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Abstract

Fully cooperative multiagent systems—those in
which agents share a joint utility model—is of
special interest in AI. A key problem is that of en-
suring that the actions of individual agents are co-
ordinated, especially in settings where the agents
are autonomous decision makers. We investigate
approaches to learning coordinated strategies in
stochastic domains where an agent’s actions are
not directly observable by others. Much recent
work in game theory has adopted a Bayesian
learning perspective to the more general problem
of equilibrium selection, but tends to assume that
actions can be observed. We discuss the special
problems that arise when actions are not observ-
able, including effects on rates of convergence,
and the effect of action failure probabilities and
asymmetries. We also use likelihood estimates
as a means of generalizing fictitious play learn-
ing models in our setting. Finally, we propose the
use of maximum likelihood as a means of remov-
ing strategies from consideration, with the aim
of convergence to a conventional equilibrium, at
which point learning and deliberation can cease.

1 Introduction

The design of systems of multiple autonomous agents that
interact in various ways (pursuing their own ends or com-
patible goals) has attracted a great deal of attention in AI. Of
special interest are systems in which individual agents share
the same goals or utility function—insuch fully cooperative
settings, the agents collectively act toward common desired
ends. While more general problems involving the interac-
tion of potentially self-interested agents have received the
bulk of attention in distributed AI, fully cooperative prob-
lems naturally arise in task distribution. For example, a user
might assign some number of autonomous mobile robots, or
perhaps software agents, to some task, all of which should
share the same utility function (namely, that of the user).

For certain purposes, it may make sense to model a busi-
ness or organization in a similar way.

A key difficulty in cooperative multiagent systems is that
of ensuring that the actions of individual agents are coor-
dinated so that the shared goals are achieved efficiently.
This is especially important in settings where the agents
are autonomous decision makers (and preprogrammed co-
ordinated strategies are not available), as in the situations
mentioned above. One natural way to view the coordina-
tion problem is as a n-person cooperative game. From the
perspective of game theory, we are interested in n-person
games in which the players have a shared or joint utility
function; that is, any outcome of the game has equal value
for all players.

In this paper, we study aspects of the coordination problem
from the perspective of n-player repeated games. A set of
agents find themselves in a situation which requires coor-
dinated action (viewed as a single-stage decision problem),
but can encounter this situation repeatedly.1 Methods such
as allowing agents to communicate their intentions before-
hand or imposing specific behaviors (e.g., by means of a
central controller or the use of social laws) may ensure that
agents behave in a coordinated fashion. However, our in-
terest in this paper is in methods that enable agents to learn
their component of a coordinated policy through repeated
experience with the game situation.

Learning techniques have been well-studied in game theory,
not only for coordination in cooperative games, but also for
the more general problem of equilibrium selection [12, 5].
Models applied to this problem include fictitious play [13]
and Bayesian best-response methods [8, 19, 4] (evolution-
ary models have also attracted a great deal of attention [1,
11]). These have especially nice behavior in coordination
problems [19]. However, these models tend to assume that
each agent can observe the exact action performed by all
others at each interaction. Such action observable scenar-1This scenario is appealing in its simplicity, but is not an overly
realistic picture of multiagent decision problems. However, our
interest in repeated single-stage games is motivated by a decom-
position of sequential cooperative problems (see below).



ios will likely be rare in practice, especially when individual
actions have stochastic effects. Even if states of the system
(and thus action outcomes) are fully observable—as they
might be in a Markov decision model—it is unlikely that
agents will have access to the actual action another agent
attempted (and hence the “intentions” of the other agent).

We focus our attention on games where actions are stochas-
tic, and actions are not directly observable. In general,
agents can observe only the state resulting from the actions
of the group of players; but they can use this observation
to assess the probability that other agents performed partic-
ular actions. The introduction of this type of uncertainty
and partial observability is rather simple to model, but it
has some rather surprisingeffects on convergence to coordi-
nated action in the Bayesian best-response model, which we
examine here.We also adapt fictitious play to this unobserv-
able action setting through the use of likelihood estimates,
and show that convergence is generally much better than in
the Bayesian model.

Finally, we consider the problem of learning conventions
[9, 16]. One difficulty with stochastic games and models
that require constant learning is that a run of “bad luck” can
force agents out of a coordinated equilibrium. More seri-
ous are the computational implications of constantly updat-
ing beliefs and computing a best response for every inter-
action. Following Lewis [9], we take an interest in conven-
tional behavior. Agents should converge to a common un-
derstanding and, once realizing that they have reached a co-
ordinated equilibrium, should never be forced to reconsider
how to act. Of course, care must be taken to ensure this
understanding is based on common knowledge, or globally
accessible information. To this end, we propose the use of
“globally accessible” likelihood estimates to rule out par-
ticular ways of acting, until only a conventional method of
acting remains whenever possible.

We describe the basic framework of coordination games in
Section 2, as well as their application to multiagent sequen-
tial decision processes (in the form of multiagent Markov
decision processes). In Section 3 we detail classic mod-
els from game theory for learning coordinated actions, in
particular fictitious play and Bayesian methods. We also
point out the difficultyasymmetric coordinationgames pose
for such methods. In Section 4, we extend these models
in rather obvious ways to deal with stochastic, partially-
observable actions. We study a number of properties of
these models and how convergence is affected by them. We
address the problem of convention in Section 5, proposing
an extension of fictitious play dynamics whereby likelihood
estimates for optimal joint actions are used to rule out pos-
sible courses of action.

Experimental results are provided to illustrate the perfor-
mance of these methods. We focus (primarily, not exclu-
sively) on 2�2 games to keep the exposition clear; but most
of the conclusions we draw can be applied more broadly.
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Figure 1: A Two-Agent Coordination Problem

2 Coordination Games

2.1 Single Stage Games

We take as the basic object of study an n-player cooperative
state game. We assume a collection � of n (heterogeneous)
agents, each agent i 2 � having available to it a finite set
of individual actions Ai. The game takes place at a given
state, at which each agent chooses (independently) an ac-
tion to perform. The chosen actions collectively constitute
a joint action, the set of which is denotedA = �i2�Ai. The
game also has a set of outcomes states S: each joint action
causes a transition to some outcome state s 2 S according
to a fixed distribution. We use Pra(s) to denote the prob-
ability of outcome s when the joint action a has been exe-
cuted. Finally, we associate a utilityU (s) with each s 2 S.
Intuitively, each agent receives reward U (s) if the joint ac-
tion adopted by the agents results in s; the game is thus fully
cooperative, for agents cannot do better by making things
worse for others.2
We note that state games are essentially single-stage exten-
sive form games; but it is convenient to sometimes convert
them to the corresponding strategic form (or their normal
representation) [12]. Each joint action a can be associated
with its expected utility,

Ps2S Pra(s) � U (s), and states
can be done away with, resulting in a strategic form game.
However, the existence of distinct outcome states is crucial
in the learning models we adopt below. In particular, the
states provide indirect information about action choices in
cases where actions are not directly observable. Conversion
to strategic form precludes the use of this partial informa-
tion; however, when actions are perfectly observable, we
will often use strategic form.

As an example, consider the 2 � 2 game illustrated in Fig-
ure 1, in which two agents, A and B, can move left (l) or
right (r) (say, toward a particular goal). The agents are
rewarded with utility 1 if they both end up in the same
location—either both left (s1) or both right (s3)—and util-
ity 0 otherwise. The actions available to the agents are
stochastic, so that if A executes action l, it will end up in
the left location with probability 0:9 and in the opposite lo-2A general n-person state game simply requires that U take
agents as arguments as well as states to allow for competition; i.e.,U(s; i) denotes the utility of state s to agent i.



cation with probability 0:1. This results in the transition
matrix shown. Should we convert this game to strategic
form, the Payoff Matrix 1 describes the expected utility of
the given joint actions. We will also have occasion to use
the deterministic version of this game, where each joint ac-
tion has the obvious outcome: Payoff Matrix 2 character-
izes this game. We note that in the deterministic game, an
agent observing the outcome state is equivalent to observ-
ing its companion’s action directly.

Given such a game, we want the agents to discover an opti-
mal course of action. Unfortunately, the optimal action for
each agent generally depends on the choices of other agents.
The typical solution concept adopted in game theory, that of
a Nash equilibrium, allows us to break out of potential cir-
cularities as follows.

A randomized strategy for agent i at state game G is a prob-
ability distribution � 2 �(Ai) (where �(Ai) is the set
of distributions over the agent’s action set Ai). Intuitively,�(ai) denotes the probability of agent i selecting the indi-
vidual action ai when playing the game. A strategy � is de-
terministic if �(ai) = 1 for some ai 2 Ai.
A strategy profile for G is a collection � = f�i : i 2 �g
of strategies for each agent i. The expected value of acting
according to a fixed profile can easily be determined. We
note that if each strategy in � is deterministic, we can think
of � as a joint action, since each agent’s action is fixed. A
reduced profile for agent i is a strategy profile for all agents
but i (denoted ��i). Given a profile ��i, a strategy �i is a
best response for agent i if the expected value of the strategy
profile ��i [ f�ig is maximal for agent i; that is, agent i
could not do better using any other strategy �0i.
Finally, we say that the strategy profile � is a Nash equi-
librium iff �i 2 � is a best response to ��i, for every
agent i. In other words, the agents are in equilibrium if
no agent could expect a better outcome by unilaterally de-
viating from its strategy. In general, the interests of dif-
ferent agents can conflict, making equilibrium determina-
tion quite difficult. However, in fully cooperative games
each agent expects the same reward and can easily deter-
mine an interesting set of equilibrium profiles as follows.
We first convert the state game to strategic form (by taking
expectation of outcome utilities). Any joint action whose
expected value is maximal is a (deterministic) Nash equilib-
rium. Such an equilibrium is called an optimal joint action
(OJA). If the agents coordinate their choices so that they se-
lect an OJA, they are behaving as well as possible.

To illustrate with our example problem (in either the deter-
ministic or nondeterministic version), we see that the OJAs
are hl; li and hr; ri. These strategy profiles offer maximal
expected utility for both agents. We note however that be-
ing in equilibrium does not guarantee the agents are behav-
ing optimally (in a joint sense). The profile in which each
agent adopts a randomized strategy that selects l and r with
equal probability is also an equilibrium: given that agent A
chooses l or r, each with probability0:5,B has no incentive

to change its strategy (similarly forA). But this randomized
equilibrium is suboptimal, for its expected value is half that
of the optimal equilibria.

Nash equilibria, unfortunately, do not solve the coordina-
tion problem. While the agents can determine the OJAs
quite readily, the problem remains: how do they decide
which OJA to adopt? In its most general form, this is pre-
cisely the problem of equilibrium selection studied in game
theory [12, 5]. We take the coordination problem to be that
of ensuring agents select individual actions that together
constitute an optimal or coordinated equilibrium, or OJA.3
2.2 Multiagent MDPs

While our focus is on simple repeated state games, our mo-
tivation is not primarily the solution of repeated, single-
stage decision problems. In [2], we propose multiagent
Markov decision processes (MMDPs) as a framework in
which to study multiagent cooperative planning (in deci-
sion theoretic contexts). Roughly, MMDPs are Markov de-
cision processes [7, 14, 3] in which actions at each stage are
comprised of distinct components performed by individual
agents. The aim there is not to coordinate single state strate-
gies per se, but to construct coordinated policies for ongo-
ing behavior in different states.

Producing coordinated policies is difficult computationally;
but one can gain considerable leverage by decomposing
the problem into distinct state games of the type described
above, with one game for each state (of a certain type) of
the MDP. The coordination problem is then reduced to that
of coordinating locally at each of these state games. In [2]
we assume that agents can compute the value of coordinated
(ongoing) policies at individual states.4 These “long term”
values are used as the outcome utilities in the individual
state games. If the agents are able to coordinate locally at
each of the state games defined in this way, we can guaran-
tee that they will implement an optimal (sequential) policy
[2]. Of course, in an MDP of sufficient horizon, agents will
repeatedly encounter the same (or similar) states. For this
reason, coordination at single-stage state games has an im-
portant application to multistage (especially “process ori-
ented”) decision problems.

3 Learning with Observable Actions

Solutions to the coordination problem can be divided into
three general classes, those based on communication, those
based on convention and those based on learning. For ex-
ample, agents might communicate in order to determine3We note that optimal equilibria need not be deterministic
OJAs. E.g., if A had another action m that behaved similarly tor, then it could randomize between m and r; and if B adopted r,
an optimal equilibrium would result. However, we will continue
to speak as if optimal equilibria are OJAs.4In other words, they can compute the value function of the
Markov decision process [7, 14]. We refer to [2] for a discus-
sion of the details, benefits and computational implications of this
assumption.



task allocation [18, 17] or simply inform one another what
actions they will choose. Conventions (or social laws)
might be imposed by the system designer so that optimal
joint action is assured [9, 16]—intuitively, a convention re-
stricts (or forces) consideration to a subset of feasible or op-
timal joint actions (such as the convention of driving on the
right hand side of the street). Finally, coordinated action
choice might be learned through repeated play of the game,
either with the same agents [4, 8, 10] or a random selection
of similar agents [1, 15, 11, 19].

We focus here on learning models in which agents repeat-
edly interact with the same set of players in state games.
In this section, we assume that each agent can observe the
actions of the others at each interaction. Intuitively, each
agent uses its past history to form an estimate of strategies
used by the other agents. At each interaction, or play of the
game, an agent will choose a best response action to exe-
cute, given its predictions (or beliefs) about the behavior of
the other agents. Once the game is played, the agent can
observe the actual actions chosen by the other players and
update its beliefs regarding future play accordingly.

3.1 Fictitious Play

One of the simplest learning models for repeated games
is fictitious play [13]. Each agent i keeps a count Cjaj ,j 2 �; aj 2 Aj, of the number of times agent j has
used action aj in the past. When the game is encountered,i treats the relative frequencies of each of j’s moves as in-
dicative of j’s current (randomized) strategy. That is, for
each agent j, i assumes j plays action aj 2 Aj with proba-
bilityCjaj=(Pbj2Aj Cjbj ). This set of strategies forms a re-
duced profile��i, for which agent i adopts a best response.
After the play, i updates its counts appropriately, given the
actions used by the other agents.

This very simple adaptive strategy is not guaranteed to con-
verge to equilibrium in general, but will converge for two-
person zero-sum games [13]. More importantly, the meth-
ods of Young [19] can be applied to our simple coopera-
tive games to show that it is guaranteed to converge to a
coordinated equilibrium (that is, the probability of coordi-
nated equilibrium after k interactions can be made arbitrar-
ily high by increasing k sufficiently). We simply require
that an agent randomize between all pure best responses
when more than one is available.5 It is also not hard to see
that once the agents reach an equilibrium, they will remain
there—each best response simply reinforces the beliefs of
the other agents that the coordinated equilibrium remains
in force. We do not discuss rates of convergence or experi-
ments, since the model is similar to the particular Bayesian
methods we describe next.5We also require that utilities be rational so that the opportunity
to randomize arises (see below).

3.2 Bayesian Best-Response Model

A popular method for learning to select equilibria assumes
that agents have a prior beliefs, in the form of a probabil-
ity distribution, over the possible strategies of other agents,
use Bayesian update this adjust their priors as experience
dictates, and adopt a best response at each interaction based
on their current beliefs [8, 4]. In repeated games, one could
(and should) technically have priors over another agent’s
sequential strategy, including how it might react to one’s
current moves in the future [8]. However, the practical dif-
ficulties of specifying anything but the simplest priors is ev-
ident; this also runs contrary to the spirit of decomposing
sequential problems into states games (Section 2.2). So we
restrict attention to beliefs about single-stage strategies for
the state game G.

We assume each agent i has an prior distribution over the
strategies that could be adopted by other agents. The be-
liefs of agent i about agent j are represented by a probability
distribution over the set of (randomized) strategies �(Aj)
agent j might adopt. We denote by Beli(j; �j; s) the degree
of belief agent i has that j will perform strategy �j.
As a general rule, any reasonable prior could be used (pro-
vided it does not rule out the choice of some action in the
state game). However, we will consider only the case where
each agent uses a simple prior, the Dirichlet distribution.
This can be represented with a small number of parameters
and can be updated and used quite easily. Let n be the car-
dinality of j’s action set. Agent i’s beliefs about j are rep-
resented by the Dirichlet parameters N j1 ; � � �N jn, capturing
a density function (see [6]) over such strategies. The ex-

pectation of kth action being adopted by j is
NjkPNji . In-

tuitively, each N jk can be viewed as the number of times
outcome k (in this case action k) has been observed. The
initial parameters adopted by agent i represent its prior be-
liefs about agent j’s strategy. For simplicity, we assume that
prior parameters are set uniformly (e.g., at 1), reflecting a
uniform expectation for each of j’s actions (this is not a uni-
form prior over strategies, of course).

As in fictitious play, at each interaction agent i should adopt
a best response based on its current beliefs. Instead of a
strategy profile, agent i has a distribution over individual
strategies and an induced distribution over profiles. How-
ever, the Dirichlet parameters permit the expectation of in-
dividual moves, and hence a best response, to be determined
easily. When the interaction has ended, i updates its beliefs
by incrementing the parameters N jk (where agent j was ob-
served to perform its kth action).66It is important to note that the agents are updating as if the
sampled distribution were stationary, which it is not. Thus, con-
vergence must be ensured by properties of best responses. We
also note that the conclusions we draw below regarding the per-
formance of Bayesian learning (versus fictitious play) are not in-
tended to denigrate the Bayesian method. The fact is we are using
priors about “initial” strategies as if they were beliefs about the fi-
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In our example above (assuming observable actions), we
might set the initial belief parameters of both agent A andB
to h1; 1i (they each expect the other to go left or right with
equal probability). Thus, they will each randomize betweenl and r uniformly. If the result of this randomization is coor-
dinated (e.g., joint action hl; li), both update their distribu-
tion to be h2; 1i. At the next interaction, both will adopt l as
a best response and reinforce the initial choice. It is easy to
see that the OJA hl; li is guaranteed to be selected forever.
However, suppose the initial randomization results in the
joint action hl; ri. In this case, their updated beliefs will be
different: A’s parameters h1; 2i indicate B will again per-
form r, while B’s h2; 1i indicate the opposite. There is no
chance of coordination at the next interaction: the action
will be hr; li (each switches actions). Their updated param-
eters will each be h2; 2i at this point and randomization can
again take place providing another chance to coordinate at
the third interaction.

It is not hard to see that, in this example, the agents have
the opportunity to randomize at every second interaction,
and the chance of coordination at each such round is 0:5.
The probability that the agents fail to converge by roundk (i.e., 1=2b k2 c) therefore decreases exponentially with k.
To illustrate, Figure 2 shows experimental results for this2 � 2 games, as well as larger n � n pure coordination
games.7 The x-axis shows the number of times the game
has been encountered, while the y-axis shows the average
error probability—the chance an uncoordinated joint action
is adopted using the agents’s best response strategies at that
point. In such pure coordination games, it is quite easy to

nal “coordinated” strategies. It is remarkable that this misuse of
Bayesian methodology works at all.7In each game there are n agents with n actions. The set of
moves is the same for all agents and they are rewarded with valuec if they each execute the same move, and are given a smaller valued if they do not. Hence, there are n OJAs.
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see that convergence to an optimal joint action will be quite
rapid. For instance, in the 10� 10 game coordination is all
but assured by the fourth play of the game.8
The rate of convergence can be adversely affected if the
game is not symmetric. For example, consider the asym-
metric 2� 2 game given by:

l(B) r(B)
l(A) 4 1
r(A) 0 4

Should the agents start with prior parameters h1; 1i repre-
senting their beliefs about the other’s moves, thenA’s initial
best response is l, while B’s is r. The agents will not have
the chance to coordinate their actions until they can ran-
domize among their pure best responses—when A assesses
the probability of r (for B) to be 47 (or B assigns probabil-
ity 47 to l). Given the integer nature of the updates, this can
only happen at the sixth interaction, and every seventh inter-
action after that. Thus, the rate of convergence (while still
exponential) is slowed linearly by a factor of seven. To il-
lustrate the nature of these “plateaus”, see Figure 3: values
other than 4 (in the matrix above) are shown, along with the
original 2� 2 symmetric game.

Proposition 1 Let G be a 2 � 2 coordination game, witha denoting the utility of coordinated action, and b; c denot-
ing the utility of the two uncoordinated actions. Assuming
uniform Dirichlet prior parameters h1; 1i, the probabilityof

failing to reach convergence at round k is 1=(2bkg c), whereg = gcd((a� c); (a� c) + (a� d)).8In fact, for larger values of n, faster convergence is due to the
likelihood that the each randomization is more likely to produce a
unique “most likely” (or majority) coordinated action.



Thus convergence is slowed linearly by the factor g. This
can be extended to noninteger utilities in the obvious way;
as long as the utilities are rational, convergence is guaran-
teed. We also note that nonuniform priors have little effect
here, and that more heavily weighted priors do not preclude
convergence, but can force a certain minimum number of
encounters before coordination is possible.

4 Learning with Unobservable Stochastic
Actions

The key difficulty with the models described above is the
assumption that actions can be observed. As described at
the outset, agents will typically be able to observe only the
outcomes of these actions, and not the actions themselves.
However, since the agents all know the game structure, the
observations they make still provide evidence regarding the
choices made by other agents. One simply needs to account
for the inherent uncertainty in this information.

It is worth noting that, in general, there must be a sufficient
number of observable states that can be used to distinguish
(probabilistically) which joint actions have been executed
for useful learning to take place. For instance, suppose we
have simple matrix game where agents move to a good state
or a bad state. If they can’t observe the action chosen by oth-
ers when moving to a bad state, then they can’t tell which
of the uncoordinated moves other agents did (i.e., very little
information is available from which to learn). Our perspec-
tive is not so much that agents have a choice of actions that,
correctly chosen, take them to a (single) good state (which
is one interpretation of strategic form); rather they have a
choice of possible good states, and their actions must be co-
ordinated in the sense of agreeing on the state they “aim”
for. (These are, of course, extreme points on a spectrum.)

4.1 Bayesian Best-Response Adapted

The Bayesian best-response model we described above can
be adapted to the case of unobservable stochastic actions
in a rather straightforward way. As before, we assume
agents use Dirichlet distributions over the strategies of oth-
ers to represent their beliefs. While belief parameters can-
not be updated directly with observation of a particular ac-
tion, agent i can update its beliefs about j’s strategy by a
simple application of Bayes rule. Agent i first computes the
probability that j performed a for any aj 2 Aj , given the
observed state s and its previous action ai:

Pr(a[j] = ajja[i] = ai; t) =
Pr(tja[j] = aj ; a[i] = ai)Pr(a[j] = aj)

Pr(tja[i] = ai)
Here a[j] denotes j’s component of a joint action a. The
prior probabilities are computed using agent i’s beliefs
Beli(k; ak; s) for arbitrary agents k and the joint transition
probabilities. Agent i then updates its distribution over j’s
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strategies using this “stochastic observation;” in particu-
lar N jk is incremented by Pr(ajkjt) (intuitively, by a “frac-
tional” outcome).9
In the stochastic version of our example, let A and B adopt
the initial parameters h1; 1i. If the initial randomization re-
sults in coordinated joint action (e.g. hl; li), and the prob-
able outcome s1 results, coordination is assured forever.
However, suppose the first joint action is hl; ri and it has
its most likely outcome s4. Then A’s belief parameters be-
come h1:1; 1:9i and B’s h1:9; 1:1i. The best response at
the next interaction is hr; li, resulting in updated parame-
ters h1:938; 2:061i for A and h2:061; 1:938i for B (assum-
ing the expected outcome). Unlike the deterministic case,
the agents will not be able to randomize or coordinate. In
fact, given any sequence of “most likely outcomes,” it is not
hard to see that A and B will never coordinate, unless they
do initially. Fortunately, this cycle of suboptimal joint ac-
tions can be broken by an unlikely outcome (i.e., if one of
the actions “fails”). Experimental results for different fail-
ure probabilities in this2�2 scenario are shown in Figure 4.
These results illustrate the rather “paradoxical” fact that the
less error prone (or more predictable) the available actions
are, the slower the agents are to converge. Indeed, one can
see that the stochastic actions play the role of “experimen-
tation” for these agents, a technique used in game theory for
agents to break out of suboptimal best response cycles.10
One way to enhance convergence is to have agents random-9These fractional parameters correspond to the expectations of
a weighted combination of integer-parameter Dirichlet distribu-
tions that result from standard update using the positive probabil-
ity outcomes.10Detailed, but straightforward, analysis of convergenceusing a
Markov chain model is provided in a forthcoming technical report.



0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20 25 30 35 40

E
rr

or
 P

ro
ba

bi
lit

y

Number of Interactions

Convergence of 2x2 Game with Epsilon Response (Fail.Prob.=0.05)

0.00 (true Best Resp)

0.01

0.05
0.15

Epsilon 0.0
Epsilon 0.01
Epsilon 0.05
Epsilon 0.10
Epsilon 0.15

Figure 5: Convergence of 2 � 2 Stochastic, Unobservable
Action Games With "-Best Response. Various values of "
(0:00; 0:01;0:05; 0:1;0:15) are shown. Action failure prob-
ability is 0:05. All results averaged over 1000 trials.

ize over "-best responses [8]. This allows agents to ran-
domize among actions that are close to being best responses
given their current beliefs. In the example above, the beliefs
of the agents “hover” around the point at which they will
randomize—allowing"-best responses gives the agents am-
ple opportunity to break out of such cycles. This results in
slightly better convergence in this example (see Figure 5).

4.2 Fictitious Play Adapted

Finally, we note that fictitious play can be adapted to the
setting of unobservable stochastic actions with good suc-
cess. Unlike the Bayesian model, we cannot rely on priors
to estimate the probability a given action was performed.
Instead we use likelihood estimates as a means of updat-
ing frequency counts in a way that accounts for the stochas-
tic aspect of observations. When an outcome state s is ob-
served, each agent i determines Pra(s) for each joint actiona (this is just part of the agent’s model). The relative likeli-
hood of a is Pra(s)=Pb Prb(s), wherea and b are restricted
to range over joint actions such that a[i] = ai, b[i] = ai
(i.e., i uses the knowledge of its own selected actionai). Us-
ing these likelihoods, i computes the likelihood that j per-
formed individual action aj to bePfPra(s) : a[j] = ajgP

Pra(s)
(again, a[i] = ai is assumed). The likelihood estimates for
each of these individual actions are used to update agent i’s
frequency counts.

In our example, frequency parameters are updated by 0:9
or 0:1 for every possible outcome. This allows agents to
randomize much more frequently, and is comparable to the
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Figure 6: Convergence of 2 � 2 Games using Bayesian
Learning, Stochastic Fictitious Play, and Fictitious Play
with Conventions. Action failure probability is 0:05. All
results averaged over 1000 trials.

action observable setting (for this example, not in general).
Convergence for this version of fictitious play is compared
to the Bayesian learning model for the 2�2 game (Figure 6),
and a more complicated 3� 3 game (Figure 7).

5 Conventions

Finally, we consider how true conventions might arise via
learning. The problem with all of the models above, in the
presence of stochastic actions, is that they cannot be said to
converge to a true convention in the sense discussed in the
introduction. By a conventional way of acting, we mean a
fixed strategy that is applied to a given situation without re-
quiring any special deliberation. The learning models de-
scribed all have a chance of “popping out” of equilibrium
(e.g., through a series of unlikely occurrences) though the
probability of this generally decreases quickly over time. A
more serious difficulty is that the agents must constantly up-
date their beliefs and “reconsider” their choice of action (by
recomputing possible best responses). This is certainly not
in the spirit of conventions, or fixed rules of encounter, that
one must simply apply to a given situation.

Intuitively, we would like agents to adopt some criterion
that would allow them to identify that an optimal equilib-
rium has been reached, and that this realization is common
knowledge. In this way, agents will eventually stop “think-
ing” about how to behave in a given state and simply act.11
It is important to emphasize the role common knowledge11Adopting a convention in this sense does not mean that agents
cannot adapt to changes in circumstance (e.g., the introduction of
new agents). This would be reflected by the fact that the agents
engage each other in a different state, for which the adopted con-
vention does not apply.
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Figure 7: Convergence of 3 � 3 Games using Bayesian
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plays here. If an agents use personal knowledge in the de-
cision to jump to a conventional equilibrium (e.g., assess-
ing the probability of a joint action using knowledge of its
own action, or its personal prior), they risk adopting differ-
ent conventions (and never reconsidering), perhaps guaran-
teeing suboptimal behavior from that point on.

We propose a model based on our stochastic extension of
fictitious play and have agents compute the likelihood esti-
mate of all OJAs (the “target” equilibria) given their current
observation. If any OJA a has a higher likelihood estimate
than b, b is “removed” from subsequent consideration. For
instance, consider our 2� 2 game. Suppose the agents end
up in the state hlli; regardless of past behavior and what ac-
tual actions the agents performed, there is a unique OJA,hl; li, that has maximum likelihood. We notice that each
agent can determine this independent of any personal infor-
mation, and is aware that others have this ability as well—
the OJAs with maximum likelihoodare common knowledge.
From this point on, the agents will perform hl; li, even if
the initial action they performed was hr; ri, and by chance
it had this very unlikely outcome.

In a similar 3 � 3 game, once could imagine that moving
to a certain state is most likely given two of the three OJAs
(e.g., h1; 1; 1i and h2; 2; 2i), but is less likely given the third
(e.g., h3; 3; 3i). When this state is observed, the agents will
reject h3; 3; 3i as a potential equilibrium, will individually
never consider performing action 3, and will never consider
a joint action in which the other agents performed 3 to have
positive probability at any future interaction: the rows in
the matrix corresponding to the components of the rejected
OJA will be effectively “deleted.”

Formally, conventions are added to a learning model (such
as fictitious play) as follows. At each interaction (say inter-

action k), each agent computes a likelihood estimate LE(a)
for each OJA a, given the observed outcome (we note that
in fictitious play, these are computed for all joint actions,
and will therefore be available anyway). The set MLE(k) is
the set of OJAs that have maximum likelihood. The game is
then altered as follows: any action ai 2 Ai that does not oc-
cur in any element of MLE(k) is “deleted” from the game in
the sense defined above. At interaction k+ 1, coordination
is attempted for this reduced game. If we are fortunate, the
MLE set will eventually be pared down to a singleton (or a
set of OJAs with “interchangeable” components) and a con-
vention will be reached that can never be dropped. This will
not always be the case, of course, as we discuss below.

Conventions based on maximum likelihood estimates can
be implemented “as is”, with each agent randomly choos-
ing actions and ruling out certain possibilities as warranted
by MLE. However, this is unlikely to work well in scenarios
with a sufficiently large number of outcomes, so that many
states have zero probability of being reached by any OJA
(e.g., imagine a 10 � 10 game where only a small fraction
of the 1010 actions have positiveprobabilityof an “informa-
tive” outcome). In this case, the rate of convergence will be
dictated by the probability of reaching an informative state
given a random joint action (which can be tiny in a case
like this). We actually want to use learning to bias agent re-
sponses in order to increase the probability of an OJA (or
simply the chance of informative outcomes).

This is easily accomplished by grafting conventions onto
the learning models described above, having agents main-
tain personal estimates of other agents’s strategies and
adopt best responses. Thus convergence to OJAs will oc-
cur even if MLE does not prune actions. In an extended fic-
titious play model, this is straightforward. The only com-
plication lies in the deletion of individual actions from the
game: each agent i must be sure that, in future updating and
computation of best responses, the estimated frequencies of
the actions deleted for agent j are ignored. The relative fre-
quencies of the remaining actions form the basis of best-
response considerations at subsequent interactions.

Convergence for fictitious play with conventions is com-
pared to straightforwardfictitious play for our standard 2�2
game in Figure 6, and a more complicated 3 � 3 game in
Figure 7. In both cases convergence is enhanced, remark-
ably so in the 3 � 3 case, where coordination is guaran-
teed after one interaction. Of course, this is an artifact of
the game—each outcome state has a unique OJA with max-
imum likelihood.12 While convergence is enhanced, we
note that a more important function of conventions is their
role in the eventual elimination of the computational burden
associated with ongoing computation of best responses.12Informally, this game has six outcome states, three “good”
and three “bad”. Each good state corresponds to an OJA in the
sense that the OJA likely leads to that state. If only two of the three
individual actions are the same, there is a small chance of moving
to the good state corresponding to the majority action, and so on.
The game was actually designed to prevent ordinary fictitious play
from converging too quickly!



We note that conventions will not generally lead to a unique
choice of OJA. For example, in a game with three OJAs,
where two of them lead to the same outcomes with the same
probabilities, nothingcan distinguish the two from the point
of view of likelihood. In other words, each action outcome
accords the same likelihood to these two actions. In this
case, the learning component will choose one of the two ac-
tions; but while conventional deliberations may rule out the
third, they must leave open the possibility that either of the
remaining two actions could be performed. In such a case,
conventions cannot be used to prevent agents from contin-
uing to update their beliefs.13 However, in a case like this
conventions still play a role in restricting attention in learn-
ing to particular possibilities, even if they cannot choose a
unique equilibrium. The analysis of conventions and their
effect on convergence is the subject of ongoing investiga-
tion and experimentation.

6 Concluding Remarks

We have studied several learning models from game the-
ory, and their extension to coordination problems with un-
observable actions. As we have seen, a number of differ-
ent problem features, such asymmetries in utilityand failure
probabilities can have surprising effects of convergence to
a coordinated equilibrium. We have also proposed the use
of conventions as a means to restrict attention to particular
equilibria, in some cases allowing eventual relief from hav-
ing to “think about” what action to perform.

The experimental results are not conclusive; rather they
are merely suggestive of interesting models for coordina-
tion learning, models that require further exploration. How-
ever, some of these directions appear promising. In ad-
dition, the interaction of these methods in true sequential
decision problems consisting of a wide variety of related
state games is of considerable interest [2]. In this setting,
we are ultimately interested in the generalization of learned
conventions across similar state games, exploiting struc-
tured (Bayes net) representations of games and utility func-
tions, as in [3]. Finally, generalizations of this model, espe-
cially those where only partial common knowledge of the
game structure is assumed, will be required to make the ef-
fort more robust and realistic. This will require the use of
ideas from reinforcement learning and learning models of
dynamical systems.
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OGP0121843.13In principle, one can detect this fact by analyzing the legal ac-
tions remaining at any point in the game and seeing if they can be
distinguished by likelihood estimates. If the agents ever reach the
point where (say, in this example) the two actions can never be dis-
tinguished, they can cease computing likelihood estimates, since
the impossibility of reaching a convention has been detected.
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