
To appear, Proc. 14th National Conf. on AI (AAAI-97),
 Providence, August, 1997

Structured Solution Methods for Non-Markovian Decision Processes�
Fahiem Bacchus

Dept. of Computer Science
University of Waterloo

Waterloo, Ontario
Canada, N2L 3G1

fbacchus@logos.uwaterloo.ca

Craig Boutilier
Dept. of Computer Science

University of British Columbia
Vancouver, B.C.

Canada, V6T 1Z4
cebly@cs.ubc.ca

Adam Grove
NEC Research Institute

4 Independence Way
Princeton NJ 08540, USA

grove@research.nj.nec.com

Abstract

Markov Decision Processes (MDPs), currently a popular
method for modeling and solving decision theoretic plan-
ning problems, are limited by the Markovian assumption: re-
wards and dynamics depend on the current state only, and
not on previous history. Non-Markovian decision processes
(NMDPs) can also be defined, but then the more tractable so-
lution techniques developed for MDP’s cannot be directly ap-
plied. In this paper, we show how an NMDP, in which tem-
poral logic is used to specify history dependence, can be au-
tomatically converted into an equivalent MDP by adding ap-
propriate temporal variables. The resulting MDP can be rep-
resented in a structured fashion and solved using structured
policy construction methods. In many cases, this offers sig-
nificant computational advantagesover previous proposals for
solving NMDPs.

1 Introduction
Markov decision processes (MDPs) have proven to be an ef-
fective modeling and computational paradigm for decision-
theoretic planning (DTP). MDPs allow one to deal with plan-
ning problems that involve uncertainty, multiple objectives,
and nonterminating (process-oriented) behavior. A funda-
mental assumption of this model is that the reward function
and system dynamics of the underlying process are Marko-
vian—all the information needed to determine the value of a
particular state or the effects of an action at that state must
be encoded within the state itself. This allows computation-
ally effective dynamic programming techniques to be used to
solve decision problems [Put94].

Nevertheless, the Markovian requirement is often not met
by planning problems that are encoded in the “obvious” way.
For instance, it is often natural to specify desirable behav-
iors by referring to trajectory properties (properties of the se-
quence of states passed through, i.e., the system’s history)
in addition to just the current state. This has shown up in
work on planning [HH92, Dru89, Kab90, GK91] (e.g., in
the use of maintenance goals); and in [BBG96] we have ar-
gued that many reward functions for process-oriented prob-� The work of Fahiem Bacchus and Craig Boutilier was sup-
ported by the Canadian government through their NSERC and IRIS
programs.1Copyright c
1997, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

lems are most appropriately viewed in this light (e.g., re-
sponses to requests, maintaining desirable systems proper-
ties, etc.). For instance, rewarding an agent for achieving a
goal within k steps of a request being issued is a natural, yet
history-dependent, specification of desirable behavior. Sim-
ilarly, process dynamics (action effects) are sometimes most
naturally expressed in a history dependent fashion.

In [BBG96] we examined Non-Markovian decision pro-
cesses (NMDPs) and identified two key issues, namely, the
specification of non-Markovianproperties and the solutionof
NMDPs.2 A temporal logic called PLTL was used as a mech-
anism for specifying the non-Markovian aspects of a system,
and we will adopt the same approach here. However, we pro-
pose a very different way of solving the NMDPs so specified.
As in the earlier paper, we develop a method for automati-
cally convertingan NMDP into an equivalent MDP, solutions
to which can be re-interpreted to yield solutions to the origi-
nal NMDP. The key difference between the two papers is that
[BBG96] presents a state-based construction, while this pa-
per works with structured representations of (N)MDPs. Each
approach has advantages and disadvantages.

In either case, one can think of each state in the original
NMDP as leading to multiple states in the resulting MDP, the
new states being distinguished by various relevant histories.
The difference, in essence, is how the new MDP is repre-
sented. The algorithm in [BBG96] takes an NMDP and a re-
ward function specified using PLTL formulas, and produces
a new MDP whose states are listed explicitly. One advantage
of this approach (which will not be true of the proposal in the
current paper) is that it is possible to produce a minimal ex-
panded MDP (i.e., one with the fewest number of states nec-
essary to capture the required historical distinctions). How-
ever, as we now discuss, there are also important disadvan-
tages inherent in state-based constructions.

To understand these disadvantages, note that many DTP
problems are described in terms of a set of variables or propo-
sitions (particularly in AI where logical representations are
common). The resultant MDPs have as states all possible as-
signments of values to these variables. In such cases, a ma-
jor difficulty with any state-based algorithm for MDPs is that2In [BBG96] we considered non-Markovian reward functions
only, although the approach could easily be extended to deal with
history dependence in the system dynamics as well. In this paper
we consider both rewards and dynamics explicitly.

To appear, Proc. 14th National Conf. on AI (AAAI-97),
 Providence, August, 1997

fact that the state space grows exponentially with the num-
ber of problem variables. A recent focus in DTP research has
been the development of MDP representation and solution
techniques that do not require an explicit enumeration of the
state space. For instance, the use of STRIPS [BD94, DF95,
KHW94] or Bayes nets [BDG95, BD96] to represent actions
in MDPs, and structured policy construction (SPC) methods
that exploit such representations [DF95, BDG95, BD96] to
avoid explicit state-based computations when solving MDPs,
promise to make MDPs more effective for such DTP prob-
lems.

For such problems, the NMDP conversion algorithm pro-
posed in [BBG96] has some obvious drawbacks. First, be-
ing state-based, its complexity is exponential in the number
of problem variables, because even if the original NMDP has
a compact representation in terms of variables the final MDP
will not. Second, since the MDP output by that algorithm is
represented as a set of states, any structure present in the orig-
inal (structured) NMDP will be lost or obscured, preventing
the use of SPC algorithms. Finally, as we will see, the history
that must be encoded itself exhibits significant structure, but
this is not exploited in [BBG96].

Our approach to NMDP conversion in this paper assumes
the existence of a compact variable-based description of the
given NMDP, and works by adding temporal variables to this
description. We thus expand the state space without regard to
minimality, but this expansion is implicit—wenever enumer-
ate all states. The the conversion is thus very efficient, and
retains the structured and compact representation we started
with. The output, being a structured MDP, can be used di-
rectly by SPC algorithms. This last consideration has an in-
teresting and fortunate consequence. Unlike the state-based
approach, our proposal here does not produce an MDP whose
(implicit) state space is minimal; but to compensate for this,
we can exploit the fact that SPC algorithms have some abil-
ity to automatically (and dynamically) detect the relevance of
particular variables at various points in policy construction.
As such, unlike [BBG96], we need not be directly concerned
about only adding the “relevant” history. To a significant ex-
tent, relevance can be detected during optimization by appro-
priate SPC algorithms.

This points to a related advantage of our technique, which
is that relevant history is dynamically determined in SPC al-
gorithms. The algorithm of [BBG96] is based on a static
analysis of the NMDP, before optimal policy construction is
attempted. That algorithm must encode enough history at a
given state s to determine the reward at any future reachable
state t. This ensures that any policy, and not just the optimal
one, will have the same total reward in the constructed MDP
as in the original NMDP. But in fact we are generally only
interested in the optimal policy. As we construct this pol-
icy, we may notice that many a priori reachable states t (i.e.,
reachable with non-zero probability through some sequence
of actions) are, in fact, not reachable when the optimal policy
is adopted. Consequently, some of the history we added (in
order to determine the reward at state t) may end up being
“irrelevant”. Our algorithm, in conjunction with SPC algo-
rithms used for optimization, implements a dynamic analy-
sis of the NMDP. Once it is determined that t is not reachable

during policy construction, history relevant only to t (and re-
lated states) will be ignored. Though the state space is larger,
only relevant distinctions are, for the most part, considered.

We conjecture that such “dynamic irrelevance” is espe-
cially likely to arise in circumstances involving temporally
dependent rewards. For example, a temporally-extended re-
ward function may associate a reward with delivering a item
within 5 time stages of an order being placed. Under certain
conditions (e.g., inclement weather) the risk associated with
any attempt at delivery may be too great for such an under-
taking. During policy construction, this will be recognized
and the history relevant to determining whether this goal can
be achieved (i.e., keeping track of when in the past an order
was placed) can be ignored in such states. The “irrelevance”
of the required history cannot be detected a priori.

A final contrast with [BBG96] is the relative simplicity of
our proposal in the current paper, which is based on well-
known properties of temporal logic and the observation that
these can be made to integrate well with SPC. Although the
technical aspects of our contribution are straightforward, it
has considerable potential for improving our ability to solve
history-dependent decision problems.

We begin with a brief description of MDPs, NMDPs and
the temporal logic used in [BBG96] to specify trajectory
properties. We also give an overview of the SPC algorithm
of [BDG95]. Then we present our technique of adding tem-
poral variables to convert an NMDP to an MDP. We close the
paper with some further observations.

2 Background
2.1 Markov Decision Processes
A fullyobservable Markov Decision Process [How60, Put94]
can be characterized by a finite set of states S, a set of actionsA, and a reward function R. The actions are characterized
by probability distributions, and we write Pr(s1; a; s2) = p
to denote that s2 is reached with probability p when actiona is performed in state s1. Full observability entails that the
agent always knows what state it is in. A real-valued reward
function R reflects the objectives, tasks and goals to be ac-
complished by the agent, with R(s) denoting the (immedi-
ate) utility of being in state s. Thus, an MDP consists of S,A, R and the set of transition distributions fPr(s; a; �) j a 2A; s 2 Sg.

A stationary Markovian policy is a mapping � : S ! A,
where�(s) denotes the action an agent should perform when-
ever it is in state s. We adopt expected total discounted re-
ward over an infinite horizon as our optimality criterion: the
current value of future rewards is discounted by some factor� (0 < � < 1), and we maximize the expected accumu-
lated discounted rewards over an infinite time period. The
expected value of a fixed policy� at any state s can be shown
to satisfy [How60]:V�(s) = R(s) + �Xt2S Pr(s; �(s); t) � V�(t)
The value of � at any state s can be computed by solving this
system of linear equations. A policy � is optimal if V�(s) �V�0(s) for all s 2 S and policies �0. V� is called the value

To appear, Proc. 14th National Conf. on AI (AAAI-97),
 Providence, August, 1997

function. We refer to [Put94] for an excellent treatment of
MDPs and associated computational methods. See [DW91,
BD94, BDG95] on the use of MDPs for DTP.

2.2 Structured Representations
For DTP problems, we are often interested in MDPs that can
be represented concisely in terms of a set of features or vari-
ables. We adapt the Bayes net/decision tree representation
used by [DK89, BDG95], representing an MDP with a set of
variables P, a reward decision tree TreeR , the set of actionsA,
and a set of action decision trees fTree(a; p) j a 2 A; p 2 Pg.

P is a set of n variables that implicitly specifies the state
space S. For simplicity, we assume that all variables take two
values, f> (true);? (false)g; consequently we can identify
each variable p 2 P as a boolean proposition. The state spaceS is then the set of all possible truthassignments to these vari-
ables (i.e., S is the product space of the variable domains).
The number of states is exponential in the number of vari-
ables (thus, in our case, 2n).

The rest of the representation relies on the use of decision
trees whose internal nodes are tests on individual variables in
P. The leaves of these trees are labeled with different types
of values, depending on the type of tree. Any of these trees,
say Tree, can be applied to a state s, to yield a value Tree[s].
This value is computed by traversing the tree using the truth
assignments specified by s to determine the direction taken
at internal nodes. The value returned is the label of the leaf
node reached. That is, Tree[s] is the label of the leaf associ-
ated with the (unique) branch of the tree whose variable la-
bels are consistent with the values in s.

TreeR is a decision tree that specifies the (immediate) re-
ward of each state in S. In particular, the leaves of TreeR are
labeled with real values, and the rewardR(s) assigned to any
state s is TreeR[s]. The set of action trees determine transi-
tion probabilities. These trees have their leaves labeled with
real numbers in [0; 1]. Tree(a; p)[s] specifies the probability
that p will be true in the next state given that action a was
executed in state s. Thus for each variable p0 2 P we can de-
termine the probability of it being true in the next state from
Tree(a; p0)[s]. These events are assumed to be independent
so we can obtain the entire distribution over the successor
states, Pr(s; a; �), by simply multiplying these probabilities.3

Although [BDG95] describes their representation in terms
of Bayes nets, it is nevertheless equivalent to ours, including
the independence assumption. One advantage of the Bayes
net representation is that it suggests an easy way of relax-
ing this assumption. (This possibility was not explored in
[BDG95], but see [Bou97] for details.) Thus, SPC algo-
rithms can be modified to deal with dependence between
present variables, although they become somewhat more
complex. Such modifications are entirely compatible with
our proposals here.3In particular, we havePr(s; a; s0) = Yp : s0j=p Tree(a; p)[s] Yp : s0 6j=p(1� Tree(a; p)[s]):

2.3 Structured Policy Construction
The basic idea behind the SPC algorithms described in
[BDG95, BD96] is the use of tree-structured representations
during policy construction. In particular, a policy � can be
represented as a decision tree Tree� where the leaves are la-
beled by actions. That is, Tree�[s] specifies the action to ex-
ecute in state s. Similarly a value function V can be repre-
sented as a tree with real-valued labels.

The SPC algorithm is based on the observation that some
of the traditional algorithms for constructing optimal policies
can be reformulated as tree-manipulation algorithms. In par-
ticular, at all points in the algorithm the current value func-
tion and current policy are represented as trees. Intuitively,
these algorithms dynamically detect the relevance of partic-
ular variables, under specific conditions, to the current value
function or policy. The particular tree-manipulation steps
necessary are not trivial, but the details are not directly rel-
evant here (they are presented in [BDG95]).

We have already alluded to some of SPC’s properties. If
the dynamics and reward function of the MDP are simple, the
optimal policy very often has a simple structure as well (see
[BDG95] for examples). SPC will find this policy in just as
many iterations as modified policy iteration (a popular and
time-efficient algorithm), but often without ever considering
“large” trees—even though it is (implicitly) optimizing over
exponentially many states. Variables that are not relevant, or
are only relevant in some contexts, will not necessarily have
an adverse effect on complexity—in many cases, they just do
not appear as decision nodes in the trees when they are not
needed. We note that SPC offers another advantage, namely
its amenability to approximation; see [BD96].

2.4 Non Markovian Decision Processes
Following [BBG96], we use a temporal logic called PLTL
(Past Linear Temporal Logic) to specify the history depen-
dence of rewards and action effects. PLTL is a past ver-
sion of LTL [Eme90]. We assume an underlying finite set
of propositional constants P, the usual truth functional con-
nectives, and the following temporal operators: S (since),2 (always in the past), 3 (once, or sometime in the past)
and
 (previously).4 The formulas �1 S �2, 2�1, 3�1 and
�1 are well-formed when �1 and �2 are.5 The semantics
of PLTL is described with respect to models of the form T =hs0; � � � ; sni, n � 0, where each si is a state or truth as-
signment over the variables in P. For any trajectory T =hs0; � � � ; sni, and any 0 � i � n, let T (i) denote the initial
segment T (i) = hs0; � � � ; sii.

A temporal formula is true of T = hs0; � � � ; sni if it is
true at the last (or current state) with respect to the history
reflected in the trajectory. We define the truth of formulas in-
ductively as follows:� T j= P iff sn j= P , for P 2 P4These are the backward analogs of the LTL operators until, al-
ways, eventually and next, respectively.5We use the abbreviation
k for k iterations of the
 modality
(e.g.,
3� �

�), and
�k to stand for the disjunction of
i
for 1 � i � k, (e.g.,
�2� �
� _

�).

To appear, Proc. 14th National Conf. on AI (AAAI-97),
 Providence, August, 1997� T j= �1 ^ �2 iff T j= �1 and T j= �2� T j= :� iff T 6j= �� T j= �1S�2 iff there is some i � n s.t. T (i) j= �2 and for
all i < j � n, T (j) j= �1 (that is, �2 was true sometime
in the past and �1 has been true since then)� T j= 2� iff for all 0 � i � n, T (i) j= � (� has been true
at each point in the past)� T j= 3� iff for some 0 � i � n, T (i) j= � (� was true
at some point in the past)� T j=
� iff n > 0 and T (n� 1) j= � (� was true at the
previous state)

If, for example, we wanted to reward behaviors that
achieve a condition G immediately after it is requested by
a command C, we could specify a reward function that re-
wards states satisfying the PLTL formula G ^
C. Simi-
larly, rewarding states satisfying G ^
�kC would reward
behaviors that achieveGwithink steps its request. [BBG96]
gives further examples of how the logic can be used to spec-
ify useful historical dependencies. Using a logic for mak-
ing such specifications provides all of the usual advantages
gained from logical representations. In particular, we have a
compositional language that can be used to express arbitrarily
complex specifications, and the same time we have a precise
semantics for our specification no matter how complex.

Our proposal for using PLTL formulas within the tree-
structured representational framework of Section 2.2 is
straightforward. Recall that we represented the reward func-
tion and dynamics using decision trees, whose tests were on
the value of individual variables. We simply extend this by
allowing a internal node in the decision tree to also test the
value of an arbitrary PLTL formula. In this way, both re-
wards and dynamics can depend on history, and we can repre-
sent any NMDP, whose history dependence is specified using
PLTL, as a structured NMDP.

3 Temporal Variables
Given some structured NMDP N , as described above, we
want to find an equivalent6 structured MDP M, so that the
SPC algorithm can be used to find optimal policies. To do
this, we introduce temporal variables into the domain that re-
fer to relevant properties of the current trajectory. Each tem-
poral variable is used to track the truth of some purely tempo-
ral formula of PLTL (i.e., a formula whose main connective
is temporal). Temporal variables are thus boolean.

3.1 Conditions on Temporal Variable Sets
In the new MDP M, the state must contain sufficient infor-
mation to determine rewards and the dynamics; unlikeN , it
will not be able to refer to history explicitly. Consider any
temporal formula� appearing as a decision node in one of the6Intuitively, equivalence implies that an optimal policy for the
constructed MDP can be re-interpreted as an optimal policy for the
original NMDP. See [BBG96] for a formal definition.

decision trees ofN . It follows that any state inMmust con-
tain enough information to decide if� is true. For this reason,
we must at least add temporal variables to the state descrip-
tion that provide sufficient history so that this information can
be determined. Let T be the added set of temporal variables.
Each of these variables is associated with a formula of PLTL,
and we will often treat these variables as if they were formu-
las.

Definition 3.1 A set of temporal variables T is sufficient
for � iff there is some boolean function b� such that � �b�(T;P).
In other words, T is sufficient for � if the truth of � is de-
termined by some subset of the elements of T, together with
knowledge of certain state variables.

Since any formula in PLTL has the form b(t1; � � � ; tk)
for some boolean function b and purely temporal formulast1; � � � ; tk, finding a sufficient set of temporal formulas is
trivial: we can simply strip the main boolean connectives
from a temporal formula � until only purely temporal formu-
las remain, then make each of these a temporal variable.

However this set of temporal variables turns out not to be
suitable, because sufficiency is not the only requirement for
the set of variables T needed to build a suitable MDP. Since
the temporal variables we choose will be incorporated into
the new MDP M, we must be able to determine the dynam-
ics of these new variables. That is, just as we have trees
Tree(a; p) specifying the dynamics of the state variables p 2
P we must be able to construct trees Tree(a; t) that tell us how
to update the temporal variables t 2 T. Furthermore, these
dynamics must be Markovian.

Definition 3.2 A set of temporal variables T is dynamically
closed iff, for each t 2 T, there is some boolean function bt
such that t �
bt(T;P).
Given dynamic closure, the truth of any variable in T at a
given state can be determined from the values of variables
in T and P at the previous state. Hence, dynamic closure en-
sures that we can update the temporal variables while still sat-
isfying the Markov assumption.

Let T be dynamically closed, and consider bt as defined
above. Like any boolean formula, bt can be evaluated using
some decision tree Tt; the internal nodes of Tt test the values
of variables in T[P and the leaves are labeled> or?.7 The
dynamics of any temporal variable t are now easy to define:
we can set Tree(a; t), for all actions a, to be T 0t , where T 0t is
the tree exactly like Tt except that where Tt evaluates to >
(resp., ?) T 0t evaluates to 1 (resp., 0); that is, the truth values
are translated into probabilities.

We note that the dynamics of the temporal variables are
independent of the action executed. Furthermore, the deter-
minism of Tree(a; t) ensures that our independence assump-
tions on action effects (Section 2.2) remain valid.

We have shown that, if we augment the set of variables
of N with a dynamically closed set of temporal variables T
and define the dynamics as just discussed, then the resulting7In general, there are many trees that can be used to evaluate the
formula bt; an arbitrary tree can be chosen. However, some may be
more compact (hence, lead to greater efficiency) than others.

To appear, Proc. 14th National Conf. on AI (AAAI-97),
 Providence, August, 1997

NMDP is equivalent to the original with the exception of the
added variables, and the dynamics of the temporal variables
are Markovian. However, an even more important feature
of the construction is the following: because of the way we
have defined the dynamics, in any valid trajectory all tempo-
ral variables in T will faithfully reflect their intended mean-
ing. More precisely, consider any trajectory through the state
space of the new MDP. Since each t 2 T is one of the
variables defining the state space, then at each point t will
have some value (> or ?). But t is also a logical formula,
and so we can also ask whether (formula) t is true or false
of the trajectory we have followed. Our construction ensures
that (variable) t is true at any state iff the corresponding for-
mula is true of the trajectory followed (assuming all variables
are given correct values at time 0, the initial state). In other
words, a variable’s value coincides with its truth.

Suppose T is both dynamically closed, and sufficient for
every temporal formula � that appears as a decision node ei-
ther in TreeR or in any Tree(a; p) in N ; for concreteness,
imagine that � appears in TreeR. Sufficiency implies we can
replace the test of � by a test on the values of T [P, usingb� as defined in Definition 3.1. In fact, we can find some de-
cision tree that evaluates b�, and substitute this tree for the
internal nodes inN that test �. Doing this for all such �, the
result is a different tree for evaluating rewards (or in the case
of Tree(a; p), dynamics) that is semantically equivalent to the
original, and tests only variables in T[P. Thus, by using the
enlarged set of variables, we have removed all tests that de-
pend explicitly on history: this construction has delivered an
MDPM, equivalent toN , as required. Of course, the key to
the correctness of this construction is the faithfulness prop-
erty.

3.2 Construction of Temporal Variable Sets

It remains to show that a suitable set T exists; in other words,
that for any set of PLTL formulas � we can construct a dy-
namically closed set of temporal variables that is sufficient
for all � 2 �.

To begin, we define a subformula of a PLTL formula � to
be any well-formed PLTL formula contained as a substring of�. For example, if = p^2(q_
:p) then the subformulas
of are itself, p,2(q_
:p), q_
:p, q,
:p, and:p. A
first proposal for T might be to consider the set of all purely
temporal subformulas of � 2 �, denoted PTSub(�). For
above these are the subformulas2(q_
:p) and
:p. This
ensures sufficiency simply because any � 2 � is a boolean
combination of propositional symbols and its purely tempo-
ral subformulas. (In fact, we would not need all subformulas:
for above, only2(q_
:p) would be needed if sufficiency
were all we cared about.)

The problem with this is that it does not satisfy the dy-
namic closure property. For instance, the truth of2(q_
:p)
depends not only on what happened in the past, but also on
whether q _
:p is true now. (Recall that the semantics of2 are, informally, “...has been true always in the past, up to
and including the present.”) In this case, the truth of
:p
in the present must be known. Our representation, however,
requires that a variable’s value can be determined by the pre-

vious values of other variables.8
Instead, we will construct a set of temporal variables that

have
 as their main connective, because the truth of such
a formula depends only on the past. In fact, as we now
show, we can define T by prepending
 to each subformula
in PTSub(�) except those that already begin with
 (these
are retained without change). That is:

T = f
 j 2 PTSub(�); 6=
�g[f
 j
 2 PTSub(�)g
To show sufficiency, we use the following equivalences of

PLTL that allow us to insert preceding
 operators before any
other modal operator:

1. � S � � � _ (� ^
(� S �)).
2. 2� � � ^
(2�).
3. 3� � � _
(3�).
Consider any � 2 �; � is, of course, a boolean combina-
tion of primitive propositions in P and purely temporal sub-
formulas of PLTL. If any of the temporal subformulas used
in this expression do not begin with
, we can replace them
by the equivalent expressions according to the above. This
replacement process may need to be repeated several times,
but eventually it will terminate giving us a boolean combina-
tion over P[T that is equivalent to �, as required. Note that
the same construction allows us to represent any subformula
of � as a boolean combination over P [T.

Dynamic closure is shown very simply. Let
 2 T. By
definition must be a subformula of some � 2 � and so, as
we have just seen, is equivalent to some boolean combinationb over P [T. Thus
 �
b as required for dynamic
closure.

As an illustration, consider � = 3(p S (q _
r). From
this, we form the temporal variable set

T = ft1 =
3(pS(q_
r); t2 =
(pS(q_
r); t3 =
r)g:
Then � can be decomposed as follows:3(p S (q _
r)� p S (q _
r) _
3(p S (q _
r)

i.e. p S (q _
r) _ t1� ((q _
r) _ (p ^
(p S (q _
r)))) _ t1
i.e. ((q _ t3) _ (p ^ t2)) _ t1

4 Concluding Observations
We have shown how, given a structured NMDP consisting of
reward and action representations involving PLTL formulas,
one can construct a set of temporal variables that is dynami-
cally closed and sufficient for those formulas, and use these8Again we note that, in principle, dependence on present vari-
ables can be used; but we retain the original formulation for reasons
discussed in Section 2.2.

To appear, Proc. 14th National Conf. on AI (AAAI-97),
 Providence, August, 1997

to specify an equivalent MDP in compact form. We conclude
with some observations about our proposal and some direc-
tions for future work.

We first note that the new MDP can be constructed effi-
ciently. Let � be the collection of PLTL formulas appearing
in the NMDP specification. It is easy to see that the num-
ber of temporal variables added is at most equal to the num-
ber of purely temporal subformulas contained in �, which
is bounded by the total number of temporal operators in �.
Thus, we are adding only a modest number of new variables.
The time required to do so is O(T j�j), where T is the to-
tal size of the reward and action trees and j�j is the sum
of the lengths of formulas in �. Of course, one must keep
in mind that the implicit state space grows exponentially in
the number of added variables. But as we discussed in Sec-
tions 1 and 2.3, the size of the implicit state space is not nec-
essarily the key factor in the complexity of SPC algorithms.

We do not claim that our construction adds the minimal
number of extra variables to achieve its purpose. In fact, it
is easy to see that minimal state space size is sometimes not
achievable by adding variables at all. The reason is that the
required history can vary from state to state (indeed, this fact
motivates much of [BBG96]). Our approach cannot make
such fine distinctions: every state has the same set of vari-
ables “added” to it. On the other hand, the “dynamic irrel-
evance” feature of SPC may compensate for this. That is,
although the temporal variables can potentially cause us to
make unnecessary distinctions between histories at certain
states (as compared to [BBG96]), SPC attempts to focus only
on the variables whose values influence the choices made by
the optimal policy, and so will avoid some of these irrelevant
distinctions. Furthermore, SPC can avoid “dynamic irrele-
vances” that cannot be detected by the approach of [BBG96],
and is much more amenable to approximation in the solu-
tion of the resulting MDP. Empirical studies are, of course,
needed to quantify this tradeoff. We suspect that there will be
a range of domains where the SPC approach we are suggest-
ing here will be superior to the state-space based approach of
[BBG96] and vice versa. The interesting question will be to
attempt to characterize domain features that tend to favor one
approach over the other.

Not surprisingly, NMDPs (even in the structured frame-
work we are considering) can be much harder to solve than a
comparably sized MDP. As a simple example, suppose one
gets a reward each time q ^
np is true. Suppose also that
there is an action a that, if taken, is likely to lead to q becom-
ing true at some (unpredictable) time within the next n steps.
The optimal policy could well need to keep track of exactly
when p was true among the previous n steps (because it has
to know whether and when to try to achieve q). There may
be no sub-exponential (in n) decision tree representation of
such a policy. Hence, SPC is not guaranteed to be efficient.

Finally, in this paper, we have omitted any discussion of
the various optimizations that are possible. For instance, one
might gain by carefully choosing the decision tree used to
evaluate b� and bt (Section 3). These issues deserve care-
ful study. More importantly for future work, however, is the
need for empirical studies to explore the actual performance
that might be seen in practical cases.

References
[BBG96] Fahiem Bacchus, Craig Boutilier, and Adam Grove. Re-

warding behaviors. In Proceedings of the Thirteenth National
Conferenceon Artificial Intelligence, pages1160–1167,Portland,
OR, 1996.

[BD94] Craig Boutilier and Richard Dearden. Using abstractions
for decision-theoretic planning with time constraints. In Proceed-
ings of the Twelfth National Conferenceon Artificial Intelligence,
pages 1016–1022, Seattle, 1994.

[BD96] Craig Boutilier and Richard Dearden. Approximating value
trees in structured dynamic programming. In Proceedings of the
Thirteenth InternationalConferenceon Machine Learning, pages
54–62, Bari, Italy, 1996.

[BDG95] Craig Boutilier, Richard Dearden, and Moisés Gold-
szmidt. Exploiting structure in policy construction. In Proceed-
ings of the Fourteenth International Joint Conference on Artifi-
cial Intelligence, pages 1104–1111, Montreal, 1995.

[Bou97] Craig Boutilier. Correlated action effects in decision-
theoretic regression. (manuscript), 1997.

[DF95] Thomas G. Dietterich and Nicholas S. Flann. Explanation-
based learning and reinforcement learning: A unified approach.
In Proceedings of the Twelfth International Conference on Ma-
chine Learning, pages 176–184, Lake Tahoe, 1995.

[DK89] Thomas Dean and Keiji Kanazawa. A model for reason-
ing about persistence and causation. Computational Intelligence,
5(3):142–150, 1989.

[Dru89] M. Drummond. Situated control rules. In Proceedings
of the First International Conference on Principles of Knowledge
Representation and Reasoning, pages 103–113, Toronto, 1989.

[DW91] Thomas Dean and Michael Wellman. Planning and Con-
trol. Morgan Kaufmann, San Mateo, 1991.

[Eme90] E. A. Emerson. Temporal and modal logic. In J. van
Leeuwen, editor, Handbook of Theoretical Computer Science,
Volume B, chapter 16, pages 997–1072. MIT, 1990.

[GK91] P. Godefroid and F. Kabanza. An efficient reactive plan-
ner for synthesizing reactive plans. In Proceedings of the Ninth
National Conference on Artificial Intelligence, pages 640–645,
1991.

[HH92] Peter Haddawy and Steve Hanks. Representations for
decision-theoretic planning: Utility functions for deadline goals.
In Proceedings of the Third International Conference on Princi-
ples of Knowledge Representation and Reasoning, pages 71–82,
Cambridge, 1992.

[How60] Ronald A. Howard. Dynamic Programming and Markov
Processes. MIT Press, Cambridge, 1960.

[Kab90] F. Kabanza. Synthesis of reactive plans for multi-path en-
vironments. In Proceedings of the Eighth National Conference
on Artificial Intelligence, pages 164–169, 1990.

[KHW94] Nicholas Kushmerick, Steve Hanks, and Daniel Weld.
An algorithm for probabilistic least-commitment planning. In
Proceedings of the Twelfth National Conference on Artificial In-
telligence, pages 1073–1078, Seattle, 1994.

[Put94] Martin L. Puterman. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. Wiley, New York, 1994.

