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Abstract

We propose a new approach to value-directed be-
lief state approximation for POMDPs. The value-
directed model allows one to choose approxima-
tion methods for belief state monitoring that have
a small impact on decision quality. Using a vec-
tor space analysis of the problem, we devise two
new search procedures for selecting an approxi-
mation scheme that have much better computa-
tional properties than existing methods. Though
these provide looser error bounds, we show em-
pirically that they have a similar impact on deci-
sion quality in practice, and run up to two orders
of magnitude more quickly.

1 Introduction
Partially observable Markov decision processes (POMDPs)
have attracted considerable attention as a model for
decision-theoretic planning. Their generality allows one
to seamlessly model sensor and action uncertainty, uncer-
tainty in the state of knowledge, and multiple objectives
[1, 5]. Their computational intractability has, however,
limited their practical applicability [11, 13].

An important approach to POMDPs involves constructing a
value function for a belief state MDP offline, and maintain-
ing a belief state (or distribution over system states) online,
which is used to implement an optimal policy [18]. A num-
ber of approaches attacking the offline computational prob-
lems have been studied, including improved algorithms [6],
the use of factored representations [2, 8], as well as numer-
ous approximation schemes [9]. Little work has focused on
the online belief state monitoring problem. Because plan-
ning state spaces grow exponentially with the number of
variables, maintaining an explicit distribution over states
is generally impractical. Even when concise representa-
tions such as dynamic Bayes nets (DBNs) are used, moni-
toring is generally intractable, since the independencies ex-
ploited by DBNs vanish over time. Boyen and Koller [3]
proposed projection schemes for approximate monitoring,

essentially breaking weaker correlations among variables
to ensure tractability. Poupart and Boutilier [15] proposed
value-directed methods for approximation, allowing the an-
ticipated loss in expected utilityguide the choice of approx-
imation scheme.

In this paper we pursue the value-directed approach since
its emphasis on minimizing impact on decision quality is
a critical factor in devising useful approximations. We use
the value function itself to determine which correlations can
be “safely” ignored when monitoring one’s belief state. We
propose an alternative approach to choosing approximation
schemes for monitoring in POMDPs that overcomes many
of the computational bottlenecks of [15]. We introduce
a vector space formulation of the approximation problem
that allows one to construct approximation schemes with
looser error bounds, but much more quickly. Despite the
looser bounds, we show empirically that decision quality is
rarely worse than that obtained using the more intensive ap-
proaches. Our methods work in time roughly on order of
the time taken to solve a POMDP, and since they run of-
fline, they can be used with any POMDP technique that can
currently be applied. Furthermore, these methods take ad-
vantage of the factored (DBN) representations to avoid state
enumeration. The offline cost allows much faster (approxi-
mate) online policy implementation. Even in cases where
a POMDP must be solved in a traditional “flat” fashion,
we typically have the luxury of compiling a value function
offline. Thus, even for large POMDPs, we might reason-
ably expect to have value function information (either exact
or approximate) available to direct the monitoring process.
The fact that one is able to produce a value function offline
does not imply the ability to monitor the process exactly in
a timely online fashion.1 Finally, our model offers a novel
view of the approximation problem for belief state monitor-
ing for POMDPs.

We briefly overview POMDPs and value-directed approx-
imation in Section 2. We present our vector space formu-
lation in Section 3 and provide some suggestive empirical

1While techniques exist for generating finite-state controllers
for POMDPs, there are still reasons for wanting to use value-
function-based approaches [14].



results in Section 4.

2 POMDPs and Belief State Monitoring

The key components of a POMDP are: a finite state spaceS; a finite action space A; a finite observation space Z; and
a reward function R : S ! R. Actions induce stochastic
state transitions with specified probabilities, and an agent is
provided with noisy observations of the system state (with
specified probabilities). A reward is received at each state
and an agent’s objective is to control the system through ju-
dicious choice of action to maximize the expected reward
obtained over some horizon of interest.

The rewards obtained over time by an agent adopting a spe-
cific course of action can be viewed as random variablesR(t). Our aim is to construct a policy that maximizes the ex-
pected sum of discounted rewards E(P1t=0 tR(t)) (where is a discount factor less than one). An optimal course
of action can be determined by considering the fully ob-
servable belief state MDP, where belief states (distributions
over S) form states, and a policy � : B ! A maps
belief states into action choices. A key result of Sondik
[18] showed that the value function V for a finite-horizon
problem is piecewise-linear and convex and can be rep-
resented as a finite collection of �-vectors; for infinite-
horizon problems, a finite collection generally offers a good
approximation. Specifically, one can generate a collection@ of �-vectors, each of dimension jSj, such that V (b) =max�2@ b ��. In Figure 1 the value function is given by
the upper surface of the five vectors shown. Each vector
is associated with a specific (course of) action. For finite
horizon POMDPs, a set @k is generated for each stage k of
the process. Algorithms exist that construct efficient repre-
sentations of �-vectors, such as decision trees or algebraic
decision diagrams (ADDs), when the POMDP is specified
concisely using DBNs [2, 8].

Insight into the nature of POMDP value functions can be
gained by examining Monahan’s [12] method for solving
POMDPs. Monahan’s algorithm proceeds by producing a
sequence of k-stage-to-go value functions V k, each repre-
sented by a set of �-vectors @k. Each � 2 @k denotes the
value (as a function of the belief state) of executing a k-step
conditional plan. More precisely, let the k-step observation
strategies be the set OSk of mappings � : Z ! @k�1.
Then each �-vector in @k corresponds to the value of ex-
ecuting some action a followed by implementing some � 2
OSk; that is, it is the value of doing a, and executing thek � 1-step plan associated with the �-vector �(z) if z is
observed. Using CP(�) to denote this plan, we have that
CP(�) = ha; if zi;CP(�(zi))8zii. We informally write
this as ha;�i. We write�(ha;�i) to denote the�-vector re-
flecting the value of this plan.

The implementation of a policy requires that one monitor
belief state b over time so that it may be “plugged” into the
value function (or @) to make a suitable action choice. Be-
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Figure 1: The Switch Set Sw(�3) of �3
lief states can be maintained by standard Bayesian methods;
but when jSj is large, the cost is prohibitive. This is espe-
cially true whenS is determined by a set of variablesX (andjSj = O(2jXj)). In such cases, DBNs can be used to rep-
resent the dynamics of POMDPs and DBN inference tech-
niques that exploit conditional independence among vari-
ables can be applied to make monitoringmore efficient. Un-
fortunately, as shown by Boyen and Koller [3], in many
problems most if not all variables of DBNs tend to become
correlated over time so DBNs offer no significant savings.

Boyen and Koller introduced projection schemes as a
method to approximate belief states. Given variables X
defining S, a projection is a set S of subsets ofXwith each
variable in at least one subset. Correlations among vari-
ables within a subset are preserved while the subsets are as-
sumed to be independent. For instance, ifX = fA;B;Cg,
then projection S = fAB;Cg approximates the exact be-
lief state b = Pr(A;B;C) with b0 = Pr(AB) Pr(C).
The assumed independence allows more efficient monitor-
ing using DBNs: at most, one maintains marginals over
each subset in S.

The choice of projection scheme (or any other approx-
imation) can have a dramatic impact on decision qual-
ity in a POMDP, since the approximate belief b0 can lead
to the choice of a suboptimal course of action. Poupart
and Boutilier [15] propose a value-directed approximation
framework allowing computation of bounds on the loss in
expected utility for projection schemes, and search methods
for choosing projections that tradeoff decision quality with
monitoring efficiency. The techniques are computationally
intensive (potentially requiring time quadratic in the solu-
tion time of the POMDP); but this offline computation pro-
duces a projection scheme that improves online monitoring
efficiency with minimal sacrifice in decision quality. We
briefly outline this model.

Assume a POMDP has been solved giving the set @ of �-
vectors with � 2 @. Let R(�) be the optimal region for� (i.e., the set of belief states b such that � is maximal forb). Given a projection scheme S, the switch set Sw(�) is



the set of �0 such that S(b) 2 R(�0) for some b 2 R(�).
Thus, S could induce one to believe�0 has maximum value
at the current belief state instead of �, thereby erroneously
“switching to” the plan corresponding to�0 from� by usingS. Figure 1 illustrates a switch set Sw(�3) = f�1; �2; �4g.
Switch sets can be computed by solving a nonlinear pro-
gram for each � 2 @. Linear programs (LPs) can be used to
more effectively produce a superset of the switch set [15].

Given the switch sets (or supersets thereof), one can com-
pute an upper bound BkS on the loss in expected value for a
single approximation using S at k stages to go:BkS = max�2@k maxb max�02SwkS(�) b � (�� �0)
When multistage approximations are applied, one can de-
vise an alternative set which is similar in spirit to the switch
set. The alternative set Alt(�) is the set of all �-vectors cor-
responding to alternative plans that may be executed as a re-
sult of repeatedly approximating the belief state at all future
time steps (see [15] for a precise definition). Alt(�) is con-
structed with a dynamic programming procedure similar to
incremental pruning [6]. One can define an upper boundEkS
on the loss in expected value due to successive belief state
approximations using S for k stages to go:EkS = max�2@k maxb max�02AltkS(�) b � (�� �0)
These bounds can be extended to infinite-horizonproblems.
Given the bounds B and E, one can search for an “opti-
mal” projection scheme by looking for the projection that
minimizes one of those bounds. The space of projection
schemes is very large (factorial in the number of variables),
but exhibits a nice lattice structure. Figure 2 illustrates the
lattice of projection schemes when the state space is defined
by the joint instantiation of variables A, B and C. Each
point denotes a projection scheme, with “descendents” of
any projection corresponding to more coarse-grained pro-
jections. As we move down the lattice, accuracy increases
since the number of correlations among the variables pre-
served in our belief state is increased (hence, error boundsB and E monotonically decrease); but monitoring effi-
ciency decreases as we move downward for the same rea-
son. A number of search procedures can be used to traverse
the lattice, using the error bounds to guide the search. For
example, a simple (and incremental) greedy scheme is pro-
posed in [15]. The search is stopped when a suitable accu-
racy/efficiency tradeoff has been reached.

3 Vector Space Analysis

We now provide a vector space analysis of belief state ap-
proximation by projection, showing in Section 3.1 that pro-
jections allow movement of belief state only in certain di-
rections (defining a subspace). This allows us to view �-
vectors as determining gradients of value in different direc-
tions: approximations whose directions give similar value
gradients are less likely to cause switching (hence minimiz-
ing error). In Section 3.2 we use this to design faster switch
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Figure 2: Lattice of Projection Schemes

test algorithms than those described above, though yield-
ing looser bounds. In Section 3.3 we devise a new vector-
space search algorithm to find projections without directly
trying to minimize these error bounds, instead relying on
value gradient similarity.

3.1 Vector space formulation

Given a projection S overX, let b and b0 = S(b) be points
in belief space. Define d = b0 � b to be the displacement
vector from b to b0. Projection S determines a set of lin-
ear equations constraining b in terms of b0. For example,
if X = fX;Y g and S = fX;Y g (i.e., S treats X;Y as
independent), we have:d(xy) + d(x�y) + d(�xy) + d(�x�y) = 0d(xy) + d(x�y) = 0d(xy) + d(�xy) = 0
Geometrically, we interpret each equation as a hyperplane;
and their intersection (or solution space) is a line through
the origin representing a one-dimensional (in this example)
subspace. This subspace captures the set of all displace-
ment vectors resulting from the application of S (w.r.t. b0).
Since all possible displacement vectors lie on the same line,
they must all have the same direction (vectors with opposite
orientation are assumed to have the same direction).

To illustrate, let b(x) = 0:3 and b(y) = 0:4. The approxi-
mate belief state using S above gives:b0(xy) = b(x)b(y) = 0:12b0(x�y) = b(x)b(�y) = 0:18b0(�xy) = b(�x)b(y) = 0:28b0(�x�y) = b(�x)b(�y) = 0:42
Figure 3 shows a three-dimensional belief space for belief
states xy, x�y, �xy and �x�y.2 All belief states b with b(x) =

2We omit dimension b(�x�y) as probabilities sum to 1.
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Figure 3: Solution space of possible exact belief states b0:3 lie in a hyperplane, and similarly for b(y) = 0:4. Their
intersection is the set fb : b0 = S(b)g, and all displace-
ment vectors for b0 have the same direction. (For marginals
other than 0:3 and 0:4, the hyperplanes and their intersec-
tion shift, but remain parallel).

Let DS be the displacement subspace spanned by the set
of all displacement vectors induced by S: it is completely
characterized by its marginals (elements) and it describes
the directions of all displacements. In general, DS is a(2jXj � c)-dimensional subspace, where c is the number
of constraints, since it is the solution space of c linearly
independent equations, each corresponding to a constraintd(m) = 0. (c is the number of subsets of variables con-
tained in some subset m 2 S, as above.) This is obvious
when we rewrite the constraints as vm � d = 0, where vm
is a boolean jSj-vector with 1 at states with all X 2 m true
and 0 at states with some X 2 m false.3 In our example,
we have: xy x�y �xy �x�yv; = ( 1 1 1 1 )vX = ( 1 1 0 0 )vY = ( 1 0 1 0 )
LetD?S be the subspace spanned by the vectors vm,m 2 S;
the space D?S is the null space ofDS (i.e., the set of vectors
perpendicular to each vector in DS ).

3.2 Vector space switch test

We will see below that the subspaces DS and D?S allow
a nice characterization of a new switch test. We first con-
sider a simple relaxation of the switch test of [15]. Recall
from Section 2 that approximationS could induce an agent
to switch from optimal vector �i to suboptimal vector �j ifS(b) 2 R(�j) for some b 2 R(�i). The idea behind the re-
laxed vector space (VS) switch test is to simply apply the
same technique ignoring the presence of other �-vectors.
The VS switch test asks whether there is some belief state b
for which b��i > b��j yet S(b)��i < S(b)��j. If so, we say

3The generalization to nonboolean variables is
straightforward.

max xs:t: b � (�i � �j) � xb0 � (�j � �i) � xb0(m0) = b(m0) 8m0 �m;8m 2 SPs b(s) = 1b(s) � 0 8sb0(s) � 0 8s
Table 1: Linear VS-switch test for projectionschemes. This
LP has a strictly positive objective value iff there is someb 2 R(�i) and b0 2 R(�j) such that b(m0) = b0(m0) for
any subsetm0 of variables contained in some marginalm 2S.�j is in the VS-switch set of �i. This is equivalent to ask-
ing if �j 2 Sw(�i) when all vectors except these two are
removed from @. Note that the VS-switch set is a superset
of the true switch set.

Since the constraints relating b and S(b) are nonlinear, VS-
switch sets can be computed using nonlinear programs. We
can define a simpler linear VS-switch test as in Table 1
which produces a superset of the VS-switch set. This LP
is a relaxation of the LP switch test [15].

Now define �ij = �i � �j to be a vector representing the
difference in expected value for executing �j instead of �i.
We can show that the VS-switch test for �i and �j is pos-
itive iff �ij 62 D?S . Consider �ij as a gradient that mea-
sures the error induced by an approximation when it causes
a switch from �i to �j. After an approximation, if this dif-
ference changes considerably, the agent is likely to choose
the wrong maximizing �-vector. Define the relative error,�ij , of this change in the relative assessment of �i with re-
spect to �j as:�ij = b(�i � �j) � S(b)(�i � �j)= d � �ij
Here �ij can be viewed as a gradient since approxima-
tions corresponding to displacement vectors d parallel to�ij maximize the magnitude of d � �ij. In general, the an-
gle between d and �ij is a good indicator of approximation
error. In particular, if they are perpendicular, their dot prod-
uct is zero and the relative assessment of �i and �j remains
unchanged, preventing any switch. By definition, the sub-
space D?S is the set of vectors perpendicular to all displace-
ment vectors possibly induced by S, so when �ij is a mem-
ber ofD?S , all possible displacement vectors are perpendic-
ular to �ij and consequently there cannot be a switch from�i to �j. Thus �ij 62 D?S iff the VS-switch test is positive.

This fact provides for a much more efficient method to com-
pute switch sets than the LP of Table 1. We decompose �ij
in two orthogonal vectors corresponding to the projections
of �ij onto D?S and DS :�ij = proj(�ij; D?S ) + proj(�ij; DS)



(where proj(�;D) stands for the projection of � ontoD). If �ij 2 D?S , then proj(�ij ; D?S ) = �ij and,
consequently, proj(�ij; DS) is the zero-vector; otherwise,proj(�ij; DS) is nonzero. We can thus determine if �ij 2D?S by measuring the length of proj(�ij; DS). We have
that kproj(�ij; DS)k2 = 0 when �ij 2 D?S , andkproj(�ij; DS)k2 > 0 when �ij =2 D?S . In particular, the
squared length of proj(�ij; DS) can be computed by the
following equation:kproj(�ij; DS)k22 = �ij � �ij � Xv2D?S (�ij � v)2 (1)

Here D?S is some orthonormal basis spanning D?S . The
spanning set of vectors vm above can be used to generate
several orthonormal bases using the Gram-Schmidt orthog-
onalization process and normalizing. We consider a spe-
cific orthonormal basis in particular—which we refer to asD?S —because of its factored representation. For problems
involving binary variables, every vector in D?S consists of
a sequence of 1’s and �1’s (before normalization). The un-
normalized basis vector �vm associated with subset m has a1 in every component corresponding to a state with an even
number of true variables in m and �1 in every component
corresponding to a state with an odd number of true vari-
ables in m. For instance, projection S = fXY; Y Zg has
six marginals (;, X, Y , Z, XY and Y Z), yielding the fol-
lowing basis vectors:4xyz xy�z x�yz x�y�z �xyz �xy�z �x�yz �x�y�z�v; = ( 1 1 1 1 1 1 1 1 ) =pjSj�vX = ( �1 �1 �1 �1 1 1 1 1 ) =pjSj�vY = ( �1 �1 1 1 �1 �1 1 1 ) =pjSj�vZ = ( �1 1 �1 1 �1 1 �1 1 ) =pjSj�vXY = ( 1 1 �1 �1 �1 �1 1 1 ) =pjSj�vY Z = ( 1 �1 �1 1 1 �1 �1 1 ) =pjSj
With this orthonormal basis, we can implement VS-switch
tests very effectively, without recourse to the LP in Table 1.
We must simply compute Eq. 1 which requires O(c) dot
products. If unstructured, each dot product requires O(jSj)
elementary operations, for a total time of O(cjSj). The use
of factored representations such as ADDs considerably im-
proves this running time. Each basis vector has only two
distinct values, and yields a very compact ADD representa-
tion. Assuming that the POMDP has been solved to pro-
duce ADD representations of the �-vectors, then the �ij
will have compact representations, and the dot products will
be computed very efficiently: often a small constant inde-
pendent of the size of the state space. Hence, for sufficiently
structured POMDPs, the effective running time of a VS-
switch test is O(c).
By comparison, solving the linear program of an LP-switch
test [15] is polynomial in the number of constraints c and
the size of the state space. Furthermore, ADDs do not pro-
vide as useful a speed up for LPs since the effective state

4This definition can be generalized to non-binary variables.

space is the intersection of the abstract state space of all the
constraints. The price paid is that theB andE bounds com-
puted using the VS-switch test will generally be looser than
that using the original LP test. As in Section 2, these bounds
can be used to search the lattice of projection schemes for
making appropriate time-decision quality tradeoffs.

3.3 Vector space search

In this section we describe an alternative search method
based on the relative error expression �ij. We do not com-
pute switch sets at all, nor attempt to minimize worst-case
error bounds as above. This new vector-space (VS) search
process instead seeks a projection S which defines a dis-
placement subspace DS that is as perpendicular as possible
to all gradients �ij. This is motivated by the observation
that the more perpendicular the direction of an approxima-
tion with respect to �ij, the smaller the magnitude of �ij
and, consequently, the less likely a switch will occur. Tech-
nically, this is done by minimizing the squared length of the
projection of each gradient �ij on DS (as in Eq. 1).

The length of proj(�ij ; DS) has a special interpretation: it
corresponds to the greatest (absolute) relative error rate for
an approximation in some direction d 2 DS . The relative
error rate corresponding to displacement vector d is the rel-
ative error induced by a unit displacement in the direction
of d: dkdk2 ��ij
Hence, by choosing a projectionS that minimizes Eq. 1, we
are minimizing the (squared) worst relative error rate that
may result from projection S. When ignoring the distance
between the exact and approximate belief states, the rela-
tive error rate permits us to quantify how bad an approxi-
mation in some direction is likely to be. Each projection S
constrains approximations to directions within the subspaceDS . The direction d 2 DS with the highest (absolute) rel-
ative error rate has this worst relative error rate, which also
happens to be kproj(�ij; DS)k2. Thus, it is desirable to try
to minimize Expression 1.

Ideally we should choose an S that simultaneously mini-
mizes Eq. 1 for every gradient�ij (j 6= i). In the absence of
any prior information about the relative importance of each
gradient, we suggest two simple schemes: (a) minimize the
sum of squared lengths of each projection; or (b) minimize
the squared length of the greatest projection:Xj 6=i kproj(�ij; DS)k22= Xj 6=i(�ij � �ij � Xv2D?S v ��ij) (2)maxj 6=i kproj(�ij; DS)k22= maxj 6=i (�ij � �ij � Xv2D?S v � �ij) (3)



We refer to these schemes as the sum and the max error es-
timators, respectively, for projection schemes. Of course,
many other schemes could be proposed.

Given a vector �i 2 @, VS search uses either Eq. 2 or Eq. 3
above to find a good projection S as follows. Starting at
the root, we traverse the lattice of projection schemes (Fig-
ure 2) downward in a greedy manner. At each node, we pick
the most promising child by minimizing Eq. 2 or Eq. 3 The
computational complexity of a VS search is fairly low as it
avoids LPs. Its running time is O(nc3j@j2jSj), since one
good projection must be found for each of the j@j regionsR(�). For each region,O(nc2) nodes in the lattice are tra-
versed, each requiring the evaluation of Eq. 2 or Eq. 3 which
both take O(cj@jjSj) elementary operations.

The VS search can also be streamlined. The constraints of a
node S are essentially the same as the constraints of its par-
ent node S0 with one extra constraint corresponding to the
marginal m that labels the edge connecting the two nodes.
Since there is one basis vector per constraint, the following
equation holds: D?S = D?S0 [ f�vmg
This means that both Eq. 2 and Eq. 3 can be computed in-
crementally as the lattice is traversed downward:Xj 6=i kproj(�ij; DS)k22= Xj 6=i kproj(�ij; DS0)k22 � �vm � �ijmaxj 6=i kproj(�ij; DS)k22= maxj 6=i kproj(�ij; DS0)k22 � �vm � �ij
This incremental computation scheme for traversing the lat-
tice reduces the running time to O(nc2j@j2jSj) since only
one dot product needs to be computed instead of one for
each of the c constraints. This running time is significantly
smaller thanO(nc2+kj@jjSjk) for theB-bound orE-bound
greedy search with LP-switch tests used in [15]. As for
the B-bound or E-bound greedy search with VS-switch
tests, the running time O(nc3j@jjSj) is comparable. The
VS search has an extra j@j factor, but one less c factor. In
practice, j@j is usually larger than c, so the VS search is ac-
tually slower. Again, the upper bounds on running times
are given in terms of jSj, but in practice, factored represen-
tations can drastically reduce the size of the effective state
space for structured POMDPs.

4 Empirical Evaluation

Three test problems were used to carry out the experiments.
The first POMDP is essentially the coffee problem intro-
duced by Boutilier and Poole [2]. The second POMDP is a
variation of the widget problem described by Draper, Hanks

Problem State Space Size Size of @ Solution
full effective max aver. time (s)

Coffee 32 12 102 56 47
Widget 32 14 205 121 397
Pavement 128 85 39 16 250
Table 2: Solution statistics for the three test problems

and Weld [7]. The third POMDP is inspired from the pave-
ment maintenance problem described by Puterman [17].
Since the analysis of the experiments doesn’t require any
specific domain knowledge, the reader is referred to [14] in
which the full specification of those problems is given.

Each of the three problems was solved using Hansen and
Feng’s [8] ADD implementation of incremental pruning
(IP) to produce a set @ of �-vectors using a compact ADD
representation. Each problem is run to 15 stages (dis-
counted). Table 2 shows, for each problem, its full state
space size, jSj, and its effective size, the largest intersec-
tion of abstract (ADD) states encountered during solution
(specifically, the LP-dominance test in IP). The effective
size is more relevant to solution time than jSj. We also
show the solution time (in seconds) along with the average
size of the sets @ over the fifteen stages and the maximum
size set.

Once solved, we searched for a good projection scheme for
each POMDP by minimizing different error bounds and/or
using different switch tests, as described above. Specifi-
cally, six algorithms are tested: the B-bound and E-bound
search of [15], which computes switch sets using an LP
and chooses a projection using either the B or E error
bounds; the VS analogs of these procedures which com-
putes weaker VS-switch sets using the algebraic formula-
tion of Section 3.2; and the VS search methods (sum and
max) of Section 3.3, which ignore these bounds, but instead
try to minimize Eq. 2 or Eq. 3. All search algorithms per-
form a lattice search within the set of projection schemes
that partition variables in disjoint subsets. Furthermore, as-
suming that marginals of at most two variables provide a
suitable efficiency/accuracy tradeoff, the lattice is traversed
until all children of a node correspond to projections with a
marginal with 3 variables. This last node is the projection
scheme returned by the search.

We compare the time required to find a good projection us-
ing the different search procedures in Table 3. As expected,
the running time is much less when using VS-switch tests
(compared to LP-switch tests), since VS-switch tests do not
require the solution of LPs. As for VS search algorithms,
whether we minimize the sum of the relative error rates or
their maximum, the running time is roughly the same and
it is significantly faster than B-bound and E-bound search
algorithms that use LP-switch tests, but a bit slower if VS



Problem Solut. B-bd search E-bd search VS search
time LP VS LP VS max sum

Coffee 47 1019 30 4379 2651 151 154
widget 397 10142 109 89605 48695 707 703
Pavement 250 345 35 841 126 97 96

Table 3: Search running time in seconds

Error B-bd search E-bd search VS search
LP VS LP VS max sum

Single Aver. 0:0013 0:0063 0:0063 0:0063 0:0013 0:0014
Approx B-bd 3:2840 5:9150 4:3910 5:9150 3:2840 3:2840
Several Aver. 0:0144 0:0161 0:0161 0:0161 0:0154 0:0107
Approx E-bd 13:085 13:085 13:085 13:085 13:085 13:085

Table 4: Coffee problem: error comparisons

switch tests are used for B-bound search. This is because,
on the one hand, the VS search does not solve LPs (com-
pared to LP-switch tests), but on the other hand, it has a
stronger dependence on the number of�-vectors (compared
to VS-switch tests). The time to search for good projections
can be much worse than that of solving POMDPs (though
this offline cost translates into online gains). In fact, only
search procedures that avoid solving LPs scale effectively
to larger problems. In some cases, these offer a decrease of
up to two orders of magnitude. The running time of VS pro-
cedures is roughly of the same order of magnitude as that of
the POMDP solution procedures.

We also compare the actual average error, as well as the for-
malB andE error bounds, obtained when applying the pro-
jection schemes found by various search algorithms (Tables
4, 5 and 6). The average error is the average loss incurred
for 5000 random initial belief states generated from a uni-
form distribution. We see that the average error is essen-
tially the same whether the VS search procedure is used or
some error bound is minimized. As a result, the dramatic
computational savings associated with the VS procedures
has effectively no impact on solution quality. Note that theB and E bounds are much larger than the average error
observed because the bounds are concerned with the worst
case scenario and, furthermore, they are not tight (supersets
of the switch sets are really computed).

5 Concluding Remarks

We have proposed a new approach to value-directed
belief state approximation for POMDPs. Our vector space
approach—using either VS-switch tests or direct VS
search—offers significant computational benefits over the
value-directed methods proposed by Poupart and Boutilier
[15]. While the error bounds are looser, we have seen in
practice that our new schemes perform as well as the others

Error B-bd search E-bd search VS search
LP VS LP VS max sum

Single Aver. 0:0352 0:0352 0:0352 0:0352 0:0082 0:0081
Approx B-bd 3:4080 3:6270 3:4080 3:6270 3:4080 3:4080
Several Aver. 0:0509 0:0508 0:0508 0:0508 0:0519 0:0517
Approx E-bd 8:3811 8:3811 8:3811 8:3811 8:3811 8:3811

Table 5: Widget problem: error comparisons

Error B-bd search E-bd search VS search
LP VS LP VS max sum

Single Aver. 0:0015 0:0015 0:0015 0:0015 0:0014 0:0014
Approx B-bd 5:3860 5:6900 5:3860 5:6900 5:3680 5:6160
Several Aver. 0:0066 0:0066 0:0066 0:0066 0:0071 0:0028
Approx E-bd 23:218 35:392 23:498 35:392 23:874 24:384

Table 6: Pavement problem: error comparisons

with respect to solution quality; thus the computational
savings are achieved with little impact on decision quality.
Furthermore, the vector space model provides new insights
into the belief state approximation problem and how
approximation impacts decision quality.

This novel view also gives us access to numerous tools from
linear algebra to design approximation methods that could
potentially offer better tradeoffs between decision quality
and monitoring efficiency. For instance, it would be in-
teresting to investigate linear projectors since they allow
the design of linear approximation methods by specifying
(among other things) a displacement subspace DS which
could be made as perpendicular as possible to the gradi-
ent vectors �ij. Linear projectors are well-studied approx-
imation methods with numerous properties and therefore
they provide a promising alternative for improving value-
directed approximate belief state monitoring.

The success and scalability of our methods strongly de-
pends on the structure and compactness of the �-vectors.
Therefore, one could also analyze the dependency between
the �-vector structure and the conditional independence
structure of the transition and observation functions. From
a linear algebra perspective, the �-vectors can be viewed as
a discounted sum of reward vectors multiplied by transition
and observation matrices. Thus compact and structured �-
vectors could arise when the reward vectors fall into a small
invariant subspace of the transition and observation matri-
ces. A possible direction of research would then be to re-
late the conditional independence structure of the transition
and observation functions with their eigenvalue and eigen-
vector properties since they define the invariant subspaces.
This would allow us to better characterize the situations in
which our approach is suitable.

We are currently extending this approach, and its analysis,



in a number of different directions. First, we motivated this
work by focusing on infinite-horizon POMDPs, though our
algorithms and analysis assume a finite set of�-vectors. Of-
ten one is forced to approximate the value function (e.g., by
producing a finite set of vectors where an infinite set is re-
quired, or simply by reducing the number of vectors to keep
it manageable in size). Our algorithms can be applied di-
rectly to approximate value functions, and we expect that
the analysis can be extended with suitable modifications as
well. We are also interested in applying the idea of value-
directed monitoring to other representations of value func-
tions and other forms of approximate monitoring. The use
of grid-based value functions [4, 9, 10] provides a very at-
tractive method for producing approximate value functions
for which approximate monitoring will generally be neces-
sary. We expect that information in grid-based value func-
tions can be used profitably to direct the choice of projection
(or other approximation) schemes. The use of value infor-
mation to guide other belief state approximation methods is
also of tremendous interest: we have recently developed a
sampling (particle filtering) algorithm that is influenced by
value function information [16]. Finally, if it is taken for
granted that some form of belief state approximation will be
used, one might attempt to solve the POMDP to account for
this fact; that is, can we construct policies that are optimal
subject to the resource constraints placed on the monitoring
process?
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