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Abstract

We propose a model of abduction based on the revision of the epistemic state of an agent.
Explanationsmust be sufficient to induce belief in the sentence to be explained (for instance, some
observation), or ensureits consistency with other beliefs, in amanner that adequately accountsfor
factual and hypothetical sentences. Our model will generate explanations that nonmonotonically
predict an observation, thus generalizing most current accounts, which require some deductive
rel ationship between explanation and observation. It aso provides a natural preference ordering
on explanations, defined in terms of normality or plausibility. To illustrate the generality of our
approach, we reconstruct two of the key paradigms for model-based diagnosis, abductive and
consistency-based diagnosis, within our framework. This reconstruction provides an aternative
semantics for both and extends these systems to accommodate our predictive explanations and
semantic preferences on explanations. It aso illustrates how more general information can be
incorporated in a principled manner.

*Some parts of this paper appeared in preliminary form as “Abduction as Belief Revision: A Model of Preferred
Explanations,” Proc. of Eleventh National Conf. on Artificial Intelligence (AAAI-93), Washington, DC, pp.642—648 (1993).
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1 Introduction

It has become widely recognized that a lot of reasoning does not proceed in a “straightforward”
deductive manner. Reasonable conclusions cannot aways be reached simply by considering the
logical consequences (relative to some background theory) of some known facts. A common pattern
of inference that fails to conform to this picture is abduction, the notion of finding an explanation for
the truth of some fact. For instance, if the grassiswet, one might explain thisfact by postulating that
the sprinkler was turned on. Thisis certainly not a deductive consequence of the grass being wet (it
may well have rained).

Abduction has cometo play acrucia rolein knowledgerepresentation and reasoning, across many
areas of Al. In discourse interpretation, one often wants to ascribe beliefs to a speaker that explain a
particular utterance, perhaps gaining insight into the speaker’s intentions[30]. More generaly, plan
recognition often proceeds abductively. In high-level scene interpretation [51], an interpretation can
be reached by postulating scene objects that explain the appearance of objectsin an image. Probably
the most common use of abductive inference in Al isin the area of model-based diagnosis. Given
unexpected observations of the behavior of an artifact or system, a diagnosis is usually taken to be
some set of components, the malfunctioning of which explainsthese observations[14, 24, 17, 49, 43].

Traditionally, the process of abduction has been modeled by appeal to some sort of deductive
relation between the explanandum (or fact to be explained) and the explanation (the fact that renders
the explanandum plausible). Hempel’s [29] deductive-nomological explanations fal into this cate-
gory, requiring that the explanation entail the explanandum relative to some background knowledge.
Broadly speaking, this picture of abduction can be characterized as follows: an explanation for 5
relative to background theory T' will be any « that, together with T', entails 5 (usualy with the
additional constraint that {«} U 7" be consistent). Such a picture is adopted in much research on
abduction [54, 35, 50]. Theories of this type are, unfortunately, bound to the unrelenting nature of
deductiveinference. There are three directionsin which such theories must be generalized.

First, we should not require that an explanation deductively entail its observation (even relative
to some background theory). There are very few explanations that do not admit exceptions. The
sprinkler being on can explain the wet grass; but the sprinkler being on with awater main broken is
not areasonable explanation. Yet thisexceptional condition does not maketheinitial explanation any
less compelling. Rather it illustratesthat explanations may entail their conclusionsin a defeasible or
NoNMONOtoNiC sense.

Second, while there may be many competing explanations for a particular observation, certain of
these may be relatively implausible. While atanker truck exploding in front of the yard may explain
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the wet grass in the sense described above, thisis certainly not as reasonable an explanation as the
sprinkler being turned on. Thus, we require some notion of preference to chose among these potential
explanations.

Third, the deductive picture of explanation does not allow oneto explain factsthat are inconsi stent
with the background theory. Such explanations are, in fact, among the most important; for it is facts
that conflict with existing expectations that most urgently require explanation. Thisis the case in
diagnostic applications, for example, where observations to be explained contradict our belief that a
system is performing according to specification.

The first two of these problems can be addressed using, for example, probabilistic information
[29, 17, 46, 41]. We might simply require that an explanation render the observation sufficiently
probable. Explanations might thus be nonmonotonic in the sense that & may explain 3, but a A v
may not (e.g., P(5|a) may be sufficiently high while P(5|a A v) may not). For instance, it ishighly
likely that the grass becomes wet when the sprinkler is turned on, but it is unlikely to become wet
if the water main is broken. Preference can aso be given to explanations that are more likely. A
tanker truck exploding in front of the yard is much less probable than the sprinkler being turned
on. There have been proposals to address these issues in a more qualitative manner using “logic-
based” frameworks also. Peirce (see Rescher [52]) discusses the “plausibility” of explanations, as
do Quine and Ullian [48]. Consistency-based diagnosis [49, 16] uses abnormality assumptions to
capture the context-dependence of explanations; and preferred explanations are those that minimize
abnormalities. Pool€'s [44] assumption-based framework captures some of these ideas by explicitly
introducing a set of default assumptionsto account for the nonmonotonicity of explanations.

In thispaper we propose asemantic framework and logical specification of abduction that captures
the spirit of probabilistic proposals, but does so in a qualitative fashion. Explanations are given a
defeasible aspect through the use of techniquesfor default reasoning and belief revision. Furthermore,
explanations are viewed as more or less plausible according to a qualitative notion of plausibility,
arelation naturaly induced by the preferences associated with our defaults. Finally, by relying on
existing theories of belief revision, explanations for facts that conflict with existing beliefs can be
provided. In particular, such conflicting observations will require explanations that themselvesforce
an agent to reviseits beliefs.

Our account will take as central subjunctive conditionas of the form A = B, which can be
interpreted as asserting that, if an agent wereto believe A it would also believe B. Such aconditional
can be consistently held even if A is believed to be false. This is the cornerstone of our notion of
explanation: if believing A is sufficient to induce belief in B, then A explains B. This determines
a strong, predictive sense of explanation; but weaker forms of explanation can also be captured.
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Semantically, such conditionalsare interpreted relative to an ordering of plausibility or normality over
possible worlds. This ordering is taken to represent the epistemic state of an agent; thus all forms of
explanation we describe can be classified as epistemic explanations. Our conditional logic, described
in earlier work as a representation of belief revision and default reasoning [3, 7, 9], has the desired
nonmonotonicity and induces a natural preference ordering on sentences (hence explanations).

In the next section we describe abduction, belief revision, our conditional logics and other
necessary logical preliminaries. In Section 3, we discuss the concept of explanation, its epistemic
nature, and how different types of explanations can be captured in our framework. We al so introduce
the notion of preferred explanations, showing how the same conditional information used to represent
the defeasibility of explanationsinducesanatura preference ordering. To demonstrate the expressive
power of our model, in Section 4 we show how Pool€'s [43, 44] Theorist framework (without
constraints) and Brewka's[12] extension of Theorist can be captured inour logics. Thisreconstruction
explains semantically the non-predictive and paraconsi stent nature of explanationsin Theorist. It also
illustrates the correct manner in which to augment Theorist with a notion of predictive explanation
and how one should capture semantic preferences on Theorist explanations. These two abilities have
until now been unexplored in this canonical abductive framework. In Section 5, we reconstruct a
canonical theory of consistency-based diagnosis due to de Kleer, Mackworth and Reiter [16, 49] in
our logics. This again suggests extensions of the theory and illustrates the natural similarities and
distinctions between consistency-based and abductive diagnosis.

Proofs of main theorems may be found in the appendix.

2 Abduction and Belief Revision

In this section, we briefly discuss some previous work on abduction, drawing attention to the aspects
of these various proposals that influence our approach. We also describe the AGM model of belief
revision of Alchourron, Géardenfors and Makinson [2]; and we present the conditional logicsrequired
to capture thistheory of revision, dueto Boutilier [9]. Thiswill providethelogical apparatus required
to describe the process of abduction in terms of belief revision.

2.1 Abduction

Abduction is the process of inferring certain facts and/or laws that render some sentence plausible,
that explain some phenomenon or observation. The sentence to be explained is often denoted the
explanandum. We will usetheterm “observation” instead, for typically we areinterested in explaining
someaobservedfact. Thisismerely suggestive, however, for hypothetical possibilitiescan beexplained
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aswell. The sentences (facts or laws) doing the explaining are often dubbed the explanans sentences.
Though the term is often used to characterize this inference process, we will use “explanation” more
simply to refer to the explanans sentences. Thus, an explanation renders an observation plausible (in
some yet to be determined sense).

Themost basic and, in someidealized sense, themost compelling form of abductionisrepresented
by Hempel’s [29] deductive-nomological explanations. Such explanations consist of certain specific
facts and universal generalizations (scientific laws) that, taken together, deductively entail a given
observation. For example, theobservation“ Thisthing flies” can be explained by thefact “Thisthingis
abird” andthelaw “All birdsfly.” AsHempel observes, often parts of the explanation areleft unstated
withtheexplicitly provided explanation being dliptical. If it isunderstood among participantsin some
discourse that all birdsfly, then “Thisthingisabird” alone is areasonable explanation. Suppose we
take 7' to be some theory capturing the relevant background knowledge (this may be some scientific
or commonsense theory). Then the sentence « explains observation 3 just when

{a}UT =P

We will be less concerned with the nomol ogical aspects of abduction, assuming that relevant laws are
captured in some background theory.! Thus, our notion of explanation will be eliptical in this sense,
taking background information for granted.

The criteria for deductive explanations are clearly too strong to alow wide applicability. In
commonsense reasoning and scientificinquiry very few explanations have such strength. One accepts
as a reasonable explanation for wet grass that the sprinkler was turned on; but this explanation is
not (deductively) conclusive. The grass may have been covered by a tarpaulin, the water pressure
may have falen at acrucial instance, any of anumber of other exceptiona conditions can defeat this
inference. Of course, wemay claimthat “the sprinkler wasturned on” iselliptical, implicitly assuming
that none of these exceptiona circumstances hold, and that the true explanation includes the denia of
these. However, thisruns into the qualification problem of default reasoning, the problem of having
to know that such conditions are false [38]. This view is also untenable when such qualifications
cannot be listed, or the phenomenon in question isinherently probabilistic (at least, given our current
knowledge). To take an example of Hempel, Jim’'s close exposure to his brother who has the measles
explains Jim catching the measles; but it certainly doesn’t imply Jim catching the measles.

A number of methods for specifying probabilistic explanations have been proffered. Hempel [29]

YIn fact, aswe will seein Section 3, the “theory” is implicit in the epistemic state of our reasoning agent. We will have
afew thingsto say about lawsin our framework in the concluding section.
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requires that the explanation make the observation highly probable. Thus, probabilistic explanations
still retainthe essential predictive power of deductive explanations. Other accounts makeless stringent
requirements. For instance, Gardenfors [22] insists only that the explanation render the observation
more probablethanitisapriori. A key component of the Gardenfors theory isthat the judgements of
probability are rendered with respect to the epistemic state of an agent. We return to thisin Section 3.

Because of their probabilistic nature, such explanations are honmonotonic or defeasible. It
may bethat Spri nkl er On explains\Wet Gr ass, since this observation is very probable given the
explanation. Butthestronger proposition Spr i nkl er On ACover ed isnot areasonableexplanation,
for the probability of wet grassisquitelow inthiscase. Our goal isto capture thistype of explanation
in a quditativefashion. Rather than relying on probabilistic information, we will provide an account
of defeasible explanations based on the “default rules’ held by an agent.

Both deductive and probabilistic models of abductiontypically giveriseto anumber of competing
explanations for a given observation. The propositions Rai n and Spri nkl er On both explain
Wt G ass. If an agent has to choose among competing explanations, there must exist some criteria
for this choice. An obvious preference criterion on explanations is based on the likelihood of the
explanations themselves. An agent should choose the most probable explanation relative to a given
context. Such accounts are often found in diagnosis [46, 15] and most probable explanations are
discussed by Pearl [41]. In a more qualitative sense, one might require that adopted explanation(s)
be among the most “plausible.” Thisview is advocated by Peirce (see Rescher [52]) and Quine and
Ullian [48]. The notion of minimal diagnosisin the consistency-based models of diagnosis[49] isan
attempt to qualitatively characterize most probable diagnoses. We will provide a formal framework
in which such quaitative judgements of plausibility can be made.

One of the areas of Al that most frequently appeals to abductive inference is model-based di-
agnosis. Given atheory describing the correct behavior of some system or artifact, one can make
predictions about its behavior based on some given information. One might expect a certain observa
tion based on information about other parts of the system. For example, given the inputsto adigital
circuit, the background theory (or system description) alows one to deduce the value of the outputs.
Should the actual observation differ from the expected observation then the system must not conform
to the system description (assuming the input values are correct). The goa of model-based diagnosis
isto discover an explanation for the aberrant behavior, usually some set of components of the system
that, if behaving abnormally, will entail or excuse the actual observation. The two main paradigmsfor
model-based diagnosis are the abductive approaches, of which Poole's [43, 44] Theorist framework is
representative, and consistency-based model s such asthat of de Kleer, Mackworth and Reiter [ 16, 49].
These will be discussed in detail in Sections 4 and 5.



To appear, Artificial Intelligence, 1995

2 ABDUCTION AND BELIEF REVISION 6

2.2 Conditionalsand Belief Revision

The account of abduction we propose relies heavily on the notion of belief revision. For instance,
a predictive explanation requires that belief in the explanation be sufficient to induce belief in the
observation. Therefore we must be able to test the epistemic state of an agent after it (hypothetically)
adoptsapotential explanation, or test aknowledgebaseonceit isrevised toincorporatethe explanation.
A theory of belief revision thuslies at the core of epistemic explanation.

We assume an agent to have a deductively closed set of beliefs K taken from some underlying
language. For concreteness, we will assume this language Lcp, to be that of classical propositional
logic generated by some set of variables P. We will often take K to be the closure of some finite set
of premises, or knowledge base, KB; so i’ = Cn(KB). The expansion of K by new information A
isthe belief set K = Cn(K U {A}). Thisisaseemingly reasonable method of belief change when
K [~ —A. Moretroublesomeistherevision of K by A when K |= - A. Some beliefsin K must be
given up before A can be accommodated. The problem liesin determining which part of K to give
up. Alchourron, Gardenfors and Makinson [2] have proposed atheory of revision (the AGM theory)
based on the following observation: the least “entrenched” beliefsin K should be given up and A
added to this contracted belief set.

We use K to denote the belief set resulting when K isrevised by A. The AGM theory logically
delimits the scope of acceptable revision functions. To this end, the AGM postulates below are
maintained to hold for any reasonable notion of revision[22].

(R1) K7 isabelief set (i.e. deductively closed).
(R2) A e K%,

(R3) K3 C K.

(R4) If =A ¢ K then K C K7.

(R5) K% =Cn(1)iff = -A.

(R6) If = A= Bthen Ky = K5.

(R7) Kinp C (K35

(R8) If =B ¢ K7 then (K75 C K75

The semantics of AGM revision functions will be described below.
An aternative model of revision is based on the notion of epistemic entrenchment [22]. Given a
belief set K, we can characterize the revision of K by ordering beliefs according to our willingness
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to give them up when necessary. If one of two beliefs must be retracted in order to accommodate
some new fact, the least entrenched belief will be relinquished, while the most entrenched persists.
Géardenfors [22] presentsfive postulatesfor such an ordering and showsthat these orderings determine
exactly the space of revision functions satisfying the AGM postulates. Welet B <z A denotethefact
that A isat least asentrenched as B intheory K. A complete set of sentences of thisform issufficient
to specify a revision function. We note that the dual of an entrenchment ordering is a plausibility
ordering on sentences. A sentence A ismore plausible than B just when — A is less entrenched than
- B, and meansthat A would be more readily accepted than B if the opportunity arose. Grove [28]
studied thisrelationship and its connection to the AGM theory.

Another form of belief change studied within the AGM theory is the process of contraction, or
regjecting abelief inabelief set. When the belief set A is contracted by A, theresulting belief set A7,
issuchthat A isnolonger held. The AGM theory provides a set of postulatesfor contraction as well.
This processisrelated to revision viathe Levi and Harper identities:

Ky=KnKZ, and K} =(K_ A)j

221 ThelogicsCO and CO*

Boutilier [9] presents a family of bimodal logics suitable for representing and reasoning about the
revision of a knowledge base. We briefly review the logics and associated possible worlds semantics
for revision. We refer to [9] for further details and motivation.

Semantically, the process of revision can be captured by considering a plausibility ordering
over possible worlds. We can reason about such structures, as well as AGM revision (and severa
generdizationsof it), using afamily of bimodal logics. Thelanguage L g isabimodal languageformed
from a denumerable set P of propositiona variables, together with the usua classical connectives
and two modal operators O and o. Intuitively, 0 A isread as“ A holdsat al equally or more plausible
worlds,” whileG A isread“ A holdsat all less plausibleworlds.” We denoteby Lcp, the propositional
sublanguage of Lg. We will define four bimodal logics based on thislanguage.

Our semanticsis based on structures consisting of aset of possibleworlds W and abinary ordering
relation < over W, reflecting the relative degree of plausibility of worlds. The interpretation of < is
asfollows: v < w iff v isat least as plausible as w.? As usual, v is more plausible than w (v < w)
iff v < w butnot w < v». Plausibility is a pragmatic measure that reflects the degree to which one is
willing to accept w as a possible state of affairs. If » is more plausiblethan w, loosely speaking, v is

2Having “more” plausible elements denoted as “lesser” in the ordering is consistent with the usual Al practice of
preferring minimal elementsin some ordering — in this case, the more plausible worlds.
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“more consistent” with an agent’s beliefs than w. We take reflexivity and transitivity to be minimal
requirements on <, dubbing any such model a CT40-model.

Definition 2.1 [7] A CT40-model isatriple M = (W, <, ), where W isaset (of possibleworlds),
< isareflexive, transitive binary relation on W (the ordering relation), and ¢ maps P into 2"
(p(A) isthe set of worldswhere A istrue).

Sentences in Lg are interpreted in the usua way, with the truth of a modal formula at world w in M
(where M |=,, A means A istrueat w) given by

1. M |, OAiff foreach v suchthat v < w, M |=, A.
2. M E,, OAiff foreachv suchthatv £ w, M =, A.

If M |=, A wesaythat M satisfies A at w. For any sentence A, we use || A|| to denote the set of
worlds w € W that satisfy A (assuming some fixed M). Each world in this set isan A-world. For
an arbitrary set of formulae 5, we use ||.5| to denote those worlds satisfying each A € S and refer to
these as S-worlds. Somewhat oosely we dub those worlds that falsify some A € 5 to be —.5-worlds.
We now define several new connectives as follows:

CA=g ~O-A: OSA=g ~0-A; OA=g¢ OAANTA; SA=g CAV A

It iseasy to verify that these connectives have the following truth conditions:
@ M [, CAiff for somewv suchthat v < w, M |=, A.
(b) M [, OAiff for somew suchthat v £ w, M =, A.
() M =, BAifffordlv e W, M |, A.
(d) M =, OAiffforsomev e W, M |=, A.

These connectives have the obvious readings: O A means*“ A istrue at al equally or more plausible
worlds’; & A means “ A is true at some equally or more plausible world”; A means “A is true
at al less plausible (and incomparable) worlds’; A means “ A is true at some less plausible (or
incomparable) world”; 84 means“ A istrue at al worl ds, whether more or less plausible’; findly,
A means “ A istrue at some world, whether more or less plausible” Validity and satisfiability are
defined in a straightforward manner and a sound and complete axiomatization for the logic CT40 is
providedin [7].
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More
Plausible
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() CT40-model (b) CO-model

Figure 1. CT40 and CO models

A natural restriction on the ordering of plausibility is connectedness; that is, for any pair of worlds
w, v, ether v < worw < ». In other words, all worlds must have comparable degrees of plausibility.
Thisrestriction givesrise to thelogic CO (again axiomatized in [7]).

Definition 2.2 [7] A CO-model is atriple M = (W, <, ), where M is a CT40-model and < is
totally connected.

In any reflexive, transitive Kripke frame, a cluster is any maxima mutually accessible set of
worlds [53]: aset C C W isacluster just when » < w for al v, w € C and no extensionC’ O C
has this property. We note that CO-structures consist of a totally-ordered set of clusters of equally
plausibleworlds, while CT40-modelsconsist of apartially-ordered set of clusters. Figure 1illustrates
this, where each large circle denotes a cluster of equally plausible worlds and arrows point in the
direction of increasing plausibility.

Finally, both CT40 and CO can be extended by restricting attention to those structures in which
all logicaly possible worlds are represented. No matter how implausible, each should be somehow
ranked and should occur in our models. This property turns out to be crucia in characterizing the
AGM theory of belief revision.

Definition 2.3 [7] Let M = (W, <, ) be aKripke model. For all w € W, w* is defined as the map
from P into {0, 1} such that w*(A) = 1iff w € ¢(A) (w* isthe valuation associated with w).

CT40*-models and CO*-models are (respectively) CT40-models and CO-models satisfying the
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condition that
{f:fmapsPinto{0,1}} C {w":w e W}.

Thisrestriction is captured axiomatically determining the logics CT40* and CO* [7].

2.2.2 Modeding Belief Revision

Assumewe haveafixed (CO- or CT40-) model M. We usemin(« ) to denotethe set of most plausible
a-worldsin M3
mn(a) ={w:wE a, andv < wimpliesv [£ a}

In both modelsin Figure 1, the shaded regions denote the worlds that make up min( A).

The revision of a belief set & can be represented using CT40- or CO-models that reflect the
degree of plausibility accorded to worlds by an agent in such abelief state. To capturerevision of K,
we insist that any such A -revision model be such that || K'|| = min( T ); that is, the model must have a
(unique) minimal cluster formed by || K||.# This reflects the intuition that all and only K -worlds are
most plausible for an agent with belief set K [9], and corresponds to aform of only knowing [36, 4].
The CT40-modd in Figure 1(a) isa i -revision model for K = Cn(—A, B), while the CO-model in
Figure 1(b) issuitablefor &' = Cn(—A).

Torevise I by A, we construct therevised set A7 by considering theset min( A) of most plausible
A-worldsin M. In particular, werequirethat | K% || = min(A); thus B € K7 iff B istrueat each of
the most plausible A-worlds. We can define a conditiona connective =- such that A = B istruein
just such a case:

A= B =¢ O(AD>O(AND(AD B)))

Thisis equivalent to the requirement that
min(4) C [|B]

Both modelsin Figure 1 satisfy A =- B, since B holds at each world in min( A), the shaded regions
of the models.

The Ramsey test [57] provides acceptance conditionsfor subjunctive conditional s of the form “If
A were the case, then B would hold” by appeal to belief revision. Indeed, the conditiona should be
accepted just when an agent, hypothetically revisingitsbeliefsby A, accepts B. Thus, we can equate

3We assume, for simplicity, that such a (limiting) set exists for each o € Lcpy, though the following technical
developmentsdo not require this [7, 9].
“This constraint can be expressed in the object language L g; see[9, 4].
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the conditional A = B with the statement B € K and interpret our conditional as a certain type of
epistemic subjunctive conditional. For a specific K -revision model we can define the revised belief
set K% as

Ki={B€Lcp.: M A= B}.

Boutilier [9] shows that the revision functions determined by CO*-models are exactly those that
satisfy the AGM postulates. The revision functions captured by the weaker logics impose slightly
weaker constraints on the revision functions. CT40 and CT40* fail to satisfy postulate (R8), while
CT40 and CO satisfy dlightly weaker versions of most of the postulates. Intuitively, a K -revision
model captures the epistemic state of an agent, both its beliefs and its revision policies. A belief
connective can be defined in the object language:®

B(A) = T => A

We briefly describe the contraction of A by — A in this semantic framework. To retract belief in
- A, wesimply accept theworldsin min( A) as epistemically possiblewithout rejecting the possibility
of K -worlds. In other words,
Ky =||K||umin(A)

This is due to the fact that certain A-worlds must become epistemicaly possible if —A is not to be
believed, and the principle of minimal change suggests that only the most plausible A-worlds should
be accorded this status. The belief set /', does not contain = A, and this operation captures the
AGM model of contraction if we restrict our attention to CO*-models. InFigure1(a) K-, = Cn(B),
whilein Figure 1(b) K~ 4, = Cn(A D B).

A key distinction between CT40 and CO-modelsis illustrated in Figure 1: in a CO-model, al
worlds in min(A) must be equally plausible, while in CT40 this need not be the case. Indeed, the
CT40-model shown has two maximally plausible sets of A-worlds (the shaded regions), yet these are
incomparable. We denote the set of such incomparable subsets of min(A) by PI(A):

Pl(A) = {min(A)NC : Cisacluster}

Thus, we have that min(A) = UPI(A). Taking each such subset (each element of PI(A)) to be a
plausible revised state of affairs rather than their union, we can define a weaker notion of revision
using the following connective. It reflects the intuition that the consequent ' holds within some

5See[4] for amore comprehensivedefinition of belief and a proof of correspondenceto the belief logic weak S5.
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element of PI(A):
(A— C)=¢ O(=A)VI(AND(A D ()

The model in Figure 1(a) shows the distinction: it satisfies neither A = C nor A = -, but both
A — (Cand A — —C'. Thereisaset of comparable most plausible A-worldsthat satisfies C' and one
that satisfies —C'. Notice that this connective is paraconsistent in the sense that both ' and —~C' may
be “derivable” from A, but C' A =C' isnot. However, — and = are equivaent in CO, sincemin( 4)
must lie within a single cluster. Thisweak connective will be primarily of interest when we examine
the Theorist system in Section 4.

We define the plausibility of aproposition by appealing to the plausibility ordering on worlds. We
judge a propositionto bejust as plausible as the most plausible world at which that proposition holds.
For instance, if A isconsistent with a belief set i, then it will be maximally plausible — the agent
considers A to be epistemically possible. We can compare therelative plausibility of two propositions
semanticaly: A isat least as plausibleas B just when, for every B-world w, there is some A-world
that is at least as plausible as w. Thisis expressed in Lg as ﬁ(B D CA). If Ais(strictly) more
plausible than B, then as we move away from || K||, we will find an A-world before a B-world; thus,
A is quditatively “more likely” than B. In each model in Figure 1, A A B is more plausible than
A N = B. We note that in CO-models plausibility totally orders propositions; but in CT40, certain
propositions may be incomparable by this measure.

2.2.3 Default Rules and Expectations

The subjunctive conditional s defined above have many properties one would expect of default rules.
In particular, the conditional is defeasible. For instance, one can assert that if it rains the grass
will get wet (R = W), but that it won't get wet if the grass is covered (R A C) = -W). As
subjunctive conditionas, these refer to an agent adopting belief in the antecedent and thus accepting
the consequent. In this case, the most plausible R-worlds must be different from the most plausible
R A C-worlds.

These conditional s have much the same character as default rules. Recently, a number of condi-
tiona logics have been proposed for default reasoning [18, 26, 33, 34]. In particular, Boutilier [7]
has proposed using the logics CT40 and CO together with the conditional =- for default reasoning.
To use thelogicsfor this purpose requires simply that we interpret the ordering relation < as ranking
worlds according to their degree of normality. On this interpretation, A = B meansthat B holds
a the most normal A-worlds; that is, “If A then normally B.” These default logics are shown to be
equivalent to the preferential and rational consequence operations of Lehmann [33, 34]. They arealso
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equivalent to the logic of arbitrarily high probahilities proposed by Adams|[1] and further devel oped
by Goldszmidt and Pearl [26], and can be given a probabilisticinterpretation [7].

Boutilier [9] al so showshow default reasoning based on such aconditional ogic can beinterpreted
asaform of belief revision, hence explaining the equivalence of the conditional logic representation
of both processes. Gardenfors and Makinson’s [23] notion of expectation inference adopts a similar
viewpoint. Roughly, we think of default rules of the form A = B asinducing various expectations
about the normal state of affairs. In particular, for any such default an agent expects the sentence
A D B to be true in the most normal state of affairs. An agent without specific knowledge of a
particular situation should then adopt, as a “starting point,” belief in this theory of expectations. In
other words, an agent’s “initial” beliefs should be precisely its default expectations. When specific
facts F' are learned, the agent can revise this belief set according to the revision model capturing its
default rules. The revised belief set will then correspond precisely to the set of default conclusions
the agent would reach by performing conditional default reasoning from this set of facts using its
conditional default rules (see[9] for details). For thisreason, our theory of explanation can beusedin
one of two ways. We may think of explanationsrelative to the epistemic state of an agent. Thisisthe
viewpoint adopted in Section 3 where we present our theory. We may also interpret the conditionals
involved in explanation as default rules. Thisinterpretation will beimplicitin Sections4 and 5 in our
reconstruction of model-based diagnosis, where plausibility orderings are in fact normality orderings.

3 Epistemic Explanations

Often scientific explanations are postul ated relative to some background theory consisting of various
scientific laws, principles and facts. In commonsense domains, this background theory should be
thought of asthebelief set of someagent. Wewill therefore defineexplanationsrel ativeto the epistemic
state of some agent or program. We assume this agent to possessan objective (or propositional) belief
set K. We also assume the agent to have certain judgements of plausibility and entrenchment at its
disposal to guide the revision of its beliefs. These may be reflected in the conditionas held by the
agent, explicit statements of plausibility, or any other sentencesin the bimodal languagethat constrain
admissible plausibility orderings. Such atheory may be complete — in the sense that it determines
a unique plausibility ordering — or incomplete. For simplicity, we assume (initialy) that an agent’s
theory is complete and that its epistemic state is captured by a single K -revision model. We discuss
later how onemight compactly axiomatizesuch acategorical theory, and how explanationsare derived
for incomplete theories.

Defining explanations relative to such structured epistemic states extends the usual deductive and
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probabilistic approaches. There an explanation must be added to an agent’s “theory” to account for an
observation. Thisrestrictiveview precludes meaningful explanationsof observations other than those
consistent with K. Infact, itisoften explanationsfor observationsthat conflict with our current beliefs
inwhichwearemost interested. Thus, amodel of belief revision seemscrucial for explanationsof this
sort. In order to account for such explanations, one must permit the belief set (or background theory)
to be revised in some way that alows consistent explanations of such observations. Gardenfors [22]
has proposed a model of abduction that relies crucially on the epistemic state of the agent doing the
explaining. Our model findsitsoriginsin his account, but there are severa crucial differences. First,
Gérdenfors's modd is probabilistic whereas our model isqualitative. Aswell, our model will provide
a predictive notion of explanation (in a sense described below). In contrast, Gardenfors makes no
such requirement, counting as explanations facts that only marginally affect the probability of an
observation. However, we share with Gardenfors the idea that explanations may be evaluated with
respect to states of belief other than that currently held by an agent.

Levesgue's [35] account of abduction is also based on the notion of an epistemic state. Levesque
allowsthe notion of “belief” to vary (from the standard deductively-closed notion) within hisframe-
work in order to capture different types of explanation (e.g., a syntax-motivated notion of simplest
explanation). Our model is orthogonal in that the notion of “implication” between explanation and
observation is weakened.

In this section, we introduce several forms of epistemic explanation and their characterization
in terms of revision. There are two key dimensions along which these forms of explanation are
compared, predictive power and the epistemic status of the observation to be explained.

If belief inthe explanation is sufficient to induce belief in the observation, the explanation is said
to be predictive. Deductive-nomological explanations havethisform, as do probabilistic explanations
based on high praobability. However, weaker, non-predictive explanations are a so of interest. These
must simply render the observation reasonable, without necessarily predicting it. Consistency-based
diagnosis adopts this perspective. Exposure to a virus may explain one's having a cold without
having the predictive power to induce the belief that one will catch cold (prior to observing the cold).
Predictive and non-predictive explanationsare discussed in Sections 3.1 and 3.2, respectively. Wewill
also distinguish two forms of non-predictive explanations. weak explanations and the even weaker
might explanations.

Explanations may aso be categorized according to the epistemic status of the explanandum, or
“observation” to be explained. There are two types of sentences that we may wish to explain: beliefs
and non-beliefs. If 5 isabelief held by the agent, it requires afactual explanation, some other belief
« that might have caused the agent to accept 3. This type of explanation is clearly crucial in many
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reasoning applications. An intelligent program will provide conclusions of various types to a user;
but a user should expect a program to be able to explain how it reached such a belief, or to justify its
reasoning. We may ask arobot to explain its actions, or an expert system to explain its predictions.
The explanation should clearly be given in terms of other (perhaps more fundamental) beliefs held
by the program. When explaining belief in 3, a program or agent that offers a disbelieved sentence
« is performing in a misleading manner. A second type of explanation is hypothetical: eveniif 5 is
not believed, we may want an explanation for it, some new belief the agent could adopt that would
be sufficient to ensure belief in 5. This counterfactual reading turns out to be quite important in Al,
for instance, in diagnostic tasks (see below), planning, and so on [25]. For example, if turning on the
sprinkler explains the grass being wet and an agent’s goal isto wet the grass, then it may well turn on
the sprinkler. We can further distinguish hypothetical explanationsinto those where observation 3 is
rejected in K (i.e,, -3 € K) and those where observation j isindeterminatein K (i.e, g ¢ K and
-4 ¢ K). Regardless of the predictive power required of an explanation, factual and hypothetical
explanations will require slightly different treatment.

The type of explanation one requires will usually depend on the underlying application. For
instance, we will seethat hypothetical explanations, whether predictive or non-predictive, play a key
role in diagnosis. Whatever the chosen form of explanation, certain explanations will be deemed
more plausible than others and will be preferred on those grounds. We will introduce a modd of
preference in Section 3.3 that can be used to further distinguish explanationsin this fashion.

3.1 Predictive Explanations

In very many settings, we require that explanations be predictive; that is, if an agent were to adopt
a belief in the explanation, it would be compelled to accept the observation. In other words, the
explanation should be sufficient to induce belief in the observation. Lega explanations, discourse
interpretation, goal regression in planning, and diagnosisin certain domains all make use of thistype
of explanation.

To determine an appropriate definition of predictive explanation, we consider the factual and
hypothetical cases separately. If the observation 3 is believed, as argued above, we require that a
suitable explanation « also be believed. For example, if asked to explain the belief Vet Gr ass, an
agent might choose between Rai n and Spri nkl er On. If it believes the sprinkler is on and that
it hasn't rained, then Rai n is not an appropriate explanation. This leads to our first condition on
explanations: if observation 3 isaccepted (i.e., 3 € K) then any explanation o must a so be accepted
(i.e, a € K).

If 5 isnot believed, it may be rejected or indeterminate. In thefirst instance, where 3 isregjected,
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we insist that any explanation « also be rejected (i.e., —a € K). If this were not the case then «
would be consistent with K. According to the AGM theory and our model of revision, this means
that accepting oo would be tantamount to adding « to K, and -3 would still be believed. For example,
suppose an agent believesthe grassisnot wet and that the sprinkler may or may not be on. To explain
(or ensure) wet grass, it should not accept the sprinkler being on (or turn it on), for according to its
beliefs the sprinkler may well be on — yet the grassis not believed to be wet.

In the second instance, where 3 isindeterminate, we insist that any explanation also be indeter-
minate(i.e, o« ¢ K and-a ¢ K). If o € K, clearly accepting a causes no change in belief and does
not render 3 believed. Dismissing explanations o where =« € K reguires more subtle justification.
Intuitively, when 3 isindeterminate, it isan epistemic possibility for the agent: for all the agent knows
3 could betrue. If thisisthe case, it should be explained with some sentence that isa so epistemically
possible. If —a € K the agent knows « to be false, so it should not be willing to accept it as an
explanation of some fact /5 that might be true. Since learning 5 conflicts with none of its beliefs, so
too should a reasonable explanation be consistent with its beliefs. For example, suppose an agent is
unsure whether or not the grass is wet, but believes that it hasn’t rained. Upon learning the grassis
wet, accepting rain as an explanation seems unreasonable.®

Combining these criteria for both factual and hypothetica explanations, we have the following
condition relating the epistemic status of observation 5 and explanation «:

(ES) ac Kiff € K and-a € K iff =3 € K

Assuming an agent to possess a unique revision model M reflecting its current epistemic state, we
can express thisin the object language as

M E (Ba =Bp) A (B-a = B-p)

If the epistemic state is captured by some (possibly incomplete) theory in the language Lg, we can
test this condition using entailment in the appropriate bimodal logic.

We note here that this condition relating the epistemic status of explanation and observationis at
odds with one prevailing view of abduction, which takes only non-beliefs to be valid explanations.
On this view, to offer a current belief « as an explanation is uninformative; abduction should be
an “inference process’ allowing the derivation of new beliefs. We take a somewhat different view,
assuming that observations are not (usually) accepted into a belief set until some explanation is
found and accepted. In the context of its other beliefs, observation /5 is unexpected to a greater or

5Below we will briefly explanationswhere this condition is weakened.
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lesser degree. Unexplained “belief” in § places the agent in a state of cognitive dissonance. An
explanation relieves thisdissonance when it is accepted [22]. After this process both explanation and
observation are believed. Thus, the abductive process should be understood in terms of hypothetical
explanations. when it is realized what could have caused belief in an (unexpected) observation,
both observation and explanation are incorporated. In this sense, our use of the term observation is
somewhat nontraditional — it isafact that has yet to be accepted (in some sense) as abelief. Factual
explanations are retrospectivein the sense that they (should) describe* historically” what explanation
was actually adopted for a certain belief. We will continue to call such beliefs “observations,” using
the term generally to denote afact to be explained.

Apart from the epistemic status of observation and explanation, we must address the predictive
aspect of explanations. In particular, we require that adopting belief in the explanation « be sufficient
to induce belief in the observation 5. The obvious criterion is the following predictive condition:

(P) pe K

which isexpressed in the object languageas o = 3. Thiscapturestheintuition that If the explanation
were believed, so too would be the observation [37]. For hypothetical explanations, this seems
sufficient, but for factual explanations (where 5 € K), thisconditionistrivialized by the presence of
(ES). For once we insist that a valid explanation o bein K, wehave K = K; andclearly 3 € K
for any belief «.. But surely arbitrary beliefs should not count as vaid explanations for other beliefs.
The belief that grassis green should not count as an explanation for the belief that the grassis wet.

In order to evaluate the predictive force of factua explanations, we require that the agent (hypo-
thetically) give up its belief in 5 and then find some « that would (in thisnew belief state) restore 5.
In other words, we contract K™ by /5 and evaluatethe conditional o« = § with respect to this contracted
belief state:

(PF) 5 € (K5)3

Thus, when we hypothetically suspend belief in 3, if « issufficient to restore this belief then o counts
as avalid explanation. The contracted belief set & ; might fruitfully be thought of as the belief set
held by the agent before it came to accept the observation 3.

An (apparently) unfortunate consequence of thiscondition isthe difficulty it introducesin evalua-
tion. It seemsto require that one generate a new epistemic state, reflecting the hypothetical belief set
K, against which to evaluate the conditional o = 5. Thus, (PF) requires two successive changes
in belief state, a contraction followed by arevision.” However, it turns out that the condition (ES)

"Thisis especially problematic, for the AGM theory provides no guidance as to the conditionals an agent should adopt
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ensures that one can effectively test (PF) without resorting to hypothetical contraction. We first note
that (PF) reduces to (P) for hypothetical explanations; for if 5 ¢ A then k'; = K. For factua
explanations, (ES) requires that both o« and 3 are believed. The following proposition shows that
(PF) can be evaluated without iterated belief change.

Proposition 3.1 If o, 3 € K,then g € (K ) iff ma € KZ4.

Thus condition (PF), in the presense of (ES), is equivalent to the following condition pertaining to
the absence of the observation:

(A) -a € K=

which is expressed in the object language as =3 = -a. This captures the intuition that If the
observation had been absent, so too would be the explanation.

This condition is now vacuous when the observationisrejected in i, for A~ ; = K and we must
have —a € K by (ES). It seems plausible to insist that an agent ought to imagine the explanation to
be possible and then test if rejection of the observation leads to rejection of the explanation; in other
words:

(AR) -a € (K2,)%,

However, just as (PF) reduces to (A), so too does (AR) reduce to (P).

Proposition 3.2 If ~a, =3 € K, then ~a € (KZ,)2; iff 8 € K7,

Thus, we are lead to the notion of apredictive explanation, relative to some epistemic state.

Definition 3.1 Let M bea K -revision modd reflecting the epistemic state of an agent with belief set
K. A predictive explanation for observation 5 (relativeto M) isany « € Lep. such that:
(ES) M E (Ba=Bp) A (B-a=B-j),
(P) M E a= p;and
(A) M = -3 = -a.

in this contracted belief state. Very little can be known about the content of belief sets that are changed more than once as
required by (PF). The AGM theory does not provide a method for determining the structure of the resulting epistemic state,
even if the original epistemic state and belief set K~ are completely known (but for a recently developed model that captures
such iterated revision, see[6]).
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More
Plausible

Hypothetica Factual

Figure 2: Explanationsfor “Wet Grass’

Thereductionsafforded by Propositions3.1 and 3.2 are crucia, for they alow an agent to test whether
an explanation isvalid relative to its current epistemic state (or its current set of simple conditionals).
An agent is not required to perform hypothetical contraction.

This definition captures both factual and hypothetical predictive explanations. Furthermore, once
the epistemic status of # isknown we need only test one of the conditions (A) or (P).

Proposition 3.3 If a, 8 € K then o (predictively) explains 3 iff =5 = -a.
Proposition 3.4 If a, 3, —a, -3 ¢ K then a (predictively) explains 3 iff a = g iff =3 = -a.
Proposition 3.5 If —a, =3 € K then o (predictively) explains 5 iff o = .

Example 3.1 Figure 2 illustrates both factual and hypothetical explanations. In the first model, the
agent believesthefollowing areeach false: thegrassiswet (177), the sprinklerison (.5), it rained
(R) and the grassis covered (C'). W is explained by sprinkler 5, since S = W holdsin that
model. So should the agent observe W, ' is as possible explanation; should the agent desire
W to be true (and have control over ) it can ensure W by causing 5 to hold. Similarly, R
explainsW, asdoes S’ A R. Thus, there may be competing expl anations; we discuss preferences
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on these below. Intuitively, o explains 3 just when 5 is true at the most plausible situations
in which a holds. Thus, explanations are defeasible: 1/ is explained by R; but, R together
with €' does not explain wet grass, for R A C' = —=W. Notice that R alone explains W, since
the “exceptional” condition €' is normally false when R holds, thus need not be stated. This
defeasibility isafeature of explanationsthat has been given little attention in many | ogic-based
approaches to abduction.

The second model illustrates factual explanations for W. Since W is believed, explanations
must aso be believed. R and -5 are candidates, but only R satisfies the condition on factua
explanations: if we give up belief in W, adding R is sufficient to get it back. In other words,
-W = = R. Thisdoesnot hold for -5 because - = S isfdse.

The crucia features of predictive explanations illustrated in this example are their defeasibility, the
potential for competing explanations, and the distinction between factual and hypothetica explana-
tions.

Notice that if we relax the condition (ES) in the factual example above, we might accept 5" as a
hypothetical explanation for factual belief . Although, we believe R, W and -5, one might say
that “Had the sprinkler been on, the grass (still) would have been wet.” Thisdlightly more permissive
form of predictive explanation, called counterfactual explanation, is not explored further here (but
see [10] for further details).

3.1.1 Causal Explanations

The notion of explanation described here cannot be given atruly causal interpretation. In the factual
model in Figure 2, we suggested that rain explains wet grass. However, it is aso the case that wet
grass explains rain. Explanations are smply beliefs (whether factual or hypothetical) that induce
belief in the fact to be explained. The connection may be causal (belief in R induces belief in W) or
evidential (belief in W induces belief in R).

Ultimately, we would like to be able to distinguish causal from non-causal explanations in this
conditional model. Lewis[37] has proposed a counterfactual analysis of causation, whereby atheory
of conditionals might be used to determine causa relations between propositions. More recently,
and perhaps more compelling, is the use of stratified rankings on conditional theories by Goldszmidt
and Pearl [27] to represent causation. Incorporating such considerationsin our model bringsto mind
Shoham’s [55] epistemic account of causality, whereby a causal theory is expressed in terms of the
knowledge of an agent, and can be nonmonotonic. Whether or not causdlity is an epistemic notion
(cf. thecritique of Galton [20]), it is clear that perceived causal relations will have adramatic impact
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on the conditional beliefs of an agent. Furthermore, it is the epistemic state of an agent with respect
to which causal predictions and explanations must be derived. In this regard, an epistemic theory of
causal explanation is consistent with Shoham’s viewpoint. However, a more sophisticated account
of causation is necessary in order to distinguish causal from evidentia relations among an agent’s
beliefs.8 A more suitable theory should include some account of actions, events, and “intervention”
[27]. For instance, if a (possibly hypothetical) mechanism exists for independently wetting the grass
(W) and making it rain (R), thiscan be exploited to show that W does not cause R, but that R causes
W, according to the plausibility judgements of an agent. Such experimentation or experience can be
used to distinguish causal from evidentia explanations.

Another similarity between conditionals and Shoham’s causal statements are their context-
sensitivity. Simon [56] argues that one potential drawback in Shoham'’s theory is the necessity
of distinguishing causal from contextual conditions and the asymmetry this introduces. While this
may or may not be a necessary feature of “true” causa relations, it is a fact of life in any useful
epistemic account, for we naturally communicate and acquire our causal knowledge making such
distinctions. Simon finds disquieting the fact that the roles of cause and contextual condition are
sometimes reversed; but the dependence of the form of causal utterances on circumstancesis exactly
what we capture when we evaluate causal statements with respect to an epistemic state. Imagine an
agent possesses two conditionals R = W and R A C' = -W: the grass getswet when it rains unless
it's covered. Taking —C' to be the normal case, it seems natural to offer R as acausal explanation (or
cause) for W, and take -’ to be a contextua condition. This offers a certain economy in thinking
about and communicating causes. However, in a different epistemic setting, without atering the
underlying physical causal relations (whatever they may be, or if they even exist), these roles may
reversed. If thegrassistypically covered, wemay have R = =W and R A —C' = W. Supposing that
itusualy rains, T = R, anintuitive causal explanation for W relative to this epistemic state is now
(', someoneuncovered thegrass. R isrelegated to therole of contextua condition. Thisasymmetry,
far from being problematic, is natural and desirable. We do not delve further into causal explanations
here, but we conjecture that conditiona logics will provide a natural and flexible mechanism for
representing causal relations and generating causal explanationswith an epistemic flavor.

8Temporal precedence, one mechanismavailablein Shoham’stheory, cannot resolve suchissuesin general. For instance,
thetruth of £ at time ¢ may be evidencefor the truth of fact F' at time ¢ + 1 without having caused it.
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3.2 Nonpredictive Explanations
3.21 Might Explanations

Very often we are interested in weaker types of explanation that do not predict an observation, but
merely “alow” it. For example, suppose Fred has a choice of three supermarkets at which to shop,
one very close (4), and two rather farther away (B and ). We expect Fred to shop at the closest
A, but observe that he actually chooses to shop a . We might explain Fred's choice by claiming
that (D) Fred dislikes the service at market A. However, explanation 1D does not predict that Fred
will choose €, for he may well have chosen B. That is, we do not accept the conditionals D = (' or
D = B,butonly D = BV . Inasense D “excuses’ or permits C' but does not predict C'. If we
learned D, we would claim that Fred might go to C'. Upon learning C', we adopt the explanation D.
A similar exampleis captured by the hypothetical model in Figure 2: here W permits both R and 5
without predicting them. Might explanations of thistype play an important role in consistency-based
diagnosiswithout fault models as well (see Section 5).

Intuitively, amight explanation reflectsthe d ogan If the expl anation were beli eved, the observation
would be a possibility. The sense of “possible” here is naturally that of epistemic possibility. If an
agent accepts explanation «, the observation 5 becomes consistent with its new belief set. The might
conditionis simply
(M) -6 ¢ K
which isexpressed asa A —f.

For hypothetical explanations of regjected 3 (where =3 € K'), might explanations require nothing
further. However, for explanations of indeterminate /3, we must weaken the condition (ES). If 5 is
indeterminate, it is aready a possibility for the agent, and we should not rule out beliefs o« € K
as potential might explanations: if « is believed (it isl) then 5 is possible (it is!). Such might
explanations are not very informative, however, so we take the principle case for might explanations
to be that where /3 isrejected. Thus, (ES) isagain replaced by (F):°

(F) If g€ Kthena € K.

Definition 3.2 Let M bea K -revision modd reflecting the epistemic state of an agent with belief set
K. A might explanation for observation 5 (relativeto M) isany o € Lep. such that:

(F) M = BS O Ba; and

9This weakening of (ES) does not affect the principle casewhere -8 € K. If ~a ¢ K, then o % -4 cannot hold. So
-8 € K ensures—« € K for al might explanations.
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(M) M | a# -6.

Intuitively, the epistemic stateinduced by acceptance of « must contain F-worlds, hence rendering
[ possible. If it contains only -worlds then « is a predictive explanation. Predictive explanations
are therefore a special (stronger) case of might explanations.

Proposition 3.6 If « isa predictive explanation for /5 then « isa might explanation for .

We take might explanations to be the primary form of non-predictive explanation.

3.22 A Variant of Might Explanations

In this section we describe aform of might explanationthat is of particul ar relevanceto CT40-models,
where clusters of equally plausibleworlds are partialy ordered rather than totally ordered. Thisform
of explanation is somewhat difficult to motivate independently, but in Section 4 we will seethat it is
precisely the type of explanation used by Theorist.

Clearly, asentence o can be amight explanation for both 5 and - /. Thisissimilar to the behavior
of the weak conditional connective —, where « — G and @ — - can be held consistently. Recall
that a sentence « — G holds just when /5 holds at &l worlds in some element of Pl(«), (i.e, a
minimal cluster of a-worlds). We call « aweak explanation for 3 just in caseitisamight explanation
such that o — £.

Definition 3.3 Let M bea K -revision modd reflecting the epistemic state of an agent with belief set
K. A weak explanation for observation g (relativeto M) isany a € L¢py such that:

(F) M |=Bg D Ba;and
W) M Ea—p.

Intuitively, weak explanations lie between predictive and might explanations. They are stronger than
might explanations, for they require, at some cluster of most plausible «-worlds, that 5 holds. All
other most plausible a-worlds are of incomparable plausibility, so in some sense « is “potentially
predictive” (it “could” be that the relevant cluster is actually min(«), if only one could render all
worlds comparable). On the other hand, weak explanations are weaker than predictive explanations
in the sense that certain min(«)-worlds do not (in the principle case) satisfy the observation. Wesk
explanations are therefore a special (stronger) case of might explanations.

Proposition 3.7 If « isaweak explanation for 3 then « isa might explanation for /3.
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Naturally, inthelogic CO, sincea — Fiff @ = 3, weak explanationsare predictive. Therefore, weak
explanations will only be used in the context of CT40-models. In the CT40-model in Figure 1(a), A
isaweak explanation for both ' and =C'.

3.3 Preferences

The explanations defined above carry the explanatory force we expect, whether predictive or not,
yet are more flexible than deductive explanations. They exhibit the desired defeasibility, allowing
exceptions and more specific information to override their explanatory status. However, the criteria
we propose admit many explanations for a given observation in general: any « sufficient to induce
belief in 5 counts as a valid predictive explanation. For instance, rain explains wet grass; but a
tanker truck full of milk exploding in front of the yard also explainswet grass. If you could convince
someone that such an event occurred, you would convince them that the grass was wet.

Certainly some explanations should be preferred to others on grounds of likelihood or plausibility.
In probabilisticapproachesto abduction, one might prefer most probabl e explanations. In consistency-
based diagnosis, explanations with the fewest abnormalities are preferred on the grounds that (say)
multiple component failures are unlikely. Such preferences can be captured in our model quite easily.
Our CT40- and CO-structures rank worlds according to their degree of plausibility, and reasonable
explanations are simply those that occur at the most plausible worlds. We recall from Section 2.2
the notion of plausibility as applied to propositions. A is at least as plausible as B just when, for
every B-world w, thereissome A-world that is at least as plausible as w. For CO-models, thistotally
orders propositions; but for CT40-models, two propositions may have incomparable “degrees’ of
plausibility.

An adopted explanation is not one that simply makes an observation less surprising, but one that
isitself as unsurprising as possible. We use the plausibility ranking to judge this degree of surprise.

Definition 3.4 If « and o’ both explain 5 then « is at least as preferred as o’ (written o <p ') iff
M E ﬁ(a’ D <a). The preferred explanations of 3 are those « such that for no explanation
o' isitthecasethat o/ <p a.

Preferred explanations are those that are most plausible, that require the “least” change in belief
set K in order to be accepted. Examining the hypothetical model in Figure 2, we see that R, 5 and
RA S eachexplain W, but R and S are preferred to R A S (it may not be known whether the sprinkler
wasonor it rained, but it’sunlikely that the sprinkler was onintherain). Any world inwhich atanker
truck explodesis less plausible than these other worlds, so that explanation is given relatively less
credibility.
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By basing the notion of preference on the relative plausibility of explanations, we losethe ability
to distinguish factual explanations from one another. The conditions (ES) and (FS) ensure that every
valid explanation of a factual observation is believed, and al beliefs are equally (and maximally)
plausible for an agent. Thus, each candidate explanation is preferred. This fits well with the point
of view adopted above: an agent, when accepting /3, also accepts its most plausible explanation(s).
There is no need, then, to rank factua explanations according to plausibility — al explanationsin
K are equaly plausible. If one wanted to distinguish possible explanations of some belief 3, one
might distinguishthe hypothetical explanationsof 3 in the contracted belief state i ;. Most plausible
explanations are then those that the agent judged to be most plausible before accepting 5. However,
such amove serves no purpose, for the most preferred explanationsin state i ; must be beliefsin K.

Proposition 3.8 Let 5 € K and a be a predictive explanation for 5. Then « is a preferred (hypo-
thetical) explanationfor 3 in ;.

It isnot hard to seethat preferences cannot be applied to hypothetical explanationsof indeterminate
3 for precisely the same reason: all valid explanations must be epistemically possible, and therefore
maximally plausible, this because (ES) requires —a ¢ K. For these reasons, when describing
preferences, we restrict our attention to hypothetical explanations of rejected /3.

A predictive explanation needn’t be compared to all other explanationsin order to determineif it
ismost preferred. The following proposition indicates a simpler test for preference.

Proposition 3.9 Let « be a predictive explanation for 3 relativeto model M. Then « isa preferred
explanationiff M = g 4 -a.

This test simply says that in any cluster of most normal G-worlds, if « is a preferred explanation of
3, then an «-world must occur somewhere in that cluster, for thisis (potentially) the most plausible
cluster of situationsin which the observation holds.

Thetest is greatly simplified, and much clearer, for totaly-ordered CO-models. This due to the
equivaence of — and = under CO.

Proposition 3.10 Let o be a predictive explanation for 3 relative to CO-model M. Then o« isa
preferred explanationiff M = 8 # —a.

Inthiscase, « isapreferred explanationiff belief in 5 does not preclude the possibility of . Preferred
explanations are those that are most plausible, that require the “least” changein belief set A in order
to be accepted. Examining the hypothetical model in Figure 2, we seethat W # - R and W # -5
holds, but W # —(S5 A R) isfalse. So R and 5 are preferred explanations, while explanation 5 A R
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isnot.10

3.4 ThePragmatics of Explanation

In any actual system for explanation, ultimately a sentence must be returned which explains the
given observation. The semantic conditionswe have proposed admit explanationsthat are intuitively
unsatisfying in some circumstances. Of the many explanations, some may be preferred on grounds
other than plausibility. Natural criteria such as simplicity and informativeness are often used to rule
out certain explanationsin certain contexts[47]. Levesque [35] has proposed criteriafor judging the
simplicity of explanations. Hobbset al [30] argue that in natural language interpretation most specific
explanations are often required, rather than simple explanations. In diagnostic systems, often this
problem is circumvented, for explanations are usually drawn from a prespecified set of conjectures
[44] (see Sections 4 and 5).

Itisclear that the exact form an explanation should take isinfluenced by the application onehasin
mind. Therefore, we do not include such considerationsin our semantic account of abduction. Rather,
we view these as pragmatic concerns, distinct from the semantic issuesinvolved in predictivenessand
plausibility (cf. Levesque [35]). Providing an account of the pragmatics of explanationsis beyond
the scope of this paper; but we briefly review two such issues that arise in our framework: trivia
explanations and irrelevant information.

34.1 Trivial Explanations

A simple theorem of CT40 and CO is § = (. This means that 3 is always a predictive (and
preferred) explanation for itself. While thistrivial explanation may seem strange, upon reflection it
is clear that no other proposition has a stronger claim on inducing belief in an observation than the
observation itself. This makes the task of explanation quite simple! Unfortunately, a system that
provides uninformativetrivia explanationswill not be deemed especially helpful.

We expect pragmatic considerations, much like Gricean maxims, to rule out uninformative expla-
nations where possible. For instance, one might require that an explanation be semantically distinct
from the observation it purports to explain. However, the semantics should not rule out trivial ex-
planations. In some applications a trivial explanation may be entirely appropriate. Consider causa
explanationsinacausa network. One might expect acausal explanation for anode having aparticular
value to consist of some assignment of values to its ancestors. However, when asked to explain a

OWhen there are several disjoint preferred explanations (e.g., R, S), we may be interested in covering explanations, that
capture all of the plausible causes of an observation. We refer to [10] for a discussion of this notion.
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root node, no explanation but the trivia explanation seems appropriate. Presumably, in any abstract
model of adomain, causes (hence causal explanations) cannot be traced back ad infinitum.*

3.4.2 Irreevant Information

Very often one can strengthen or weaken an explanation with extraneousinformation and not affect its
explanatory power. But such constructionsoften resultinexplanationsthat areintuitively unsatisfying.
Suppose as usual that the sprinkler being on explains wet grass, so S = W. Suppose furthermore
that the conditionals 5 = O and 5 = -0 are both rejected by the agent, where O standsfor “Fred's
office door isopen,” something about which our agent has noinformation. A simpleinference ensures
that (S A O) = W and (5 A -0) = W both hold. Thus, 5 A O and S A =0 both explain W. Yet,
intuitively both of these explanations are unappealing — they contain information that is irrelevant
to the conclusion at hand.

In order to rule out such explanations, we expect the pragmatic component of an abductive system
to filter out semantically correct explanations that are inappropriate in a given context. In Pool€'s
Theorist system, for example, explanations are drawn from a prespecified set of conjectures. We can
view this as a crude pragmatic “theory.” Levesque [35] embeds a syntactic notion of simplicity in
his semantics for abduction. In our conditional framework one can define conditions under which a
proposition is deemed irrelevant to aconditiona [21, 3].

Explanations can also be strengthened with “background information” that, while not irrelevant,
can be left unstated. For instance, returning to the example given by the factual model in Figure 2,
we can seethat R explainsW, and R A =C' explains W aswell. However, since —=C' normally holds
when R holds (i.e, R = —(), it can be left as a tacit assumption. Certainly, —=C' is relevant, for
R AC = =W, butit needn’t be stated as part of the explanation. This suggests that logically weak
explanations are to be (pragmatically) preferred. It aso suggests a mechanism whereby an abductive
system can elaborate or clarify its explanations. Should an explanation be questioned, the system can
identify tacit knowledge that is deemed relevant to the explanation and elaborate by providing these
facts.

One can weaken explanations by digjoining certain information to valid explanations, retaining
explanatory power. In generd, if A explains B, and (' islessplausiblethat A, then A v C' explains
B asweéll. Since (A Vv (') = A (because C' isless plausible than A), we must have (A Vv C') = B.
If rain explainswet grass, so does “It rained or the lawn was covered,” since C' isless plausiblethan
R. Once again, we view the weaker explanation as violating (something like) the Gricean maxim of

Me\why is the grasswet? “Becauseit rained.” “Why did it rain?’ “It just did!”
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Informativeness. the explanation R is certainly more informative that the wesker R v C' (but still
relevant). The explanation R v C' also carries with it the unwanted implicature that both disjuncts
are (individually) valid explanations. Thisisstrongly related to the following issue that arisesin the
study of conditional logics. sentences with the linguisticform (A v ') = B are usually intended to
represent an assertion with thelogical form (A = B) Vv (C' = B) [40].

4 Abductive Models of Diagnosis

One of the main approaches to model-based diagnostic reasoning and explanation are the so-called
“abductive’ theories. Representative of these models is Pool€e's [43, 44] Theorist framework for
explanation and prediction, and Brewka's [12] extension of it. In this section, we describe both
models, how they can be embedded within our framework, and how the notions we defined in the
last section can be used to define natural extensions of the Theorist framework. Thisalso providesan
object-level semantic account of Theorist.

41 Theorist and Preferred Subtheories

Poole [43, 44] presents aframework for hypothetical reasoning that supports explanation and default
prediction. Theorist isbased on default theories, pairs (F, D) where F and D are sets of sentences.*2
The elements of F are facts, known to be true of the situation under investigation. We take D to
be a set of defaults, sentences that are normally true, or expectations about typical states of affairs.
Although nothing crucial depends on this, we assume D to be consistent. Poole also uses a set C of
conjectures that may be used in the explanation of observations, but should not be used in default
prediction.

Definition 4.1 [44] Anextension of (F, D) isany set Cn(F U D) where D isamaximal subset of D
such that 7 U D is consistent.

Intuitively, extensions are formed by assuming as many defaults as possible. Since defaults are
expected to be true, each extension corresponds to a “most normal” situation at which F holds. A

2poole’s presentation is first-order, using ground instances of formulae in the definitions to follow. For simplicity, we
present only the propositional version.

3The following definitions are slightly modified, but capture the essential spirit of Theorist. We ignore two aspects
of Theorist, constraints and names. While constraints can be used to rule out undesirable extensions for prediction, it
is generally accepted that priorities, which we examine below, provide a more understandable mechanism for resolving
conflicts. The role of constraints in explanation has largely been ignored. Named defaults add no expressive power to
Theorist; they can be captured by introducing the names themselves as the only (atomic) defaults.
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(skeptical) notion of default prediction is defined by considering what is true at each such normal
situation.

Definition 4.2 [44] Sentence A is predicted by (F, D) iff A isineach extension of (F, D).

Conjectures play akey rolein abduction, and can be viewed as possible hypotheses that (together
with certain defaults) explain a given observation /.

Definition 4.3 [44] C' U D isa(Theorist) explanation for observation 5 (w.rt. (F,D,C))iff C CC,
DCD,CUDUFisconsistentandC'U DU F = 5.

Since we take defaults to be assumptions pertaining to the normal course of events, the set C' of
adopted conjectures carries the bulk of the explanatory force of a Theorist explanation. Just as we
ignore “causal rules’ and “scientific laws” in our earlier definition of predictive explanation, here we
take the default component of an explanation to be “understood,” and take a set €' of conjectures to
be a Theorist explanation iff there is some set of defaults D that satisfies the required relation. We
assume sets C', D and F are finite and sometimes treat them as the conjunction of their elements.

Example4.l Let F = {U, A}, D ={U D A,AD E,U D> -FE,RD -P}yand(C = {U, A, I},
where U, A, F, R and P stand for university student, adult, employed, Republican and Pacifist,
respectively. The extensions of thisdefault theory are

Cn{U,A,UD> A ADFE,RD-P}
Cn{U,A,UDAUD-E,RD-P}

Thus A is predicted, but neither £ nor — F are predicted.

Suppose now that 7 = . The conjecture A explains F, but does not explain —=£. Thus, if
one adopted belief in A, onewould predict . Inasimilar fashion, U explains F; but U aso
explains—F. Noticethat — P isnot explainable. B

Thelast explanation in thisexampleillustratesthat Theorist explanationsare, in acertain sense, para-
consistent: aconjecture may explain both a propositionand its negation. Certainly, such explanations
cannot be construed as predictive. Notice also that certain propositions may not have explanations of
the type defined by Theorist, but can be explained (nontrivialy) if we alow explanationsthat do not
lie within the set of conjectures. Intuitively, we might want to admit R as avalid explanation of - P
even though it is not listed among our assumable hypothesesin C.
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In the example above, the second extension is more satisfying than the first. The fact that
university students are a specific subclass of adults suggests that the default rule U’ > — F should be
applied instead of A > F. Brewka[12] has extended the Theorist framework for default prediction
by introducing priorities on defaults to handle such a situation.

Definition 4.4 A Brewka theoryisapair (F,(Dy,---,D,)) where F is aset of facts and each D; is
aset of defaults.

Intuitively, (D1, ---,D,,) is an ordered set of default sets, where the defaults in the lower ranked
sets have higher priority than those in the higher ranked sets. We will say that default d € D; has
priority over default e € D; if i < j. When constructing extensions of such atheory, if two default
rules conflict, the higher priority rule must be used rather than the lower priority rule. Multiple
extensions of a theory exist only when default rules of the same priority conflict with the facts or
higher priority rules. A Theorist default theory (with no conjectures) (F, D) isaBrewkatheory witha
single priority level. The reduction of aBrewkatheory to a(Theorist) default theory is (F, D), where
D =DiU...UD,. Brewka's preferred subtheories (hereafter dubbed extensions) are constructed in
the obvious way.

Definition 4.5 An extension of a Brewkatheory (F, (D, ---,D,)) isany set
E=Cn(FuUuDiuU...UD,)

where, foral 1 < k < n, FUD1U...UD,isamaximal consistent subsetof FUD,U...UD,.

Thus, extensions are constructed by adding to F as many defaults from D, as possible, then as many
defaults from D5, as possible, and so on. The following proposition should be clear:

Proposition 4.1 Every extension of a Brewka theory (F, (D1, - - -, D,,)) isa Theorist extension of its
reduction (F, D).

Prediction based on aBrewkatheory isdefined in the obviousway, asmembershipin all extensions.
It then becomes clear that:

Proposition 4.2 A ispredicted by aBrewkatheory (F, (D4, ---,D,,))ifitispredicted byitsreduction
(F.,D).

In other words, Brewkatheoriesalow (typically strictly) more predictionsthan their Theorist counter-
parts. In the example above, should we divide D into priority levelsby placing U D Aand U D - F
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inD;and A O F inD,, weareleft withasingleextension Cn{U,U > A, U > -F,R > =P}, and
- F is predicted.

Brewka does not provide a notion of explanation, but the Theorist definition of explanation will
suffice. That is, « explains 3 iff {a} U F isconsistent with some set of defaults D C Dy U ... U Dy,
such that {a} U F U D = 5. Again, we will often draw explanations from a prespecified set of
conjectures. Thisdefinition retainsthe essential properties of the Theorist definition, in particular, its
paraconsi stent flavor.

4.2 Capturing Theorist in CT40

Our god is to represent and extend the notion of explanation in Theorist by embedding it within
our conditional framework. This will have the effect of providing a semantic interpretation in our
conditional logic for Theorist’s notion of explanation and prediction. In what follows, we assume a
fixed, consistent set of defaults D, but the sets 7 and C of facts and conjectures, respectively, will be
alowed to vary.*

The definitions of extension and prediction in Theorist suggest that the more defaults a situation
satisfies, the more normal that situation is. We capture the normality criterion implicit in Theorist by
ranking possible worlds according to the default sentences they falsify (or violate).

Definition 4.6 For any possibleworld w € W, the set of defaults violated by w is

V(w)={deD:w| ~d}

If we interpret defaults as normality assumptions, clearly the ordering of worlds should be induced
by set inclusion on these violation sets. This gives rise to a suitable CT40*-model, the Theorist
structure, for a set of defaults D.

Definition 4.7 The Theorist structurefor D is Mp = (W, <, ¢) where W is the set of truth assign-
mentssuitablefor Lcpy ; ¢ isthevaluationfunctioninduced by W; and v < wiff V(v) C V(w).

Proposition 4.3 Mp isa CT40*-model.

The model Mp divides worlds into clusters of equally plausible worlds that violate the same set of
defaults in D. If V(w) = V(v)thenw < v and v < w. Otherwise, » and w must be in different
clusters.

“The consistency of the set D is not crucial to our representation, but allows the presentation to be simplified. We
will point out various properties of our model that depend on this assumption and how they are generalized when D is not
consistent.
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Figure 3: Theorist Model for the University Students Example

Proposition 4.4 C isacluster inthe model My iff for some D C D

C=Aw:wkEdifde D and wl=-difdeD - D}

Since D isfinite, any model Mp consistsof afiniteset of clusters. Figure 3 depictsthe Theorist model
for thedefault set D = {U D A, A D> E,U D —FE}. The bottom cluster contains those worlds that
violate no defaults, that is, the most normal worlds. The middle clusters (from left to right) violate
thedefault sets{U > A}, {U D> ~F}and{A D F}, respectively. Theleast plausible worlds violate
the default set {U O A,U D> —F}. Noticethat the model Mp is sensitive to the syntactic structure
of the default set D. Logically equivaent sets of defaults can result in drastically different models,
reflecting the syntax-sensitivity exhibited by Theorist.

To interpret this model, we view the defaultsin D as expectations held by an agent, statements
regarding the most normal or plausible states of affairs. If an agent has no “factual beliefs,” it would
adopt this set of defaults asits only beliefs. Thus, the model Mp captures the epistemic state of an
agent who has yet to encounter any default violations. In a diagnosis application, we might think of
such abelief state as representing thenormal functioning of asystem. Noticethat since D isconsistent
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the model Mp has aunique minimal cluster.®

The facts F play no role in the definition of the model Mp. The manner in which we define
prediction and explanation relative to thismodel below will account for F by using these facts in the
antecedents of relevant conditionals. This allows a single model to be used for avariety of different
sets of facts. One can explicitly account for F in the model by ruling out any worlds falsifying F
(e.g., by using the axiom g8F ). However, we find the current formulation more convenient.

421 Prediction

Extensionsof adefault theory (F, D) areformed by considering maximal subsetsof defaultsconsistent
with the facts 7. Recall the definition of amost plausible set of A-worldsin a CT40-model for some
proposition A from Section 2:

Pl(A) = {min(A)NC : Cisacluster}

By Proposition 4.4, the worlds in some most plausible set of A-worlds must violate exactly the same
defaults. IntheTheorist model, an extension must then correspond to aset of most plausible 7 -worlds.

Proposition 4.5 E isan extension of (F, D) iff | £|| = S for some S € PI(F).
Corollary 4.6 A isinsomeextension of (F,D) iff Mp = F — A.

Theorist predictions are those sentencestruein al extensions. Since min(F) = UPI(F), we havethe
following:

Theorem 4.7 A ispredicted (in Theorist sense) from default theory (F, D) iff Mp = F = A.

Thus, default predictionsin Theorist correspond precisely to those sentences an agent would believe
if it adopted belief in the facts . In other words, believing F induces belief in all (and only) default
predictions.

Consider the example illustrated in Figure 3. We have A = £ and A = -U, corresponding
to the Theorist predictions £ and -U when 7 = {A}. Noticethat U % A, U # -A, U % FE
and U # —F dl hold, indicating that none of A,—-A, F, - F are predicted when F = {U}. But
U= (F>A)holdsso I O A ispredicted by Theorist when 7 = {U}.

B1f D isinconsistent, then we will have aminimal cluster corresponding to each maximal consistent subset of D; i.e., a
minimal cluster for each extension of F = §.
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4.2.2 Weak Explanations

To capture Theorist explanations, we assume the existence of a set C of conjectures from which
possible explanations are drawn. Recall that ' C C explains 5 (in the Theorist sense) iff ', together
with F and some subset of defaults D C D, entails 5. When this relation holds, there clearly must
exist amaximal such set of defaults consistent with C'. Thisalows usto restrict our attention to such
maximal subsets of D. Essentially, we can exploit the result of Poole ensuring that 7 is explainable
iff it isin some extension. The notion of weak explanation described in Section 3 precisely captures
Theorist explanations.

Theorem 4.8 Let ' C C. Then C' isa Theorist explanationfor 3 iff Mp = (FAC) — gand FAC
is consistent.

In other words, C' isa Theorist explanationiff 7 A € isaweak explanation.'®

The defeasibility of Theorist explanations is captured by the weak conditional —. In AMp above
we havethat A — U, so A explains=U (indeed, -U is explainable with (). However, adding the
fact — I renders thisexplanation invalid, for (A A =) /4 =U. The paraconsistent nature of Theorist
explanations corresponds precisely to the paraconsistent nature of the connective —. In the example
above, wehaveU — FandU — - F,sowhen F = (), U explainsboth £ and - E. If 7 = {A} then
F ispredicted; but U/ again explains - F,aswel as F,forU NA — FandU A A — - F both hold.

4.2.3 Predictive Explanations

Some Theorist explanations do not exhibit this paraconsistent behavior. For instance, if 7 = {U}
then F explains A since U A E — A. However, the even stronger relation U A £ = A istrue as
well. Thus, given fact U, if F is adopted as a belief A becomes believed as well. The notion of
predictive explanation as described in Section 3 seems especially natural and important. With respect
to the Theorist model, we would expect a predictive Theorist explanation to be a set of conjectures
C' satisfying the relation C' A F = 3. While no such concept has been defined with the Theorist
framework, we can extend Theorist with this capability.

Using the original ingredients of Theorist, a predictive explanation should be such that all (rather
than some) extensions of the explanation (together with the given facts) contain the observation.

Definition 4.8 Let C' C € and # be some observation. C' isa predictive explanationfor g iff 5 € F
for all extensions & of (F U C, D).

181f explanations need not come from aprespecified pool of conjecturesc, then any « suchthat o U F isaweak explanation
will be considered a Theorist explanation.
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Since prediction is based on considering the most normal situations consistent with some facts,
predictive explanations should be evaluated with respect to all most normal situations satisfying
that explanation. This definition reflects precisely the predictive explanations (in the CT40 sense)
sanctioned by the Theorist model Mp.

Theorem 4.9 Let C' C C. Then C isapredictive Theorist explanationfor 3 iff Mp = (FAC) = 3
and F A C'isconsistent.

Notice that while the normative aspect of predictive Theorist explanations is explicitly brought
out by Definition 4.8 (in particular, by the restriction to maximal subsets of defaults), itisimplicitin
the formulation (F A C') = /5 of Theorem 4.9. Thisis due to the fact that the Theorist model My is
constructed in such away that maximal setsof defaultsare “preferred,” and thefact that (FAC') =
is evauated only in these most preferred situations satisfying F A C'.

In our example above, A predictively explains E (with no facts) since Mp = A = E. Naturally,
predictive explanations are defeasible: Mp [~ U A A = E soU A A falsto predictively explain .
If 7 = {U} then F predictively explains A since U A E' = A. Thenotion of predictive explanation
described for epistemic explanations suggests a very natural and useful extension of the Theorist
framework. Theorem 4.9 ensures that the predictive explanations defined in Definition 4.8 match
our intuitions, while the definition itself demonstrates how our predictive explanations can be added
directly to the Theorist framework.

424 Preferences

As with most approaches to abduction, Theorist admits a number of possible explanations, whether
weak or predictive, and makes no attempt to distinguish certain explanations as preferred to others.
Even if we restrict attention to explanations that are formed from elements of a conjecture set C,
certain explanations seem more plausible than others. For example, one may have a set of defaults

D={RDOW,SD>OW,RD -5}

inducing the Theorist model pictured in Figure 4: rain and the sprinkler cause wet grass, and the
sprinkler ison only if itisn’t raining. AssumingC = {R,S}and F = ), eechof R, Sand R A S
(predictively) explain W. However, inspection of themodel Mp suggeststhat, infact, theexplanation
R A S should be less preferred than the others. Thisis dueto the fact that the ordering of plausibility
on propositionsinduced by Mp makes R A 5 less plausiblethan R or 5.

Theorist provides no notion of preference of this type; but our definition of preference from
Section 3 readily lends itself to application within the Theorist framework. In the parlance of
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Figure 4: Theorist Model for the Wet Grass Example

Theorist, preferred explanations ought to be those that occur at the most plausible situations, or those
that are consistent with as many defaults as possible. However, explanatory conjectures a one do not
have the predictive force required — the facts / must also be considered.

Definition 4.9 Let C,C’ C C be predictive Theorist explanations for 3, relative to (F,D). C is
at least as preferred as C’ (written ' <z () iff each maximal subset of defaults D’ C D
consistent with C’ U F is contained in some subset of defaults D C P consistent with C' U F.
Explanation C' is a preferred explanation iff there is no explanation for 5 such that ¢’ <+ C.

In our example, R and S are equally preferred explanations since both are consistent with the entire
set of defaultsD. Theexplanation R A S isless preferred becauseit conflictswiththedefault R O -5

It ispossible, due to the fact that the plausibility relation determined by M isnot total, that two
explanations are incomparable. If asked to explain (R v .S) A =W, predictive explanations & A =W
and 5 A =W are preferred to the explanation R A S A —=W. Yet these two preferred explanations are
incomparablein theTheorist model. Thisnotionof preference corresponds naturally to theplausibility
ordering determined by Mp.

Theorem 4.10 Let C',C" C C be predictive Theorist explanations for 3, relative to (¥, D). Then
C <z C'iff Mp = T((C" A F) D O(C A F)).

Notice that the comparison of plausibility can be applied to nonpredictive explanations as well. We
will seethisin Section 5.
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4.3 CapturingPreferred Subtheoriesin CT40

The manner in which Theorist is embedded in our abductive framework aso applies to Brewka's
preferred subtheories. For a Brewka theory (F, (D1, --,D,)) the plausibility of worlds is not
determined solely by the number of rules violated, but also the priority of those rules. Implicitin the
definition of an extension is the idea that any number of rules of lower priority may be violated if it
allowsarule of higher priority to be satisfied. This givesriseto anew definition of rule violation.

Definition 4.10 For any possibleworld w € W, the set of defaults of rank : violated by w is
Vilw)={d € D; : w |E ~d}

A world that violates fewer high priority defaults than another world should be considered more
plausible, even if the second world violates fewer low priority defaults. Thisgivesriseto the Brewka
structure for an ordered set of defaults (Dy, - - -, D,,).

Definition 4.11 Let (D4, ---,D,,) bean ordered set of defaults, and let v, w be possibleworlds. The
minimal rank at which w and » differ is

diff(w,v) = min{i : Vi(w) # Vi(v)}

If Vi(w) = Vi(v) foral i < n, by convention we let diff(w,v) = n + 1.

Thus, diff(w, v) denotes the highest priority partition of default rules D g; 4.,y Within which w and
v violate different rules. It isthisset of rulesthat determines which of w or » is more plausible.

Definition 4.12 The Brewka structure for (D1, ---,D,,) is Mg = (W, <, ¢) where W is the set of
truth assignments suitable for Lcp, ; ¢ isthe valuation function induced by W; and v < w iff

Vaig 1w)(0) € Vaig w0y (w).
Proposition 4.11 My isa CT40*-model.

Let usdenote by D theset D1 U ... U D,,. Themode Mz, just as the Theorist model Myp, divides
worldsinto clusters of equally plausible worlds that violate exactly the same set of defaultsin D.

Proposition 4.12 C isa cluster inthe model M iff for some D C D

C=Aw:wkEdifde D and wl=-difdeD - D}
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Figure 5: Brewka Modél for the University Students Example

However, the ordering of clustersis determined differently. In the Theorist model, only set inclusion
is used to determine relative plausibility. In contrast, the Brewka model may rank a world » more
plausible than a world w, even if V(v) € V(w). In paticular, we may have that » violates a
low priority rule that is satisfied by w. Figure 5 depicts the Brewka model for the default sets
D1 ={U>AUD-FE}andDy = {A D F}. Incontrast with the Theorist model for the “flat”
version of thistheory (see Figure 3), we see that worldsviolatingtherule A > F are more plausible
than worldsviolating either of the other two rules (individualy).

The notions of prediction and explanation in Brewka's framework correspond to our conditiona
model s of prediction and explanation, allowing resultsto be shown that are entirely anal ogousto those
demonstrated above for Theorist. We omit proofs of the following results; they can be verified in a
straightforward way by extending the proofs of the corresponding resultsfor Theorist to accommodate
the more refined ordering of clusters provided in Definition 4.12.

Proposition 4.13 E isan extension of (F,(Dq,---,D,)) iff ||[E|| = S for some S € PI(F)inthe
model M.

Corollary 4.14 Aisinsomeextensionof (F,(Dy,---,D,)) iff Mg = F — A.
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Theorem 4.15 A ispredicted from Brewka theory (F, (Dy, - - -, Dy,)) iff M = F = A.

Assuming some set of conjecturesC, we have

Theorem 4.16 Let ¢' C C. Then (' isa Theorist explanation for 3 relative to the Brewka theory
(F,(D1,---,Dy))iff Mg |= (FANC)— pand F A C isconsistent.

We define predictive explanations for a Brewka theory in the same fashion as for Theorist.

Definition 4.13 Let ' C C and 3 be someaobservation. C isapredictive explanationfor 5 iff 3 €
for all extensions & of (F U C, (Dq,---,D,)).

Intuitively, an observation is predictively explained by some conjectures if, for every “maximal” set
of defaults consistent with €' and 7, the observation is entailed by the facts 7 and the conjectures ',
together with these defaults. However, Brewka explanationsrely on a definition of “maximality” that
includes the consideration of priority of default rules.

Theorem 4.17 Let C' C C. Then C isa predictive Brewka explanationfor 5 iff Mz = (FAC) = 3
and F A C'isconsistent.

Finally, preferences on explanations are also defined in the same manner, but again taking priorities
into account.

Definition 4.14 Let C, C" C C bepredictive Brewkaexplanationsfor 3, relativeto the Brewkatheory
(F,(D1,---,D,)). We cal the set

J{Dr: D, C Dy}

k<n
amaximal set of defaultsfor C' iff FU C U D1 U ...U D, isamaximal consistent subset of
FUCUDLU...UDy, foreechl < k < n. Cisatleastaspreferredas C’ (written C' <z ")
iff for each maximal set of defaults Uy<,, { D}, } for C’ thereisamaximal set U<, { D} } for C'
suchthat D} C Dy foreachl < k < n.

Theorem 4.18 Let C', ¢’ C C be predictive Brewka explanationsfor /3, relative to the Brewka theory
(F(D1,---, D). Then C <z C"iff Mg |= B((C" A F) D O(C A F)).

If we compare the Brewka model M in Figure 5 with the Theorist model for the same (unpri-
oritized) set of defaults Mp in Figure 3, the differences in structure induced by priorities become
clear. In asense, the Brewka model has increased “connectivity”. Whileworlds that are comparable
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in the Theorist model remains so in Mg, certain clusters of worlds that are incomparable become
comparable in M. Thisleads, for instance, to the fact that U/ predicts - F in Mg, but does not in
Mp. Thisincreased connectivity is, in fact, necessarily the case.

Proposition 4.19 Let M be the Brewka model for (D1, - - -, D,,) and Mp the Theorist model for its
reduction® = D1 U...UD,. Thenv < w in Mg whenever v < w in Mp.

Theorem 4.20 If Mp = a = gthen Mg = a = S.

Thus any predictive explanation in Theorist is also a predictive explanation when any set of priorities
isintroduced.

Intuitively, one would expect priorities to prune away possible explanations. For predictive
explanations, the opposite may occur, since priorities can only increase the number of predictions
admitted by a set of facts and conjectures. However, if we consider only preferred predictive
explanations, we have more reasonable behavior. 1t becomes clear that priorities may, in fact, reduce
the number of preferred explanations (and it cannot increase the number).

We note that the representation of Theorist and Brewka modelsfor agiven set of defaults does not
require that one specify the ordering rel ation for the model explicitly for each pair of worlds. One may
axiomatizethemodel (relatively) concisely using techniquesdescribedin[3]. Thetruth of conditionas
determining explanations and preferences can then be tested against this theory. However, we are
not suggesting that our conditional framework be used as a computational basis for explanationsin
simple Theorist-like theories. Rather, it bringsto light the underlying semantic properties of Theorist
and several principled extensions.

5 Consistency-Based Diagnosis

While the Theorist system may be used for diagnosis (as our examplesin this section illustrate), it is
presented moregenerally asamethod for effecting arbitrary explanations. Another approach to model-
based diagnosisis consistency-based diagnosis, which is aimed more directly at the diagnostic task,
namely to determinewhy a correctly designed systemis not functioning according to its specification.
In thissection, after presenting the fundamenta concepts from Reiter’'s[49] and de Kleer, Mackworth
and Reiter’s [16] methodology for diagnosis, we show how these canonical consistency-based models
can be embedded in our framework for epistemic explanations. This highlights many of the key
similarities and differences in the abductive and consistency-based approaches. We also address the
role fault models play within our semantics and how diagnoses can be made predictive.
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5.1 A Logical Specification

de Kleer, Mackworth and Reiter [49, 16] assume that an appropriate model of a system or artifact
consists of two parts. Thefirst is a set of components COMP, the parts of a system that oneis able
to distinguish and that (more or less) independently can fail to function correctly. The second is a
set of logical sentences SD, the system description, that describes precisely the intended or normal
functioning of the system. For example, given acertain set of inputsto acircuit, the system description
should alow oneto predict the value of the outputs. Because certain components may fail, a system
description that only allows for correct behavior will be inconsistent with observations of incorrect
behavior. Therefore, abnormality predicates are introduced. For any component ¢ € COMP, the
literal ab(c) denotes the fact that component ¢ is not functioning as required. Such a component is
said to be abnormal; otherwise it is normal. We assume that components usually function correctly.
However, because expected observations depend on this assumption, the system description will
usually contain sentences in which anticipated behavior is explicitly predicated on this assumption.
Thus sentencessuch as —ab(¢;) D « assert that, if component ¢; isfunctioning correctly then behavior
o will be observed. The correct functioning of a system isthen more accurately characterized by the
set of sentences
CORRECT = SD U {—-ab(¢;) : ¢; € COMP}

Throughout we assume that this set CORRECT is consistent.

If an observation is obtained that is inconsistent with CORRECT then (assuming that both the
observation and system description are accurate and correct), it must be that some of the components
have failed; that is, ab(c;) must hold for some members ¢; € COMP.Y" A diagnosis for such an
observation is any set of components whose abnormality (alone) makes the observation consistent
with SD. More precisely, following [16], we have these definitions.

Definition 5.1 Let A C COMP be aset of components. Define sentence D(A) to be

A\ [{ab(c) 1 c € A} U {~ab(c) : ¢ € COMP — A}]

D(A) expresses thefact that the componentsin A are functioning improperly while al other compo-
nents are functioning correctly.

We will make afew remarks at the conclusion of this section regarding the possibility that SD is an incorrect model.

BAs usual, a“set” of observationswill be assumed to be finite and conjoined into a single sentence 3. For any set of
sentences, such as SD, we will assume finiteness, and treat the set somewhat loosely as the conjunction of its elements.
Context should make clear whether the sentence or the set is intended.
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Definition 5.2 Let A € COMP . A consistency-based diagnosis (CB-diagnosis for short) for obser-
vation 5 isany D(A) suchthat SD U {3, D(A)} issatisfiable.

Reiter’'s [49] “Principle of Parsimony” suggests that reasonable diagnoses are those that require
asfew faultsas possibleto explain the aberrant behavior. A minimal diagnosisisany diagnosis D(A)
such that for no proper subset A’ C A is D(A’) adiagnosis. In Reiter’s original formulation, only
minimal diagnoses are deemed essentia. If the correct functioning of asystemisall thatismodeledin
D, then one can show, for any diagnosis D(A ), that alarger component set A C A’ a'so determines
adiagnosis D(A’). Thus, minimal diagnoses characterize the set of all diagnoses.

Example 5.1 Imagine a simple system with two components, a plug and a light bulb. One can
observe that the bulb is bright, dim or dark. SD captures the correct behavior of the system:

—ab(bulb) A ~ab(plug) D bright

We assume that the three possible observations are exhaustive and mutually exclusive (and that
thisfact is captured in SD aswell). We expect to see a bright light (i.e., bright istrue), since
thisisentailed by CORRECT:

SD U {—ab(bulb), mab(plug)} |= bright

If we observedim, thentheminimal diagnosesare D({bulb})and D({plug}). Thenonminimal
diagnosis D({bulb, plug}) also renders the observation dim consistent. Notice that each of
these diagnoses applies to the observation bright as well, even though this is the system’s
predicted behavior. That is, the diagnoses do not rule out the “correct” behavior. B

The presence of fault models renders Reiter’s characterization incorrect.® de Kleer, Mackworth
and Reiter suggest a notion of kernel diagnosis that can be used to replace minimal diagnosisin the
characterization of al diagnoses. Our goa here is not to investigate such characterizations, but rather
investigate the semantics of diagnosisas explanation. Despitethe failure of minimal diagnosesinthis
characterization task, the principle of parsimony (in the absence of more refined, say, probabilistic
information) suggeststhat minimal diagnosesare to be preferred. We will simply point out the impact
of fault modelson diagnosis.

Intuitively, afault model isa portion of the system description that allows predictionsto be made
when itisknown or assumed that some component isfaulty. Inthe example above, one cannot predict

¥gimilar remarks apply to exoneration axioms, which we do not discuss here.
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anything about the brightness of the light if one of the componentsisabnormal. All observationsare
possible (consistent). Suppose we add the following axiom:

ab(bulb) A ab(plug) D dark

While D({bulb})and D({plug}) are both diagnosesfor dim, the“larger” diagnosis D({bulb, plug})
isnot. Thus, inthe presence of fault model's, supersets of diagnosesneed not themsel vesbe diagnoses.
de Kleer, Mackworth and Reiter do, however, formulate conditions under which thisis guaranteed to
be the case.

5.2 Capturing Consistency-Based Modelsin CT40

Just as with our embedding of Theorist, we can provide a CT40-model that captures the underlying
intuitions of consistency-based diagnosis. We assume that the language in which the system de-
scription and observations are phrased is propositional, denoted Lcp. . We will assume that for each
component in COMP there is a proposition stating that the component has failed. We will, however,
continue to use the first-order notation ab(¢) for such a proposition.?°

The principle of parsimony carries with it the implicit assumption that situationsin which fewer
system components are abnormal are more plausible than those with more componentsfailing. This
suggests anatural ordering of plausibility on possibleworlds.

Definition 5.3 Let w beapossibleworld suitablefor L.cp. and COMP someset of system components.
The abnormality set for w isthe set

Ab(w) = {¢ € COMP : w |= ab(c)}

Definition 5.4 The consistency-based model (the CB-model) for component set COMP is Mconp =
(W, <, ¢)where W istheset of truth assignmentssuitablefor Lcpy ; ¢ isthevaluation function
induced by W; and v < w iff Ab(v) C Ab(w).

Proposition 5.1 Mgooprp isa CT40*-model.

Noticethat the CB-model for a set of componentsis exactly the Theorist model with the set of defaults

D = {-ab(c) : c € COMP}

2 first-order diagnostic model can be captured propositionally by using ground terms should the domain of components
and other objects of interest befinite. A first-order version of our logics could be used but thisis not relevant to our concerns
here.
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Figure 6: The CB-model for a Two Component System

We will exploit this fact below when comparing consistency-based and abductive diagnosis.

Themodel Mcoprp doesnot rule out worlds violating SD. SD, much like F above, will be used
explicitly in defining diagnoses. Worldsin which -=SD holdswill not play arolein consistency-based
diagnosis; therefore, we could easily use a CT40-model in which only SD-worlds are represented
(e.g., using the axiom §9D).2

Example 5.2 Figure 6 illustrates the model Mq-oarp for our simple light bulb example with two
components. For simplicity, we show only those worlds that satisfy the system description SD
provided in Example 5.1. As usua, worlds in the same cluster are those in which the same
components have failed or work correctly. &

The most plausible state of affairs in the model Mcoarp is Simply the set of worlds satisfying
the theory CORRECT. Should an observation be made that conflicts with this theory, the system
must be functioning abnormally and belief in the assumption —ab(c¢) for at least one ¢ € €' must be
retracted. A diagnosisisan explanation, given interms of normal and abnormal components, for such
an observation. Clearly aCB-diagnosisisnot predictive, for it simply must ensurethat the observation
is rendered plausible. In Example 5.1, the sentences D({bulb}) and D({plug}) are both diagnoses

Z'However, one could imagine the diagnostic processincluding the debugging of SD, astakes placefor instancein model
verification, or even scientific theory formation.
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of the observation dim. But neither of these diagnoses entails the observation d:m. This leads to
the notion of an excuse, which is simply amight explanation, as described in Section 3, consisting of
possible component failures.

Definition 5.5 Let A C COMP be a set of components. Define sentence A B(A) to be
N\ [{ab(c) 1 c € A}]

Thus, AB(A) assertsthat al componentsin A are functioning abnormally. In contrast to the sentence
D(A), AB(A) asserts nothing about the status of componentsnot in A.

Definition 5.6 Let COMP and SD describe some system. An excuse for an observation 3 is any
sentence AB(A) (where A C COMP) such that

Mcowmp |: AB(A) A SD 7£> —|ﬁ

If belief in the excuse were adopted, the observation would not be disbelieved. For instance, the
model Mcoarp admits excuses D({bulb}), D({plug}) and D({bulb, plug}) for the observation
dim. Noticethat D()) (which we assumeto be T) is not an excuse for dim since the belief bright
precludesit; that is, the conditional T A SD % —dim isfase.

Because of the ordering of plausibility built in to the CB-model, when a certain set of components
isbelieved to have failed, other components are assumed to still be functioning correctly.

Proposition 5.2 Mcoump E AB(A) = D(A)

This proposition ensures that a diagnosisin the CT40 framework (i.e., an excuse) can be given solely
in terms of failing components. Thus, we have that an excuse determines a CB-diagnosis for an
observation.

Theorem 5.3 Let SD and COMP determine some system. D(A) isa CB-diagnosis for observation
g iff AB(A)isan excusefor j relativeto Mconp.

Naturally, we should not accept any might explanation for an observation asareasonablediagnosis.
Preferred diagnoses should bethosethat are most plausible, and the ordering of plausibility determined
by themode Mqoasp can be used for thispurpose. Unsurprisingly, preferred diagnosesare precisely
those that minimize the number of abnormal components.
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Figure 7: The Addition of a Fault Axiom

Definition 5.7 Let D(A)and D(A’) beCB-diagnosesfor observation 5. D(A)isatleast aspreferred
asD(A’) (Written D(A) <coMP D(A/)) iff

Mcoomp = B(D(A)) D ©D(A))
D(A) ispreferred diagnosisiff thereisno diagnosisfor 5 suchthat D(A") <comp D(A).
Theorem 5.4 D(A) isapreferred diagnosisiff D(A) isa minimal diagnosis.

5.3 Predictive Diagnoses and Fault M odels

Consider the light bulb example above with the additional axiom
ab(bulb) A ab(plug) D dark

incorporated into the system description SD. Figure 7 illustrates the model M¢conp for this new
system . Thisadditional axiom will be dubbed afault axiomor apartia fault model. If all axioms
havea“positiveform” (i.e., describing behavior based only on conditionsof normality), then diagnoses
(or assumptions of abnormality) can never be used to predict aberrant behavior. In other words, al
“observations’ are consistent with each (nonempty) diagnosis. Fault models change the nature of
diagnosisby making it amore* nonmonaotonicprocess.” For instance, without thisfault axiom, thetwo
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excuses A B({bulb})and A B({plug}) determinediagnosesfor the observationdim, asdoesthelarger
diagnosis A B({bulb, plug}). Thisformsthe basis for Reiter’s [49] characterization of al diagnoses
in terms of minimal diagnoses. However, with the fault axiom, the sentence A B({bulb, plug})isnot
an excuse for dim:

Mcomp E AB({bulb,plug}) A D = ~dim

This reflects the observation of de Kleer, Mackworth and Reiter that supersets of diagnoses need not
be diagnoses themselves. In our terminol ogy:

Proposition 5.5 If AB(A) isan excuse for observation, A B(A’) need not be, where A C A,

Fault models have another impact on the nature of diagnosis. Consider the observation dark.
One diagnosisfor this observation (relative to SDy) isthe excuse A B({bulb, plug}):

Mcomp E AB({bulb,plug}) A Dr # —~dark

Without fault axioms(i.e., using SD rather than SD ), such an excuserenderstheobservation plausible,
but does not preclude other observations. However, with the fault axiom we have an even stronger
predictive condition:

Mcomp |E AB({bulb, plug}) N Dr = dark

Not only does the diagnosisrender dark plausible, it aso induces belief in the observation dark.

Naturally, one might extend the definition of adiagnosisby requiring not only that the observation
be rendered consistent, but also that it be entailed by the diagnosis. Such diagnoses will be dubbed
predictive diagnoses.

Definition 5.8 Let A C COMP . A predictive diagnosis for observation g is any D(A) such that
DU{D(A)} = fand DU {D(A)} isconsistent.

Theorem 5.6 Assume D(A) A SD isconsistent. D(A) isa predictive diagnosisfor 3 iff
Mcomp F AB(A)ANSD = 3

Predictive diagnoses are predictive explanationsrather than might explanations, and as such carry
many of the conceptua advantages of predictive explanations. Unfortunately, for most systems, one
cannot expect diagnoses to be predictive in most circumstances. Typicaly, the knowledge of how
a system fails is incomplete. One may know that a weak battery causes an LED display to show
“strange” readings, but the specific observed display in such a circumstance is not usually predicted
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by a diagnosis. However, with partial fault models one will have that certain diagnoses predict the
observations they explain, rather than just excusing them.

If one has acompletefault model incorporated into SD, intuitively every diagnosiscarrieswithit a
prediction about the behavior that can be observed. Thus, onewoul d expect that every CB-diagnosis, in
the process of excusing the observation, would actually predict it. Thisleadsto genera circumstances
under which every CB-diagnosis of an observation for a particular system is a predictive diagnosis.
We assumethat the system’s behavior can be characterized by agiven set of possible observations O,
the elements of which must be mutually exclusive and exhaustive (relative to SD).%? We say that SD
contains a complete model of correct behavior iff thereexistsa g € O sit.

CORRECT |= O

where
Os =N N :17e0-{8}}

We say that SD contains a complete fault model iff for each diagnosis D(A) thereisa g such that
DAYASD = A Og

Noticethat acompletefault model, on thisdefinition, ensures that one has acomplete model of correct
behavior (simply set A = (). If required, we could restrict A to nonempty sets of components, thus
decoupling the model of faulty behavior from that of correct behavior.

If SD contains a complete model of correct behavior and acomplete fault modd, it is easy to see
that each consistency-based diagnosiswill be predictive. Consider our light bulb example once again,
with observable behaviors bright, dim and dark and the following axiomsin SD (the first models
correct behavior, the second and third are fault axioms):

(—ab(bulb) A ~ab(plug)) D bright
(ab(bulb) = —ab(plug)) D dim
(ab(bulb) A ab(plug)) D dark

20ne may expect a number of possible observations of correct behavior, for instance, corresponding to the possible
inputs to a circuit. However, we treat this as a single observation, the form of which will typically be a conjunction of
implications or biconditionals. The antecedents will determine certain inputs and the consequents certain outputs (e.g.,
on A —ab(bulb) D bright). Similar remarks apply to incorrect behavior. Thisis not the main point of our description so
we do not pursue thisissue further.
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Clearly, any excuse we can make for a given observation will also predict that observation. In this
example, every CB-diagnosisis apredictive diagnosis.

Proposition 5.7 If SD includes a complete fault model then D(A) is a CB-diagnosisfor 3 iff D(A)
isa predictive diagnosisfor .

Notice that to diagnose faulty behavior only, amodel of correct behavior isnot required — acomplete
fault model ensures that predictive explanations can be given for every “abnormal” observation.
However, without any indication of correct behavior any observationis consistent with the assumption
that al components work correctly. Thus, a complete model of correct behavior is required if CB-
diagnoses areto be of any use. Thisisin accordance withthe observation of Poole [45] who describes
the categories of information required for consistency-based diagnosis and abductive diagnosis.
Console and Torasso [13] have a so addressed thisissue. They suggest, as we have elaborated above,
that consistency-based diagnosisisappropriateif fault model sare lacking, whileabductive approaches
are more suitable if models of correct behavior are incomplete.

It isimportant to notice that the definition of complete fault model above relies crucially on the
set of propositionsone is alowed to explain, in other words, the set of “observables.” For example,
suppose we had only a single fault axiom:

(ab(bulb) v ab(plug)) O (dark vV dim)

This fault model is incomplete relative to the original set of observables, for no CB-diagnosis for
dim actualy predicts dim. Each diagnosis, D({bulb}), D({plug})and D({bulb, plug}), dlowsthe
possibility of observation dark. However, suppose we “coaesce’ the observations dim and dark
into asingle category not Bright = dim V dark. If the observations a system is alowed to explain
are restricted to bright and not Bright, this fault model is complete; any CB-diagnosis will then
predict its observation. Inthisexample, D({)) predicts bright, whilethe other three diagnoses predict
notBright. If users are alowed to make more refined observations, predictive diagnoses can be
given if observations are mapped into coarse-grained explainable propositions.

54 OntheReationship to Abductive Diagnosis

Let us assumethat we have a Theorist default theory for the diagnosis of a system where SD istaken
to be the set of facts and the default set is

D = {-ab(c) : c € COMP}
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As observed above, the Theorist model for such atheory is precisely the CB-model for this system.
If we restrict Theorist explanations to those of the form used for consistency-based diagnosis, some
interesting relationships emerge.

Supposethat Theorist explanations arerestricted to havetheform A B(A) (or D(A)). Wewill call
these explanations Theorist diagnoses. Such weak explanations are then guaranteed to be predictive.
Thisisdue simply to the fact that the most plausible worlds at which such an explanation holds must
liewithin asingle cluster. In other words, Theorist diagnoses have a single extension.

Proposition 5.8 Let A C COMP. Mcoump E AB(A) — B iff Mcoyp E AB(A) = 3.
(Smilarly for D(A).)

Should we model a system in Theorist as we do for consistency-based diagnosis, then Theorist
diagnoses are exactly predictive diagnoses as we have defined in the consistency-based framework.

As we have seen, many (if not most) observations cannot be predicted in the consistency-based
framework, especidly if fault-models are lacking or incomplete. This indicates that the abductive
approach to diagnosis requires information of a form different from that used in the consistency-
based approach. Thisisemphasized by Poole [45]. However, given complete fault models, Theorist
diagnoses and consistency-based diagnoses will coincide. Konolige [31] has also examined the
relationship between the two forms of diagnosis.

Without complete information, the Theorist system, in particular the notion of an extension,
can still be used to effect consistency-based diagnosis. While a CB-diagnosis may not predict an
observation, it does require that the observation is consistent with all other “predictions.” In Theorist
terms, the observation is consistent with the (single) extension of the diagnosis. In other words, these
are might explanationsin the Theorist model.

Theorem 5.9 Let SD and COMP describe some system, A C COMP, and D be the set of defaults
{—ab(c) : ¢ € COMP}. Then D(A) isa CB-diagnosisfor observation 3 iff -3 ¢ E where £ isthe
(only) Theorist extension of (SD U {AB(A)}, D).

Corollary 5.10 D(A) isa CB-diagnosisfor observation 3 iff Mp |= SD A AB(A) # 4.

Thus, consistency-based diagnosis can be captured in the Theorist abductive framework without
requiring that the form of the system description be altered. SD is simply used as the set of facts
F. Poole [45] also defines a form of consistency-based diagnosis within Theorist. He shows that
AB(A) isa*consistency-based diagnosis” iff D(A)isin someextensionof SD U {3}. Our notion of
consistency-based diagnosisin Theorist does not rely on forming extensions of the observation, but
(more in the true spirit of abduction) examines extensions and predictions of the explanation itself.
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This is important because our definition captures all CB-diagnoses. Pool€’s definition is based on
Reiter’s [49] definition of diagnosisin terms of minimal sets of abnormal components. It is not hard
to see that, in fact, D(A) is in some extension of SD U {5} iff D(A) isa minimal CB-diagnosis.
While Pool€'s observation is correct for minimal diagnoses (and Reiter’s formulation, in particular),
it cannot be extended to the more general case subsequently devel oped by de Kleer, Mackworth and
Reiter.

Console and Torasso [13] have also explored the distinction between abductive and consistency-
based diagnosi sand present adefinition of explanation (inthe styleof Reiter) that combinesboth types.
The set of observations to be explained are divided into two classes: those which must be predicted
by an explanation and those which must ssimply be rendered consistent by the explanation. We can,
of course, capture such explanations conditionally by using both predictive and weak explanations.
Roughly, if 3 is the part of the observation that needs to be predicted and v is the component that
must be consistent with the explanation (and background theory) then we simply require that any
explanation a besuchthat o = g and o A —.

6 Concluding Remarks

We have presented some genera conditions on epistemic explanations, describing a number of
different types of explanations, and why certain explanations are to be preferred to others. Our
account relies heavily on amodel of belief revision and conditiona sentences. The defeasible nature
of explanations and preferences for plausible explanations are induced naturally by the properties of
our revision model. We have also shown how the two main paradigmsfor model -based diagnosis can
be embedded in our conditional framework.

A number of avenues remain to be explored. We are currently investigating how our model
might be extended to incorporate causal explanations. Such explanations, especialy in diagnostic
and planning tasks, are of particular interest. Grafting a representation of causal influences onto our
model of explanation, such asthat of Goldszmidt and Pearl [27], seemslike apromising way in which
to (quaitatively) capture causal explanations. Konolige[32] has explored the use of causal theoriesin
diagnosisasameansto obviatethe need for fault models. Hisrepresentation in terms of default causal
nets allows both explanations and excuses; but the causal component of his representation remains
essentially unanalyzed. Thekey features of Konolige'stheories can be captured in our framework ina
rather straightforward way. Theseinclude exemptionsof “faults,” distinguishing normality conditions
from primitive causes and preferences for normal and ideal explanations. Thisisdueto theflexibility
of the conditional logic and the generality of plausibility orderings. We a so hopeto explorethe issue
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of designing tests to discriminate potential diagnoses, and the trade-off between further testing and
repair. Thisisanissuethat has recently attracted much attention [19, 39].

The pragmatics of explanation remains an important avenue to pursue. Ways in which to rule out
weak or strong explanations, depending on context must be addressed. Another pragmatic concern
has to do with the elaboration of explanations. We have assumed that explanations are given relative
to background theory. If an explanation is questioned, or elaboration is requested, this may be due to
thefact that certain background isnot shared between the abductive system and the user requesting the
explanation. Mechanismswith which the appropriate background knowledge can be determined, and
offered as elaboration, would be of crucia interest. The manner inwhich an explanation is requested
by auser can also provide clues asto what form an explanation should take [58].

Other forms of explanation cannot be captured in our framework, at leastinitscurrent formulation.
An important type of explanation is of the form addressed by the theory of Gardenfors [22]. There
an explanation is simply required to render an observation more plausible than it was before the
explanation was adopted. Asan example, consider possible explanationsfor Fred's having devel oped
AIDS(A). A possible(evenreasonable) explanationisthat Fred practiced “unsafe” sex (U). However,
it would seem that adopting the belief U is not sufficient to induce the belief that Fred contracted
HIV and developed AIDS. Furthermore, if the probability is low enough, this might not even be a
valid might explanation; that is, U = —A. However, U doesincrease the likelihood of A (even if not
enough to render A believable, or even epistemically possible). Such explanations might be captured
by comparing the relative plausibility of A given U/ and A alone, without appeal to probabilities.
Such an example may suggest arole for decision-theoretic versions of conditional defaults. While A
may be unlikely given U, the consequences of developing AIDS are so drastic that one may adopt
adefault U = A: oneshould act asif A given U. Preliminary investigations of such defaults, in
a conditional setting, may be found in [42, 8]. These may lead to a*“practical” form of explanation,
with some basisin rational action.

On a related note, our model can be extended with probabilistic information. Boutilier [5]
shows how the notion of counterfactual probabilities can be grafted onto the conditional logic
CO. Probahilistic information can then be used to determine explanations of the type described by
Gérdenfors, explanationsthat are “ almost predictive” and to distinguish equally plausibleexplanations
on probabilistic grounds. This should alow a very general model of explanation and diagnosis.
We should also remark that the conditional framework alows arbitrary orderings of preference.
The orderings described above for Theorist and consistency-based diagnosis are merely illustrative.
Generally, orderings need not be determined by default violation and set inclusion. One may, for
example, decide that worlds violating the system description of some artifact are more plausible than
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worlds where alarge number of system components have failed. So if some observation can only be
diagnosed with alarge number of failures, one may prefer to adopt the hypothesisthat the model of the
system isin fact inaccurate. Such aviewpoint would be necessary in system design and verification.

Finally, we have neglected an important class of explanation, namely, observations that are
explained by appeal to causal or scientificlaws. Our explanationshavetaken for granted abackground
theory with appropriate conditional information. However, especially in the realm of scientific theory
formation, explanations are often causal laws that explain observed correlations. Such explanations
require amodel of belief revision that alows oneto revise a theory with new conditionals. One such
model is proposed in [11] and may provide a starting point for such investigations.
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A Proofsof Main Theorems
Proposition 3.1 Ifa, 3 € K,then g € (K ) iff na € KZ4.

Proof Let M beanappropriate K -revisionmode for the contraction and revision functionin question.
We have § € (K ;) iff 3 istrue at each a-world in [|(K ;)| i.e, iff 5 holds at (|| K| U
min(—3)) N [|a|| (Since € K). Thisholdsiff thereisno a-world inmin(—3) iff ~a € K~ .
[ |

Proposition 3.2 If ~a, =8 € K, then ~a € (KZ,)~; iff 8 € K7,

uled

Proof The proof issimilar to that of Proposition3.1. B

Proposition 3.3 If o, 3 € K then o (predictively) explains 5 iff -5 = -a.

Proof If a, 3 € K then condition (A), o = 3, holdstrivially (since || /|| = min(a) = min(3)). &

Proposition 34 If a, 3, —a, -3 ¢ K then a (predictively) explains 3 iff a = giff =5 = -a.

Proof If a,f3,-a,-8 ¢ K, thenmin(a) C ||K|| and min(=5) C || K||. Thus, min(a) C ||3|| iff
min(=5) C [~af.

Proposition 3.5 If —a, =3 € K then o (predictively) explains 3 iff o = .

Proof The proof issimilar to that of Proposition 3.3. B

Proposition 3.6 If « isa predictive explanation for /5 then « isa might explanation for .
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Proof The condition (ES) for predictive explanations guarantees the condition (F) for might expla-
nations, whilea = 5 Feorao o & -3 (for satisfiablea).

Proposition 3.7 If « isaweak explanation for 3 then « isa might explanation for /3.

Proof a@ — 8 Feorao o & =3 (for satisfiable o). B

Proposition 3.8 Let 5 € K and a be a predictive explanation for 5. Then « is a preferred (hypo-
thetical) explanationfor 3 in ;.

Proof Thisfollowsimmediately from Proposition 3.1 and the fact that « is epistemically possiblein
belief state i{ ; (due to the fact that any explanation o must bein /7). ®

Proposition 3.9 Let « be a predictive explanation for 3 relativeto model M. Then « isa preferred
explanationiff M = g 4 -a.

Proof Thisfact holdstrivially for accepted and indeterminate 3, since there is a unique minimal -
cluster (those 3-worlds satisfying K), and it must intersect ||«|| if « isapredictive explanation.
Suppose -3 € K.

If 3 — —a, thenthereissomeminimal 3-cluster C suchthat M |=,, -« for eachw € C. Since
[ predictively explainsitself (see below), we notethat 3 isastrictly preferred to «. To seethis,
notice that for any w € C wehave M |=,, =<Ca (sincea = 3, and any such w isin min(3)).

If 3 £ -a, then each minimal -cluster C contains some a-world. Thus, we have M |=
8(8 > Ca): aisatleast asplausibleas 5. Clearly, no explanation o’ of 5 is more plausible
than G (for then o’ = 3 isimpossible). Thus, « ispreferred. W

Proposition 4.5 E isan extension of (F, D) iff | £|| = S for some S € PI(F).

Proof By definition of Mp and Proposition 4.4, 5 € PI(F) iff S consists of the set of worlds
satisfying F U D, where D C D issome maximal subset of defaults consistent with 7. By
definition of an extension, 5 = || £|| for some extension 2. W

Theorem 4.7 A ispredicted (in Theorist sense) from default theory (F, D) iff Mp = F = A.
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Proof We havethat A ispredicted iff A isinall extensonsof F. By Proposition 4.5, thisis the case
iff 5 C ||Al| forall S € PI(F). Sincemin(F) = UPI(F),thisholdsiff 7 = A. &

Theorem 4.8 Let C' C C. Then C' isa Theorist explanationfor 3 iff Mp = (FAC) — gand FAC
is consistent.

Proof (' isa Theorist explanation for 5 iff FU D UC = gforsomeD C Dand FU DUC is
consistent. Thisis equivalent to 5 belonging to some extension of the (consistent) set 7 U C,
which holds (by Proposition 4.5) iff S C ||3|| for some S € PI(F U C) relative to Mp iff
MpE(FAC)—=(. 1

Theorem 4.9 Let C' C C. Then C isapredictive Theorist explanationfor 3 iff Mp = (FAC) = 3
and F A C'isconsistent.

Proof Thisfollowsimmediately from Definition 8 and Theorem4.7. ®

Theorem 4.10 Let C', " C C be predictive Theorist explanations for /3, relative to (F, D). Then
C <z C'iff Mp = G((C' A F) D O(C A F)).

Proof By definition of <r, C' ispreferred to C” iff each subset of defaults D’ consistent with C’ U F
is contained in some subset of defaults D consistent with C' U F. By definition of Mp and
Proposition 4.4, this is the case iff each world satisfying C” U F sees some world satisfying
CUF,ift Mp =B((C'AF)DO(CAF)). |

Proposition 4.19 Let M be the Brewka model for (D1, - - -, D,,) and Mp the Theorist model for its
reduction® = D1 U...UD,. Thenv < w in Mg whenever v < w in Mp.

Vi(v) C Vi(w) for each 7 relative to the prioritized set of defaults. By definition, » < w in Mp.
[

Proof If v < w in Mp, then V(v) C V(w) relative to the flat set of defaults D. Clearly then

Theorem 4.20 If Mp = a = gthen Mg = a = S.

Proof By Proposition 4.19, it is clear that the set of minimal «-worlds in the Brewka model M is
a subset of the minimal «-worlds in the Theorist model Mp. Thus, if Mp | « = [ then
MplEa=[5 1
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Theorem 5.3 Let SD and COMP determine some system. D(A) isa CB-diagnosis for observation
g iff AB(A)isan excusefor j relativeto Mconp.

Proof By definition, AB(A)isanexcusefor fiff Mcomp = AB(A)ASD # —5. Wenotethat this
relation can hold only if AB(A) A SD isconsistent. Given this consistency and Proposition 5.2,
wehavethat AB(A)isanexcuseiff Mcomp = D(A)ASD # -4 (thisfollowsfromthevalid
schematicentailmentof AA B # C fromA = Band A # (). Thisholdsiff SDU{j3, D(A)}
isconsistent iff D(A)isaCB-diagnosisfor 5. ®

Theorem 5.4 D(A) isapreferred diagnosisiff D(A) isa minimal diagnosis.

Proof Thisfollowsimmediately from the definition of Mcoap. B

Theorem 5.6 Assumethat D(A) A SD isconsistent. D(A) isa predictive diagnosisfor /3 iff

Mcomp F AB(A)ANSD = 3

Proof We observe that min(D(A) A SD) consists of the set of all worlds satisfying D(A) A SD by
definition of Mcoarp. Thus

Mcowmp |: D(A) AND =0
iff SDU{D(A)} = g, i.e,iff D(A)isapredictive diagnosis. By Proposition 5.2,
Mcomp F D(A)ASD = §

iff
Mcowmp |: AB(A) AND =0

Proposition 5.8 Let A C COMP. Mcomp E AB(A) — Biff Mcoyp E AB(A) = 3.
(Smilarly for D(A).)
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Proof As observed above, the set of clusters in the model Mqooap are distinguished by the set
of components they take to be normal and abnormal. This means that the sets PI(AB(A))
and PI(D(A)) are singletons consisting of a single cluster each, these clusters being exactly
min((AB(A)) and min((D(A)) respectively. Thus, AB(A) — g iff AB(A) = § and
D(A) = piff D(A)= 5. &

Theorem 5.9 Let SD and COMP describe some system, A C COMP, and D be the set of defaults
{—ab(c) : ¢ € COMP}. Then D(A) isa CB-diagnosisfor observation 3 iff -3 ¢ £ where E isthe
(only) Theorist extensionof (SD U {AB(A)}, D).

Proof We assumethat SD U {D(A)} isconsistent. By Theorem 5.3, D(A) is a CB-diagnosis for 3
iff
Mcowmp |: AB(A) A SD 7£> -
Asindicated in the proof of Proposition 5.8, thereisaunique minimal SD U { AB(A) }-cluster
in Mcoamp; and as described in Section 4, this cluster determines the Theorist extension £ of
D U{AB(A)}. Thus,
Mcowmp |: AB(A) A D 7£> -

it -3¢ £. m



