in the
number of assigned resources. There are as many actions as there
are ways to assign resources to tasks.
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