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Abstract

Markov Decision Processes (MDPs), currently a popular
method for modeling and solving decision theoretic plan-
ning problems, are limited by the Markovian assumption: re-
wards and dynamics depend on the current state only, and
not on previous history. Non-Markovian decision processes
(NMDPs) can also be defined, but then the more tractable so-
lution techniquesdeveloped for MDP's cannot be directly ap-
plied. In this paper, we show how an NMDP, in which tem-
poral logic is used to specify history dependence, can be au-
tomatically converted into an equivalent MDP by adding ap-
propriate temporal variables. The resulting MDP can be rep-
resented in a structured fashion and solved using structured
policy construction methods. In many cases, this offers sig-
nificant computational advantagesover previous proposalsfor
solving NMDPs.

1 Introduction

Markov decision processes (MDPs) have proven to be an ef-
fective modeling and computational paradigm for decision-
theoretic planning (DTP). MDPsallow oneto deal with plan-
ning problems that involve uncertainty, multiple objectives,
and nonterminating (process-oriented) behavior. A funda
mental assumption of this model is that the reward function
and system dynamics of the underlying process are Marko-
vian—all theinformation needed to determinethe value of a
particular state or the effects of an action at that state must
be encoded within the state itself. This allows computation-
ally effective dynamic programming techniquesto be used to
solve decision problems [Put94].

Nevertheless, the Markovian requirement is often not met
by planning problemsthat are encoded in the “obvious’ way.
For instance, it is often natural to specify desirable behav-
iors by referring to trgjectory properties (propertiesof the se-
guence of states passed through, i.e., the system’s history)
in addition to just the current state. This has shown up in
work on planning [HH92, Dru89, Kab90, GK91] (e.g., in
the use of maintenance goals); and in [BBG96] we have ar-
gued that many reward functions for process-oriented prob-
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lems are most appropriately viewed in this light (eg., re-
SpoNses to requests, maintaining desirable systems proper-
ties, etc.). For instance, rewarding an agent for achieving a
goa within k steps of arequest being issued isanatura, yet
hi story-dependent, specification of desirable behavior. Sim-
ilarly, process dynamics (action effects) are sometimes most
naturally expressed in a history dependent fashion.

In [BBG96] we examined Non-Markovian decision pro-
cesses (NMDPs) and identified two key issues, namely, the
specification of non-Markovian propertiesand the sol ution of
NMDPs.? A temporal logic called PLTL was used asamech-
anism for specifying the non-Markovian aspects of asystem,
and we will adopt the same approach here. However, we pro-
poseavery different way of solving the NMDPs so specified.
Asin the earlier paper, we develop a method for automati-
caly convertingan NMDPinto an equivalent MDP, solutions
to which can be re-interpreted to yield solutionsto the origi-
nal NMDP. Thekey difference between thetwo papersisthat
[BBG96] presents a state-based construction, while this pa-
per workswith structured representationsof (N)MDPs. Each
approach has advantages and disadvantages.

In either case, one can think of each state in the origina
NMDP asleading to multiplestatesin theresulting MDRP, the
new states being distinguished by various relevant histories.
The difference, in essence, is how the new MDP is repre-
sented. The algorithmin [BBG96] takesan NMDP and are-
ward function specified using PLTL formulas, and produces
anew MDPwhose states are listed explicitly. One advantage
of thisapproach (which will not betrue of the proposal inthe
current paper) isthat it is possibleto produce a minimal ex-
panded MDP (i.e., one with the fewest number of states nec-
essary to capture the required historical distinctions). How-
ever, as we now discuss, there are also important disadvan-
tagesinherent in state-based constructions.

To understand these disadvantages, note that many DTP
problemsare described in termsof aset of variablesor propo-
sitions (particularly in Al where logical representations are
common). The resultant MDPs have as states al possible as-
signments of values to these variables. In such cases, ama
jor difficulty with any state-based algorithmfor MDPsisthat

2In [BBG96] we considered non-Markovian reward functions
only, although the approach could easily be extended to deal with
history dependencein the system dynamics as well. In this paper
we consider both rewards and dynamics explicitly.
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fact that the state space grows exponentially with the num-
ber of problemvariables. A recent focusin DTP research has
been the development of MDP representation and solution
techniques that do not require an explicit enumeration of the
state space. For instance, the use of STRIPS [BD94, DF95,
KHW94] or Bayes nets [BDG95, BD96] to represent actions
in MDPs, and structured policy construction (SPC) methods
that exploit such representations [DF95, BDG95, BD96] to
avoid explicit state-based computationswhen solving MDPs,
promise to make MDPs more effective for such DTP prob-
lems.

For such problems, the NMDP conversion agorithm pro-
posed in [BBG96] has some obvious drawbacks. First, be-
ing state-based, its complexity is exponential in the number
of problem variables, because even if theoriginal NMDP has
acompact representation in terms of variablesthefina MDP
will not. Second, since the MDP output by that algorithmis
represented asaset of states, any structurepresentintheorig-
ina (structured) NMDP will be lost or obscured, preventing
the use of SPC algorithms. Finally, aswewill see, the history
that must be encoded itself exhibits significant structure, but
thisis not exploited in [BBG96].

Our approach to NMDP conversion in this paper assumes
the existence of a compact variable-based description of the
given NMDP, and worksby adding temporal variablestothis
description. Wethusexpand the state space without regard to
minimality, but thisexpansionisimplicit—wenever enumer-
ate al states. The the conversion is thus very efficient, and
retains the structured and compact representation we started
with. The output, being a structured MDP, can be used di-
rectly by SPC algorithms. Thislast consideration has an in-
teresting and fortunate consequence. Unlike the state-based
approach, our proposal here doesnot producean MDPwhose
(implicit) state space isminimal; but to compensate for this,
we can exploit the fact that SPC a gorithms have some abil-
ity to automatically (and dynamically) detect therelevance of
particular variables at various pointsin policy construction.
Assuch, unlike[BBG96], we need not be directly concerned
about only adding the “relevant” history. To asignificant ex-
tent, rel evance can be detected during optimization by appro-
priate SPC agorithms.

Thispointsto arelated advantage of our technique, which
isthat relevant history isdynamically determined in SPC al-
gorithms. The algorithm of [BBG96] is based on a static
analysis of the NMDP, before optimal policy constructionis
attempted. That algorithm must encode enough history at a
given dtate s to determine the reward at any future reachable
statet. Thisensuresthat any policy, and not just the optimal
one, will have the same total reward in the constructed MDP
asin theoriginal NMDP. But in fact we are generally only
interested in the optimal policy. As we construct this pol-
icy, we may noticethat many a priori reachable statest (i.e.,
reachable with non-zero probability through some sequence
of actions) are, infact, not reachable when the optimal policy
is adopted. Conseguently, some of the history we added (in
order to determine the reward at state ¢t) may end up being
“irrelevant”. Our algorithm, in conjunction with SPC ago-
rithms used for optimization, implements a dynamic analy-
sisof theNMDP Onceitisdetermined that ¢ isnot reachable

during policy construction, history relevant only to ¢ (and re-
lated states) will beignored. Though the state spaceislarger,
only relevant distinctionsare, for the most part, considered.

We conjecture that such “dynamic irrelevance” is espe-
cialy likely to arise in circumstances involving temporally
dependent rewards. For example, atemporally-extended re-
ward function may associate a reward with delivering aitem
within 5 time stages of an order being placed. Under certain
conditions(e.g., inclement weather) the risk associated with
any attempt at delivery may be too great for such an under-
taking. During policy construction, this will be recognized
and the history relevant to determining whether thisgoa can
be achieved (i.e., keeping track of when in the past an order
was placed) can beignored in such states. The “irrelevance’
of the required history cannot be detected a priori.

A final contrast with [BBG96] isthe relative simplicity of
our proposal in the current paper, which is based on well-
known properties of temporal logic and the observation that
these can be made to integrate well with SPC. Although the
technical aspects of our contribution are straightforward, it
has considerable potentia for improving our ability to solve
hi story-dependent decision problems.

We begin with a brief description of MDPs, NMDPs and
the tempora logic used in [BBG96] to specify trgectory
properties. We also give an overview of the SPC agorithm
of [BDG95]. Then we present our technique of adding tem-
poral variablesto convert an NMDPto an MDP. Weclosethe
paper with some further observations.

2 Background
2.1 Markov Decision Processes

A fully observable Markov Decision Process [How60, Put94]
can be characterized by afiniteset of states S, aset of actions
A, and areward function R. The actions are characterized
by probability distributions, and we write Pr(sy, a, s2) = p
to denote that s- is reached with probability p when action
a is performed in state s;. Full observability entails that the
agent dways knowswhat stateitisin. A real-valued reward
function R reflects the objectives, tasks and goals to be ac-
complished by the agent, with R(s) denoting the (immedi-
ate) utility of being in state s. Thus, an MDP consists of S,
A, R and the set of transition distributions{Pr (s, a, ) | a €
A;s e St

A stationary Markovian policy isamapping 7 : S — A,
wherer(s) denotestheaction an agent should performwhen-
ever itisin state s. We adopt expected total discounted re-
ward over an infinite horizon as our optimality criterion: the
current value of future rewards is discounted by some factor
8 (0 < g < 1), and we maximize the expected accumu-
lated discounted rewards over an infinite time period. The
expected value of afixed policy = at any state s can be shown
to satisfy [How60]:

Va(s) = R(s) + B> Pr(s,m(s),1) - Va(t)

tes
Thevaueof = at any state s can be computed by solving this

system of linear equations. A policy m isoptimal if V;(s) >
Ve (s) foral s € S and policies=’. V; is called the value
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function. We refer to [Put94] for an excellent treatment of
MDPs and associated computational methods. See [DW91,
BD94, BDG95] on the use of MDPsfor DTP.

2.2 Structured Representations

For DTP problems, we are often interested in MDPsthat can
be represented concisely in terms of a set of features or vari-
ables. We adapt the Bayes net/decision tree representation
used by [DK89, BDG95], representing an MDP with a set of
variablesP, areward decisiontree Treeg, theset of actions A,
and aset of action decisiontrees {Tree(a, p) | a € A; p € P}.

Pisaset of n variables that implicitly specifies the state
space S. For simplicity, weassumethat al variablestaketwo
values, {T (true), L (false)}; consequently we can identify
each variablep € P asaboolean proposition. The state space
S isthentheset of all possibletruthassignmentsto thesevari-
ables (i.e, S isthe product space of the variable domains).
The number of states is exponential in the number of vari-
ables (thus, in our casg, 27).

The rest of the representation relies on the use of decision
treeswhoseinternal nodesaretestsonindividual variablesin
P. The leaves of these trees are |abeled with different types
of values, depending on the type of tree. Any of these trees,
say Tree, can be applied to a state s, to yield avalue Treg[s].
Thisvalueis computed by traversing the tree using the truth
assignments specified by s to determine the direction taken
at internal nodes. The value returned is the label of the leaf
node reached. That is, Tree[s] isthe label of the leaf associ-
ated with the (unique) branch of the tree whose variable la
bels are consistent with the valuesin s.

Treeg isadecision tree that specifies the (immediate) re-
ward of each statein S. In particular, the leaves of Treey are
labeled withred values, and thereward R(s) assigned to any
state s is Treeg[s]. The set of action trees determine transi-
tion probabilities. These trees have their leaves labeled with
real numbersin [0, 1]. Tree(a, p)[s] specifies the probability
that p will be true in the next state given that action a was
executed in state s. Thusfor each variablep’ € P we can de-
termine the probability of it being truein the next state from
Tree(a, p')[s]. These events are assumed to be independent
so we can obtain the entire distribution over the successor
states, Pr(s, a, -), by smply multiplyingthese probabilities.

Although [BDG95] describestheir representation in terms
of Bayesnets, it is neverthel ess equivaent to ours, including
the independence assumption. One advantage of the Bayes
net representation is that it suggests an easy way of relax-
ing this assumption. (This possibility was not explored in
[BDGY5], but see [Bou97] for details) Thus, SPC algo-
rithms can be modified to deal with dependence between
present variables, although they become somewhat more
complex. Such modifications are entirely compatible with
our proposals here.

?In particular, we have

Pr(s,a,s) = [ Treela,p)ls] J] (1 - Tree(a,p)[s)).

p:s'Ep p:s'fEp

2.3 Structured Policy Construction

The basic idea behind the SPC algorithms described in
[BDG95, BD9I6] isthe use of tree-structured representations
during policy construction. In particular, a policy = can be
represented as a decision tree Tree, wheretheleaves are la-
beled by actions. That is, Tree, [s] specifies the action to ex-
ecute in state s. Similarly avalue function 1V can be repre-
sented as atree with real-valued labels.

The SPC algorithmis based on the observation that some
of thetraditional a gorithmsfor constructing optimal policies
can be reformul ated as tree-manipul ation al gorithms. 1n par-
ticular, a al pointsin the algorithm the current value func-
tion and current policy are represented as trees. Intuitively,
these algorithms dynamically detect the relevance of partic-
ular variables, under specific conditions, to the current value
function or policy. The particular tree-manipulation steps
necessary are not trivial, but the details are not directly rel-
evant here (they are presented in [BDG95]).

We have adready alluded to some of SPC’s properties. If
the dynamicsand reward function of theMDP are simple, the
optimal policy very often has asimple structure as well (see
[BDG95] for examples). SPC will find this policy in just as
many iterations as modified policy iteration (a popular and
time-efficient algorithm), but often without ever considering
“large” trees—even thoughit is (implicitly) optimizing over
exponentially many states. Variablesthat are not relevant, or
are only relevant in some contexts, will not necessarily have
an adverse effect on complexity—inmany cases, they just do
not appear as decision nodes in the trees when they are not
needed. We note that SPC offers another advantage, namely
itsamenability to approximation; see [BD96].

2.4 Non Markovian Decision Processes

Following [BBG96], we use a temporal logic called PLTL
(Pest Linear Temporal Logic) to specify the history depen-
dence of rewards and action effects. PLTL is a past ver-
sion of LTL [Eme90]. We assume an underlying finite set
of propositional constants P, the usual truth functional con-
nectives, and the following temporal operators. S (since),
= (always in the past), © (once, or sometime in the past)
and © (previoudly).* Theformulas ¢; S ¢-, 2¢1, ©¢; and
©¢, are well-formed when ¢, and ¢- are® The semantics
of PLTL isdescribed with respect to models of theform 7" =
(s, -+,8p), n > 0, where each s; is a state or truth as-
signment over the variablesin P. For any trajectory 7' =
(so, -, sp)y,andany 0 < i < n, let T'(¢) denotetheinitial
segment 7'(¢) = (so, - -, $i).

A temporal formulaistrueof T = (sg,---,s,) ifitis
true at the last (or current state) with respect to the history
reflected in the trgjectory. We define thetruth of formulasin-
ductively asfollows:

o TE Piffs, = P,for P eP

*These are the backward analogs of the LTL operators until, al-
ways, eventually and next, respectively.

®We use the abbreviation @ for k iterations of the © modality
(eg., ©°¢ = @©6¢), and ©=* to stand for the disjunction of &'
for1 <i<k,(eg, 5% =0¢Vv 00p).
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Tl o iff T 1 ¢

T | ¢1S¢, iff thereissome: < nst. T(¢) = ¢ andfor
ali<j<n,T()E ¢ (thatis, ¢, wastruesometime
in the past and ¢ has been true since then)

o T EDBgifffordl 0 <i<n,T(i) E¢ (¢hasbeentrue
at each point in the past)

o T'E©g¢iffforsome0 <i < n,T(i) E¢ (¢wastrue
at some point in the past)

e TEO¢Iffn>0andT(n—1) ¢ (¢ wastrueat the
previous state)

If, for example, we wanted to reward behaviors that
achieve a condition ¢ immediately after it is requested by
a command €', we could specify a reward function that re-
wards states satisfying the PLTL formulaG A ©C. Simi-
larly, rewarding states satisfying G A ©<*C' would reward
behaviorsthat achieve GG withink stepsitsrequest. [BBG96]
gives further examples of how the logic can be used to spec-
ify useful historical dependencies. Using a logic for mak-
ing such specifications provides all of the usual advantages
gained from logical representations. In particular, we have a
compositional languagethat can be used to expressarbitrarily
complex specifications, and the same time we have a precise
semantics for our specification no matter how complex.

Our proposal for using PLTL formulas within the tree-
structured representational framework of Section 2.2 is
straightforward. Recall that we represented the reward func-
tion and dynamics using decision trees, whose tests were on
the value of individual variables. We simply extend this by
allowing ainternal node in the decision tree to also test the
value of an arbitrary PLTL formula. In this way, both re-
wards and dynami cs can depend on history, and we can repre-
sent any NMDP, whose history dependenceis specified using
PLTL, as astructured NMDP.

3 Temporal Variables

Given some structured NMDP A/, as described above, we
want to find an equivalent® structured MDP M, so that the
SPC agorithm can be used to find optimal policies. To do
this, weintroducetemporal variablesintothedomainthat re-
fer to relevant properties of the current trgjectory. Each tem-
poral variableisused totrack thetruth of some purely tempo-
ral formula of PLTL (i.e., aformulawhose main connective
istemporal). Tempora variables are thus boolean.

3.1 Conditionson Temporal Variable Sets

In the new MDP M, the state must contain sufficient infor-
mation to determine rewards and the dynamics; unlike \V, it
will not be able to refer to history explicitly. Consider any
temporal formula¢ appearing asadecisionnodeinoneof the

S Intuitively, equivalence implies that an optimal policy for the
constructed MDP can be re-interpreted as an optimal policy for the
original NMDP. See [BBG96] for aformal definition.

decisiontreesof A. It followsthat any statein M must con-
tainenough informationto decideif ¢ istrue. For thisreason,
we must at least add temporal variables to the state descrip-
tionthat providesufficient history so that thisinformation can
be determined. Let T be the added set of tempora variables.
Each of these variablesisassociated withaformulaof PLTL,
and we will often treat these variables as if they were formu-
las.

Definition 3.1 A set of temporal variables T is sufficient
for ¢ iff there is some boolean function b4 such that ¢ =
by(T,P). 1

In other words, T is sufficient for ¢ if the truth of ¢ is de-
termined by some subset of the elements of T, together with
knowledge of certain state variables.

Since any formula in PLTL has the form b(¢y,-- -, t)
for some boolean function b and purely temporal formulas
ty, -, tg, finding a sufficient set of temporal formulas is
trivial: we can simply strip the main boolean connectives
fromatemporal formula¢ until only purely temporal formu-
las remain, then make each of these atemporal variable.

However this set of temporal variablesturns out not to be
suitable, because sufficiency is not the only requirement for
the set of variables T needed to build a suitable MDP. Since
the temporal variables we choose will be incorporated into
the new MDP M, we must be able to determine the dynam-
ics of these new variables. That is, just as we have trees
Tree(a, p) specifying the dynamics of the state variablesp €
Pwemust be ableto construct trees Tree(a, ¢) that tell ushow
to update the temporal variablest € T. Furthermore, these
dynamics must be Markovian.

Definition 3.2 A set of temporal variables T isdynamically
closed iff, for each¢ € T, there is some boolean function b;
suchthatt = ©b,(T,P). 11

Given dynamic closure, the truth of any variablein T at a
given state can be determined from the values of variables
inT and P at the previous state. Hence, dynamic closure en-
suresthat we can updatethetemporal variableswhilestill sat-
isfying the Markov assumption.

Let T be dynamically closed, and consider b; as defined
above. Like any boolean formula, b, can be evaluated using
somedecisiontree 7} ; theinternal nodes of 7; test thevaues
of variablesin T U P and the leaves arelabeled T or 1..” The
dynamics of any temporal variablet are now easy to define:
we can set Tree(a, t), for al actions «, to be 7}, where T}/ is
the tree exactly like T} except that where 7} evaluatesto T
(resp., L) T{ evaluatesto 1 (resp., 0); that is, the truth values
are trandated into probabilities.

We note that the dynamics of the tempora variables are
independent of the action executed. Furthermore, the deter-
minism of Tree(«, t) ensures that our independence assump-
tions on action effects (Section 2.2) remain valid.

We have shown that, if we augment the set of variables
of A with adynamically closed set of temporal variables T
and define the dynamics as just discussed, then the resulting

7In general, there are many treesthat can be used to evaluate the
formulab;; an arbitrary tree can be chosen. However, some may be
more compact (hence, lead to greater efficiency) than others.
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NMDP isequivalent to the original with the exception of the
added variables, and the dynamics of the tempora variables
are Markovian. However, an even more important feature
of the construction is the following: because of the way we
have defined the dynamics, in any valid trgjectory all tempo-
ral variablesin T will faithfully reflect their intended mean-
ing. More precisely, consider any trajectory throughthe state
space of the new MDP. Sinceeacht € T isone of the
variables defining the state space, then at each point ¢ will
have some value (T or ). But ¢ isaso alogical formula,
and so we can aso ask whether (formula) ¢ is true or false
of thetragjectory we havefollowed. Our construction ensures
that (variable) ¢ istrue at any stateiff the corresponding for-
mulaistrueof thetrajectory followed (assuming all variables
are given correct values at time O, the initia state). In other
words, a variable svalue coincides with itstruth.

Suppose T is both dynamically closed, and sufficient for
every temporal formula ¢ that appears as a decision node ei-
ther in Treeg or in any Tree(a, p) in A; for concreteness,
imaginethat ¢ appearsin Treer. Sufficiency implieswe can
replace the test of ¢ by atest on thevaluesof T U P, using
b4 asdefined in Definition 3.1. In fact, we can find some de-
cision tree that evaluates b4, and substitute this tree for the
internal nodesin A that test ¢. Doing thisfor al such ¢, the
result isadifferent treefor evaluating rewards (or in the case
of Tree(a, p), dynamics) that issemantically equivalentto the
original, and testsonly variablesin T U P. Thus, by using the
enlarged set of variables, we have removed al tests that de-
pend explicitly on history: thisconstruction has delivered an
MDP M, equivaentto V', asrequired. Of course, thekey to
the correctness of this construction is the faithfulness prop-
erty.

3.2 Construction of Temporal Variable Sets

It remainsto show that asuitableset T exists; in other words,
that for any set of PLTL formulas & we can construct a dy-
namically closed set of temporal variables that is sufficient
foral ¢ € ®.

To begin, we define a subformulaof aPLTL formula ¢ to
beany well-formed PLTL formulacontained as asubstring of
¢. Forexample, if ¢y = pAB (¢ ©-p) thenthe subformulas
of ¢ arey itsdlf, p, B(¢VO-p),qgvO-p, ¢, ©-p,and—p. A
first proposal for T might be to consider the set of all purely
tempora subformulasof ¢ € ®, denoted PTSub(®). For ¢
above these are the subformulas 8 (¢ V ©—p) and ©—p. This
ensures sufficiency simply because any ¢ € @ isaboolean
combination of propositional symbolsand its purely tempo-
ral subformulas. (Infact, wewould not need al subformulas:
for ¢ above, only B (¢ ©-p) would be needed if sufficiency
were all we cared about.)

The problem with thisis that it does not satisfy the dy-
namic closureproperty. For instance, thetruthof @ (¢v©-p)
depends not only on what happened in the past, but also on
whether ¢ vV ©—p istrue now. (Recall that the semantics of
= are, informally, “...has been true always in the past, up to
and including the present.”) In this casg, the truth of ©—p
in the present must be known. Our representation, however,
requiresthat avariable svaue can be determined by the pre-

vious values of other variables.®

Instead, we will construct a set of temporal variables that
have © as their main connective, because the truth of such
a formula depends only on the past. In fact, as we now
show, we can define T by prepending © to each subformula
in PTSUb(®) except those that aready begin with © (these
are retained without change). That is:

{©¢ |4 € PTSUB(®), ¥ # &}
U{©v | &1 € PTSUb(®)}

T =

To show sufficiency, we use the foll owing equival ences of
PLTL that allow ustoinsert preceding © operatorsbefore any
other modal operator:

1L aSP = gV(aAro(aShH)).
2. Ba = a AO(Ba).
3. ©a ).

aVo(da

Consider any ¢ € @; ¢ is, of course, a boolean combina
tion of primitive propositionsin P and purely temporal sub-
formulas of PLTL. If any of the temporal subformulas used
in this expression do not begin with ©, we can replace them
by the equivalent expressions according to the above. This
replacement process may need to be repeated several times,
but eventualy it will terminate giving usa bool ean combina-
tionover PU T that isequivalent to ¢, asrequired. Note that
the same construction alows usto represent any subformula
of ¢ asaboolean combinationover PU T.

Dynamic closure is shown very simply. Let ©¢ € T. By
definition «» must be a subformulaof some ¢ € ® and so, as
wehavejust seen, isequivalent to some bool ean combination
by over PUT. Thus©y = ©b, asrequired for dynamic
closure.

Asan illustration, consider ¢ = ©(p S (¢ V ©r). From
this, we form the temporal variable set

T = {t1 = ©S(pS(¢Vvor),ta = ©(pS(qvOr),tz = Or)}.
Then ¢ can be decomposed as follows:

©(pS(¢gver)
pSgver)vee(pS(¢Vver)

o

pS(¢gVver)vi
= ((gver)v(pre(pS(gVer)) Vi
i.e ((q \/tg) vV (p /\tz)) Vi

4 Concluding Observations

We have shown how, given a structured NM DP consi sting of
reward and action representationsinvolving PLTL formulas,
one can construct a set of temporal variablesthat isdynami-
caly closed and sufficient for those formulas, and use these

8 Again we note that, in principle, dependence on present vari-
ablescan be used; but we retain the original formulation for reasons
discussedin Section 2.2.
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to specify an equivaent MDPin compact form. We conclude
with some observations about our proposal and some direc-
tionsfor future work.

We first note that the new MDP can be constructed effi-
ciently. Let & bethe collection of PLTL formulas appearing
in the NMDP specification. It is easy to see that the num-
ber of temporal variables added is at most equal to the num-
ber of purely tempora subformulas contained in &, which
is bounded by the total number of tempora operatorsin &.
Thus, we are adding only a modest number of new variables.
The time required to do so is O(T'|®|), where T' is the to-
tal size of the reward and action trees and |®| is the sum
of the lengths of formulasin ®. Of course, one must keep
in mind that the implicit state space grows exponentially in
the number of added variables. But as we discussed in Sec-
tions1 and 2.3, the size of theimplicit state space is not nec-
essarily the key factor in the complexity of SPC agorithms.

We do not claim that our construction adds the minimal
number of extra variables to achieve its purpose. In fact, it
is easy to see that minimal state space size is sometimes not
achievable by adding variables at al. The reason isthat the
required history can vary from stateto state (indeed, thisfact
motivates much of [BBG96]). Our approach cannot make
such fine distinctions: every state has the same set of vari-
ables “added” to it. On the other hand, the “dynamic irrel-
evance’ feature of SPC may compensate for this. That is,
although the temporal variables can potentially cause us to
make unnecessary distinctions between histories at certain
states (as compared to[BBG9I6]), SPC attemptsto focusonly
on the variableswhose va uesinfluence the choi ces made by
the optimal policy, and sowill avoid some of theseirrelevant
digtinctions. Furthermore, SPC can avoid “dynamic irrele-
vances’ that cannot be detected by the approach of [BBG96],
and is much more amenable to approximation in the solu-
tion of the resulting MDP. Empirical studies are, of course,
needed to quantify thistradeoff. We suspect that therewill be
arange of domainswhere the SPC approach we are suggest-
ing here will be superior to the state-space based approach of
[BBG96] and vice versa. The interesting question will beto
attempt to characterize domain features that tend to favor one
approach over the other.

Not surprisingly, NMDPs (even in the structured frame-
work we are considering) can be much harder to solvethan a
comparably sized MDP. As asimple example, suppose one
gets areward each time ¢ A ©7p istrue. Suppose also that
thereisan action a that, if taken, islikely to lead to ¢ becom-
ing true at some (unpredictabl€) timewithin the next »n steps.
The optimal policy could well need to keep track of exactly
when p was true among the previous »n steps (because it has
to know whether and when to try to achieve ¢). There may
be no sub-exponentia (in »n) decision tree representation of
such apolicy. Hence, SPC is not guaranteed to be efficient.

Finally, in this paper, we have omitted any discussion of
the various optimizationsthat are possible. For instance, one
might gain by carefully choosing the decision tree used to
evaluate b, and b, (Section 3). These issues deserve care-
ful study. More importantly for futurework, however, isthe
need for empirical studiesto explorethe actual performance
that might be seen in practica cases.
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