1

Stochastic Local Search for POMDP Controllers

Darius Braziunas
Department of Computer Science
University of Toronto
Toronto, ON M5S 3H5
darius@cs.toronto.edu

Abstract

The search for finite-state controllers for partially
observable Markov decision processes (POMDPSs)
is often based on approaches like gradient ascent,
attractive because of their relatively low compu-
tational cost. In this paper, we illustrate a ba-
sic problem with gradient-based methods applied
to POMDPs, where the sequential nature of the
decision problem is at issue, and propose a new
stochastic local search method as an alternative.
The heuristics used in our procedure mimic the
sequential reasoning inherent in optimal dynamic
programming (DP) approaches. We show that our
algorithm consistently finds higher quality con-
trollers than gradient ascent, and is competitive
with (and, for some problems, superior to) other
state-of-the-art controller and DP-based algorithms
on large-scale POMDPs.

Introduction

Craig Boutilier
Department of Computer Science
University of Toronto
Toronto, ON M5S 3H5
cebly@cs.toronto.edu

applied to both the offline solution of POMDPs whose model
is known[12] as well as the online reinforcement learning
setting[13; 1]. We focus on known models.

One difficulty with gradient-based approaches, not surpris-
ingly, is the ease with which they converge to local subop-
tima. Our experiences have demonstrated that GA, for ex-
ample, has difficulty in problems where theecise sequence
of actions taken is important for good performance. This is
a common feature of stochastic planning problems to which
POMDPs are often applied; they usually have different char-
acteristics from navigational problems on which GA has often
been tested. While various restrictions on policy space can be
used to encode prior knowledge about a problem’s solution
[12], such restrictions may be hard to encode naturally, and
such knowledge may be hard to come by.

In this paper, we describe an algorithm that searches for
good controllers while remaining within the “local search”
framework. Since finding an optimal fixed-size FSC is NP-
hard[10; 13, we propose atochastic local search (SLS)
technique which, like GA, works in the space of FSCs, but
uses very different heuristics to evaluate mogalief-based

Partially observable Markov decision processes (POMDPSELS (BBSLShcorporates intuitions—used in the DP solution
provide a natural model for sequential decision making unto POMDPs that work in belief-state value function space—
der uncertainty. Unfortunately, the application of POMDPsthat allow moves in different directions than those permitted
remains limited due to the intractability of current solution by gradient-based methods. Specifically, BBSLS considers
algorithms, especially those that use dynamic programmingnaking moves that would be of high value when executed at
(DP) to construct (approximately) optimal value functionssome belief state, even though that belief state is not reach-
[16; 5. One method for dealing with this bottleneck is to able given the current controller; since they do not improve
restrict the space of policies being considered, and deviseontroller value, such moves cannot be considered by GA.
techniques that search directly in that spdginite-state con- A tabu list is used to allow subsequent changes to the con-
trollers (FSCs)are the policy representation of choice in suchtroller to adjust to this move. BBSLS is much less compu-
work, providing a compromise between the requirement thatationally intensive than DP methods, and provides a good
action choices depend on certain aspects of observable hisempromise between full DP and the very restricted form of
tory and the ability to easily control the complexity of policy local search admitted by GA. Our empirical results suggest
space being searched. that our algorithm is competitive with recent state-of-the-art
While optimal FSCs can be constructed if no restrictionsFSC and value-function-based methods such ad B&pland
are placed on their structufé], it is more usual to impose PBVI [14; 17, producing smaller, higher quality controllers,
some structure that one hopes admits a good parameterizaften significantly more quickly.
tion, and search through that restricted space. Among various We begin in Section 2 with an overview of POMDPs. In
techniques that search through a restricted policy sft&e Section 3 we first describe problems with GA that inspired
10; 14, gradient ascent (GAhas proven to be especially at- our method, and then detail the BBSLS algorithm. Empirical
tractive because of its computational properties. GA has beefsults are provided in Section 4 that confirm various advan-
Copyright(© 2004, American Association for Artificial Intelligence tages over other algorithms, and we conclude with discussion
(www.aaai.org). All rights reserved. of future research directions in Section 5.

p g node transition functions. While an FSC of a fixed size can-
- .) e ;
not generally represent an optimal policy, it offers a concise

A_) A_) U representation that can be exploited computationally. Fig-

P g * ure 1 illustrates a 3-node, deterministic FSC. For each node
n, ¢ dictates which action to take (stochastically) and, condi-

Figure 1: A simple FSC for a planning problem tioned on the observatiom, prescribes which node to move

to next. We sometimes refer tpas anobservation strategy
. Later, we will also use the notion of a deterministiendi-
2 Background and Notation tional plano = (a,v), wherea € A is an action to execute,

; ; . . dv : Z — N is a deterministic observation strategy.
A POMDP is defined by: a sef of states; a sefd of ac- " - . .
tions; a setZ of observations; a transition functidn where The original POMDP and an FS€induce a Markov chain

T(s,a,s") denotes the probability’r(s’|s, a) of transition- VTVEg ?,eaﬁt:‘t/i?z’ Z>) g?%ﬂg%ﬁngg%?ytgf ScTrgsgzprodL&m N

ing to states’ when actiona is taken at state; an obser- ’ ’

vation functionZ, whereZ(s, a, z) denotes the probability Vx(s,n) =Y _ ¢ (n,a)R(s,a)+

Pr(z|s,a) of making observation in s after performinga; a

and a reward functio®, whereR(s, a) denotes the immedi- v Z Y(n,a)T(s,a,8)Z(s',a, 2)n(n, z,n" Ve (s',n).

ate reward associated with statend actiona. We assume a,z,8' n!

discrete staté,action and observation sets, and we focus ony._can be computed by solving this linear system. The value
discounted, infinite horizon POMDPs with discount factor of givenb is V (b, n) = S, Vi (s,n)b(s), and for an initial

0 < v < 1. When considering FSCs for POMDPs, we will 3 the best initial node,, can be determined readily.

assume an initiabelief Statd)() denoting the initial distribu- One can find good or Opt|ma| FSCs in several different
tion over states (wher&(s) is the probability of the initial \yays. Hansen’s policy iteratidi8] uses DP to produce a se-
state being). guence of (generally, increasingly large) FSCs that converge

) Let H be the set of a” finit@bser\{able h_istorieﬁ.e.,_all fi- to Op“ma“ty Bounded po“cy iteration (BP|D]_5] uses ba-
nite sequences of action-observation pairsitéchastic pol- sic DP together with techniques for bounding the size of the
icym : H — A(A) associates a distribution over actions with FSC, resulting in an approximation method that scales much
each history. A deterministic policy associates a single actiopetter than policy iteration. Various search techniques have
with eachh € H. Thevalueof policy = at states is the peen proposed as well that do not ensure optimality, but often
expected sum of discounted rewards obtained by executing yield good results in practice without the computational cost
starting at state: of policy iteration. Among these gradient ascent has proven

o very popular. We refer to Meuleaat al. [12] for details of a
Vi(s) = E(Z A R, 5). typical formulation; in that work, an FSC of fixed size is as-
= sumed and the gradient &f, (bo, 7o) W.r.t. the policy param-
etersn(n, z,n’) andvy(n, a) is derived. Standard GA is then
The expected value of is by - V. (viewing V; as an|S|- used to navigate through the space of bounded FSCs until a
vector). local optimum is found. Computational results on maze-like
The representation of a poliaycan take several forms. An problems[12] and continuous navigation-style problefi$
indirect way of mapping histories into actions is to nimgief ~ suggest that GA can tackle problems that are generally con-
statesinto actions: an agent's belief state comprises a suffisidered unsolvable using exact DP techniques.
cient statistic summarizing all relevant aspects of its history.
An advantage of this approach is that instead of an infinite3 A Stochastic Local Search Technique

collection of discrete histories, one maps a continuous sSpaGfe now describe a new approach for solving POMDPs ap-

A(S) into A. Indeed, this mapping has nice properties an roximately using FSCs, based on the use of stochastic local

finite-horizon approximations of the optimal value function go.» o and a specific heuristic, that circumvents some of the
are piecewise linear and convidg]. Unfortunately, methods difficulties of GA. We begin with a simple example that il-

that produce such representations (e.g., the Witness algorith strates a common type of local optimum to which GA falls

[4]) are often intractable, though approximation techniques, ey “and describe intuitions that would allow a local search

like PBVI [14] can be used. : -
; . _ technique to break out of such local optima. We then formal-

An FSC offers a different way of representing a policyA 76 these intuitions within our algorithm.
stochastic FSQN, ¢,) comprises:V, a finite set ohodes

¥, anaction selectiorfunction, wherey(n,a) denotes the 3.1 A Motivating Example

probability with whicha € A is selected when the FSC is at consider a simple planning problem in which the optimal so-
noden € A; ands, atransition function wheren(n, z,n") |ution consists of performing actianuntil the precondition
denotes the probability with which the FSC moves to nede fqr actiond is observed, then performinguntil goalg is ob-

given that it was at node after making observation € Z. gerved, and finally terminating (perhaps repeating some no-
A deterministicFSC has deterministic action selection andgp)2 Suppose further that: actiongndd are very costly, but

!Below, we will generalize our approach to continuous state 2We assume the actions are stochastic and observations noisy.
POMDPs through the use of sampling. For instance, when is performed, it is not guaranteed to make

the reward associated with the ggahore than compensates rest of the FSC that will induce this region of belief space at

for their expected costs] only achieveg (with reasonable noden. In this example, by holding fixed, the plan(c, v’} at

probability) if p is true;p is only made true by; all other ac- noden’—wherer’ transitions to node if p is observed, and

tions (at any state) have costs/rewards that are small relativeack ton’ otherwise—will now look attractive (indeed, with

to the costs/rewards of d, andg. n fixed, GA would move in this direction). In a sense, this
The optimal policy for this POMDP can be represented usprocess simulates the reasoning inherent in value or policy

ing the simple, deterministic 3-node FSC shown in Figure literation over belief space.

If the action space is large enough, a random instantiation of In the next sections, we make these intuitions more precise.

this FSC is very unlikely to be optimalSuppose we attempt

to solve this problem using GA, starting from some initial 3.2 Algorithm Structure

FSC, and suppose no node selects adtiond with signif- Our belief-based SLS algorithm (BBSLSpchastically ad-

Lﬁgﬂé&ggnt;alb;hst)é ISnmt Qéstﬁzsp?r’ogaAbirl]ig/s or;ge?ﬁgpzxcgcﬂ?géngjusts the parameters of the fixed-size FSC at each iteration
; based on one of two criteria. Tmovest makes consist of

is small, the probability op being true at any belief state .. stalling” a deterministic conditional platu, 1) at a node

reachable using the current FSC is small; hence, increasing, when such a move is made. the parameters of probabilistic
the probability ofd at any node will decrease controller value, FSCf ; d d ' pd' din th %)
preventing GA from moving in that direction. Similarly, since unctiona) andy at noden are adjusted in the direction
d is unlikely to be executed, the value of increasing the prob—Of the plan(a, ») to make actiom: and transitions dictated

by v more likely. At each step, our SLS algorithm performs

ability of ¢ at any node is negative, preventing GA from mov- ne or mordocal moves. followed by a sequence albbal
ing in that direction. Indeed, the nature of this problem is Sucrr?noves Ves, W y a sequ @i

that GA will be forced to movewayfrom the optimal FSC. . L
_ Local moves are designed to capture the basic intuitions

The sequential nature of the problem, and the fact that opti . X

mal actions areindesirableunless their counterparts are in described above, aII_OWIng BBSLS to break out Qf the types
place, make the landscape very hard to navigate using (evéf 10c@l optima to which GA often falls prey. Intuitively, DP-
stochastic) GA. inspired moves are considered, allowing policy choices to be

How could one avoid the difficulties GA faces on POMDPsmade at unreachable belief states. By holding these moves

of this type within the local search framework? Intuitively, 9n a ta“bu list, the rest of the coptroller is givgn a chance to
actiond would be considered useful at a belief state in which adjust” to these moves, by making these belief states reach-

preconditionp held. Unfortunately, sinceis never executed, 2P!€ in order to attain higher value. Global moves corre-

such a belief state is unreachable given the current FSC. HovyPond to direct stochastic hill-climbing, and are designed to

ever, it is easy to verify that actionis good at some belief Increase controller value immediately, often taking advantage
state in the context of the current controller. More precisely! €arlier local moves. Thus, generally, in the local phase, we
a conditional plan(d, ») installed at noder—wherev tran- optimize for good, but potentlglly_ unreachable, belief states;
sitions to a terminal node i§ is observed, and back to " the global stage, we greedily improve the FSC value and

otherwise—would have high value in any belief state wherd"@ke some of the belief regions considered in the local phase

pis sufficiently probable. As we will see, identifying the use- achablé. Since the set of local and global moves is enor-

fulness of this plan asomebelief stateb is straightforward, mous, we need good ways of focusmg on po_tentlally useful

requiring the solution of a simple linear program (LP). Oyr moves. In_ each case, dlffe_rent te_chmques will be used. We

local search procedure will consider adjustments to the FSEOW describe both phases in detail.

of this type: if a plan has high value at some belief state

even if it cannot be realized by the current controller, we will?"3 Local Moves

consider (stochastically) making that move (or adjusting théAe first develop a heuristic for evaluating conditional plans.

FSC parameters in that direction). Let be afixed FSC. The Q-functia for a (deterministic)
Of course, if we make this move by adjusting the parameconditional plaro = (a, v) is:

ters at node: toward plan({d, v), we decrease the value of the) , .

FSC. Should we subsequently resort to moving in a direction @7 (s) = R(s,a) +v Y T(s,a,5")Z(s',a,2)Va(s',n').

that improves FSC value, we would naturally want to “undo” s’y

this move. Hence moves of this type will be held otabu Flv(@)=n

list [7] for some period of time. This allows the algorithm & |ntuitively, this is the expected value of performingat s,
chance to “catch up” to the move. Specifically, since the plamoving to the controller node dictated by the resulting obser-
at noden has high value at belief states néaby holding this vation, then executing the controller from that point on. We
node fixed, we give the FSC a chance to find a policy for thejefineQ7 (b) = >, Q2(s)b(s) for any belief staté.

true; and detecting that is true is also noisy. Intuitively, the op- ~ QUr @im is to rank plans as possible moves in controller

timal policy would choose to executkonly if p is believed with ~ Space according to a heuristic functib(r) that reflectgo-

sufficiently high probability; we assume that a single observation oftential value at belief states that might not be reachable from

p makes this so. bo in the current FSC. Let,; be the set of plans from which
3To keep things simple, we focus on a small two-step sequencaye select local moves. For eache X;, we find a belief state

for longer sequences, typical of planning problems, the oddsofa—

random FSC including any significant subsequence are negligible. “BBSLS can be viewed as a form itérated local searcti9].

b? such that thalifferencebetween the Q-value of and the be considered by GA (or in our global stage). Once a useful
value of any current controller node is maximal. Define o has been installed at an unreachable node, there is incentive
at subsequent iterations to link to this node.
07 = mbaX[QZ(b) — max V (b, n)],
n

3.4 Global Moves

and letb? be a belief state that maximizes this expression]n the global stage, we select moves that increase the overall
The heuristic value of is then simplyé?, i.e., the maxi- ﬁ | g"h he initial belief state A

mal possible improvement over the current controller valuecc.)?ltrlO e: value with respect to the |n|tlaf eliet state As |
(achieved at “witness” belief stat€). 67 can be computed with local moves, we consider a subset of deterministic plans

. . . ; 3, as possible candidates. Eaghe ¥, is evaluated based
by solving an LP withS| + 1 variables and/\/| constraints. 9> . g .
With this heuristic in hand, local moves can be chosen?N s Improvement in FSC valug - Vi (much like GA) and

We first note that any plam has the same Q-functio@” the moves are chosen with probability related to their level

regardless of the node at which it is installed. Because of thigf improvement. Since the objective of a global move is o

we break local move choice into two stages: plan evaluatioéncrease controller value, we build the set of possible plans

: . : ; or consideration as follows. First, we simulate the controller
(which planc to install) and node selection (at which node . !
to install the plan). The set of all conditional plans is gener-to obtain a sample atachablebelief states and nodés-or

ally too large to evaluate—we cannot comphite) for each cach belief state, we compute the best plan for that specific
belief state (this can be done in time linear in controller size),
o € | A||N|IZ! for any but the smallest problems. Therefore

we restrict the sex; by using the Witness algorithi] to 'and calculate the value of the controller that would result if
; L the plan was installed at the corresponding node. We repeat
incrementally generate a (sub)setusfefulplans that would P P 9 P

improve controller value if we were to increase its size Weas long as controller value increases.
P : The global stage is essentially a form of stochastic hill-

evaluate only such plans, and stochastically choose some climbing. While local moves instantiate nodes with plans

usmgt] ahd'slt”b”t'fl’_?] th da.‘t tg'lt\)/ets' greater weight to plans W'f{hthat are useful fosomebelief states, we ultimately care about
grezti e r-1\t/fa ues.d. € dis ”H(‘f lon we Lﬂfe Ih our gxplenmen SESC value (w.r.thy). Therefore, global moves are used to in-
IS straightiorward: sInce af; are posiive, we SImply N0t~ o556 yalue. Such moves often link to the nodes instantiated

malize them to sum to one, and sample from the resultmgNith potentially useful plans in the local stage. In a sense,

pr(\)/\k/)abllllty dlstrlbl#:on. tricti the choice of bl : the global stage is used to verify the usefulness of moves pro-
e place one other restriction on the choice of planoi® ;04 'in the local stage.

chosen whose witness belief statdas “near” the witness be-

lief state of an existing node. If a new planis chosen thathag 5 The BBSLS Algorithm

high value at some belief state near another for which a previ-] . . .

ously selected plan has high value, installing the new plan at 2h€ BBSLS algorithm is summarized in Table 1. At each

node will “waste” controller capacity by duplicating the func- iteration, the BBSLS algorithm executes one or more local

tion of the earlier plan. For this reason, we maintaietief ~ Moves, and a sequence of global moves. The parameters of

tabu list containing the witness belief states of the most re-the algorithm can be chosen to reflect problem structure. If

cently selected plans. The distance between two belief statd@€re are many strong local basins of attraction, the number of

can be defined in a variety of ways. For our experiments, wdocal moves could pe increased to facilitate an escape from

used the belief discretization technique of Geffner and Bonefocal suboptima. Different approaches can be used to gener-

[6], but more suitable measures warrant further research. ate the set of candidate local moves (the witness method
Finally, the selected is installed(see above) at some node We use, described above, appears to work well). _

n which is not on thenode tabu list Among non-tabu nodes, ~ The conditionC' we use to terminate the execution of

a noden is randomly selected which is either unreachabledlobal moves is lack of improvement in controller value (as

from n or leads to the greatest increase in valyeV,. The discussed above), though other conditions may be useful

latter choice directly increases controller value, while the for-(€-9-, @ fixed number of steps). The parametegsdm in

associated with, andn is added to the tabu list. nodes, POMDP states, and the discount factor. However, the
Intuitively, in the local stage, we find plans that have highdefault parameter values described in the next section proved

value at some belief states, even though they might not b be adequate for our experiments. Finally, we have encoded
reachable in the current FSC. Since the LP that computed specific method of sampled reachable belief states within
h(o) also returns the witned€, we record this as well. This the algorithm as the method of constructiig; again, other
information allows us to rule out other subsequent moves thaf/@ys to restrict the space of candidate moves could prove use-
duplicate the effect of (which would waste controller ca- ful in specific settings. _ N
pacity). It is also important to exploit unreachable nodes, BBSLS is an anytime algorithm. Emp|r|_ca||_y, because the
since this helps avoid unused capacity; moves at unreachabobal stage is essentially greedy optimization over reach-
nodes, since they have no impact on FSC value, would nevéible belief states, BBSLS quickly achieves (and exceeds)
- the performance of GA. The local stage runs in time poly-
°Given an integer resolution > 0 (we setr = |S|inour ex- npomial in NV, |SI, |Al, |Z], and|Y;|, and the global stage
periments), the probabilitigds s) are discretized inte levels. Two
belief states, b’ are close if their discretized representation is the ®This is done using: runs of the controller (starting &, no,
sameround(b(s) - r)/r = round(b'(s) - r)/r,Vs € S. randomly sampling transitions and observations)yofteps each.

Best value attained
o
3

—— Discrete PE
-~ Optimal value
0.55 - — Best GAvalue

Time (CPU sec)

L L
50 100 150

o
~
T

o
o
T

o
IS
T

Probability of optimal solution
) o
w o

o
N}
T

—— Discrete PE
- - Continuous PE

o1r |,/

L L L L
[100 200 400 500 600

300
Time (CPU sec)

Figure 2: (a) Anytime performance of discrete PE; (b) RTDs for discrete (2.0 s/iter) and continuous (3.2 sfiter) PE.

While some search termination criterion is not met:
o Performi local moves:

— create a set of candidate condition plans

— samplea conditional plarvc € X; according to
the Q-value heuristi.(o) (plans with higherh-
values are given greater weight in the sampl

distribution) while ensuring that no node in the

FSC already has a witness belief state

— randomly choose a non-tabu nad&vhich is ei-
ther not reachable fromy (with probabilityp;),

or which leads to the highest increase in the HSC

value when instantiated with the plan (with
probability 1 — p;);

— execute the local mover, o), add the node to
the move tabu list and the witness belief stafte
to the witness belief list.

e Perform global moves (until conditiofl met):

— run k policy execution simulations far steps,
starting from the initial node, and belief state
by, and record the belief states and nodes 1
were reached;

ng

in time polynomial in|N|,|S|,|Al,|Z], and|%,|. Since
|Zi], |24, [NV] are controllable parameters, we can usually
achieve a very good trade-off between solution quality and
computation time.

4 Empirical Results

The following experiments illuminate various aspects of BB-
SLS and compare its performance to GA, PBVI, and BPI on
examples drawn from the research literatirBefault algo-
rithm parameters were: tabu list size equaltg/2, [= 1,

p = 0.5, %] = 10; k£ = 2, m = |N]|/2. We used deter-
ministic controllers on all problems except for Heaven/Hell.
Generally, better performance can be achieved if parameters
are tuned to specific problems.

The need for sequential policy structure is clearly evident
in the small preference elicitation problem (PE) described in
[2]. The objective is to optimally balance the cost of queries
and the gain provided by the elicited utility information with
respect to the quality of the final decision. We refefabfor
a specification of the problem.

We tackle two variants of this problem. In the first, we dis-
cretize state space (possible utility functions) to six states and

hat the number of actions (queries) to 14. In the second, the state

space remains continuous. In both cases, an optimal FSC has

— create the set of conditional plans that are pp- 12 nodes. Good performance requires that a precise sequence

timal at the belief states visited during the p
vious step, and calculate the value (w.r.t. to
initial belief statehy) of the controller that woulg

result if a conditional plan from the set was ip-

stalled at the corresponding node;

in controller value. Make the selected move, 4
remove the witness belief state ascribed to
associated node.

Table 1: The BBSLS algorithm.

e_

of actions (queries) be executed before making a final deci-

he sion. However, a default decision exists as a safe alternative

for any belief state. Since asking queries before making a
decision is initially costly, GA always converges to a safe,
but suboptimal alternative. On the other hand, BBSLS is de-

— choose a move that leads to the highest increase Signed to avoid such local optima; for this small problem, it

nd

always finds the best global solution (which can be computed

the analytically). Figure 2 (a) plots the average value of the best

22-node FSC found by BBSLS (200 trials) and compares it to

"BBSLS was implemented in Matlab and run on Xeon 2.4GHz
computers; linear programs were solved using CPLEX 7.1; GA used
the quasi-Newton method with BFGS update and quadcubic line
search from Matlab’s Optimization Toolbox.

+ 4 Hallway, and 0.097 for Hallwayf3]. Our results are not di-
rectly comparable to those reported for recent state-of-the-art

— — algorithms PBVI[14] or BPI [15] (due to different testing

|-10] [-10]

s S methods). However, an indirect comparison seems to indi-
‘*‘ ‘*\ cate that BBSLS achieves similar performance on both hall-
way domains with much smaller controllers.
Figure 3: Heaven/Hell problem Finally, we compare the performance of BBSLS to BPl and

PBVI on the large Tag domaifi4], with 870 states, 5 ac-
tions, and 30 observations. Tag is based on the popular game
. of laser tag, where the goal is to search and tag a movin
the best GA value (measured on 10,000 random initial FSC%pponent. gOn this problgm, GA converges to a Iogcal subopg-]
each trial taking 3_ seconds on avergge). timum of -20 (10-node FSC), and cannot be run with con-

To solve a continuous POMDP with BBSLS, wampleu trollers having more than 20 nodes because of time and space
states (utility functions) at each iteration (we set 20). We constraints. PBVI achieves a value of -9.18 in 180,880 sec-
then calculate the observation function and the reward funconds with a policy of 1334 linear vectors (roughly compa-
tion for the sampled states. Although our work with cont_inu-rame to a 1334-node controller); BPI finds a 940-node con-
ous elicitation is at an early stage, the results are promising—roller with the same value in 59,772 seconds; and, a modified
because of added stochasticity, BBSLS finds optimal conyersjon of PBVI described ifil7] can find a solution with a
trollers even faster than in the discrete case. Figure 2 (B)alue of -6.17 in 1670 seconds with 280 vectors. BBSLS at-
showsrun-time distribution¢RTDs) for both the discrete and tajns similar or better performance faster than PBVI and BPI,
continuous versions of the PE problem, that is, plots of theynd with many fewer nodes than any other algorithm. Figure
empirical probability of finding an optimal FSC as a function 4 (a) shows results for 10- and 30-node controllers, averaged
of time. over 10 trials; Figure 4 (b) plots how the best value found

In the Heaven/Hell (HH) POMDR1; 6], an agent starts is increasing for a 10-node FSC during a single best trial;
with equal probability in either the “left” or “right” worlds, it reaches -6.70 after 322 iterations. Average BBSLS per-
and, because of partial observability, does not know whichformance gives controllers of somewhat better quality than
The (left or right) arrow (Figure 3) conveys information about BPI in the same amount of time, but of much smaller size.
the location of “heaven” (positive reward); if the agent doesHowever, since BPI attempts to optimize policies with re-
not observe the arrow, it risks falling into “hell” (negative re- spect to all possible belief states, rather than just the initial
ward). After visiting heaven or hell, the agent is again placedbelief state (like PBVI and BBSLS), this is not too surpris-
in either the left or right world. It can observe the top anding. The more appropriate comparison to PBVI (since both
bottom cells in the center column, as well as non-zero rewardptimize w.r.t. an initial belief state) shows much better per-
locations. In[1; 6], both heaven and hell have symmetric re- formance for BBSLS in terms of “controller size,” and com-
wards of +1 and -1. This allows GA methods some flexibility, parable performance in terms of policy quality. With respect
since moving down from the start state (and acting randomlyjo execution time, BBSLS is competitive with the PBVI, but
is no worse than moving up (in expectation); there is no dismodified PBVI finds high quality policies significantly faster.
incentive to adjusting a controller to move upward before theHowever, the BBSLS controllers are an order of magnitude
correct policy for the top part of the maze is discovered. Oursmaller than the “controller” found by modified PBVI.
experiments with 20-node controllers show that on symmet-
ric HH, GA sometimes reaches a local optimum with value :
0.8040 (100 trials, each 2.9 min on average). However, th(,5 Concluding Remarks
optimal value is 8.641, achievable by an 8-node FSC. Furbespite its computational attractiveness, GA for FSC search
thermore, we can make this problem practically unsolvablesuffers from problems when faced with genuinely “sequen-
by GA if we increase the hell penalty to -10 (Figure 3). GA tial” POMDPs. Our BBSLS algorithm is designed to retain
always chooses (in 100 trials) the safe alternative (bumpingnany of the computational properties of GA by remaining
into walls for zero reward), even though the optimal FSC hasvithin the local search framework, but uses DP-style rea-
not changed. Our SLS procedure (stochastic FSE€2, 12 soning heuristically to explore a more appropriate controller
trials) finds a near-optimal solution even in the asymmetrimeighborhood. Our experiments demonstrate that BBSLS
case: in 200 iterations (average time of 10.2 seconds per itetonsistently outperforms GA, and is superior in many re-
ation), the average value attained is 6.93, and in 500 iterationspects to DP-based algorithms, such as PBVI and BPI, on
an average value of 7.65 is achieved. recent benchmark problems.

Hallway (60 states, 5 actions, 21 observations) and Hall- There are a number of important directions we are cur-
way?2 (92 states, 5 actions, 17 observations) are two domainently pursuing. Refining our heuristics to enable further
of moderate siz¢11]. In Hallway, a 10-node FSC attains scaling is key among these. In addition, we are exploring
a value of 0.7 in 442 seconds, and eventually achieves 0.81ethods that will allow BBSLS to be applied directly to fac-
in 500 iterations (averaged over 13 trials). The best valudored POMDP representation (e.g., dynamic Bayes nets) so
reached by a 30-node FSC was 0.95. The best value reachptbblems with exponentially larger state spaces can be tack-
by a 20-node FSC for Hallway?2 problem was 0.34. For comded. Finally, we are investigating the use of BBSLS in prac-
parison, Q-MDP finds a policy with a value of 0.3444 for tical preference elicitation problems, where continuous state,

-6

_7| Modiied VI

-8t

PBVI, BPI

“11F

—12}

Best value attained

-13F

—14f

_15F

—16F

Time (CPU sec)

L
0 50

. . . .
150 200 250 300
Iterations

L
100 350

Figure 4: (a) Value vs. time for 10- and 30-node FSCs in Tag domain; (b) A specific trial, 10-node FSC.

action, and observation spaces present challenges to valua€] Michael L. Litman. Memoryless policies: Theoretical limi-
based POMDP solution methods.

Acknowledgements

This research was supported by the Natural Sciences and E
gineering Research Council (NSERC) and the Institute fo

Robotics and Intelligent Systems (IRIS). Thanks to Pascal
Poupart for valuable discussions.

1]

[12]

References

(1]

[2]

(3]

(5]

(6]

(7]
(8]

Douglas Aberdeen and Jonathan Baxter. Scalable internal-state
policy-gradient methods for POMDPs. Proc. of ML-02

pages 3-10, 2002. [13
Craig Boutilier. A POMDP formulation of preference elici-
tation problems. IrProc. of AAAI-2002pages 239-246, Ed-
monton, 2002.

[14]

Anthony R. Cassandr&xact and Approximate Algorithms for
Partially Observable Markov Decision Process&hD thesis,
Brown University, Providence, RI, 1998.

: . _ [
Anthony R. Cassandra, Leslie Pack Kaelbling, and Michael L.
Littman. Acting optimally in partially observable stochastic
domains. InProc. of AAAI-94 pages 1023-1028, Seattle,
1994.

Anthony R. Cassandra, Michael L. Littman, and Nevin L.
Zhang. Incremental pruning: A simple, fast, exact method for
POMDPs. InProc. of UAI-97 pages 54-61, Providence, RI,
1997.

Hector Geffner and Blai Bonet. Solving large POMDPs by
real time dynamic programming. Working Notes, Fall AAAI
Symposium on POMDP$998.

Fred Glover. Tabu search—par@RSA Journal on Computing
1(3):190-206, 1989.

Eric A. Hansen. Solving POMDPs by searching in policy
space. IrProc. of UAI-98 pages 211219, Madison, WI, 1998.

Holger H. Hoos. Stochastic Local Search—Methods, Mod-
els, Applications PhD thesis, TU Darmstadt, Darmstadt, Ger-
many, 1998.

15

[16]

(17

(18

tations and practical results. In Dave CIliff, Philip Husbands,
Jean-Arcady Meyer, and Stewart W. Wilson, editéhgceed-
ings of the Third International Conference on Simulation of
Adaptive BehavigrCambridge, MA, 1994. The MIT Press.

Michael L. Littman, Anthony R. Cassandra, and Leslie Pack
Kaelbling. Learning policies for partially observable environ-
ments: Scaling up. IiProc. of ML-95 pages 362—-370, Lake
Tahoe, 1995.

Nicolas Meuleau, Kee-Eung Kim, Leslie Pack Kaelbling, and
Anthony R. Cassandra. Solving POMDPs by searching the
space of finite policies. I#roc. of UAI-99 pages 417-426,
Stockholm, 1999.

Nicolas Meuleau, Leonid Peshkin, Kee-Eung Kim, and
Leslie Pack Kaelbling. Learning finite-state controllers for
partially observable environments. Rroc. of UAI-99 pages
427-436, Stockholm, 1999.

Joelle Pineau, Geoff Gordon, and Sebastian Thrun. Point-
based value iteration: An anytime algorithm for POMDPs. In
Proc. of IJCAI-03 pages 1025-1030, Acapulco, 2003.

Pascal Poupart and Craig Boutilier. Bounded finite state con-
trollers. InAdvances in Neural Information Processing Sys-
tems 16 (NIPS-2003Yancouver, 2003.

Richard D. Smallwood and Edward J. Sondik. The optimal
control of partially observable Markov processes over a finite
horizon. Operations Resear¢i21:1071-1088, 1973.

Matthijs T. J. Spaan and Nikos Vlassis. A point-based POMDP
algorithm for robot planning. IHEEE International Confer-
ence on Robotics and Automatjdvew Orleans, 2004. to ap-
pear.

Marco Wiering and Juergen Schmidhuber. HQ-learnkuapp-
tive Behavioy 6(2):219-246, 1997.

