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Abstract
The search for finite-state controllers for partially
observable Markov decision processes (POMDPs)
is often based on approaches like gradient ascent,
attractive because of their relatively low compu-
tational cost. In this paper, we illustrate a ba-
sic problem with gradient-based methods applied
to POMDPs, where the sequential nature of the
decision problem is at issue, and propose a new
stochastic local search method as an alternative.
The heuristics used in our procedure mimic the
sequential reasoning inherent in optimal dynamic
programming (DP) approaches. We show that our
algorithm consistently finds higher quality con-
trollers than gradient ascent, and is competitive
with (and, for some problems, superior to) other
state-of-the-art controller and DP-based algorithms
on large-scale POMDPs.

1 Introduction
Partially observable Markov decision processes (POMDPs)
provide a natural model for sequential decision making un-
der uncertainty. Unfortunately, the application of POMDPs
remains limited due to the intractability of current solution
algorithms, especially those that use dynamic programming
(DP) to construct (approximately) optimal value functions
[16; 5]. One method for dealing with this bottleneck is to
restrict the space of policies being considered, and devise
techniques that search directly in that space.Finite-state con-
trollers (FSCs)are the policy representation of choice in such
work, providing a compromise between the requirement that
action choices depend on certain aspects of observable his-
tory and the ability to easily control the complexity of policy
space being searched.

While optimal FSCs can be constructed if no restrictions
are placed on their structure[8], it is more usual to impose
some structure that one hopes admits a good parameteriza-
tion, and search through that restricted space. Among various
techniques that search through a restricted policy space[12;
10; 18], gradient ascent (GA)has proven to be especially at-
tractive because of its computational properties. GA has been
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applied to both the offline solution of POMDPs whose model
is known [12] as well as the online reinforcement learning
setting[13; 1]. We focus on known models.

One difficulty with gradient-based approaches, not surpris-
ingly, is the ease with which they converge to local subop-
tima. Our experiences have demonstrated that GA, for ex-
ample, has difficulty in problems where theprecise sequence
of actions taken is important for good performance. This is
a common feature of stochastic planning problems to which
POMDPs are often applied; they usually have different char-
acteristics from navigational problems on which GA has often
been tested. While various restrictions on policy space can be
used to encode prior knowledge about a problem’s solution
[12], such restrictions may be hard to encode naturally, and
such knowledge may be hard to come by.

In this paper, we describe an algorithm that searches for
good controllers while remaining within the “local search”
framework. Since finding an optimal fixed-size FSC is NP-
hard [10; 12], we propose astochastic local search (SLS)
technique which, like GA, works in the space of FSCs, but
uses very different heuristics to evaluate moves.Belief-based
SLS (BBSLS)incorporates intuitions—used in the DP solution
to POMDPs that work in belief-state value function space—
that allow moves in different directions than those permitted
by gradient-based methods. Specifically, BBSLS considers
making moves that would be of high value when executed at
some belief state, even though that belief state is not reach-
able given the current controller; since they do not improve
controller value, such moves cannot be considered by GA.
A tabu list is used to allow subsequent changes to the con-
troller to adjust to this move. BBSLS is much less compu-
tationally intensive than DP methods, and provides a good
compromise between full DP and the very restricted form of
local search admitted by GA. Our empirical results suggest
that our algorithm is competitive with recent state-of-the-art
FSC and value-function-based methods such as BPI[15] and
PBVI [14; 17], producing smaller, higher quality controllers,
often significantly more quickly.

We begin in Section 2 with an overview of POMDPs. In
Section 3 we first describe problems with GA that inspired
our method, and then detail the BBSLS algorithm. Empirical
results are provided in Section 4 that confirm various advan-
tages over other algorithms, and we conclude with discussion
of future research directions in Section 5.
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Figure 1: A simple FSC for a planning problem

2 Background and Notation
A POMDP is defined by: a setS of states; a setA of ac-
tions; a setZ of observations; a transition functionT , where
T (s, a, s′) denotes the probabilityPr(s′|s, a) of transition-
ing to states′ when actiona is taken at states; an obser-
vation functionZ, whereZ(s, a, z) denotes the probability
Pr(z|s, a) of making observationz in s after performinga;
and a reward functionR, whereR(s, a) denotes the immedi-
ate reward associated with states and actiona. We assume
discrete state,1 action and observation sets, and we focus on
discounted, infinite horizon POMDPs with discount factor
0 ≤ γ < 1. When considering FSCs for POMDPs, we will
assume an initialbelief stateb0 denoting the initial distribu-
tion over states (whereb0(s) is the probability of the initial
state beings).

LetH be the set of all finiteobservable histories(i.e., all fi-
nite sequences of action-observation pairs). Astochastic pol-
icyπ : H 7→ ∆(A) associates a distribution over actions with
each history. A deterministic policy associates a single action
with eachh ∈ H. The value of policy π at states is the
expected sum of discounted rewards obtained by executingπ
starting at states:

Vπ(s) = E(
∞∑

t=0

γtRt|π, s).

The expected value ofπ is b0 · Vπ (viewing Vπ as an|S|-
vector).

The representation of a policyπ can take several forms. An
indirect way of mapping histories into actions is to mapbelief
statesinto actions: an agent’s belief state comprises a suffi-
cient statistic summarizing all relevant aspects of its history.
An advantage of this approach is that instead of an infinite
collection of discrete histories, one maps a continuous space
∆(S) into A. Indeed, this mapping has nice properties and
finite-horizon approximations of the optimal value function
are piecewise linear and convex[16]. Unfortunately, methods
that produce such representations (e.g., the Witness algorithm
[4]) are often intractable, though approximation techniques
like PBVI [14] can be used.

An FSC offers a different way of representing a policyπ. A
stochastic FSC〈N , ψ, η〉 comprises:N , a finite set ofnodes;
ψ, an action selectionfunction, whereψ(n, a) denotes the
probability with whicha ∈ A is selected when the FSC is at
noden ∈ N ; andη, a transition function, whereη(n, z, n′)
denotes the probability with which the FSC moves to noden′
given that it was at noden after making observationz ∈ Z.
A deterministicFSC has deterministic action selection and

1Below, we will generalize our approach to continuous state
POMDPs through the use of sampling.

node transition functions. While an FSC of a fixed size can-
not generally represent an optimal policy, it offers a concise
representation that can be exploited computationally. Fig-
ure 1 illustrates a 3-node, deterministic FSC. For each node
n, ψ dictates which action to take (stochastically) and, condi-
tioned on the observation,η prescribes which node to move
to next. We sometimes refer toη as anobservation strategy.
Later, we will also use the notion of a deterministiccondi-
tional planσ = 〈a, ν〉, wherea ∈ A is an action to execute,
andν : Z 7→ N is a deterministic observation strategy.

The original POMDP and an FSCπ induce a Markov chain
whose states〈s, n〉 are drawn from the cross-productS ×N .
The valueVπ(s, n) of such a policy at〈s, n〉 is:

Vπ(s, n) =
∑

a

ψ(n, a)R(s, a)+

γ
∑

a,z,s′,n′
ψ(n, a)T (s, a, s′)Z(s′, a, z)η(n, z, n′)Vπ(s′, n′).

Vπ can be computed by solving this linear system. The value
of π givenb is Vπ(b, n) =

∑
s Vπ(s, n)b(s), and for an initial

b0, the best initial noden0 can be determined readily.
One can find good or optimal FSCs in several different

ways. Hansen’s policy iteration[8] uses DP to produce a se-
quence of (generally, increasingly large) FSCs that converge
to optimality. Bounded policy iteration (BPI)[15] uses ba-
sic DP together with techniques for bounding the size of the
FSC, resulting in an approximation method that scales much
better than policy iteration. Various search techniques have
been proposed as well that do not ensure optimality, but often
yield good results in practice without the computational cost
of policy iteration. Among these gradient ascent has proven
very popular. We refer to Meuleauet al. [12] for details of a
typical formulation; in that work, an FSC of fixed size is as-
sumed and the gradient ofVπ(b0, n0) w.r.t. the policy param-
etersη(n, z, n′) andψ(n, a) is derived. Standard GA is then
used to navigate through the space of bounded FSCs until a
local optimum is found. Computational results on maze-like
problems[12] and continuous navigation-style problems[1]
suggest that GA can tackle problems that are generally con-
sidered unsolvable using exact DP techniques.

3 A Stochastic Local Search Technique
We now describe a new approach for solving POMDPs ap-
proximately using FSCs, based on the use of stochastic local
search and a specific heuristic, that circumvents some of the
difficulties of GA. We begin with a simple example that il-
lustrates a common type of local optimum to which GA falls
prey, and describe intuitions that would allow a local search
technique to break out of such local optima. We then formal-
ize these intuitions within our algorithm.

3.1 A Motivating Example
Consider a simple planning problem in which the optimal so-
lution consists of performing actionc until the preconditionp
for actiond is observed, then performingd until goalg is ob-
served, and finally terminating (perhaps repeating some no-
op).2 Suppose further that: actionsc andd are very costly, but

2We assume the actions are stochastic and observations noisy.
For instance, whenc is performed, it is not guaranteed to makep



the reward associated with the goalg more than compensates
for their expected costs;d only achievesg (with reasonable
probability) if p is true;p is only made true byc; all other ac-
tions (at any state) have costs/rewards that are small relative
to the costs/rewards ofc, d, andg.

The optimal policy for this POMDP can be represented us-
ing the simple, deterministic 3-node FSC shown in Figure 1.
If the action space is large enough, a random instantiation of
this FSC is very unlikely to be optimal.3 Suppose we attempt
to solve this problem using GA, starting from some initial
FSC, and suppose no node selects actionc or d with signif-
icant probability. In this case, GA has no hope of finding
the optimal FSC. Since the probability ofc being executed
is small, the probability ofp being true at any belief state
reachable using the current FSC is small; hence, increasing
the probability ofd at any node will decrease controller value,
preventing GA from moving in that direction. Similarly, since
d is unlikely to be executed, the value of increasing the prob-
ability of c at any node is negative, preventing GA from mov-
ing in that direction. Indeed, the nature of this problem is such
that GA will be forced to moveawayfrom the optimal FSC.
The sequential nature of the problem, and the fact that opti-
mal actions areundesirableunless their counterparts are in
place, make the landscape very hard to navigate using (even
stochastic) GA.

How could one avoid the difficulties GA faces on POMDPs
of this type within the local search framework? Intuitively,
actiond would be considered useful at a belief state in which
preconditionp held. Unfortunately, sincec is never executed,
such a belief state is unreachable given the current FSC. How-
ever, it is easy to verify that actiond is good at some belief
state in the context of the current controller. More precisely,
a conditional plan〈d, ν〉 installed at noden—whereν tran-
sitions to a terminal node ifg is observed, and back ton
otherwise—would have high value in any belief state where
p is sufficiently probable. As we will see, identifying the use-
fulness of this plan atsomebelief stateb is straightforward,
requiring the solution of a simple linear program (LP). Our
local search procedure will consider adjustments to the FSC
of this type: if a plan has high value at some belief stateb,
even if it cannot be realized by the current controller, we will
consider (stochastically) making that move (or adjusting the
FSC parameters in that direction).

Of course, if we make this move by adjusting the parame-
ters at noden toward plan〈d, ν〉, we decrease the value of the
FSC. Should we subsequently resort to moving in a direction
that improves FSC value, we would naturally want to “undo”
this move. Hence moves of this type will be held on atabu
list [7] for some period of time. This allows the algorithm a
chance to “catch up” to the move. Specifically, since the plan
at noden has high value at belief states nearb, by holding this
node fixed, we give the FSC a chance to find a policy for the

true; and detecting thatp is true is also noisy. Intuitively, the op-
timal policy would choose to executed only if p is believed with
sufficiently high probability; we assume that a single observation of
p makes this so.

3To keep things simple, we focus on a small two-step sequence;
for longer sequences, typical of planning problems, the odds of a
random FSC including any significant subsequence are negligible.

rest of the FSC that will induce this region of belief space at
noden. In this example, by holdingn fixed, the plan〈c, ν′〉 at
noden′—whereν′ transitions to noden if p is observed, and
back ton′ otherwise—will now look attractive (indeed, with
n fixed, GA would move in this direction). In a sense, this
process simulates the reasoning inherent in value or policy
iteration over belief space.

In the next sections, we make these intuitions more precise.

3.2 Algorithm Structure

Our belief-based SLS algorithm (BBSLS)stochastically ad-
justs the parameters of the fixed-size FSC at each iteration
based on one of two criteria. Themovesit makes consist of
“installing” a deterministic conditional plan〈a, ν〉 at a node
n: when such a move is made, the parameters of probabilistic
FSC functionsψ andη at noden are adjusted in the direction
of the plan〈a, ν〉 to make actiona and transitions dictated
by ν more likely. At each step, our SLS algorithm performs
one or morelocal moves, followed by a sequence ofglobal
moves.

Local moves are designed to capture the basic intuitions
described above, allowing BBSLS to break out of the types
of local optima to which GA often falls prey. Intuitively, DP-
inspired moves are considered, allowing policy choices to be
made at unreachable belief states. By holding these moves
on a tabu list, the rest of the controller is given a chance to
“adjust” to these moves, by making these belief states reach-
able in order to attain higher value. Global moves corre-
spond to direct stochastic hill-climbing, and are designed to
increase controller value immediately, often taking advantage
of earlier local moves. Thus, generally, in the local phase, we
optimize for good, but potentially unreachable, belief states;
in the global stage, we greedily improve the FSC value and
make some of the belief regions considered in the local phase
reachable.4 Since the set of local and global moves is enor-
mous, we need good ways of focusing on potentially useful
moves. In each case, different techniques will be used. We
now describe both phases in detail.

3.3 Local Moves
We first develop a heuristic for evaluating conditional plans.
Letπ be a fixed FSC. The Q-functionQσ

π for a (deterministic)
conditional planσ = 〈a, ν〉 is:

Qσ
π(s) = R(s, a) + γ

∑

s′,n′,
z|ν(z)=n′

T (s, a, s′)Z(s′, a, z)Vπ(s′, n′).

Intuitively, this is the expected value of performinga at s,
moving to the controller node dictated by the resulting obser-
vation, then executing the controller from that point on. We
defineQσ

π(b) =
∑

sQ
σ
π(s)b(s) for any belief stateb.

Our aim is to rank plansσ as possible moves in controller
space according to a heuristic functionh(σ) that reflectspo-
tential value at belief states that might not be reachable from
b0 in the current FSC. LetΣl be the set of plans from which
we select local moves. For eachσ ∈ Σl, we find a belief state

4BBSLS can be viewed as a form ofiterated local search[9].



bσ such that thedifferencebetween the Q-value ofσ and the
value of any current controller node is maximal. Define

δσ
π = max

b
[Qσ

π(b) − max
n

Vπ(b, n)],

and letbσ be a belief state that maximizes this expression.
The heuristic value ofσ is then simplyδσ

π , i.e., the maxi-
mal possible improvement over the current controller value
(achieved at “witness” belief statebσ). δσ

π can be computed
by solving an LP with|S| + 1 variables and|N | constraints.

With this heuristic in hand, local moves can be chosen.
We first note that any planσ has the same Q-functionQσ

π
regardless of the node at which it is installed. Because of this
we break local move choice into two stages: plan evaluation
(which planσ to install) and node selection (at which node
to install the plan). The set of all conditional plans is gener-
ally too large to evaluate—we cannot computeh(σ) for each
σ ∈ |A||N ||Z| for any but the smallest problems. Therefore,
we restrict the setΣl by using the Witness algorithm[4] to
incrementally generate a (sub)set ofusefulplans that would
improve controller value if we were to increase its size. We
evaluate only such plans, and stochastically choose someσ
using a distribution that gives greater weight to plans with
greaterh-values. The distribution we use in our experiments
is straightforward: since allδσ

π are positive, we simply nor-
malize them to sum to one, and sample from the resulting
probability distribution.

We place one other restriction on the choice of plan: noσ is
chosen whose witness belief statebσ is “near” the witness be-
lief state of an existing node. If a new plan is chosen that has
high value at some belief state near another for which a previ-
ously selected plan has high value, installing the new plan at a
node will “waste” controller capacity by duplicating the func-
tion of the earlier plan. For this reason, we maintain abelief
tabu list containing the witness belief states of the most re-
cently selected plans. The distance between two belief states
can be defined in a variety of ways. For our experiments, we
used the belief discretization technique of Geffner and Bonet
[6], but more suitable measures warrant further research.5

Finally, the selectedσ is installed(see above) at some node
n which is not on thenode tabu list. Among non-tabu nodes,
a noden is randomly selected which is either unreachable
from n0 or leads to the greatest increase in valueb0 · Vπ. The
latter choice directly increases controller value, while the for-
mer exploits unused controller capacity. The witness forσ is
associated withn, andn is added to the tabu list.

Intuitively, in the local stage, we find plans that have high
value at some belief states, even though they might not be
reachable in the current FSC. Since the LP that computes
h(σ) also returns the witnessbσ, we record this as well. This
information allows us to rule out other subsequent moves that
duplicate the effect ofσ (which would waste controller ca-
pacity). It is also important to exploit unreachable nodes,
since this helps avoid unused capacity; moves at unreachable
nodes, since they have no impact on FSC value, would never

5Given an integer resolutionr > 0 (we setr = |S| in our ex-
periments), the probabilitiesb(s) are discretized intor levels. Two
belief statesb, b′ are close if their discretized representation is the
same:round(b(s) · r)/r = round(b′(s) · r)/r, ∀s ∈ S.

be considered by GA (or in our global stage). Once a useful
σ has been installed at an unreachable node, there is incentive
at subsequent iterations to link to this node.

3.4 Global Moves
In the global stage, we select moves that increase the overall
controller value with respect to the initial belief stateb0. As
with local moves, we consider a subset of deterministic plans
Σg as possible candidates. Eachσ ∈ Σg is evaluated based
on its improvement in FSC valueb0 · Vπ (much like GA) and
the moves are chosen with probability related to their level
of improvement. Since the objective of a global move is to
increase controller value, we build the set of possible plans
for consideration as follows. First, we simulate the controller
to obtain a sample ofreachablebelief states and nodes.6 For
each belief state, we compute the best plan for that specific
belief state (this can be done in time linear in controller size),
and calculate the value of the controller that would result if
the plan was installed at the corresponding node. We repeat
as long as controller value increases.

The global stage is essentially a form of stochastic hill-
climbing. While local moves instantiate nodes with plans
that are useful forsomebelief states, we ultimately care about
FSC value (w.r.t.b0). Therefore, global moves are used to in-
crease value. Such moves often link to the nodes instantiated
with potentially useful plans in the local stage. In a sense,
the global stage is used to verify the usefulness of moves pro-
posed in the local stage.

3.5 The BBSLS Algorithm
The BBSLS algorithm is summarized in Table 1. At each
iteration, the BBSLS algorithm executes one or more local
moves, and a sequence of global moves. The parameters of
the algorithm can be chosen to reflect problem structure. If
there are many strong local basins of attraction, the number of
local movesl could be increased to facilitate an escape from
local suboptima. Different approaches can be used to gener-
ate the set of candidate local movesΣl (the witness method
we use, described above, appears to work well).

The conditionC we use to terminate the execution of
global moves is lack of improvement in controller value (as
discussed above), though other conditions may be useful
(e.g., a fixed number of steps). The parametersk andm in
the global stage could be tuned based on the number of FSC
nodes, POMDP states, and the discount factor. However, the
default parameter values described in the next section proved
to be adequate for our experiments. Finally, we have encoded
the specific method of sampled reachable belief states within
the algorithm as the method of constructingΣg; again, other
ways to restrict the space of candidate moves could prove use-
ful in specific settings.

BBSLS is an anytime algorithm. Empirically, because the
global stage is essentially greedy optimization over reach-
able belief states, BBSLS quickly achieves (and exceeds)
the performance of GA. The local stage runs in time poly-
nomial in |N |, |S|, |A|, |Z|, and |Σl|, and the global stage

6This is done usingk runs of the controller (starting atb0, n0,
randomly sampling transitions and observations) ofm steps each.
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Figure 2: (a) Anytime performance of discrete PE; (b) RTDs for discrete (2.0 s/iter) and continuous (3.2 s/iter) PE.

While some search termination criterion is not met:

• Performl local moves:

– create a set of candidate condition plansΣl;
– samplea conditional planσ ∈ Σl according to

the Q-value heuristich(σ) (plans with higherh-
values are given greater weight in the sampling
distribution) while ensuring that no node in the
FSC already has a witness belief statebσ;

– randomly choose a non-tabu noden which is ei-
ther not reachable fromn0 (with probabilitypl),
or which leads to the highest increase in the FSC
value when instantiated with the planσ (with
probability1 − pl);

– execute the local move〈n, σ〉, add the noden to
the move tabu list and the witness belief statebσ

to the witness belief list.

• Perform global moves (until conditionC met):

– run k policy execution simulations form steps,
starting from the initial noden0 and belief state
b0, and record the belief states and nodes that
were reached;

– create the set of conditional plans that are op-
timal at the belief states visited during the pre-
vious step, and calculate the value (w.r.t. to the
initial belief stateb0) of the controller that would
result if a conditional plan from the set was in-
stalled at the corresponding node;

– choose a move that leads to the highest increase
in controller value. Make the selected move, and
remove the witness belief state ascribed to the
associated node.

Table 1: The BBSLS algorithm.

in time polynomial in |N |, |S|, |A|, |Z|, and |Σg|. Since
|Σl|, |Σg|, |N | are controllable parameters, we can usually
achieve a very good trade-off between solution quality and
computation time.

4 Empirical Results
The following experiments illuminate various aspects of BB-
SLS and compare its performance to GA, PBVI, and BPI on
examples drawn from the research literature.7 Default algo-
rithm parameters were: tabu list size equal to|N |/2, l = 1,
pl = 0.5, |Σl| = 10; k = 2, m = |N |/2. We used deter-
ministic controllers on all problems except for Heaven/Hell.
Generally, better performance can be achieved if parameters
are tuned to specific problems.

The need for sequential policy structure is clearly evident
in the small preference elicitation problem (PE) described in
[2]. The objective is to optimally balance the cost of queries
and the gain provided by the elicited utility information with
respect to the quality of the final decision. We refer to[2] for
a specification of the problem.

We tackle two variants of this problem. In the first, we dis-
cretize state space (possible utility functions) to six states and
the number of actions (queries) to 14. In the second, the state
space remains continuous. In both cases, an optimal FSC has
12 nodes. Good performance requires that a precise sequence
of actions (queries) be executed before making a final deci-
sion. However, a default decision exists as a safe alternative
for any belief state. Since asking queries before making a
decision is initially costly, GA always converges to a safe,
but suboptimal alternative. On the other hand, BBSLS is de-
signed to avoid such local optima; for this small problem, it
always finds the best global solution (which can be computed
analytically). Figure 2 (a) plots the average value of the best
22-node FSC found by BBSLS (200 trials) and compares it to

7BBSLS was implemented in Matlab and run on Xeon 2.4GHz
computers; linear programs were solved using CPLEX 7.1; GA used
the quasi-Newton method with BFGS update and quadcubic line
search from Matlab’s Optimization Toolbox.
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the best GA value (measured on 10,000 random initial FSCs,
each trial taking 3 seconds on average).

To solve a continuous POMDP with BBSLS, wesampleu
states (utility functions) at each iteration (we setu = 20). We
then calculate the observation function and the reward func-
tion for the sampled states. Although our work with continu-
ous elicitation is at an early stage, the results are promising—
because of added stochasticity, BBSLS finds optimal con-
trollers even faster than in the discrete case. Figure 2 (b)
showsrun-time distributions(RTDs) for both the discrete and
continuous versions of the PE problem, that is, plots of the
empirical probability of finding an optimal FSC as a function
of time.

In the Heaven/Hell (HH) POMDP[1; 6], an agent starts
with equal probability in either the “left” or “right” worlds,
and, because of partial observability, does not know which.
The (left or right) arrow (Figure 3) conveys information about
the location of “heaven” (positive reward); if the agent does
not observe the arrow, it risks falling into “hell” (negative re-
ward). After visiting heaven or hell, the agent is again placed
in either the left or right world. It can observe the top and
bottom cells in the center column, as well as non-zero reward
locations. In[1; 6], both heaven and hell have symmetric re-
wards of +1 and -1. This allows GA methods some flexibility,
since moving down from the start state (and acting randomly)
is no worse than moving up (in expectation); there is no dis-
incentive to adjusting a controller to move upward before the
correct policy for the top part of the maze is discovered. Our
experiments with 20-node controllers show that on symmet-
ric HH, GA sometimes reaches a local optimum with value
0.8040 (100 trials, each 2.9 min on average). However, the
optimal value is 8.641, achievable by an 8-node FSC. Fur-
thermore, we can make this problem practically unsolvable
by GA if we increase the hell penalty to -10 (Figure 3). GA
always chooses (in 100 trials) the safe alternative (bumping
into walls for zero reward), even though the optimal FSC has
not changed. Our SLS procedure (stochastic FSC,l = 2, 12
trials) finds a near-optimal solution even in the asymmetric
case: in 200 iterations (average time of 10.2 seconds per iter-
ation), the average value attained is 6.93, and in 500 iterations
an average value of 7.65 is achieved.

Hallway (60 states, 5 actions, 21 observations) and Hall-
way2 (92 states, 5 actions, 17 observations) are two domains
of moderate size[11]. In Hallway, a 10-node FSC attains
a value of 0.7 in 442 seconds, and eventually achieves 0.8
in 500 iterations (averaged over 13 trials). The best value
reached by a 30-node FSC was 0.95. The best value reached
by a 20-node FSC for Hallway2 problem was 0.34. For com-
parison, Q-MDP finds a policy with a value of 0.3444 for

Hallway, and 0.097 for Hallway2[3]. Our results are not di-
rectly comparable to those reported for recent state-of-the-art
algorithms PBVI[14] or BPI [15] (due to different testing
methods). However, an indirect comparison seems to indi-
cate that BBSLS achieves similar performance on both hall-
way domains with much smaller controllers.

Finally, we compare the performance of BBSLS to BPI and
PBVI on the large Tag domain[14], with 870 states, 5 ac-
tions, and 30 observations. Tag is based on the popular game
of laser tag, where the goal is to search and tag a moving
opponent. On this problem, GA converges to a local subop-
timum of -20 (10-node FSC), and cannot be run with con-
trollers having more than 20 nodes because of time and space
constraints. PBVI achieves a value of -9.18 in 180,880 sec-
onds with a policy of 1334 linear vectors (roughly compa-
rable to a 1334-node controller); BPI finds a 940-node con-
troller with the same value in 59,772 seconds; and, a modified
version of PBVI described in[17] can find a solution with a
value of -6.17 in 1670 seconds with 280 vectors. BBSLS at-
tains similar or better performance faster than PBVI and BPI,
and with many fewer nodes than any other algorithm. Figure
4 (a) shows results for 10- and 30-node controllers, averaged
over 10 trials; Figure 4 (b) plots how the best value found
is increasing for a 10-node FSC during a single best trial;
it reaches -6.70 after 322 iterations. Average BBSLS per-
formance gives controllers of somewhat better quality than
BPI in the same amount of time, but of much smaller size.
However, since BPI attempts to optimize policies with re-
spect to all possible belief states, rather than just the initial
belief state (like PBVI and BBSLS), this is not too surpris-
ing. The more appropriate comparison to PBVI (since both
optimize w.r.t. an initial belief state) shows much better per-
formance for BBSLS in terms of “controller size,” and com-
parable performance in terms of policy quality. With respect
to execution time, BBSLS is competitive with the PBVI, but
modified PBVI finds high quality policies significantly faster.
However, the BBSLS controllers are an order of magnitude
smaller than the “controller” found by modified PBVI.

5 Concluding Remarks

Despite its computational attractiveness, GA for FSC search
suffers from problems when faced with genuinely “sequen-
tial” POMDPs. Our BBSLS algorithm is designed to retain
many of the computational properties of GA by remaining
within the local search framework, but uses DP-style rea-
soning heuristically to explore a more appropriate controller
neighborhood. Our experiments demonstrate that BBSLS
consistently outperforms GA, and is superior in many re-
spects to DP-based algorithms, such as PBVI and BPI, on
recent benchmark problems.

There are a number of important directions we are cur-
rently pursuing. Refining our heuristics to enable further
scaling is key among these. In addition, we are exploring
methods that will allow BBSLS to be applied directly to fac-
tored POMDP representation (e.g., dynamic Bayes nets) so
problems with exponentially larger state spaces can be tack-
led. Finally, we are investigating the use of BBSLS in prac-
tical preference elicitation problems, where continuous state,
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Figure 4: (a) Value vs. time for 10- and 30-node FSCs in Tag domain; (b) A specific trial, 10-node FSC.

action, and observation spaces present challenges to value-
based POMDP solution methods.
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