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Abstract

Fully cooperative multiagent systems—those in
which agents share a joint utility model—is of
special interestin Al. A key problemisthat of en-
suring that theactionsof individual agentsare co-
ordinated, especialy in settingswhere the agents
are autonomous decision makers. Weinvestigate
approaches to learning coordinated strategies in
stochastic domains where an agent’s actions are
not directly observable by others. Much recent
work in game theory has adopted a Bayesian
learning perspectiveto the more genera problem
of equilibrium selection, but tends to assume that
actions can be observed. We discuss the special
problems that arise when actions are not observ-
able, including effects on rates of convergence,
and the effect of action failure probabilities and
asymmetries. We aso use likelihood estimates
as a means of generalizing fictitious play learn-
ing modelsin our setting. Finally, we proposethe
use of maximum likelihood as ameans of remov-
ing strategies from consideration, with the aim
of convergence to a conventional equilibrium, at
which point learning and deliberation can cease.

1 Introduction

The design of systems of multiple autonomous agents that
interact in various ways (pursuing their own ends or com-
patiblegoal s) has attracted agreat deal of attentionin Al. Of
special interest are systemsinwhich individual agentsshare
thesame goalsor utility function—insuch fully cooperative
settings, the agents collectively act toward common desired
ends. While more general problems involving the interac-
tion of potentially self-interested agents have received the
bulk of attention in distributed Al, fully cooperative prob-
lemsnaturally arisein task distribution. For example, auser
might assigh some number of autonomousmobilerobots, or
perhaps software agents, to some task, al of which should
share the same utility function (namely, that of the user).

For certain purposes, it may make sense to model a busi-
ness or organizationin asimilar way.

A key difficulty in cooperative multiagent systems is that
of ensuring that the actions of individua agents are coor-
dinated so that the shared goals are achieved efficiently.
This is especialy important in settings where the agents
are autonomous decision makers (and preprogrammed co-
ordinated strategies are not available), as in the situations
mentioned above. One natural way to view the coordina
tion problem is as a n-person cooperative game. From the
perspective of game theory, we are interested in n-person
games in which the players have a shared or joint utility
function; that is, any outcome of the game has equal value
for dl players.

In this paper, we study aspects of the coordination problem
from the perspective of n-player repeated games. A set of
agents find themselves in a situation which requires coor-
dinated action (viewed as a single-stage decision problem),
but can encounter this situation repeatedly.! Methods such
as alowing agents to communicate their intentionsbefore-
hand or imposing specific behaviors (e.g., by means of a
central controller or the use of social laws) may ensure that
agents behave in a coordinated fashion. However, our in-
terest in thispaper isin methodsthat enable agentsto learn
their component of a coordinated policy through repeated
experience with the game situation.

L earning techni ques have been well-studiedin game theory,
not only for coordinationin cooperative games, but also for
the more general problem of equilibriumselection [12, 5].
Models applied to this problem includefictitious play [ 13]
and Bayesian best-response methods [8, 19, 4] (evolution-
ary models have also attracted a great deal of attention [1,
11]). These have especially nice behavior in coordination
problems[19]. However, these models tend to assume that
each agent can observe the exact action performed by all
others at each interaction. Such action observable scenar-

! Thisscenarioisappealinginitssimplicity, butis not anoverly
realistic picture of multiagent decision problems. However, our
interest in repeated single-stage games is motivated by a decom-
position of sequential cooperative problems (see below).



ioswill likely berarein practice, especialy whenindividua
actions have stochastic effects. Even if states of the system
(and thus action outcomes) are fully observable—as they
might be in a Markov decision model—it is unlikely that
agents will have access to the actua action another agent
attempted (and hence the “intentions’ of the other agent).

We focus our attention on games where actions are stochas-
tic, and actions are not directly observable. In genera,
agents can observe only the state resulting from the actions
of the group of players; but they can use this observation
to assess the probability that other agents performed partic-
ular actions. The introduction of this type of uncertainty
and partial observability is rather simple to model, but it
has somerather surprising effects on convergenceto coordi-
nated actioninthe Bayesian best-responsemodel, whichwe
examine here.We al so adapt fictitiousplay to thisunobserv-
able action setting through the use of likelihood estimates,
and show that convergenceisgenerally much better thanin
the Bayesian model.

Finally, we consider the problem of learning conventions
[9, 16]. One difficulty with stochastic games and models
that require constant learning isthat arun of “bad luck” can
force agents out of a coordinated equilibrium. More seri-
ous are the computational implicationsof constantly updat-
ing beliefs and computing a best response for every inter-
action. Following Lewis[9], wetake an interest in conven-
tional behavior. Agents should converge to a common un-
derstanding and, once realizing that they have reached a co-
ordinated equilibrium, should never beforced to reconsider
how to act. Of course, care must be taken to ensure this
understanding is based on common knowledge, or globally
accessible information. To this end, we propose the use of
“globally accessible” likelihood estimates to rule out par-
ticular ways of acting, until only a conventional method of
acting remains whenever possible.

We describe the basic framework of coordination gamesin
Section 2, aswell astheir application to multiagent sequen-
tial decision processes (in the form of multiagent Markov
decision processes). In Section 3 we detail classic mod-
els from game theory for learning coordinated actions, in
particular fictitious play and Bayesian methods. We aso
point out the difficul ty asymmetri c coordination games pose
for such methods. In Section 4, we extend these models
in rather obvious ways to deal with stochastic, partialy-
observable actions. We study a number of properties of
these model s and how convergence is affected by them. We
address the problem of convention in Section 5, proposing
an extension of fictitiousplay dynamicswhereby likelihood
estimates for optimal joint actions are used to rule out pos-
sible courses of action.

Experimental results are provided to illustrate the perfor-
mance of these methods. We focus (primarily, not exclu-
sively) on 2 x 2 gamesto keep theexposition clear; but most
of the conclusionswe draw can be applied more broadly.
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Figure 1: A Two-Agent Coordination Problem

2 Coordination Games
2.1 Single Stage Games

Wetakeasthebasic object of study an n-player cooperative
state game. We assume a collection « of n (heterogeneous)
agents, each agent ¢ € « having available to it afinite set
of individual actions 4;. The game takes place a a given
dtate, at which each agent chooses (independently) an ac-
tion to perform. The chosen actions collectively congtitute
ajointaction, theset of whichisdenoted A = x;c,A;. The
game also has a set of outcomes states .S: each joint action
causes a transition to some outcome state s € S according
to a fixed distribution. We use Pr¢(s) to denote the prob-
ability of outcome s when the joint action a has been exe-
cuted. Finaly, we associate a utility U (s) witheach s € S.
Intuitively, each agent receives reward U (s) if thejoint ac-
tionadopted by theagentsresultsin s; thegameisthusfully
cooperdtive, for agents cannot do better by making things
worse for others.

We note that state games are essentially single-stage exten-
sive form games; but it is convenient to sometimes convert
them to the corresponding strategic form (or their normal
representation) [12]. Each joint action a can be associated
with its expected utility, >~ ¢ Pre(s) - U(s), and states
can be done away with, resulting in a strategic form game.
However, the existence of distinct outcome statesiscrucial
in the learning models we adopt below. In particular, the
states provide indirect information about action choices in
caseswhereactionsare not directly observable. Conversion
to strategic form precludes the use of this partial informa-
tion; however, when actions are perfectly observable, we
will often use strategic form.

Asan example, consider the 2 x 2 game illustrated in Fig-
ure 1, in which two agents, A and B, can move l€eft (1) or
right () (say, toward a particular goal). The agents are
rewarded with utility 1 if they both end up in the same
location—either both left (s1) or both right (s3)—and util-
ity 0 otherwise. The actions available to the agents are
stochagtic, so that if A executes action /, it will end up in
theleft location with probability 0.9 and in the oppositelo-

2A general n-person state game simply requires that U take
agentsasargumentsaswell as statesto allow for competition; i.e.,
U (s, 1) denotesthe utility of state s to agent s.



cation with probability 0.1. This results in the transition
matrix shown. Should we convert this game to strategic
form, the Payoff Matrix 1 describes the expected utility of
the given joint actions. We will aso have occasion to use
the deterministic version of thisgame, where each joint ac-
tion has the obvious outcome: Payoff Matrix 2 character-
izes this game. We note that in the deterministic game, an
agent observing the outcome state is equivaent to observ-
ing its companion’s action directly.

Given such agame, we want the agents to discover an opti-
mal course of action. Unfortunately, the optimal action for
each agent generally depends onthe choi ces of other agents.
Thetypical solution concept adopted in gametheory, that of
aNash equilibrium, alows us to break out of potential cir-
cularitiesas follows.

A randomized strategy for agent ¢ at state game GG isaprob-
ability distribution 7 € A(A;) (where A(4;) is the set
of distributionsover the agent’s action set A;). Intuitively,
m(a') denotes the probability of agent i selecting the indi-
vidual action a’ when playingthe game. A strategy = isde-
terministicif 7 (a’) = 1 for somea’ € A;.

A strategy profile for GG isacollectionIl = {x; : i € «a}
of strategiesfor each agent i. The expected value of acting
according to afixed profile can easily be determined. We
notethat if each strategy in I1 isdeterministic, we can think
of IT asajoint action, since each agent’s action isfixed. A
reduced profilefor agent i isastrategy profilefor al agents
but i (denoted 11_;). Given aprofileIl_;, astrategy =; isa
best responsefor agent i if the expected value of the strategy
profileTl_; U {m;} ismaximal for agent ¢; that is, agent ¢
could not do better using any other strategy .

Finally, we say that the strategy profile I1 is a Nash equi-
libriumiff m; € 1II is a best response to I1_;, for every
agent i. In other words, the agents are in equilibrium if
no agent could expect a better outcome by unilaterally de-
viating from its strategy. In genera, the interests of dif-
ferent agents can conflict, making equilibrium determina-
tion quite difficult. However, in fully cooperative games
each agent expects the same reward and can easily deter-
mine an interesting set of equilibrium profiles as follows.
We first convert the state game to strategic form (by taking
expectation of outcome utilities). Any joint action whose
expected valueismaximal isa(deterministic) Nash equilib-
rium. Such an equilibriumis called an optimal joint action
(OJA). If the agents coordinate their choices so that they se-
lect an OJA, they are behaving as well as possible.

To illustrate with our example problem (in either the deter-
ministic or nondeterministic version), we see that the OJAs
are ([,!) and (r,r). These strategy profiles offer maximal
expected utility for both agents. We note however that be-
ing in equilibrium does not guarantee the agents are behav-
ing optimally (in ajoint sense). The profile in which each
agent adopts arandomized strategy that selects! and » with
equal probability isalso an equilibrium: given that agent A
chooses! or r, each with probability 0.5, B hasno incentive

tochangeitsstrategy (similarly for A). But thisrandomized
equilibriumis suboptimal, for itsexpected valueishalf that
of the optimal equilibria.

Nash equilibria, unfortunately, do not solve the coordina
tion problem. While the agents can determine the OJAs
quite readily, the problem remains. how do they decide
which OJA to adopt? In its most general form, thisis pre-
cisely the problem of equilibriumselection studied in game
theory [12, 5]. We take the coordination problem to be that
of ensuring agents select individua actions that together
constitute an optimal or coordinated equilibrium, or OJA .3

2.2 Multiagent MDPs

While our focusis on simplerepeated state games, our mo-
tivation is not primarily the solution of repeated, single-
stage decision prablems. In [2], we propose multiagent
Markov decision processes (MMDPs) as a framework in
which to study multiagent cooperative planning (in deci-
sion theoretic contexts). Roughly, MMDPs are Markov de-
cision processes[7, 14, 3] inwhich actionsat each stageare
comprised of distinct components performed by individual
agents. Theaimthereisnot to coordinatesinglestatestrate-
gies per se, but to construct coordinated policies for ongo-
ing behavior in different states.

Producing coordinated policiesisdifficult computationally;
but one can gain considerable leverage by decomposing
the problem into distinct state games of the type described
above, with one game for each state (of a certain type) of
the MDP. The coordination problem isthen reduced to that
of coordinating locally at each of these state games. In [2]
we assume that agents can computetheval ue of coordinated
(ongoing) policies at individual states.* These “long term”
values are used as the outcome utilities in the individual
state games. If the agents are able to coordinate locally at
each of the state games defined in thisway, we can guaran-
tee that they will implement an optimal (sequential) policy
[2]. Of course, in an MDP of sufficient horizon, agentswill
repeatedly encounter the same (or similar) states. For this
reason, coordination at single-stage state games has an im-
portant application to multistage (especialy “process ori-
ented”) decision problems.

3 Learning with Observable Actions

Solutions to the coordination problem can be divided into
three generd classes, those based on communication, those
based on convention and those based on learning. For ex-
ample, agents might communicate in order to determine

*We note that optimal equilibria need not be deterministic
OJAs. E.g., if A had another action m that behaved similarly to
r, then it could randomize between m and r; and if B adopted r,
an optimal equilibrium would result. However, we will continue
to speak asif optimal equilibria are OJAs.

*In other words, they can compute the value function of the
Markov decision process [7, 14]. We refer to [2] for a discus-
sion of the details, benefitsand computational implications of this
assumption.



task alocation [18, 17] or simply inform one another what
actions they will choose. Conventions (or socia aws)
might be imposed by the system designer so that optimal
joint action isassured [9, 16]—intuitively, a convention re-
stricts(or forces) considerationto asubset of feasible or op-
timal joint actions (such asthe convention of driving onthe
right hand side of the street). Finaly, coordinated action
choice might be learned through repeated play of the game,
either with the same agents[4, 8, 10] or arandom selection
of similar agents[1, 15, 11, 19].

We focus here on learning models in which agents repeat-
edly interact with the same set of players in state games.
In this section, we assume that each agent can observe the
actions of the others at each interaction. Intuitively, each
agent uses its past history to form an estimate of strategies
used by the other agents. At each interaction, or play of the
game, an agent will choose a best response action to exe-
cute, given itspredictions (or beliefs) about the behavior of
the other agents. Once the game is played, the agent can
observe the actual actions chosen by the other players and
update its beliefs regarding future play accordingly.

3.1 FictitiousPlay

One of the simplest learning models for repeated games
is fictitious play [13]. Each agent ¢ keeps a count ng,
j € a,a/ € Aj, of the number of times agent j has
used action a/ in the past. When the game is encountered,
i treats the relative frequencies of each of j's movesasin-
dicative of j's current (randomized) strategy. That is, for
each agent j, ¢ assumes j playsactiona’ € A; with proba-
bilitycgj/(zbjeAj ng). Thisset of strategiesformsare-
duced profilelIl_;, for which agent ¢ adopts abest response.
After the play, ¢ updatesits counts appropriately, given the
actions used by the other agents.

Thisvery simple adaptive strategy is not guaranteed to con-
verge to equilibriumin genera, but will converge for two-
person zero-sum games [13]. More importantly, the meth-
ods of Young [19] can be applied to our simple coopera
tive games to show that it is guaranteed to converge to a
coordinated equilibrium (that is, the probability of coordi-
nated equilibrium after & interactions can be made arbitrar-
ily high by increasing k sufficiently). We simply require
that an agent randomize between al pure best responses
when more than oneisavailable’ It isalso not hard to see
that once the agents reach an equilibrium, they will remain
there—each best response simply reinforces the beliefs of
the other agents that the coordinated equilibrium remains
inforce. We do not discuss rates of convergence or experi-
ments, since the model issimilar to the particular Bayesian
methods we describe next.

5We also requirethat utilities berational sothat the opportunity
to randomize arises (see below).

3.2 Bayesian Best-Response M odel

A popular method for learning to select equilibriaassumes
that agents have a prior beliefs, in the form of a probabil-
ity distribution, over the possible strategies of other agents,
use Bayesian update this adjust their priors as experience
dictates, and adopt a best response at each interaction based
ontheir current beliefs[8, 4]. Inrepeated games, one could
(and should) technically have priors over another agent’s
sequential strategy, including how it might react to one's
current moves in the future [8]. However, the practical dif-
ficultiesof specifying anything but thesimplest priorsisev-
ident; this aso runs contrary to the spirit of decomposing
sequential problemsinto states games (Section 2.2). So we
restrict attention to beliefs about single-stage strategies for
the state game G5.

We assume each agent ¢ has an prior distribution over the
strategies that could be adopted by other agents. The be-
liefsof agent i about agent j arerepresented by aprobability
distribution over the set of (randomized) strategies A(A4;)
agent j might adopt. We denoteby Bel;(j, 7;, s) thedegree
of belief agent ¢ hasthat j will perform strategy ;.

Asagenera rule, any reasonable prior could be used (pro-
vided it does not rule out the choice of some action in the
stategame). However, wewill consider only the case where
each agent uses a simple prior, the Dirichlet distribution.
This can be represented with asmall number of parameters
and can be updated and used quite easily. Let n be the car-
dinality of j'saction set. Agent i'sbeliefs about j are rep-
resented by the Dirichlet parameters N7 , - - - N}, capturing
a density function (see [6]) over such strategies. The ex-
pectation of kth action being adopted by j is ZJ:V;W
tuitively, each N} can be viewed as the number of times
outcome k (in this case action k) has been observed. The
initial parameters adopted by agent ¢ represent its prior be-
liefsabout agent ;' sstrategy. For simplicity, weassume that
prior parameters are set uniformly (eg., a 1), reflecting a
uniform expectation for each of j’sactions (thisisnot auni-
form prior over strategies, of course).

In-

Asinfictitiousplay, at each interaction agent  should adopt
a best response based on its current beliefs. Instead of a
strategy profile, agent ¢ has a distribution over individual
strategies and an induced distribution over profiles. How-
ever, the Dirichlet parameters permit the expectation of in-
dividua moves, and hence abest response, to be determined
easily. When theinteraction has ended, ¢ updatesitsbeliefs
by incrementing the parameters N; (where agent j was ob-
served to performits kth action).’

51t is important to note that the agents are updating as if the
sampled distribution were stationary, which it is not. Thus, con-
vergence must be ensured by properties of best responses. We
also note that the conclusions we draw below regarding the per-
formance of Bayesian learning (versus fictitious play) are not in-
tended to denigrate the Bayesian method. Thefact iswe are using
priorsabout “initial” strategies asif they were beliefs about the fi-
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Figure2: Convergence of Pure CoordinationGames of Var-
ious Sizes. All results averaged over 30 trials.

In our example above (assuming observable actions), we
might set theinitia belief parameters of bothagent A and B
to (1, 1) (they each expect the other to go I€ft or right with
equal probability). Thus, they will each randomize between
{ and» uniformly. If theresult of thisrandomizationiscoor-
dinated (e.g., joint action {/, [)), both update their distribu-
tiontobe(2, 1). At thenext interaction, bothwill adopt ! as
abest response and reinforce theinitial choice. Itiseasy to
see that the OJA (I, !) is guaranteed to be selected forever.
However, suppose the initial randomization results in the
jointaction {/, ). Inthis case, their updated beliefswill be
different: A’s parameters (1, 2) indicate B will again per-
form r, while B’s (2, 1) indicate the opposite. Thereisno
chance of coordination at the next interaction: the action
will be (r, () (each switches actions). Their updated param-
eterswill each be (2, 2) at thispoint and randomization can
again take place providing another chance to coordinate at
thethird interaction.

It is not hard to see that, in this example, the agents have
the opportunity to randomize at every second interaction,
and the chance of coordination at each such round is 0.5.
The probability that the agents fail to converge by round

k (i.e, 1/2L5]) therefore decreases exponentially with k.
To illustrate, Figure 2 shows experimental results for this
2 x 2 games, as well as larger n x n pure coordination
games.” The z-axis shows the number of times the game
has been encountered, while the y-axis shows the average
error probability—thechance an uncoordinated joint action
isadopted using the agents's best response strategies at that
point. In such pure coordination games, it is quite easy to

nal “coordinated” strategies. It is remarkable that this misuse of
Bayesian methodology works at all.

“In each game there are n agents with n actions. The set of
movesis the samefor all agentsand they are rewarded with value
c if they each executethe same move, and aregiven asmaller value
d if they do not. Hence, there are n OJAS.
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Figure 3: Convergence of 2 x 2 Asymmetric Games. Each
game has areward of 1 for one uncoordinated joint action,
zero for the other, and thereward indicated (1, 4, 10, 20) for
coordinated actions. All resultsaveraged over 1000 trials.

see that convergence to an optimal joint action will be quite
rapid. For instance, inthe 10 x 10 game coordinationisall
but assured by the fourth play of the game.®

The rate of convergence can be adversely affected if the
game is not symmetric. For example, consider the asym-
metric 2 x 2 game given by:

| 1(B) r(B)
A 4 1
(A)Y| 0 4

Should the agents start with prior parameters (1, 1) repre-
senting their beliefsabout the other’smoves, then A’sinitial
best responseisi, while B’sisr. The agentswill not have
the chance to coordinate their actions until they can ran-
domize among their pure best responses—when A
the probability of » (for B) to be % (or B assigns probabil-
ity % to!). Given theinteger nature of the updates, this can
only happen at thesixthinteraction, and every seventhinter-
action after that. Thus, the rate of convergence (while still
exponential) is slowed linearly by afactor of seven. Toil-
lustrate the nature of these “plateaus’, see Figure 3: values
other than 4 (inthe matrix above) are shown, along withthe
origina 2 x 2 symmetric game.

Proposition 1 Let G bea 2 x 2 coordination game, with
a denoting the utility of coordinated action, and b, ¢ denot-
ing the utility of the two uncoordinated actions. Assuming
uniformDirichlet prior parameters(1, 1), theprobability of

failing to reach convergence at round & is 1/(2L§J ), where
g=gcd((a —¢),(a —¢c)+ (a—d)).

8Infact, for larger values of n, faster convergenceis dueto the
likelihood that the each randomizationis more likely to producea
unique “most likely” (or majority) coordinated action.



Thus convergence is dowed linearly by thefactor g. This
can be extended to noninteger utilitiesin the obviousway;
as long as the utilities are rational, convergence is guaran-
teed. We a so note that nonuniform priors have little effect
here, and that more heavily weighted priorsdo not preclude
convergence, but can force a certain minimum number of
encounters before coordinationis possible.

4 Learning with Unobservable Stochastic
Actions

The key difficulty with the models described above is the
assumption that actions can be observed. As described at
the outset, agents will typically be able to observe only the
outcomes of these actions, and not the actions themselves.
However, since the agents all know the game structure, the
observationsthey make still provide evidence regarding the
choi ces made by other agents. One simply needsto account
for the inherent uncertainty in thisinformation.

It isworth noting that, in general, there must be a sufficient
number of observable statesthat can be used to distinguish
(probabilistically) which joint actions have been executed
for useful learning to take place. For instance, suppose we
have simple matrix game where agents moveto agood state
or abad state. If they can’t observetheaction chosen by oth-
ers when moving to a bad state, then they can’t tell which
of the uncoordinated moves other agentsdid (i.e., very little
informationisavail able fromwhich to learn). Our perspec-
tiveisnot so much that agents have a choice of actionsthat,
correctly chosen, take them to a (single) good state (which
is one interpretation of strategic form); rather they have a
choi ce of possiblegood states, and their actions must be co-
ordinated in the sense of agreeing on the state they “aim

for. (These are, of course, extreme points on a spectrum.)

41 Bayesian Best-Response Adapted

The Bayesian best-response model we described above can
be adapted to the case of unobservable stochastic actions
in a rather straightforward way. As before, we assume
agents use Dirichlet distributionsover the strategies of oth-
ers to represent their beliefs. While belief parameters can-
not be updated directly with observation of a particular ac-
tion, agent ¢ can update its beliefs about j's strategy by a
simpleapplication of Bayesrule. Agent : first computesthe
probability that j performed a for any a/ € A;, given the
observed state s and its previous action a':

Pr(alj] = a’|afi] = a',t) =
Pr(t|alj] = o/, ali] = a’)Pr(a[j] = o/)
Pr(t]al] = a')

Here a[j] denotes j's component of a joint action a. The
prior probabilities are computed using agent i's beliefs
Bel; (k, a*, s) for arbitrary agents k and the joint transition
probabilities. Agent ¢ then updates its distributionover j's
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Figure 4: Convergence of 2 x 2 Stochastic, Unobserv-
able Action Games. The probability of (individua) action
failure (0.01,0.05,0.1,0.2) isshown. All results averaged
over 1000 trials.

strategies using this “stochastic observation;” in particu-
lar N] is incremented by Pr(ak|t) (intuitively, by a“frac-
t|0nal” outcome).’

In the stochastic version of our example, let A and B adopt
theinitial parameters (1, 1). If theinitial randomization re-
sultsin coordinated joint action (e.g. (/,!)), and the prob-
able outcome s; results, coordination is assured forever.
However, suppose the first joint action is {/, ) and it has
itsmost likely outcome s,. Then A’sbelief parameters be-
come (1.1,1.9) and B’s (1.9,1.1). The best response at
the next interaction is (r,{), resulting in updated parame-
ters (1.938,2.061) for A and (2.061, 1.938) for B (assum-
ing the expected outcome). Unlike the deterministic case,
the agents will not be able to randomize or coordinate. In
fact, given any sequence of “most likely outcomes,” itisnot
hard to see that A and B will never coordinate, unless they
do initially. Fortunately, this cycle of suboptimal joint ac-
tions can be broken by an unlikely outcome (i.e., if one of
the actions “fails”). Experimenta resultsfor different fail-
ureprobabilitiesinthis2 x 2 scenario are shownin Figure4.
Theseresultsillustratetherather “ paradoxica” fact that the
less error prone (or more predictable) the available actions
are, the slower the agents are to converge. Indeed, one can
see that the stochastic actions play the role of “ experimen-
tation” for these agents, atechnique used in game theory for
agents to break out of suboptimal best response cycles.'®

Oneway to enhance convergenceisto have agentsrandom-

®Thesefractional parameters correspond to the expectationsof

a weighted combination of integer-parameter Dirichlet distribu-

tions that result from standard update using the positive probabil-
ity outcomes.

1% Detailed, but straightforward, analysisof convergenceusinga

Markov chain model is providedin aforthcoming technical report.



Convergence of 2x2 Game with Epsilon Response (Fail.Prob.=0.05)
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Figure 5: Convergence of 2 x 2 Stochastic, Unobservable
Action Games With -Best Response. Various values of ¢
(0.00,0.01,0.05,0.1,0.15) areshown. Actionfailureprob-
ability is0.05. All results averaged over 1000 trials.

ize over e-best responses [8]. This allows agents to ran-
domize among actionsthat are closeto being best responses
giventher current beliefs. Inthe example above, thebeliefs
of the agents “hover” around the point at which they will
randomize—all owing -best responses givesthe agentsam-
ple opportunity to break out of such cycles. Thisresultsin
dlightly better convergence in this example (see Figure5).

4.2 Fictitious Play Adapted

Finally, we note that fictitious play can be adapted to the
setting of unobservable stochastic actions with good suc-
cess. Unlike the Bayesian model, we cannot rely on priors
to estimate the probability a given action was performed.
Instead we use likelihood estimates as a means of updat-
ing frequency countsin away that accountsfor the stochas-
tic aspect of observations. When an outcome state s is ob-
served, each agent ¢ determines Pr¢(s) for each joint action
a (thisisjust part of the agent’smodel). Therelative likeli-
hood of aisPr(s)/ 3", Pr’(s), wherea and b arerestricted
to range over joint actions such that afi] = a’, b[i] = d
(i.e., 7 usestheknowledgeof itsown selected actiona’). Us-
ing these likelihoods, ¢ computes the likelihood that j per-
formed individual action a’ to be

S{Pre(s) : afj] = @’}
> Pri(s)
(again, a[i] = a' isassumed). The likelihood estimates for

each of theseindividual actions are used to update agent i's
frequency counts.

In our example, frequency parameters are updated by 0.9
or 0.1 for every possible outcome. This allows agents to
randomize much more frequently, and is comparable to the
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Figure 6: Convergence of 2 x 2 Games using Bayesian
Learning, Stochastic Fictitious Play, and Fictitious Play
with Conventions. Action failure probability is 0.05. All
results averaged over 1000 trials.

action observable setting (for this example, not in general).
Convergence for thisversion of fictitiousplay is compared
tothe Bayesian learning model for the2 x 2 game (Figure6),
and amore complicated 3 x 3 game (Figure 7).

5 Conventions

Finally, we consider how true conventions might arise via
learning. The problem with all of the models above, in the
presence of stochastic actions, isthat they cannot be said to
converge to a true convention in the sense discussed in the
introduction. By a conventional way of acting, we mean a
fixed strategy that isapplied to agiven situation without re-
quiring any special deliberation. The learning models de-
scribed all have a chance of “popping out” of equilibrium
(e.g., through a series of unlikely occurrences) though the
probability of thisgenerally decreases quickly over time. A
more seriousdifficulty isthat theagentsmust constantly up-
datetheir beliefsand “reconsider” their choice of action (by
recomputing possible best responses). Thisis certainly not
in the spirit of conventions, or fixed rules of encounter, that
one must simply apply to a given situation.

Intuitively, we would like agents to adopt some criterion
that would alow them to identify that an optimal equilib-
rium has been reached, and that thisrealization is common
knowledge. In thisway, agents will eventually stop “think-
ing” about how to behavein a given state and simply act.'!
It is important to emphasize the role common knowledge

1 Adopting aconventionin this sensedoesnot mean that agents
cannot adapt to changesin circumstance (e.g., the introduction of
new agents). This would be reflected by the fact that the agents
engage each other in a different state, for which the adopted con-
vention does not apply.
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with Conventions. Action failure probability is 0.05. All
results averaged over 1000 trials.

plays here. If an agents use persona knowledgein the de-
cision to jump to a conventiona equilibrium (e.g., assess-
ing the probability of ajoint action using knowledge of its
own action, or itspersona prior), they risk adopting differ-
ent conventions(and never reconsidering), perhapsguaran-
teeing suboptimal behavior from that point on.

We propose a model based on our stochastic extension of
fictitious play and have agents compute the likelihood esti-
mate of all OJAs(the“target” equilibria) giventheir current
observation. If any OJA « has a higher likelihood estimate
than b, b is“removed” from subsequent consideration. For
instance, consider our 2 x 2 game. Suppose the agents end
upinthestate (I/); regardless of past behavior and what ac-
tual actions the agents performed, there is a unique OJA,
(1,1), that has maximum likelihood. We notice that each
agent can determine thisindependent of any personal infor-
mation, and is aware that others have this ability as well—
the OJAswith maximumlikelihood are common knowl edge.
From this point on, the agents will perform (I, ), even if
the initial action they performed was (r, ), and by chance
it had thisvery unlikely outcome.

Inasimilar 3 x 3 game, once could imagine that moving
to acertain stateismost likely given two of thethree OJAs
(eg., {(1,1,1yand (2, 2,2)), butislesslikely giventhethird
(eg., (3,3,3)). When thisstate is observed, the agentswill
regject (3,3, 3) as apotentia equilibrium, will individually
never consider performing action 3, and will never consider
ajoint action in which the other agents performed 3 to have
positive probability at any future interaction: the rowsin
the matrix corresponding to the components of the rejected
OJA will be effectively “deleted.”

Formally, conventions are added to a learning model (such
asfictitiousplay) asfollows. At each interaction (say inter-

action k), each agent computes alikelihood estimate LE(«)
for each OJA «, given the observed outcome (we note that
in fictitious play, these are computed for all joint actions,
and will therefore be available anyway). Theset MLE(k) is
theset of OJAsthat have maximum likelihood. Thegameis
then altered asfollows: any actiona’ € A; that doesnot oc-
cur inany element of MLE(%) is“deleted” fromthegamein
the sense defined above. At interaction & + 1, coordination
isattempted for thisreduced game. If we are fortunate, the
MLE set will eventually be pared down to a singleton (or a
set of OJAswith “interchangeable” components) and acon-
ventionwill bereached that can never bedropped. Thiswill
not always be the case, of course, as we discuss bel ow.

Conventions based on maximum likelihood estimates can
be implemented “as is’, with each agent randomly choos-
ing actions and ruling out certain possibilitiesas warranted
by MLE. However, thisisunlikely towork well in scenarios
with a sufficiently large number of outcomes, so that many
states have zero probability of being reached by any OJA
(e.g., imaginea 10 x 10 game where only a small fraction
of the 101° actionshave positiveprobability of an “informa-
tive’ outcome). Inthiscase, therate of convergence will be
dictated by the probability of reaching an informative state
given a random joint action (which can be tiny in a case
likethis). We actually want to uselearning to bias agent re-
sponses in order to increase the probability of an OJA (or
simply the chance of informative outcomes).

This is easily accomplished by grafting conventions onto
the learning models described above, having agents main-
tain persona estimates of other agents's strategies and
adopt best responses. Thus convergence to OJAs will oc-
cur even if MLE does not pruneactions. In an extended fic-
titious play moddl, thisis straightforward. The only com-
plication liesin the deletion of individua actions from the
game: each agent i must be surethat, infuture updating and
computation of best responses, the estimated frequencies of
theactions deleted for agent j areignored. Therelativefre-
guencies of the remaining actions form the basis of best-
response considerations at subsequent interactions.

Convergence for fictitious play with conventions is com-
pared to straightforwardfictitiousplay for our standard 2 x 2
game in Figure 6, and a more complicated 3 x 3 game in
Figure 7. In both cases convergence is enhanced, remark-
ably so inthe 3 x 3 case, where coordination is guaran-
teed after one interaction. Of course, thisis an artifact of
the game—each outcome state has a unique OJA with max-
imum likelihood.'? While convergence is enhanced, we
note that a more important function of conventionsis their
roleintheeventua elimination of the computationa burden
associated with ongoing computation of best responses.

2| nformally, this game has six outcome states, three “good”
and three “bad”. Each good state correspondsto an OJA in the
sensethat the OJA likely leadsto that state. If only two of thethree
individual actions are the same, thereisasmall chance of moving
to the good state corresponding to the majority action, and so on.
Thegamewasactually designedto prevent ordinary fictitious play
from converging too quickly!



We notethat conventionswill not generally lead to aunique
choice of OJA. For example, in a game with three OJAS,
wheretwo of them lead to the same outcomeswith the same
probabilities, nothing can distingui shthetwo fromthe point
of view of likelihood. In other words, each action outcome
accords the same likelihood to these two actions. In this
case, thelearning component will choose one of thetwo ac-
tions; but while conventional deliberationsmay rule out the
third, they must |eave open the possibility that either of the
remaining two actions could be performed. In such a case,
conventions cannot be used to prevent agents from contin-
uing to update their beliefs.'®> However, in a case like this
conventionsgtill play arolein restricting attention in learn-
ing to particular possibilities, even if they cannot choose a
unique equilibrium. The analysis of conventions and their
effect on convergence is the subject of ongoing investiga-
tion and experimentation.

6 Concluding Remarks

We have studied several learning models from game the-
ory, and their extension to coordination problems with un-
observable actions. As we have seen, a number of differ-
ent problem features, such asymmetriesinutility and failure
probabilities can have surprising effects of convergence to
a coordinated equilibrium. We have also proposed the use
of conventions as a means to restrict attention to particular
equilibria, in some cases alowing eventual relief from hav-
ing to “think about” what action to perform.

The experimental results are not conclusive; rather they
are merely suggestive of interesting models for coordina-
tionlearning, model sthat requirefurther exploration. How-
ever, some of these directions appear promising. In ad-
dition, the interaction of these methods in true sequential
decision problems consisting of a wide variety of related
state games is of considerable interest [2]. In this setting,
we are ultimately interested in the generalization of learned
conventions across similar state games, exploiting struc-
tured (Bayes net) representations of games and utility func-
tions, asin[3]. Finally, generadizationsof thismoddl, espe-
cialy those where only partial common knowledge of the
game structureisassumed, will be required to make the ef-
fort more robust and redlistic. Thiswill require the use of
ideas from reinforcement learning and learning models of
dynamical systems.
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3| n principle, one can detect this fact by analyzing the legal ac-
tions remaining at any point in the game and seeing if they can be
distinguished by likelihood estimates. If the agentsever reach the
point where (say, in this example) thetwo actionscan never bedis-
tinguished, they can cease computing likelihood estimates, since
the impossibility of reaching a convention has been detected.
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