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Abstract

We propose and examine a method of approximate
dynamic programming for Markov decision processes
based on structured problem representations. We as-
sume an MDP is represented using a dynamic Bayesian
network, and construct value functions using decision
trees as our function representation. The size of the
representation is kept within acceptable limits by prun-
ing these value trees so that leaves represent possible
ranges of values, thus approximating the value func-
tions produced during optimization. We propose a
method for detecting convergence,prove errors bounds
on the resulting approximately optimal value functions
and policies, and describe some preliminary experi-
mental results.

1 Introduction

Markov decision processes (MDPs) have come to play an
increasingly important role in AI research, forming the ba-
sic model for much recent research in decision-theoretic
planning (DTP) and reinforcement learning (RL). The aim
in both DTP and RL is to discover a policy for the behavior
of an agent in a (generally) stochastic environment. The re-
sulting policy should offer good or optimal long-term per-
formance in the sense of maximizing expected accumula-
tion of reward. The key distinction between DTP and RL is
that the former assumes an immediate reward function and
action model representing the system dynamics are known,
whereas the latter takes both of these to be unknown quan-
tities that must be learned (possibly implicitly).

With a known action model and rewards, optimization
methods based on dynamic programming can be used to
produce an optimal policy [1, 13, 20]. But a serious prob-
lem for dynamic programming is the curse of dimensional-
ity: the time (and space) required grows polynomially with
the size of the state space, which itself grows exponentially
with the number domain features. This problem is exacer-

bated in RL because of the sampling requirements for each
state.

One way of addressing this problem in the case of both
known and unknown models is through the use of aggre-
gation methods (or generalization), in which a number of
states are grouped because they have similar or identical
values and/or action choice. These aggregates are treated
as a single state in dynamic programming algorithms for
the solution of MDPs or the related methods used in RL
[22, 2, 16, 4, 5, 11, 12, 9, 17]. Such aggregations can be
based on a number of different problem features, such as
similarity of states according to some domain metric; but
most methods generally assume that the states so grouped
have the same value. In addition, such schemes can be exact
or approximate, adaptive or fixed, and uniform or nonuni-
form, and can be generated using a priori problem charac-
teristics or learned generalizations.

In this paper, we consider the problem of constructing an
approximately optimal policy when the action-model and
reward function are known.1 In addition, we assume that
the action model is specified using a compact and natural
specification language, namely dynamic Bayesian networks
[18, 10]. In previous work, we described a method for opti-
mal policy construction that exploited the problem structure
laid bare by the Bayes net representation [5]. Our algorithm
built aggregations in a nonuniform and adaptive way, repre-
senting value functions (and policies) using decision trees,
and performed structured dynamic programming using this
representation.

Unfortunately, with many problems, even structured repre-
sentations may not help greatly with optimal policy con-
struction, for the optimal value function may take on a
large number of distinct values, precluding compact rep-1The close relationship between RL methods such as Q-
learning [26] and the solution of MDPs with known models sug-
gests that our ideas should be applicable to the unknown-model
setting (see Section 6).



resentation. However, often the distinctions made are of
minor importance—if states with roughly the same value
can be grouped, good (though possibly suboptimal) poli-
cies should result. The approximation schemes we present
in this paper consider pruning the tree representation of
value functions at intermediate stages of policy construc-
tion. This method thus exploits prior problem structure in
a way that leads to very informed approximation.

In Section 2, we describe MDPs and their structured repre-
sentation using dynamic Bayes nets, followed in Section 3
by a brief description of the SPI algorithm of [5] that per-
forms optimization using a decision tree representation of
value functions. We then focus on issues arising due to
approximation of these value trees. We first describe, in
Section 4, an algorithm for pruning (and ordering) a single
value tree, using methods adapted from those in the litera-
ture on classification by decision trees [3, 25]. In Section 5,
we describe a structured version of value iteration that ap-
proximates the n-step optimal value functions it produces
using the pruning method. These approximate value trees
are labeled with value ranges that are guaranteed to con-
tain the true values of the states to which they refer. This
allows local error bounds to be maintained during compu-
tation with minimal effort. These will typically be much
tighter than possible global bounds. Moreover, while ap-
proximation of value functions can sometimes lead to ar-
bitrarily bad results [8], maintaining accurate value ranges
allows us to circumvent convergence problems. We show
convergence, describe error bounds, and report on some
preliminary experimental results. We conclude with a dis-
cussion of the applicability of these ideas to reinforcement
learning.

2 MDPs and Structured Representations

We assume that the system to be controlled can be described
as a fully-observable, discrete state Markov decision pro-
cess [1, 13, 19], with a finite set of system statesS. The con-
trolling agent has available a finite set of actions A which
cause stochastic state transitions: we write Pr(s; a; t) to de-
note the probability action a causes a transition to state t
when executed in state s. A real-valued reward function R
reflects the objectives of the agent, with R(s) denoting the
(immediate) utility of being in state s.2 A (stationary) pol-
icy � : S ! A denotes a particular course of action to be
adopted by an agent, with �(s) being the action to be exe-
cuted whenever the agent finds itself in state s. We assume
an infinite horizon (i.e., the agent will act indefinitely) and
that the agent accumulates the rewards associated with the2More general formulations of reward (e.g., adding action
costs) offer no special complications.

states it enters.

In order to compare policies, we adopt expected total dis-
counted reward as our optimality criterion; future rewards
are discounted by rate 0 � � < 1. The value of a policy �
can be shown to satisfy [13]:V�(s) = R(s) + �Xt2S Pr(s; �(s); t) � V�(t)
The value of� at any initial state s can be computed by solv-
ing this system of linear equations. A policy � is optimal ifV�(s) � V�0(s) for all s 2 S and policies �0. The optimal
value function V � is the same as the value function for any
optimal policy. Techniques for constructing optimal poli-
cies and value functions for discounted problems have been
well-studied; we discuss these in the next section.

One difficulty with the general presentation of MDPs given
above is its failure to exploit natural problem structure.
Most systems are characterized by a set of random vari-
ables or propositions that describe relevant features, and ac-
tions and rewards are specified in terms of these features
[15, 4, 24]. In addition, since the state space grows expo-
nentially with the number of features, explicit specification
and computation over the state space can be problematic.

We assume that a set of atomic propositionsP describes our
system, inducing a state space of size 2jPj, and use two-
stage temporal or dynamic Bayesian networks to describe
our actions [10, 5]. For each action, we have a Bayes net
with one set of nodes representing the system state prior
to the action (one node for each variable), another set rep-
resenting the world after the action has been performed,
and directed arcs representing causal influences between
the these sets. Each post-action node has an associated con-
ditional probability table (CPT) quantifying the influence
of the action on the corresponding variable, given the value
of its influences (see [5, 6] for a more detailed discussion of
this representation).3 Figure 1(a) illustrates this representa-
tion for a single action.4
The lack of an arc from a pre-action variable X to a post-
action variable Y in the network for action a reflects the
independence of a’s effect on Y from the prior value ofX. We capture additional independence by assuming struc-
tured CPTs. In particular, we use a decision tree to represent
the function that maps combinations of parent variable val-3To simplify the presentation, we consider only binary vari-
ables and assume that no arcs are directed between post-action
nodes; but these assumptions can easily be relaxed.4This is a toy domain in which a robot is supposed to get cof-
fee from a coffee shop across the street, can get wet if it is raining
unless it has an umbrella, and is rewarded if it brings coffee when
the user requests it, and penalized (to a lesser extent) if it gets wet
[5, 7]. This network describes the action of fetching coffee.



W

U

R

W

U

R

HC

0.91.0

W

HC

WC

1 2

W

W

-3 -2

-1 0

Tree
Representation

HC

T

F

T

F

T

F

T

F

1.0

1.0

0.0

T

F

F

T

T

F

F

T T

T

T

T

F

F

F

F

1.0

0.0

R W U W’

1.0

1.0

0.0

1.0

W

R

U

1.0

T

F

1.0

HC HC’

0.9

Matrix

HC

WCWC

0.1

0.1

Reward

W

HC

WC

(a) (b)

falsetrue

KEY

Figure 1: (a) Action Network with Tree-structured CPTs; and (b) Reward Tree

ues to (conditional) probabilities. For instance, the trees in
Figure 1(a) show thatU influences the probability ofW be-
coming true (as a consequence of the action), but only if R
is true andW is false (left arrows are assumed to be labeled
“true” and right arrows “false”). Thus, additional regular-
ities in transition probabilities are used to provide a more
compact representation than the usual (locally exponential)
CPTs (the matrices). This can be exploited computation-
ally, as we describe below. A similar representation can be
used to represent the reward function R, as shown in Fig-
ure 1(b). We call this the (immediate) reward tree, Tree(R).
3 Structured Policy Construction

A very simple algorithm for optimal policy construction is
value iteration [1]. We produce a sequence of n-step opti-
mal value functions V n by setting V 0 = R, and definingV i+1(s) = maxa2AfR(s) + �Xt2S Pr(s; a; t) � V i(t)g (1)

The sequence of functions V i converges linearly to V � in
the limit. Each iteration is known as a Bellman backup. Af-
ter some finite number n of iterations, the choice of maxi-
mizing action for each s forms an optimal policy � and V n
approximates its value. In particular, one simple stopping
criterion requires termination whenkV i+1 � V ik � "(1 � �)2� (2)

(where kXk = maxfjxj : x 2 Xg denotes the supremum
norm). This ensures the resulting value function V i+1 is
within "2 of the optimal function V � at any state, and that
the induced policy is "-optimal (i.e., its value is within " ofV �) [19].

In an effort to mitigate the curse of dimensionality, re-
searchers have sought to use aggregation or generalization
to group states. One possible approach uses action mod-
els to form regions in the state space that have identical
value and performs dynamic programming steps in this way
[5, 12]. We briefly describe a structured version of value it-
eration (SVI) based on this intuition: at each stage, V i will
be represented as a decision tree.5
In value iteration, we need to produce the sequence of value
functions V 0; V 1; � � � using Bellman backups, and we’d
like to do so using a compact function representation such
as decision trees. Clearly, Tree(R) provides a structured
representation ofV 0. In addition, given any such structured
value tree V , we can use the Bayes net action description to
produce a Q-tree Qa for any action a. This tree describes
the value of performing action a assuming terminal value is
given by V (i.e., a Q-function [26]). Roughly, each branch
of V determines a region of the state space with a unique
value. The Bayes net for a allows us to easily determine
the conditions that influence the probability of reaching any
such region when a is performed: we simply read from the
network the variables that influence the variables in V . In-
tuitively, we perform a stochastic generalization of goal re-
gression [12]. Rather than provide details, we illustrate the
intuitions with a simple example (see [5] for details).

Consider the initial value tree V in Figure 2 (again, left ar-
rows denote true, right arrows false) and suppose action a
(Figure 1(a)) is to be performed. We can determine the fu-
ture value of a as follows: to determine whether we end up
in the left or right subtree of V , we must know the proba-
bility of a making WC true. The conditions (prior to the ac-5This algorithm is a minor variant of the SPI algorithm [5],
which is based on modified policy iteration [20]. The basic opera-
tions are the same, though intermediate policies are not produced
in SVI.
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Figure 2: Generating a Q-tree

tion) that influence WC becoming true (after the action) can
be read from the network for a, giving rise to the first partial
tree (Step 1). Note that the probabilityof WC becoming true
(i.e., the actual effect of the action on WC) labels each leaf in
this partial tree. We emphasize that the WC occurrences la-
beling interior nodes of the tree refer to the pre-action state,
while leaves refer to the probabilityof WC in the post-action
state.

We perform a similar “explanation” of HC (Step 2). Note
that we only care about its value when WC is possibly true;
thus the influences for HC are only added to the left branch
of the first partial tree. Finally, the (more interesting) con-
ditions under which W becomes true or false are also read
from the network and added to the partial tree (Step 3). At
this point, the leaves of this partial tree are labeled with
probabilities that determine the precise probability of end-
ing up in any of the regions determined by the initial value
tree. By computing this expected future value (together
with discounting and adding the immediate reward), we de-
termine the tree Qa shown in Figure 3(a).

Given a set of Q-trees (one for each action) produced us-
ing a value function V i, we can construct a tree represent-
ingV i+1 by simply “merging” these trees; that is, we create
a minimal subsuming tree (one that makes all distinctions
common to the set) and choose the maximum Q-value for
each new region. This corresponds to performing a Bell-
man backup according to Equation (1). Once a good value
function V n is obtained, the set of Q-trees with respect toV n can be used to produce a structured policy, by merging
and labeling with maximizing actions.

4 Approximate Value Trees

The most important feature of SVI is that it produces a se-
quence of value trees that accurately represent the optimaln-step value functions, and produces the smallest trees pos-

sible based solely on structure (modulo variable ordering).
Unfortunately, it may be inherently difficult to construct an
optimal value function and policy for certain problems be-
cause they fail to exhibit enough structure to admit com-
pact representation.6 Certainly, there is a very clear ten-
dency for the sequence of value trees produced in SVI to
make progressively more fine-grained distinctions, some of
which may have a marginal effect on value.

We now consider strategies that remove distinctions (nodes)
in the tree that induce small differences in value. The re-
sulting pruned value tree will no longer reflect regions that
have identical value, but regions of similar value. Our basic
policy construction scheme will be an approximate version
of SVI (called ASVI). In broad outline, we will construct
a sequence of approximate ranged value trees by: a) prun-
ing a value tree so that it makes fewer distinctions and ap-
proximates its true value; b) generating a new value tree by
structured Bellman backup based on the approximate value
tree. Essentially, we will perform region-based dynamic
programming, but coalesce regions that make distinctions
of marginal utility. We describe the ASVI algorithm in the
next section. We first describe ranged value trees and strate-
gies for pruning a single tree.

Suppose we are given a value tree such as that in Fig-
ure 3(a), but are unhappy with its size. A simple way to
reduce the size of the tree is to replace a (nontrivial) sub-
tree with a single leaf, for example, as shown in Figure 3(b).
Since we no longer distinguishing (e.g.) WR-states fromWR-states, the resulting tree can only approximately rep-
resent the true value function. One obvious choice of value
assignment for the larger region (new leaf) is the midpoint
of the values being replaced—this minimizes the maximum
error in the approximate value tree. We could instead label6For instance, one can easily construct examples of small
(polynomial) Bayes net descriptions of MDPs that have value
functions with many (exponential) distinct values [5].
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the new region with a range encompassing all replaced val-
ues (as shown in the figure). Ranges play a valuable role in
ASVI, so we assume that all approximate value functions
are represented by ranged value trees (r-trees): each leaf is
labeled with a range [u; l] representing the maximum (up-
per) and minimum (lower) values associated with states in
the corresponding region. Point-valued regions (hence, ex-
act value functions) are represented by setting u = l.
For any ranged value function V , we take the upper value
functionV " to be the value function induced by considering
the upper entries of V . The lower value function V # and
the midpoint function V $ are defined in the obvious way.
In choosing a particular value for a region given V (e.g., in
action selection), one can obviously recover the midpoint
from the range and use the functionV$ as needed. For any
state s and ranged functionV , we define span(s) to be u�l,
where u and l are the upper and lower values for the region
containing s. The span of V is the maximum of all such
spans. The maximum error in the induced value functionV$, assuming that the ranges in V contain the true values
of all states, is span(V )=2.

When pruning an r-tree, we may either want the most ac-
curate tree of a fixed (maximum) size, or the smallest tree
of a fixed (minimum) accuracy. This problem, of course, is
strongly related to work on pruning decision trees in clas-
sification. Given a fixed decision tree (assuming training
has been completed), Bohanec and Bratko [3] present an
algorithm for producing the sequence of pruned trees of
decreasing size such that each tree in the sequence is the
most accurate among all trees of that size. We can apply
similar ideas in our setting, where the aim is to produce
ranged value functions with the smallest span. The algo-
rithm is shown in Figure 4. Several points are worth not-
ing. We assume that the initial tree is ranged, and produce
the new r-trees with (possibly) larger ranges by collapsing
subtrees. The sequence of trees is implicit in the variable
SEQ-LABEL: subtrees are replaced in the order described

by SEQ-LABEL. If variables are boolean, the sequence of
produced trees is dense (there is a tree for each size less than
the initial size of the tree). Finally, in practice, the algorithm
is not run to completion. Instead, we terminate when either:
a) the r-tree at some point has a range larger than some max-
imum specified range �, in which case the previous pruned
tree is the desired tree; or b) the r-tree has been reduced to
some maximum allowable size. Which of these choices is
used will be application dependent.

The amount of pruning that one can do by removing sub-
trees, within acceptable tolerances—indeed the size of the
tree before pruning—may be strongly influenced by the
node ordering used in the value tree. Again, this issue arises
in research on classification [21, 25]. Finding the smallest
decision tree representing a given function is NP-hard [14],
but there are feasible heuristics one can use in our setting to
reorder the tree to make it smaller and/or more amenable to
pruning. Among these, one appears rather promising and is
strongly related to the information gain heuristic [21].7
5 Policy Construction with Approximate

Value Functions

5.1 The ASVI Algorithm and its Properties

Armed with a method for pruning an r-tree, we now exam-
ine how this can be applied to a policy construction tech-
nique like SVI. Our basic strategy can be described as fol-
lows. We use the reward Tree(R) as the ranged functionV 0

(the ranges initially will be point values). Given any7Roughly, we take the existing tree and categorize each vari-
able according to the size of the ranges induced when it is either
true or false—this can be done in one sweep through the tree. The
variable with the smallest ranges is installed at the root of the tree
(e.g., see [25]). This is repeated with the variables remaining in
the new subtrees. We defer details to the full paper. (Thanks to
Will Evans for his help with these ideas.)



Input: ranged value tree T
Output: Labels SEQ-LABEL indicating order in which to replace
subtrees rooted at labeled node

1. Let SEQ = 1
2. Let F be the set of penultimate nodes in T (non-leaf nodes

all of whose children are leaves)
3. For each n 2 F , set R-label(n) = [un; ln] whereun = maxfu : [u; l] labels a child of ng, and ln = minfl :[u; l] labels a child of ng, and
4. While F 6= ;

(a) Let n = argminfun � ln : n 2 Fg
(b) SetSEQ�LABEL(n) = SEQ; SEQ = SEQ+1
(c) Set F = F � fng
(d) If m = Parent(n) exists and Children(m) \ F = ;

then addm toF and set R-label(m) = [um; lm] whereum = maxfuc : [uc; lc] is R-label of a child cg lm =minflc : [uc; lc] is R-label of a child cg
Figure 4: Algorithm for Optimal Sequence of Pruned
Ranged Value Trees

1. Set V 0 = R; set i = 0
2. Prune V 0

, under some pruning criterion, to produce eV 0
3. Repeat until stopping criterion holds (w.r.t. eV i and eV i+1)

(a) Construct ranged Q-trees Qi+1a for each action a usingeV i as the terminal value function
(b) Merge the treesQi+1a to produce ranged value functionV i+1
(c) Prune V i+1

, under some pruning criterion, to produceeV i+1; Increment i
Figure 5: General Structure of ASVI

ranged function V i
, we create a pruned tree eV i by prun-

ing V i
within some specified tolerance (or size) to get a

more compact, but approximate, representation of V i
. The

pruned tree eV i is then used as the basis for Bellman backups
to produce a new r-tree V i+1

. This new r-tree is constructed
in a manner very similar to that used in ordinary SVI, the
key difference lying in the use of the ranges in eV i instead of

point values. We note that V i+1
is itself an approximation

of the true i+1-step value function V i+1, since it was pro-
duced using an approximation of V i. However, V i+1 will

be further approximated by pruningV i+1
to produce eV i+1.

The approximate SVI algorithm (ASVI) is described in gen-
eral terms in Figure 5. The general structure shows the pro-
duction of a sequence of (ranged) approximations V n

, eV n
of the optimal n-step value functions V n. The function V n
is produced by structured Bellman backup and eV n by ad-

ditional pruning. We elaborate on the crucial steps in the
algorithm below.

The steps involved in producing the value function V i+1
(i.e., Steps 3(a) and 3(b)) are reasonably straightforward,
but deserve some elaboration. The production of the r-treeQi+1a proceeds exactly as it does in SVI with one minor
exception. Since the target value tree eV i is labeled with
ranges, it is a simple matter to produce ranges for the leaves

of Qi+1a : we simply take the expected future value using
the upper values for the target regions to produce the upper
value for a leaf in the new tree and lower values similarly.
Conceptually, we can treat the new Q-tree as having ranges
produced using the trees eV i" and eV i#.

Slightly more subtle is the merging of Q-trees in Step 3(b).
Merging requires that for each state we determine which ac-
tion choice maximizes future expected value. In SVI this is
reasonably straightforward: we find a partition (tree) that
subsumes each Q-tree and label the leaves of this larger
tree with the maximum value from the corresponding parti-
tions in the set of Q-trees. In ASVI, these partitions are la-
beled with ranges that can’t necessarily be compared with
a max operator. Instead we label the leaves of V i+1

with
the maximum of all upper labels of the corresponding par-
titions in the Q-trees, and the maximum of all lower labels
of the corresponding partitions. Clearly, choosing the maxi-
mum of the upper labels is correct and bounds the true value
of a state s. In the case of the lower labels, there exists an
action that guarantees state s has the maximum of the ex-
pected values among the lower labels, namely the action
used to derive the maximizing Q-tree. This is therefore a
tight lower bound on the true value of state s.8
The termination of ASVI raises some interesting issues.
Exact value iteration is guaranteed to converge because the
transformation operation (the Bellman backup) on value
functions is a contraction operator with respect to the supre-
mum norm (see Equation (2)). The same does not apply
when the intermediate value functions are approximated.
Indeed, without a well-thought out stopping criterion, we
can construct (quite straightforward and natural) examples
in which the pruning of value trees causes ASVI to cy-
cle through a sequence of identical value functions without
termination.9 To deal with this situation, we adopt a fairly
conservative approach: we stop whenever the ranges of two
consecutive value functions indicate that the criterion given8Note that this argument relies crucially on the fact that we
need not pick an action at this point; there will generally be no sin-
gle action that one can assign to each state in the region to ensure
this maximum lower bound is achieved for all states. But this is
irrelevant to the construction of the value function.9For further discussion of convergence problems that arise due
to approximation, see [8].



Table 1: Results in the 400 state domain for both fixed and sliding tolerance pruning.

Fixed Tolerance Sliding Tolerance
Pruning Iterations Time (s) Max. Error Pruning Iterations Time (s) Max. Error

0 20 761 0
1 13 156 0.105 5% 11 100 0.708
2 12 129 0.478 10% 11 68 2.190
3 11 88 0.707 15% 11 59 4.596
5 11 70 1.037 20% 10 43 6.012
7 8 46 2.189 30% 8 28 18.295
9 2 1 42.47 40% 6 14 21.436
10 2 1 74.135 50% 5 8 33.019

by Equation (2) might be satisfied. Specifically, the use of
encompassing ranges allows us to test this condition in a
way that is impossible with simple point valued approxima-
tion. For any two ranged value functions V;W , we define(V �� W )(s) = minfjr� r0j : V #(s) � r � V "(s);W #(s) � r � W "(s)g
We terminate ASVI when the following condition holds:kV i+1 �� V ik � " (3)

In other words, when the ranges for every state in succes-
sive value approximations either overlap or lie within " of
one another, we terminate. We note that testing this con-
dition with two r-trees is quite simple, involving only the
construction of a (minimal) subsuming tree.

Regardless of the pruning criterion, as long as it produces
sound r-trees, we can show the following results.

Prop. 1 Let eV i be the ith value tree produced by ASVI.
Then eV i# � V i � eV i".

Thus the i-step ranged value functions “contain” the opti-
mal i-step value functions for the MDP. For finite-horizon
problems, this is an important characteristic. It allows one
to specify different error bounds for different regions of the
state space—if the value function is accurate in certain re-
gions of the state space, this knowledge is not “washed out”
in global error by larger error in other regions. With respect
to infinite horizon policies, Proposition 1 guarantees termi-
nation:

Prop. 2 If the stopping criterion specified by Equation (3)
is used, ASVI is guaranteed to terminate. Its rate of conver-
gence is linear (at least that of value iteration).

Finally, it is easy to verify the following error bounds.

Prop. 3 Let ASVI terminate (according to Equation (3))
with ranged value function V = eV i; and let � = span(V ).

Then kV � � V k � �(2� + ")1� �
The induced policy � is such thatkV � � V�k � 2�(2� + ")1� �
We note that the methods of SPI, as described in Section 3,
can be applied to produce a tree-structured policy using the
midpoint value function eV n$.10
It is also worth noting that the argument for convergence of
ASVI cannot be applied to ASPI (approximate structured
modified policy iteration). ASPI requires that intermediate
policies be produced (and partially evaluated); but because
ranges are used one cannot generally guarantee that the se-
quence of policies is improving. One action may be better
in one part of a region but worse in another. While ASPI
works well on many examples, it can rather easily fall into
cyclic behavior. Thus, value iteration seems the ideal candi-
date for approximation using ranges. However, we are cur-
rently investigating more refined applications of these ideas
to policy iteration-based algorithms.

5.2 Practical Considerations and Results

In this section, we consider some of the more pragmatic is-
sues associated with putting ASVI into practice. We first
consider pruning strategies. Suppose we have a desired
“percentage” tolerance t for error (e.g., all approximate val-
ues should lie within t = 0:1, or 10%, of true value). There
are two ways to implement such a tolerance: a) a fixed tol-
erance set at t �1� � jRmax �Rminj10See [23] for discussion of policy error given an approximate
value function.



or b) a sliding tolerance, where the tree for the n-stage to
go function V n is pruned using a tolerance oft nXi=0 �ijRmax �Rminj
(Here Rmax and Rmin are the maximum and minimum im-
mediate rewards; hence these terms reflect the largest range
in values obtainable over a finite or infinite horizon.) A slid-
ing tolerance is sometimes useful since the magnitude of
value functions V n tends to grow with n—at early stages a
fixed tolerance may prune too aggressively, especially if we
are interested in producing reasonably accurate value func-
tions at all stages. However, both approaches give good
results, for the fixed tolerance scheme will stop pruning
smaller distinctions eventually. Experiments suggest that
fixed tolerance runs faster, produces less complicated trees
at convergence, and is only slightly less accurate that slid-
ing tolerance.

Related to this is the fact that aggressive pruning often
removes small distinctions present in Tree(R), which are
reintroduced in the next stage, which are pruned again, etc.
We are currently exploring methods that prune Tree(R) ini-
tially, and only introduce those distinctions after a suffi-
cient number of iterations. Finally, the error bounds for
SVI are extremely conservative and are due primarily to the
need to detect convergence. Most of our experiments do
not come close to achieving such poor results. However,
we are exploring methods for running several more itera-
tions of “fine-tuning” after convergence, focusing on spe-
cific parts of the state space, and methods to detect whether
additional progress is being made.11
Tables 1 and 2 display the results of pruning in two differ-
ent domains. In both cases, Iterations is the number of it-
erations of SVI required for convergence, and Max. Error
is the maximum (over all states) of the difference between
the optimal value of a state and its actual value under the
(approximately optimal) policy returned by ASVI. Table 2
also contains the average error over all states, and the num-
ber of leaves in the ranged value tree produced. Note that
there is no pruning of Tree(R) or fine-tuning of the reward
tree in either domain, but we are currently exploring such
techniques.

The first domain (Table 1) is a more complex version of the
coffee-robot domain described earlier. It contains eight ac-
tions and six variables (two of which are five-valued and the
rest boolean) giving 400 states. Values of states in this do-
main range from -90 to zero. Even relatively small amounts
of pruning, resulting in errors of less than two percent, result11Other measures such as the span seminorm look promising in
this respect.

Table 2: Results in an exponential domain for fixed maxi-
mum error pruning.

Pruning Iter Time(s) MaxErr AvgErr Tree size
0 44 3153 0 0 1024

0.25 42 63 1.38 0.047 88
0.5 33 31 2.12 0.058 80
1.0 14 6 1.91 0.068 50
1.5 3 0.3 2.13 0.077 10
2.0 1 0.1 8.10 0.567 1

in an extremely large reduction in computation time.12 As
expected, the actual errors are much smaller than the theo-
retical maximum except when pruning ranges become very
large and result in trivial policies.

Table 1 also compares the effects of fixed and sliding toler-
ance pruning. Fixed tolerance pruning is somewhat faster
than sliding tolerance when compared on runs with similar
error; this is due to the much smaller trees produced early on
in ASVI. These small initial trees greatly reduce the variety
of possible value functions that can be produced, so that, for
example, any pruning range between six and eight will pro-
duce the same value tree for thisdomain. In contrast, sliding
tolerance pruning results in much more gradual changes in
value as the tolerance t increases, making it easier to select
good pruning tolerances.

The second domain (Table 2) is one in which every state
has a unique value, leading to worst-case behavior for struc-
tured methods such as SVI. While the problem has a com-
pact input description, SVI must (ultimately) perform back-
ups for each state, with the additional overhead of tree con-
struction. The problem consists of ten boolean variable and
ten actions, with 1024 states having values from 0 to 10.
This domain demonstrates the value of pruning in ASVI in
preventing the exponential blowup which leads to the very
poor performance of SVI. It also shows that even when the
same number of iterations are necessary for convergence,
the reduced tree sizes lead to large performance improve-
ments. This domain is an example of one where variable or-
dering is critical. Had we chosen a poor ordering, it is likely
that very little pruning would have been possible, resulting
in little or no savings.1312The time without pruning was produced using SVI and will
therefore appear quite slow. Better exact algorithms such as SPI
(i.e., structured modified policy iteration) can also be used. The
pruning times still compare very favorably with the 434s for find-
ing the optimal value using SPI.13We have not yet experimented with variable reordering; ASVI
uses orderings implicit in the problem representation, which tend
to be natural and compact. However, examples like this point to
the need for further exploration in reordering before pruning.



6 Concluding Remarks

There are a number of directions that remain to be explored,
including additional experiments with the strategies sug-
gested in the previous section. We are also interested in ap-
proximation methods based on algorithms other than value
iteration. Finally, in the full paper we describe the applica-
tion of our pruning method to RL. Roughly, following Diet-
terich and Flann [12], we can use action descriptions to per-
form (a stochastic, non-goal-based) generalization of goal-
regression along explored trajectories. Pruning produces
generalizations of the state space that correspond to regions
with approximately the same (currently estimated) value.
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