
New Approaches to Optimization and Utility Elicitation in Autonomic Computing

Relu Patrascu and Craig Boutilier
Department of Computer Science

University of Toronto
Toronto, ON, M5S 3H5, Canada
{cebly,relu}@cs.toronto.edu

Rajarshi Das Jeffrey O. Kephart
Gerald Tesauro William E. Walsh

IBM T.J. Watson Research Center
19 Skyline Dr.

Hawthorne, NY 10532, USA
{rajarshi, kephart, gtesauro, wwalsh1}@us.ibm.com

Abstract

Autonomic (self-managing) computing systems
face the critical problem of resource allocation to
different computing elements. Adopting a recent
model, we view the problem of provisioning re-
sources as involving utility elicitation and opti-
mization to allocate resources given imprecise util-
ity information. In this paper, we propose a new
algorithm for regret-based optimization that per-
forms significantly faster than that proposed in ear-
lier work. We also explore new regret-based elic-
itation heuristics that are able to find near-optimal
allocations while requiring a very small amount of
utility information from the distributed computing
elements. Since regret-computation is intensive,
we compare these to the more tractable Nelder-
Mead optimization technique w.r.t. amount of util-
ity information required.

1 Introduction
The complexity of large, distributed computing systems has
provided considerable impetus for research inautonomic
computing[5]. An important factor in such autonomy is the
ability to continuously allocate resources (e.g., application
server or CPU time, disk space) to distinct computing ele-
ments[1]. Unfortunately, optimal allocation of resources re-
quires knowing theutility of different levels of resource to the
various computing elements, information which is inherently
distributed and in many cases difficult to determine.

Boutilier et al. [1] propose a model for resource alloca-
tion in autonomic systems in which explicitutility elicitation
is used to extract relevant information from distributed ele-
ments. A centralprovisionerqueries elements for samples of
their utility functions at various resources levels, and makes
allocations based on these samples. With only partial utility
information, an optimal allocation cannot be determined, so
instead, the notion ofminimax regretis used to determine a
suitable allocation. In this paper, we improve on the meth-
ods of[1] in two ways and consider an alternative approach
to elicitation. First, we propose an integer programming (IP)

Copyright c© 2005, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

 0

 5

 10

 15

 20

 25

 30

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
a
x
.

U
t
i
l
i
t
y

Allocated Resource

2 WM: Max. Utility vs. Allocation

U1
U2

Total

Figure 1:Maximum utility curves:U1, U2 show the maximum util-
ity to WM1 and WM2, resp., as a function of the resource level al-
located to each. The total system utility as a function ofa1 to WM1
(with 1− a1 to WM2) is also shown.

formulation of the minimax regret problem that offers great
computational benefits over the algorithms of[1]. Though
the IP has infinitely many constraints, we derive a tractable
constraint generation procedure[4] to effectively solve this
IP. Second, we propose several new regret-based elicitation
strategies that exploit the anytime nature of our new mini-
max regret algorithm. Finally, we consider the use of Nelder-
Mead optimization[6] as an alternative approach to elicita-
tion and optimization. While Nelder-Mead generally requires
far more queries than regret-based elicitation, it is far more
tractable, thus proving more suitable in cases where evaluat-
ing the utility of resources is relatively inexpensive.

2 Regret-based Resource Allocation
We begin by reviewing the regret-based resource allocation
model of [1]. An automated resource manager, orprovi-
sioner, must allocate resources to variousworkload managers
(WMs)in a data center[7]. Each WM, given a specific alloca-
tion of resources, must decide how best to use them to service
various client contracts and maintain, say, specificquality of
service (QoS)levels for each of the transaction classes within
these contracts. We assume for simplicity that the WMs use
a single, scalar resource type. Given local information (e.g.,
distribution over transaction type demand), a WMi can com-
puteui(ai), the maximum expected revenue it could obtain
with resource levelai. Fig. 1 shows examples of two such
utility functions. Unfortunately, these utility functions gener-
ally have no convenient closed form, and computation of the

utility ui(ai) of a specific allocation levelai often requires a
combination of complex optimization and simulation.

Because the distribution of client demand changes over
time, the provisioner will periodically reallocate resources
between the WMs (hence offline computation of a fixed al-
location will not suffice). When periodically reallocating re-
sources (e.g., as demands change), ideally, the provisioner
would solve (assumingn WMs):

argmax
a∈A

∑

i≤n

ui(ai) (1)

HereA is the set of feasible allocations and we assume the
ui are independent. The provisioner thus maximizes over-
all organizational utility (e.g., the max of the “total” curve in
Fig. 1). However, the provisioner does not have direct ac-
cess to the functionsui since it typically lacks relevant inter-
nal models and state information about individual WMs (e.g.,
client demand distributions, dynamic QoS guarantees, etc.).
Nor can theui be communicated easily by the WMs, since
they generally have no closed form.

Fortunately, optimization (or approximation) of Eq. 1 does
not generally require full utility information. Boutilieret al.
[1] exploit this fact by proposing to view the utility demands
of optimal resource allocation as autility elicitation problem
[10; 3]. In their model, the provisioner asks WMs for the
utility of allocation levels at specific “critical” points—those
parts of local utility functions that have the most impact on
global optimization. Furthermore, trade-offs can be made be-
tween local computational expense, number of queries, and
(global) decision quality.

A key aspect of this model is the ability to determine an ap-
proximately optimal decision given incomplete utility func-
tion information. Boutilieret al. [1] propose the use of the
minimax regretdecision criterion[9; 2] to allow for robust al-
locations in the face of such utility function uncertainty; we
now formalize the notion.

An allocationis a vectora = 〈a1, . . . , an〉 such thatai ≥ 0
and

∑
i ai ≤ 1 (ai is the fraction of resources obtained by

i). Let A be the set of feasible allocations. We assume each
WM’s utility function ui is monotonic non-decreasing. A
utility vectoru = 〈u1, . . . , un〉 is a collection of such utility
functions, one per WM. Thevalueof an allocationa givenu
is the sum of the WM utilities:V (a,u) =

∑
i ui(ai).

We assume the provisioner has a collection of samples of
each WM’s utility function (obtained through utility elicita-
tion as discussed later). Specifically, let

0 = τ0
i < τ1

i < . . . < τk
i = a>i

be a collection ofk + 1 thresholds at which samplesui(τ
j
i)

have been provided (a>i ≤ 1 is the maximum fraction of
resources that WMi can profitably use). This collection of
samples defines a set ofk binsinto which allocationai might
fall (see Fig. 2(a)). Let[ai] denote the index of the bin in
which ai lies. Let U be the set of feasible utility vectors
(those whose componentsui are nondecreasing and consis-
tent with the sampled points). Fig. 2(a) shows bounds on a
WM utility function given a set of samples. The vertical lines
indicate bin boundaries, and the horizontal lines upper and
lower bounds on utility.

Given partial knowledge of WM utility functions in the
form of samples, the provisioner can measure the quality of a
specific allocation in terms of itsmaximum regret. This gives
a bound on the worst-case error associated with an allocation,
assuming an adversary can pick the true utility vector from
the feasible setU .

Defn. Themaximum regret of allocationa w.r.t. a′ is

MR(a,a′) = max
u∈U

V (a′,u)− V (a,u)

The max regret of allocationa is then

MR(a) = max
a′∈A

MR(a,a′) (2)

An allocationa∗ ∈ argmina∈A MR(a) is said to have
minimax regret. The minimax regret levelMMR(U) of
feasible utility setU is MR(a∗).

Minimax regret offers a reasonable method for resource allo-
cation in the face of utility function uncertainty. It minimizes
the amount of utility one could potentially sacrifice by acting
in the face of such uncertainty.

Boutilier et al. [1] compute the minimax optimal allocation
iteratively using a search algorithm that enumeratesexhaus-
tive point-wise allocations (EPAs); the method calls amax
regret IP(see below) as a subroutine. Unfortunately, because
the number of EPAs grows exponentially with the number of
WMs, the algorithm does not scale well (though many EPAs
can be pruned through domination testing). Hence, computa-
tional results presented in[1] rely on heuristic approximation
and even then are limited to 3–4 WMs and roughly 30–40
queries per WM.

The subroutine to compute the maximum regret of an al-
locationa (Eq. 2) constitutes an important part of the algo-
rithm. We note that there is a singleui (for each WM) that
supportsMR(a,a′) (w.r.t. any competing allocationa′). Let
S be a fixed set of sampled utility points (over all WMs). We
defineUBU i(a) to be utility functionui that assignsai its
lowest possible utility givenSi, but all other allocations their
highest utility consistent with the fact thatai has its lowest.
This upper bound utility functioncan be constructed simply
as follows: set the utility over the interval[τ [ai]−1

i , ai] to the

lower boundui(τ
[ai]−1
i), and the interval(ai, τ

[ai]
i] to the up-

per bound. All other binsbj
i are set to their maximum values.

Fig. 2(b) illustrates the construction ofUBU i(a). The utility
vectorUBU (a) obtained in this way ensures the following
(formalizing the observation of[1]):

Prop. 1 UBU (a) ∈ arg maxu∈U V (a′,u) − V (a,u), ∀a′
As a consequence, given a specifica, we can computeMR(a)
without requiring an explicit maximization overU , but rather
can setu to UBU (a) and simply maximize over adversarial
allocationsa′. This maximization can be formulated as an
integer program[1] involving variables that denote the adver-
sarial allocationa′ as well as indicator variables correspond-
ing to the “bins” in Fig. 2(b) (where each bin corresponds to
a constant level of the utility function); these variables de-
note whethera′i lies in the corresponding interval. The ob-
jective is to maximize the difference in utility (which is fixed

τ0 τ4τ3τ2τ1

u1

u4
u3

u2

u0
b0

b1

b2

b3

Allocation Level

U
ti
lit
y

τ0 τ4τ3τ2τ1 a
Allocation Level

U
ti
lit
y

]

(

τ0 τ4τ3τ2τ1 a'
Allocation Level

U
ti
lit
y

[

)

Figure 2: (a) Bounds on feasible utility functions; (b)UBU (a) indicated by bold lines; (c)LBU (a′) indicated by bold lines.

by utility vectorUBU (a)) between somea′ anda. The so-
lution to the IP produces awitnessaw—the adversarial allo-
cation that maximizes regret—as well as the max regret ofa:
MR(a) = MR(a,aw).

3 Constraint Generation
To circumvent the computational difficulties facing minimax
regret computation, we propose a new formulation of the
problem. We begin with the following observation. Given
samplesS, just as withUBU(a), we can show that there
exists a utility vectorLBU (a′) that maximizes the pairwise
regret against a fixed adversarial allocationa′ for anya. This
lower bound utility functioncan be constructed as follows:

set the utility over the interval[τ [a′
i]−1

i , a′i) to the lower bound

ui(τ
[ai]−1
i), and the interval[a′i, τ

[a′
i]

i] to its upper bound. All
other binsbj

i are set to their minimum values. Fig. 2(c) illus-
trates the construction ofLBU i(a′). LBU (a′) obtained in
this way ensures the following:

Prop. 2 LBU (a′) ∈ arg maxu∈U V (a′,u)− V (a,u), ∀a
To prove this we observe thatLBU i(a′) assignsai its great-
est possible utility, while assigning all other allocations their
least utility with the exception of those allocationsai ≥ a′i
that lie within the same bin asa′i. But for any such allocation,
we haveui(ai)− ui(a′i) ≥ 0 by monotonicity no matter how
we setui, and this utility vector ensures this quantity is 0.

We can formulateMMR(U) as the solution to the follow-
ing mathematical program:

MMR(U) =min
a

max
a′ max

u∈U
[V (a′,u) − V (a,u)] (3)

=min
a

max
a′ [V (a′,LBU (a′))− V (a,LBU (a′))] (4)

=min
a,δ

δ subject to (5)

δ ≥ V (a′,LBU (a′))− V (a,LBU (a′)),

∀a′ ∈ A

The reformulation in Eq. 4 is justified by Prop. 2, while Eq. 5
is a standard transformation of a minimax program into a
minimization (thus allowing LP or IP solvers to be used di-
rectly). Unfortunately, this conversion leads to an infinite IP,
since we have infinitely many constraints (one for each fea-
sible allocationa′) and infinitely many variables (required to
represent the “bins” in the different functionsLBU (a′)).

To circumvent this problem, we use a constraint genera-
tion procedure to focus only on relevant constraints (those
that will be active in the optimal solution). Intuitively, we

solve a relaxed IP with only a subset of all constraints, those
corresponding to a small setGen of adversarial allocations
a′. This can be viewed as finding the minimax optimal al-
location against a “restricted” adversary who can only select
allocations inGen. At the purported solutiona (with pur-
ported max regretδ), we then compute amaximallyviolated
constraint by computingMR(a). If one exists, and its corre-
sponding allocation is the witnessaw, thenMR(a,aw) > δ
and we know that the currenta andδ are sub-optimal. Hence
we addaw to Genand iterate. However, ifMR(a) = δ, then
no constraints are violated anda must be minimax optimal.
The procedure can be summarized as follows:

1. LetGen= {a′} for somea′ ∈ A.
2. Solve the relaxed minimax regret IP (Eq. 5) using only

constraints for thosea′ ∈ Gen. Leta∗ be the IP solution
with objective valueδ∗.

3. Compute the max regret ofa∗ using the max regret
IP (Sec. 2), giving max regretr∗ and witnessaw. If
r∗ > δ∗, then addaw to Genand repeat from Step 2;
otherwise (ifr∗ = δ∗), terminate with minimax optimal
solutiona∗ (with regret levelδ∗).

By restricting the precision of allowable bins, the proce-
dure is guaranteed to converge in a finite number of iterations,
and in practice (as we see below) converges very quickly. We
note that the IP gets larger at each iteration not just because
of the number of constraints, but also because new variables
must be added to reflect the new bins created by the new
adversariala′ added toGen (at most one variable per WM,
through clever management). We also note that the proce-
dure lends itself to anytime implementation. First, should we
terminate the process before convergence (i.e., before all vi-
olated constraints are added toGen), the solution obtained
gives us a lower bound onMMR(U); furthermore, the true
MR(a∗) provides a precise measure of the quality of solu-
tion a∗ as well as an upper bound onMMR(U). We also
envision situations where the time to obtain the minimax op-
timal allocation is critical, and one readily accepts a timely
approximation.1 Hence, instead of solving Eq. 5 exactly, we
allow the mixed integer program solver to return its best fea-
sible solution obtainable within a given period of time. The
time limit is enforced whether the exact solution or just an
approximation has been reached and the minimax regret or
the maximum regret is returned (respectively). We exploit
this time-bounded approximation below, and discuss running
times in the next section.

1Not the tightest possible bound.

 5

 10

 15

 20

 25

 0 5 10 15 20 25

52%

42%

31%

21%

10%

M
ax

 R
eg

re
t

M
R

 p
er

ce
nt

ag
e

of
 m

ax
 u

til
ity

Number of queries

Regret reduction; 3 WMs

HAB
HLB-prod

CS-prod
CS-prod-5

CS-prod-15

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25

54%

45%

36%

27%

18%

9%

0%

M
ax

 R
eg

re
t

M
R

 p
er

ce
nt

ag
e

of
 m

ax
 u

til
ity

Number of queries

Regret reduction; 4 WMs

HAB
HLB-prod

CS-prod
CS-prod-5

CS-prod-15

 10

 20

 30

 40

 50

 60

 70

 0 2 4 6 8 10 12 14

116%

99%

83%

66%

50%

33%

17%

M
ax

 R
eg

re
t

M
R

 p
er

ce
nt

ag
e

of
 m

ax
 u

til
ity

Number of queries

Max Regret Reduction: 7 WMs

CS-prod-5
CS-prod-15
CS-prod-45

CS-prod-120
CS-prod-300

Figure 3: Regret reduction per query: (a) 3 WMs; (b) 4 WMs; and (c) 7 WMs.

It is important to note that the use ofLBU (a′) in the con-
straints is critical to the success of the procedure. Standard
constraint generation would suggest computing a pair〈a′,u〉
for which the corresponding constraint is violated. That is
precisely what the max regret IP does by using the utility
vectorUBU (a). However, while the allocationa′ maximizes
the regret ofa (specifically atUBU (a)), there are (infinitely)
many other utility vectors at which regret is maximized bya′
as well. The use ofLBU (a′) is the vector that gives the min-
imax regret IP (Eq. 5) the least flexibility, thus ensuring the
most rapid progress. Computational experiments using other
choices of utility vector for the constraints verify this obser-
vation: the generation procedure does not converge nearly as
fast using choices other thanLBU (a′).

4 Elicitation Strategies
We now turn to the question of elicitation: how should the
provisioner determine which points to sample in order to find
a high quality solution? We consider both regret-based meth-
ods and a more classic optimization approach.

Regret-based Elicitation
Assume the provisioner has a setS of sampled utility points
from the WMs, and has computed a minimax optimal alloca-
tiona (or some approximation thereof). If regret levelMR(a)
is unacceptably high, it can ask utility queries of any of the
WMs to obtain additional sampled utility points. In this sec-
tion, we consider several variants of the elicitation strategies
proposed in[1] and provide systematic experiments. This is
made possible only because the constraint generation proce-
dure makes computation of minimax regret feasible.

We briefly describe the two strategies proposed in[1].
Halve-all-bins (HAB)is theoretically motivated and proceeds
at each iteration by asking each WM for its utility at the
sample points that lie midway between the current sampled
points (thus it uniformly reduces the size of the “bins” by
half at each iteration). A second strategy is thecurrent solu-
tion strategy (CS)(called “heuristic split” in[1]): this strategy
restricts queries to lie in bins containing either the current
(minimax optimal) solutiona or the adversarial witnessaw

(that “proves” the max regret ofa). Intuitively, this strategy
provides great potential to reduce minimax regret by either
increasing the lower bound on the utility ofa or decreasing
the upper bound onaw. Rather than querying both bins (since

evaluation of a query by a WM is expensive), CS chooses to
query WMi either in the bin in whichai lies, oraw

i lies, not
both. The choice of bin is determined by “size”—whichever
has the largest (normalized) sum of length and height (since
larger bins are likely to offer a significant change). The cho-
sen bin is queried at its midpoint.

We consider several variants of these methods. One strat-
egy ishalve-largest-bin (HLB), in which each WM is queried
at the midpoint of the largest utility bin (given the current set
of samples). Intuitively, this focuses elicitation effort much
more than HAB, but does not have the computational require-
ments of CS, since one need not compute minimax regret to
implement this method. Note, however, that minimax solu-
tions will need to be computed to determine which allocation
to offer, and when to stop asking queries. If the computational
burden on WMs for evaluating utility at sampled points is se-
vere (as in our motivating examples), savings in regret com-
putation can be damaging if it causes more queries to asked.
We consider two variants of HLB:HLB-sumuses the sum of
(normalized) length and height of a bin, whileHLB-produses
the product (i.e., normalized area). We also consider sum and
product variants of the CS method. Finally, we examine the
effect of approximation on CS. Specifically, we investigate
the performance ofCS-sum-kandCS-prod-k, where a time
bound ofk seconds is imposed on minimax regret computa-
tion after each query. While we may approximate minimax
regret, we hypothesize that approximate solutions will still
provide good guidance for query selection, but faster.

Nelder-Mead Optimization
The Nelder-Mead algorithm[6] is a well-established ap-
proach to optimizing continuous functions, and we adopted
an implementation similar to that in Sec. 10.4 of[8]. The al-
gorithm forms a simplex inn dimensions usingn + 1 points,
with the function evaluated at each point. It gradually ex-
pands, contracts, and moves the simplex by selecting new
candidate points, as defined by a simple set of rules. Eventu-
ally, the simplex may contract around an optimal point. As
with hill-climbing methods, Nelder-Mead can converge to
plateaus or local optima unless restarting is used.

Nelder-Mead (and indeed any derivative-free algorithm)
can be applied to elicitation by distributing function evalu-
ation among WMs. The provisioner selects each candidate
pointa for the simplex as a feasible resource allocation, and

 0

 50

 100

 150

 200

 250

 300

 350

 0 5 10 15 20 25

T
im

e(
s)

Number of queries

Regret reduction time; 3 WMs

CS-prod
CS-prod-5

CS-prod-15

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 5 10 15 20 25

T
im

e(
s)

Number of queries

Regret reduction time; 4 WMs

CS-prod
CS-prod-5

CS-prod-15

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 2 4 6 8 10 12 14

T
im

e(
s)

Number of queries

Regret reduction time: 7 WMs

CS-prod-5
CS-prod-15
CS-prod-45

CS-prod-120
CS-prod-300

Figure 4: Cumulative computation time: (a) 3 WMs; (b) 4 WMs; and (c) 7 WMs.

to evaluatea, queries each WM forui(ai). The provisioner
maintains the highest-value allocation observed as the solu-
tion. Although it does know the exact utility of each can-
didate solution, Nelder-Mead does not compute any bounds,
and gives no guarantee on the quality with respect to optimal.
In its favor, provisioner computation is much faster than when
computing minimax regret. However, there is an interesting
trade-off between provisioner and WM cost as Nelder-Mead
tends to require significantly more elicitation.

Empirical Results

In this section we describe the results of our elicitation strate-
gies for a data center model with multiple WMs. We stud-
ied configurations where each WM handled two transaction
classes and the QoS level in each class specified payment as
a function of response time. Each of these functions was a
smoothed out step function, with high payment for response
time below a threshold, and zero payment above the thresh-
old. For a fixed level of resource, a WM controls the response
time of each class through the fraction of available resource
assigned to that class. Given the constant average class ar-
rival rate, we employed a simple M/M/1 queue to model the
average response time. For our simulations, we constrain the
resource levels to lie on a discretized grid of 1000 points in
the unit interval. This discretization makes it easier to com-
pute an individual WM’s maximal utility for a given resource
level, and also eliminates floating-point roundoff errors.

We conducted simulations with three, four, and seven
workload managers, each having a different utility function.
Each experiment started with a randomly chosen known sam-
ple utility point, and proceeded to obtain more points through
elicitation, until the minimax regret dropped either to zero or
some small threshold. Although some of our elicitation pro-
cedures do not need to calculate minimax regret, we report it
here for ease of comparison. The simulations were repeated
ten times and we report the median run. For seven WMs we
refrained from calculating the exact minimax regret (due to
long computation times) and performed elicitation with vari-
ous time limits (5s, 15s, 45s, 120s, 300s) to demonstrate that
one need not necessarily compute the exact solution in order
to determine useful queries to quickly reduce regret.

When eliciting utility information, bin sizes inevitably be-
come smaller; to avoid numerical instabilities we put a lower

bound of10−5 on the size of all bins.2 We use the same10−5

bound as the integer solution tolerance for the MIP solver. All
simulations were run on Intel Xeon 2.4GHz machines using
CPLEX 9.0 as our solver.

Fig. 3 shows the true max regret of the discovered solu-
tion as a function of the number of queries, demonstrating
how quickly the various approaches reduce regret.3 Fig. 4
shows cumulative run times for computing minimax regret
(or max regret for methods that do not compute minimax op-
timal solutions after each query). HAB (tested on 3 and 4
WMs, Fig. 3(a) and (b)), though theoretically motivated, is
not able to reduce regret as quickly as HLB or the CS meth-
ods; even the severely time-bounded method CS-5 does much
better. There was virtually no difference between thesumand
prod variants of either CS of HLB, demonstrating that both
forms choose very similar queries (for simplicity we only
show theprod variant). In the 3 and 4 WM cases, CS (in
its various forms) outperforms HLB. Interestingly, the effect
of approximation on the CS strategy (in CS-5 and CS-15) is
barely noticeable. Despite approximating the solution to the
minimax regret problem, the suggested allocations have max
regret very near optimal. More importantly, CS-5 and CS-15
direct the choice of queries (which in CS is dictated by the
current solution) as well as the unbounded CS. In terms of
computation time, obviously the time-bounded methods are
the fastest, while the elicitation procedures which compute
the exact minimax regret obviously scale much worse (see
Fig. 4(a) and (b) for 3 and 4 WM results). Note that HAB
and HLB need not compute minimax solutions to determine
which query to ask; but they must do it at any iteration in
which a solution is to be offered.

Figs. 3(c) and 4(c) show results for the much larger seven-
WM problem.4 One can see that the CS strategy managed
to reduce regret quickly with time-bounds as small as five
seconds; furthermore, these results are nearly as good as those
obtained with much longer computation times. (Solve time
scales roughly linearly with the number of queries.)

2Even so a few runs had to be terminated due to the propagation
of numerical errors. We are currently investigating the cause.

3Max regret is plotted when time-bounds were imposed, mini-
max regret otherwise. In the former case, the best solution is re-
ported (one should save the best solution found afteranyquery).

4We omit plots for thesumvariant because they were almost
identical to theprodbased procedures.

 0

 5

 10

 15

 20

 25

 30

 35

 20 40 60 80 100 120 140 160

U
t
i
l
i
t
y

g
a
p

Number of queries

Utility Gap Reduction by Nelder-Mead

3 WMs
4 WMs
7 WMs

Figure 5: Utility gap reduction by Nelder-Mead.

We note that computationally effective strategies are crit-
ical if acceptable solutions are to be achieved with a mini-
mal number of queries. While computation times are not re-
ported in[1], we can see the effect of approximation in that
work. Specifically, on the same four-WM problem as tested
here, using the CS elicitation strategy, they reach a max re-
gret of roughly 20 after five queries, and 5.5 after ten queries.
This is due to the fact that they only approximate minimax
regret computation (though they do show exact max regret).
In contrast, even with approximation, we find regret levels of
roughly 7 to 8.5 (depending on the degree of approximation)
after five queries, and 2.0 after ten. The ability to solve the
minimax problem exactly, and get good approximations with
severe time bounds of 5–15 seconds has a dramatic impact on
the ability to propose good solutions and queries.

In Fig. 5 we show theutility gapreduction by Nelder-Mead
for 3, 4, and 7 WMs. The utility gap is the difference in
value between optimal and the best solution found by Nelder-
Mead.5 We ran it without restarts and show the best runs
obtained. The regret-based approaches reach zero so quickly
that they cannot be visibly plotted against Nelder-Mead. For
3 WMs, Nelder-Mead achieves a gap of under0.3 after 14
queries and under0.05 after 25 queries, and CS-5 performs
similarly. For 4 WMs, Nelder-Mead is at roughly1.6 after
160 queries; for 7 WMs, it reaches0.5 after 66 queries and
0.4 after 95 queries. CS-5 reaches zero (to within tolerance)
after just 13 queries for 4 WMs and 7 queries for 7 WMs.

By contrast, a provisioner using Nelder-Mead requires in-
significant time (under1 microsecond) to select the next can-
didate allocation. This offers the opportunity to explore the
provisioner/WM time trade-off compared with CS-5; e.g., we
might view the best approach as that with the lowest total
runtime. Since the best Nelder-Mead run requires about the
same number of queries as CS-5 in the 3 WM case, its to-
tal runtime is faster than CS-5. However, for 4 and 7 WMs,
Nelder-Mead would be competitive only if queries take un-
der 1s. of WM computation. Indeed, this analysis is biased in
favor of Nelder-Mead in that we chose the best runs, while us-
ing median runs for CS-5. These results suggest that there is
a clear advantage to our regret-based approach—except per-
haps for small problems—when elicitation is indeed costly.

5Recall that Nelder-Mead does not compute regret.

5 Concluding Remarks
We have provided a new computational procedure for com-
puting minimax regret and determining robust allocations of
resources in distributed autonomic systems. The use of a
direct IP formulation and constraint generation allows allo-
cations to be determined significantly faster than earlier ap-
proaches, and lends itself to approximation due to its anytime
nature. We have also shown that this approximation has a
negligible effect on the choice of good queries in the util-
ity elicitation in which a provisioner must engage. This is
critical since our aim is to minimize the number of (expen-
sive) utility evaluations WMs must perform. We observed
a provisioner/WM time trade-off between our approach and
the Nelder-Mead optimization method, with the regret-based
approach running faster overall when WM queries are costly.

Future research directions include further development and
study of approximation techniques and new elicitation heuris-
tics. While our model generalizes to multidimensional utility
when multiple resources are at stake, we must explore the im-
pact on our computational and elicitation methods. We have
begun exploration of a sequential model of resource alloca-
tion in which demands on WMs change over time, and re-
sources can be reallocated. If reallocation costs or delays can
be incurred, optimal resource allocation must be based on se-
quential policies. Finally, we are exploring elicitation strate-
gies for Bayesian optimization criteria.

References
[1] C. Boutilier, R. Das, J. O. Kephart, G. Tesauro, and W. E.

Walsh. Cooperative negotiation in autonomic systems using
incremental utility elicitation. 19th Conf. on Uncertainty in
AI, pp.89–97, Acapulco, 2003.

[2] C. Boutilier, R. Patrascu, P. Poupart, and D. Schuurmans.
Constraint-based optimization with the minimax decision cri-
terion. Ninth Intl. Conf. on Principles and Practice of Con-
straint Programming, pp.168–182, Kinsale, Ireland, 2003.

[3] U. Chajewska, D. Koller, and R. Parr. Making rational deci-
sions using adaptive utility elicitation.Proc. Seventeenth Na-
tional Conf. on AI, pp.363–369, Austin, 2000.

[4] B. Dantzig, R. Fulkerson, and S. M. Johnson. Solution of a
large-scale traveling salesman problem.Operations Research,
2:393–410, 1954.

[5] J. O. Kephart and D. M. Chess. The vision of autonomic com-
puting. Computer, 36(1):41–52, 2003.

[6] J. A. Nelder and R. Mead. A simplex method for function
minimization.Computer Journal, 7:308–313, 1965.

[7] D. Pescovitz. Autonomic computing: Helping computers help
themselves.IEEE Spectrum, 39(9):49–53, 2002.

[8] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetter-
ling. Numerical Recipes in C. Cambridge Univ. Press, 1992.

[9] T. Wang and C. Boutilier. Incremental utility elicitation with
the minimax regret decision criterion.Proc. 18th Intl. Joint
Conf. on AI, pp.309–316, Acapulco, 2003.

[10] C. C. White, III, A. P. Sage, and S. Dozono. A model of mul-
tiattribute decisionmaking and trade-off weight determination
under uncertainty.IEEE Transactions on Systems, Man and
Cybernetics, 14(2):223–229, 1984.

