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Abstract

In this paper we describe two approaches to the revision of probability
functions. We assume that a probabilistic state of belief is captured by a
counterfactual probability or Popper function, the revision of which deter-
mines a new Popper function. We describe methods whereby the original
function determines the nature of the revised function. The first is based
on a probabilistic extension of Spohn’s OCFs, while the second exploits
the structure implicit in the Popper function itself. This stands in con-
trast with previous approaches that associate a unique Popper function
with each absolute (classical) probability function. We also describe iter-
ated revision using these models. Finally, we consider the point of view
that Popper functions may be abstract representations of certain types of
absolute probability functions, but show that our revision methods cannot
be naturally interpreted as conditionalization on these functions.

Keywords: belief revision, probability, Popper functions, iterated revision,
conditionals, ordinal conditional functions



1 Introduction

Most theories of belief revision take belief sets, or sets of (objective) sentences
to be the target of the revision process. A revision function maps one belief
set into another in response to some new piece of evidence A. The information
that determines the exact nature of this mapping can be represented in various
ways — for instance, as an entrenchment relation or a set of conditional beliefs
— and together with the belief set constitutes an agent’s epistemic state.

It has frequently been suggested that a belief set can be viewed as an abstrac-
tion of a more fine-grained, quantitative epistemic state, namely a probability
function (p-function) that captures degrees of belief. We take the top of the
p-function P (i.e., those A such that P(A) = 1) to be the agent’s belief set, but
allow further discriminations among non-beliefs to be held [12, 22]. Of course,
the revision problem in this setting requires somewhat more machinery; but
once a method for revising a p-function is in hand, revision of the correspond-
ing belief set comes for free: we simply take the revised belief set to be the top of
the revised p-function. Probabilistic revision seems to have received somewhat
less attention than its qualitative counterpart, in some measure due to the fact
that Popper functions (or to use Stalnaker’s [29] more suggestive terminology,
counterfactual probability functions) provide a rather natural and robust repre-
sentation of an epistemic state and revision method in such a setting. By now
the connections between Popper functions and the qualitative representations
of revision functions are well-understood [29, 30, 28, 12, 22] and confirm that
the “belief as top of a p-function” perspective 1s tenable.

The problem of iterated revision requires that a revision function produce
not only a new belief set or p-function, but a new epistemic state to guide sub-
sequent revisions. On this count many theories are silent and in general, as
pointed out by Harper [18], the problem is a difficult one. However, some pro-
posals for iterated revision in the qualitative setting have been put forth. In this
article we examine the extent to which similar considerations can be adapted
to iterated probabilistic revision. We pay special attention to Spohn’s [28] ordi-
nal conditional functions (OCFs) and the author’s [5, 7] proposal for minimal
conditional (MC) revision. Spohn’s model imposes additional structure on the
usual revision functions requiring that the entrenchment and plausibility of sen-
tences be quantified and that the evidence causing revision have an associated
strength. The “probabilized” OCFs we introduce further impose such informa-
tional demands on the incorporated evidence that the naturalness of the model
must be called into question. In addition, we show that under certain natural
interpretations, the updates sanctioned by this model cannot be justified by
appeal to conditionalization. We then examine a simpler, more impoverished
model that allows the direct (iterated) revision of Popper functions and examine
some of its properties.

We begin by introducing the AGM theory of revision, a semantic model of
revision functions and Spohn’s notion to OCFs in Section 2. In Section 3 we



discuss the connection to Popper functions and present a probabilistic version
of OCFs, as well as giving a quasi-infinitesimal interpretation of these models
reminiscent of Adam’s [1] e-semantics. This interpretation suggests that, more
generally, one may be able to interpret Popper functions as an appropriate ab-
straction or summarization of a classical p-function. We then address the ques-
tion of iterated revision of probability functions in Section 4. We first discuss
the probabilistic OCF model and show that the extension of Spohn’s update
method to this case is not straightforward. In particular, certain parameters
are required to make sense of this model, parameters whose interpretation is
unclear. Furthermore, we show that adopting the view that Popper functions
correspond to classical p-functions and that revision corresponds to some form
of conditionalization does not help fix these parameters. We then examine the
probabilistic version of MC-revision and its difficulties. The net result is a
somewhat negative conclusion: the revision of probabilistic belief states is not
as straightforward, nor as well-understood, as we might have thought.

2 Non-Probabilistic Belief Revision

We assume an agent to have a deductively closed set of beliefs K taken from
some underlying language. For concreteness, we will assume this language to be
that of classical propositional logic L, generated by some set of variables P, and
with an associated consequence operation Cn. To keep the technical details to
a minimum we assume that P is finite, giving rise to a finitary language. This
will simplify the discussion of probability functions in the next section. We let
W denote the finite set of possible worlds (or valuations) suitable for L. Any
world w that satisfiess A € L (denoted w = A) is dubbed an A-world, the set
of which is denoted || A]|]. We also use this notation for sets of sentences S, ||5]|
denoting those worlds satisfying each element of S. The identically true and
false propositions are denoted T and L, respectively.

2.1 The AGM Model

The ezpansion of K by new information A is the belief set K;'{ = Cn(K U
{A}). The revision of K by A is denoted K%. The process of revision requires
some care, for A may contradict elements of K. Alchourrén, Gardenfors and
Makinson [2] propose a method for logically delimiting the scope of acceptable
revisions. To this end, the AGM postulates below, are maintained to hold for
any reasonable notion of revision [12].

(R1) K7 is a belief set (i.e. deductively closed).
(R2) A€ Kj.

(R3) K, C K},



(R4) If ~A ¢ K then K} C K7.

(R5) K% = Cn(L)iff E —A.

(R6) If = A = B then K% = K},.

(RT) Kjap C (K3

(R8) If =B ¢ K3 then (K%)h C K%, 5.

It is clear that the epistemic state of an agent cannot consist of a belief set K
alone, for K does not contain the information required to determine its revision.
At the very least, an epistemic state might be a (K, x), where * is some revision
function. Less direct but more natural representations of the revision function
(at least applied to K') are possible. Among these are entrenchment relations
[13, 12] and conditional belief sets [12, 5]. We briefly describe entrenchment
relations below; but the crucial feature 1s the fact that they capture the revision
policies of the agent, the information necessary to revise K to form K.

Semantically, the epistemic state of an agent can be captured using a qual-
itative revision model.! Assuming a fixed set W of possible worlds, a revision
model is a transitive, connected ordering relation < over W.

Definition 2.1 A qualitative revision model (QRM) over W is any relation
< CW x W such that: a) if w < v and v < u then w < u; and b) either
w<wvorv<wforall v,weW.

The interpretation of < is as follows: v < w iff v is as at least as plausible a state
of affairs as w. Plausibility is a pragmatic measure that reflects the degree to
which one would accept w as a possible state of affairs. If v is more plausible than
w, loosely speaking v is “more consistent” with the agent’s beliefs than w. Since
< is a total preorder, W is partitioned into <-equivalence classes, or clusters
of equally plausible worlds. These clusters are themselves totally ordered by
<. Thus, < can be viewed as a qualitative ranking relation, assigning to each
world a degree of plausibility. A K-QRM is a QRM that captures the epistemic
state of an agent with belief set K. In particular, we require that epistemically
possible worlds be more plausible than epistemically impossible worlds, and that
all epistemically possible worlds are equally plausible. In other words, K-worlds
should be exactly those minimal in <:

Definition 2.2 A K-QRM is any QRM such that w < v for all v € W iff
wkE K.

For any A € L we define

min(<, A) ={weW:wlE A, and v | A implies w < v for all v € W}

1The presentation is based on the ordering model and logic described in [9, 6]. In our finite
setting, this model has no essential differences from Grove’s [14] system of spheres model.



For any satisfiable A we have min(<, A) # 0.% Intuitively, min(<, A) is the set
of most plausible A-worlds. When A is learned, it i1s this set of worlds that
is adopted as the new set of epistemic possibilities. Thus, K% can be defined
semantically as

1K

and B € K% iff min(<, A) C ||B||. It is easy to verify (see [14, 9]) that the
revision function induced by a K-QRM satisfies postulates (R1)-(R8). Fur-
thermore, any function that satisfies the postulates is representable with such a
model .3

Within this setting we can define the relative degree of surprise associated
with sentences as well as the relative entrenchment of beliefs. We say A is at no
more surprising than B iff min(<, A) < min(<, B). Intuitively, this reflects the
degree to which an agent is willing to accept A as an epistemic possibility. If A
is less surprising than B then AA-B € K},5. If A and B are both believed,
we say A is more entrenched than B iff =B is less surprising than —A. This
relation holds when an agent is more willing to give up belief in B than A.

| = min(<, A)

2.2 Ordinal Conditional Functions

Spohn [28] introduced a related but somewhat more detailed model of belief
revision based on ordinal conditional functions or OCFs. Instead of a simple
ordering of plausibility over possible worlds, a world is ranked on an ordinal
scale according to its degree of plausibility. Spohn recognized that while a
qualitative ranking may be appropriate for revising a belief set, this detailed
information may be critical when one considers how an entire epistemic state
is to be updated.® To simplify the presentation, we assume that plausibility is
measured on an integer scale.

Definition 2.3 An ordinal conditional function (OCF) over W is a function
k : W — N such that k=1(0) # 0.

The value £(w) indicates the degree of plausibility of situation w, where £(w) <
k(v) indicates that w is more plausible than v. We take the worlds w such
that k(w) = 0 to be those considered epistemically possible by an agent. The
restriction k71(0) # 0 ensures that the agent’s belief set is consistent. As with
QRMs, only certain OCFs are appropriate for an agent with belief set K.

Definition 2.4 A K-OCF is any OCF such that

2If we relax the finiteness restriction, this condition can be guaranteed by imposing a
certain type of well-foundededness constraint on <.

3More accurately, an AGM revision function is representable by a collection of models {<1,
with one ordering for each belief set K. Note that if A is unsatisfiable, min(<, A) = § and
K% = L.

*We will elaborate on this point in Section 4.



kw)=0iff w E K

A K-OCF induces a revision function in the obvious fashion. For any A € L we

define

min(k, A) ={w e W:w [ A, and v |= A implies k(w) < k(v) for all v € W}

Defining ||K%|| = min(x, A) then determines a revision function that satisfies
the AGM postulates. Clearly each K-OCF is equivalent to a unique K-QRM
under the definition of K7%; but a K-QRM is equivalent to a great number of
K-OCFs.> The added expressive power of OCFs will be exploited when we
discuss iterated revision and revision of epistemic states in Section 4.

We can extend the plausibility ranking & to sentences, defining

k(A) = min{k(w) : w E A}

The lower x(A) the less surprising A4 is, with the least degree of surprise (or
epistemic possibility) indicated by x(A4) = 0. Note that either x(A) or x(—A4)
(or both) are zero, and A is believed iff K(—A) > 0. The entrenchment of a belief
is again the dual of surprise: the greater x(—A), the more entrenched belief in

A is.

3 Probabilistic Revision Models

QRMs and OCFs are possible representations of an agent’s epistemic state. Any
such model characterizes a unique belief set K as well as a (single-step) revision
policy that determines the revised belief set K. However, belief sets allow
only very coarse distinctions in epistemic attitude toward propositions: they
can be accepted (A € K), rejected (mA € K) or indeterminate (4,—A ¢ K).
One might expect an agent to give more or less credence to certain disbelieved
possibilities, to be more disposed to one possibility than another without fully
accepting or believing the first. Thus, we may suppose that an agent’s belief
set is determined by a probability function (p-function) P : L — [0, 1], satisfying
the following conditions:

1. If - A= B then P(A) = P(B)
2. If - A D —-B then P(AV B) = P(A)+ P(B)
3. If - A then P(4) =1

Accepted (rejected) propositions are those A such that P(A) = 1 (P(4) =
0). However, indeterminate propositions are now graded according to their

5This distinction is analogous to that made by Spohn [28] between OCFs and SCF's.



probability.® The function PL(A) =1 for all A € L is dubbed the inconsistent
p-function and will sometimes be treated as a p-function (corresponding to the
belief set K+ = L).

Rather than taking belief sets as primitive, we assume that an epistemic
state contains a p-function from which a belief set K 1s derived.

Definition 3.1 A p-function P is compatible with a belief set K just when
PA)=1iff Ae K.

Fach p-function is compatible with a unique (deductively closed) belief set K.
Since many p-functions are compatible with a fixed K, we take p-functions to
be the basic notion from which belief sets are derived. This corresponds to
the well-used tactic (e.g., [12, 22]) of defining a belief set to be the top of a p-
function. We define the conditional probability P(B|A) as P;’?g?) if P(A) # 0;
by convention we set P(B|A4) =1 for all B otherwise.

Semantically, a p-function can be characterized by a (normalized) weighting
function P : W — [0, 1] such that > {P(w) : w € W} = 1. This induces a

p-function (over L) via the standard relationship:

P(4) = S {P(w)  w = A}

We use P to denote both the weighting function and the induced p-function since
each uniquely determines the other. We will also use unnormalized weighting

functions, which assign arbitrary positive weights to worlds. An unnormalized
function P’ determines a normalized function P as follows:

_ P'(w)
2APW)ve W}

We note that if P is compatible with A then P(w) > 0 iff w = K. So it is
precisely the epistemically possible worlds that are accorded positive probability.

P(w)

3.1 Counterfactual Probability Models

The notion of compatibility can be extended to QRMs in the obvious way: we
say a p-function P is compatible with QRM < iff P i1s compatible with the belief
set K induced by <. Since the epistemic possibilities given by K correspond
to the set of worlds minimal in <, an appropriate p-function can be imposed
by a weighting function P with the property that P(w) > 0 iff w € min(<, T).
An agent’s epistemic state might then be taken to consist of a QRM < together
with a compatible p-function P. But, while < is sufficient to determine the
content of K7, a revised epistemic state must include a revised p-function Pj;

6Note that notions such as entrenchment or plausibility of sentences do not make any such
distinction between indeterminate propositions.



and < does not contain the required information. Some method for revising
p-functions is needed.

In the special case where =A ¢ K (or equivalently, P(A) > 0), we can
use conditionalization of P by A to effect revision by A and derive a revised
p-function. We simply set P} = P(-|A). The following observation is straight-
forward (see, e.g., [12]).

Proposition 3.1 Let < be a K-QRM such that - A & K, let P be a p-function
compatible with <, and let Py = P(:|A). Then P} is compatible with K.

Thus “consistent” revision and conditionalization correspond in the desired
manner. If =4 € K then P(A) = 0 and defining P} via conditionalization
results in the inconsistent p-function Pt. To alleviate this difficulty, we intro-
duce nonstandard conditional p-functions, or Popper functions [29, 30, 12, 22].
A Popper function is a mapping P : L x L — [0, 1] satisfying [22]:

1. P(A14) =1

2. P(-{A) is a p-function

3. If - A = B then P(C1A) = P(C|B)
4. P(AA BIC) = P(A|C)- P(BTAAC)

An absolute p-function is defined by setting P(A) = P(A[T).”

By taking conditional probability as the primitive relation we can impose
nontrivial constraints on the value of P(B]A) even when P(A4) = 0, and revision
of a p-function can be defined by taking P;(B) = P(B1A). The relationship
between the revision of p-functions using nonstandard conditionalization and
the AGM revision of beliefs sets is quite close (see, e.g., [12, Ch.5] or [22]).
We take revision of a p-function P as defined above to be basic, assuming P
is determined by an appropriate Popper function. This induces an revision
function on belief sets, where K is the top of P and K} is the top of Pj}.
Such qualitative revision functions satisfy the AGM postulates, suggesting that
the Popper functions are an appropriate representation of probabilistic revision
functions.

This relationship can be understood from a semantic perspective as well.
The semantics of simple p-functions uses probability weights on epistemically
possible worlds (consistent with the induced belief set K). This can be extended
to Popper functions by associating weights with all worlds W, regardless of
their plausibility ranking according to <. In this way, the relative probability
of worlds within the set min(<, A) is specified and a compatible p-function P
can be derived. The weights of worlds in the same cluster of < captures their
relative likelihood should the agent accept them as epistemically possible. They
can be viewed as counterfactual probabilities in the sense of Stalnaker [29].

"We will consistently use P(-|-) to denote standard conditional probability functions and
P(-1) to denote nonstandard, Popper functions.



Definition 3.2 <P= (< P) is a counterfactual probability model (CPM) iff
(a) <isa QRM; and
(b) P: W —(0,1]

Definition 3.3 Let <F= (<, P) be a CPM. The counterfactual probability of
B given A (relative to <) is

Y H{P(w):wemin(<,A) and w = B}

P(B14) = S {P(w) 1w € min(<, A)}

Definition 3.4 The factual probability of A (relative to M) is

P(A) = P(AIT)

Clearly, the factual probability function P is a p-function. We take the uncon-
ditional, factual probability function P to define the objective epistemic state
of the agent in the usual way. This factual p-function i1s compatible with the
QRM component of the CPM.

Proposition 3.2 Let <F'= (<, P) be a CPM such that < determines belief set
K. Then P(A)=1 if A€ K.

We define factual conditional probability in the usual way for P, and denote
this with the usual conditioning bar:

Definition 3.5 P(B|A) = PS;E;\‘J)B) for all A such that P(A) > 0.

We can now describe the new p-function P that results when the agent’s
original epistemic state P is revised by A. This revision will proceed by means
of counterfactual conditionalization.

Definition 3.6 Let P be the factual p-function determined by M. The revised
factual probability function P} is given by

Pi(B) = P(BlA)

The (factual) p-function of an agent after such a revision is P}. The follow-
ing results are easy to verify, and are simple restatements of well-known facts.
We emphasize them as they indicate that the process of counterfactual con-
ditionalization conforms to the rationality constraints imposed by our original
qualitative considerations.

Proposition 3.3 If A is satisfiable then P} is a (consistent) p-function.

Theorem 3.4 The p-function P} is compatible with the belief set K7} .



Theorem 3.5 If P(A) > 0 then P}(B) = P(B|A).

Thus CPMs are consistent extensions of the AGM theory to the probabilistic
case, just like Popper functions. That CPMs in fact determine Popper functions
can be seen by appeal to the representation result of van Fraassen [30]. He
demonstrates that Popper functions can be represented by an ordinal family of
p-functions, or a sequence of p-functions ranked according to plausibility. In our
finitary setting, we can use a finite ordered family {P;,---, P,} of p-functions
over L. The minimal A-permitting p-function P4 is the first P; in the sequence
that accords A positive probability; that is, P4 = P; where P;(A) > 0 and
P;(A) > 0 only if j > i. We can use this family to define a counterfactual
probability function as follows: if P;(A4) > 0 for some ¢, we define P(B]A) =
PA(B|A); if Pi(A) = 0 for all i, we call A an abnormal proposition and set
P(B1A) =1 for all B. van Fraassen shows that any such conditional operator
is a Popper function and that any Popper function is representable by such a
family.

Indeed, the stronger representation result of Spohn [27] can be adopted in
our finitary setting. Following Spohn, we say an ordered family is dimensional
iff for each P; there is a sentence A; such that P;(4;) = 1 and P;(4;) = 0 for
all j < ¢. If all p-functions are o-additive, dimensional ordered families can be
used to represent Popper functions. Dimensional ordered families have several
nice properties, including minimality in the sense that the ordered family of p-
functions cannot be replaced by a smaller family. Indeed, a dimensional family
satisfies an even stronger minimality requirement, for the elements of P; are
orthogonal: if ¢ # j then P;(A) = 1 and P;(A) = 0 for some A [12]. Thus, not
only is the family itself as small as possible, its elements are as well.

A simple reconstruction of CPMs demonstrates that they are equivalent to
finite ordered families of p-functions and thus equivalent to Popper functions.
While rather straightforward, we spell out the connection in detail since we will
exploit the correspondence frequently below. For any QRM <, let Wy --- W,
denote the equivalence classes of W determined by <. That is, for each W;,
if w,v € Wy then w < v; and if w € W;, v < w and w < v then v € W;.
Furthermore, assume that if ¢ < j then there is some w € W;, v € W such that
w < v. Let <¥ be a CPM. For each equivalence class W; define a (normalized)
weighting function (and equivalent p-function) P; as

_ P(w)
- XAP) v e W}
if we W; and Pj(w) = 0if w & W;. We call {F; : i < n} the ordered family

of p-functions induced by <¥. A counterfactual probability function can be
defined using the relationship:

Pi(w)

P(B]A) = PA(B|A)

10



It is easy to verify that this counterfactual probability function is exactly that
determined by the original CPM. Furthermore, given any such ordered family
of p-functions, it is easy to construct a corresponding CPM. The results of van
Fraassen and Spohn ensure that CPMs determine Popper functions and that any
Popper function is representable by a CPM.® Furthermore, the ordered family
generated is dimensional — it is therefore minimal and consists of pairwise
orthogonal elements.

In the sequel we will use the original definition of CPMs and their represen-
tation as a minimal, orthogonal ordered family of p-functions interchangeably.

3.2 Probabilistic OCFs

Just as we probabilized QRMs by adding probability weights to the worlds in
the qualitative ranking, we can probabilize OCFs.?

Definition 3.7 kp = (x, P) is a probabilistic ordinal conditional function (POCF)
iff

(a) & is an OCF; and
(b) P: W —(0,1]

The Popper function P(-T-) induced by a POCF is defined in exactly the same
fashion as for CPMs. A POCF determines a minimal, orthogonal ordered family
of p-functions in precisely the same way as CPMs. However, we will index the
elements of this ordered family by the x-ranking associated with the worlds over
which it 1s defined; that is, the ordered family will be written

{Piw71(i) # 0}

While POCFs and Popper functions correspond in the obvious way, we see
that many different POCFs are equivalent to the same CPM and induce the
same Popper function. Thus we might think of POCFs as a Popper function
with additional structure.

3.3 A Standard Interpretation of POCFs

If one is going to use probabilities as degrees of belief, it seems natural to
question the need for Popper functions, ordered families of p-functions and
(categorical) belief sets. If one is going to allow a sentence A in K to be retracted

8 We should point out that since CPMs assign non-zero weight to every element of W, they
can only represent Popper functions such that no consistent A is abnormal; that is, we must
have P(—A|A) = 0. To capture all Popper functions, we can simply relax the requirement
of non-zero weight, thus allowing abnormal elements. We will not be concerned with such
functions in the sequel.

9Indeed, in his original paper Spohn suggests that OCFs could be probablized.

11



when —A is learned, why not simply assign A some degree of belief less than
1 in the first place and use standard techniques such as conditionalization to
incorporate new items of belief?

If one wishes to allow the possibility that any “belief” can be overturned
given the proper evidence, then full belief can be granted only to tautologies,
and every contingency must have some positive probability. To take a slightly
less extreme view, one might accord observational reports (say) the status of
full belief, but still no conclusions drawn from these would be certain. Pre-
sumably, there are certain computational advantages to be gained by ruling out
possibilities that are very unlikely [10, 17]. Chief among these is the ability to
exploit logical rules of inference. Such rules allow conclusions to be reached in
manner that is independent of context, in contrast to probabilistic inference.
The locality of logical rules can be exploited if parts of the belief are (treated as
if they are) fully belief [23].

It may also be that the cost associated with reaching incorrect (unhedged)
conclusions and being forced to revise the belief set is outweighed by the prob-
ability of being correct. We might therefore think of a constraint B € K7 as an
instantiation of an acceptance rule [20]. If B € K is satisfied by the epistemic
state of an agent, we take it to mean that there is a certain utility associated
with complete acceptance of B given A.'% On this view, it is reasonable to allow
a conditional belief B € K% to be held even when —A is accorded full belief,
P(=A) = 1. Consequently, we do not take a P(A) = 0 to indicate that A is
(logically or physically) impossible, but simply that is is not, to use Levi’s [21]
terminology, a serious possibility.

To make sense of this perspective, it should be possible to interpret a Popper
function, a CPM or a POCF as some sort of abstraction of a classical, absolute
p-function. There should be some “true” p-function P such that the Popper
function P induces the appropriate beliefs with respect to P. Furthermore, if P
is representable by some minimal, orthogonal ordered family { P;} of p-functions,
the true p-function P should be constructed through some combination of the
elements P;. In particular, we expect P to be some additive mizture of the P;;
that is,

P(A)=ay-Pi(A)+ - -an - Pa(A)

Of course, not any additive mixture will do. We expect a mixture to justify
in some way the “acceptance rules” implicit in the Popper function. Below we
suggest one such interpretation, whereby if some proposition is more plausible
than another, the first can be made arbitrarily more probable than the second
with respect to P. We remark that other interpretations are possible that can
be modeled using an additive mixture of the family {P;}.!! We do not suggest

10We do not address here the issue of how one determines appropriate acceptance rules.
Below we show how such acceptance rules can interpreted in a very strong probabilistic way
that guarantees this to be the case; but in general decision-theoretic criteria should be brought
to bear [24, 8].

11 0One example is using standard acceptance rules so that P%(B) = k ensures that P(B|4) >

12



that this interpretation is the correct way to view Popper functions, but simply
present it as an alternative to illustrate the feasibility of this point of view.

Imagine an agent whose epistemic state is represented as a POCF which, by
our standard construction, determines an ordered family {P; : k=1(4) # 0}. We
suppose that P is an absolute p-function abstracted by this POCF. The serious
possibilities admitted by the agent are those sentences A such that x(A4) = 0.
If A is a serious possibility and B is not, we should expect that A is more
probable than B by some significant factor, for instance, P(A4)- e > P(B)
for some sufficiently small ¢ > 0. Furthermore, we should expect that the
degree of plausibility of a proposition (its k-rank) determines the extent of this
difference. In general, we require that if kK(A) 4+ ¢ = &(B) for some ¢ > 0 then
P(A)-&' > P(B). That is, more plausible sentences can be made arbitrarily
more probable than less plausible sentences, and difference in plausibility forces
a “lower bound” on this difference. For any POCF, such a p-function P can be
constructed as an additive mixture of its ordered family.

Theorem 3.6 Let (k, P) be a POCFE determining an ordered family { P; k(i) #
0}. For any sufficiently small £, there exists a p-function P = {a; - Pi} such
that if kK(A)+ i = k(B) for some i > 0 then P(A) -&' > P(B).

Proof For simplicity, we assume that ¢ satisfies the rather weak constraint
that ¢ > Z]’>i5j (although for somewhat larger ¢ the construction can
be modified). To prove the result we must determine appropriate parame-
ters a;. Let W; = {w : k(w) = ¢}. We have by construction that P;(w) > 0
iff w € W;, where P; denotes the (normalized) weighting function corre-
sponding to p-function P;. For each P; define

min(P;) = min{ Pj(w) : w € W;}
Note that min(P;) < 1. We define the (unnormalized) additive parameters
as follows: '

a; = ¥ ~H{min(Pi)}
i<j

The p-function P is the represented by the weighting function (where
we W)

Bw) = Pi(w) =% - [min(P))

i<

Now suppose «(A) = k and (B) = k + ¢. In the following, P is unnor-
malized since the additive parameters a; are unnormalized; but all rela-
tionships hold when normalization is performed. Recall that min(P;) < 1.

k- (1 — ¢) for some small £ > 0. A variant of Adam’s [1] semantics for conditionals can be
used to verify that such an interpretation can be given and that it corresponds to an additive
mixture (where the weights a; are a function of ).

13



Since k(A) =k, Wi N||A]| # 0. So
P(A) > min(P;)-e* H{mm
j<k

> min(Py) - H{mm
i<k

Since k(B) =k+1¢, W; N||B|| =0 for all j < k+4. So

> (¥ - [[{min(P)}}

P(B) <
j=k4i 1<j
< J[H{min(P)}y- > {7+ ] {min(P)}}
j<k j=k4i I=k+1
< [T{min(P)}y- - {e¥)
§<k j=k+i
< [T{min(py)} - e+
i<k
< [[{min(py)} e &
i<k
< P(4)-€

Thus for any small € > 0, a suitable p-function can be constructed that validates
the relationship imposed by the POCF. The p-function constructed in this proof
also has the property that if x(A) = i then P(A) < ¢!

Proof If k(A) =i then

H?:i{Ezj}
~ [I=ote™}
Thus

H?Ii{gzj}
e T [Tj=ote™?}
Soﬁ—i’f—)gland PA)<e. &

Thus a POCF can be viewed as an abstract representation of some reasonable
additive mixture of its corresponding ordered family of p-functions. Again,
other reasonable mixtures are possible — the crucial point is that classical
interpretations of POCFs based on additive mixtures of their ordered family
presentations are feasible.
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4 Tterated Revision

One difficulty faced by the revision models presented to this point is that they do
not lend themselves to iteration. In the nonprobabilistic case an epistemic state
is represented by a QRM or OCF suitable for some belief set K, and describes the
form to be taken by a new belief set K7%. But nothing in these models suggests
what form should be taken by the new epistemic state, a new QRM or OCF
suitable for K. This new model is necessary to process subsequent revisions
of K7%. Similar considerations apply to probabilistic models, be they CPMs
(simple Popper functions) of POCFs (structured Popper functions) suitable for
some initial p-function P. While they dictate the precise form of P}, they
provide no guidance for the construction of a new probabilistic epistemic state
(a CPM or POCF). This difficulty was first noticed by Harper [18].

In the nonprobabilistic setting, Gardenfors [12] circumvented this difficulty
by introducing the notion of a belief revision system, a set K of belief sets and an
AGM revision function * that maps (K, A) (where K € K and A € L) to K €
K. Since * is defined for all K € K, the revision of K} is determined and iterated
revision proceeds unobstructed. Such a model of iteration is unattractive for two
reasons. First, the revision of a belief set K is fixed. An agent with objective
belief set K cannot accept different revision policies with respect to K (for
example, at different times). Since there are many QRMs and OCFs suitable
for any fixed K, there seems little reason to expect an agent to choose one such
epistemic state once and for all. The second undesirable feature of this model 1s
its generality. The revision of K is dictated by a plausibility ordering < suitable
for K. A belief revision system requires that the revision of K also be modeled
by (or representable as) a new plausibility ordering <% .'? However, it imposes
no constraints on the relation between < and <% other than what we dub the
Basic Requirement.

The Basic Requirement: If < is a K-QRM determining revision function *,
then the revision model <* must be such that min(<%, T) = min(<, 4).

Thus, essentially arbitrary changes in the plausibility ordering < are permitted.
Equivalently, an agent is permitted to make arbitrary changes in its judgements
of the relative entrenchment and plausibility of propositions. A model of iterated
revision that imposes additional structure on the change of epistemic state is
therefore desirable.

Lindstrom and Rabinowicz [22] have proposed a similar model for the re-
vision of p-functions. They suggest that each p-function be associated with
a unique Popper function. The Popper function associated with p-function P
determines the revised p-function P} as described in the last section. Subse-
quent revision of P} is determined by its corresponding Popper function. The
unattractive features of belief revision systems are inherited by this probabilistic

12 Analogous remarks hold for the revision of OCFs.
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model of iteration: each p-function is bound to a single revision policy (Popper
function) and the relationship between a Popper function and its revision can
be arbitrary.

4.1 Tteration using POCFs

As we hinted in Section 2.3, the integer degrees of plausibility associated with
worlds and propositions in Spohn’s OCFs play a crucial role in iterated revision.
Indeed, Spohn’s model of revision, in contrast with the AGM theory, is influ-
enced primarily by the problem of iteration, with revision by A defined so that a
new OCF is produced. Our presentation of the revised belief set K7 determined
by an OCF & is a mere by-product of Spohn’s model of belief dynamics, which
we now present.

In OCFs beliefs are held with a specified degree of strength. If =A € K, then
the strength of belief in = A is k(A). If revision of K by A is not only to produce
a new belief set K7, but also a new OCF &%, then the strength with which A
is to be held in the revised OCF must be given, for otherwise the revision will
be underdetermined. In a manner reminiscent of Jeffrey conditionalization [19],
we define the A, k-conditionalization of k as follows.

Definition 4.1 Let x be an OCF, A € L be satisfiable, and k > 0. The A, k-
conditionalization of k is the OCF k4 3 where

st = { ) it we ||
| b+ (6(w) = w(24)) i w e 4]

If x 18 an OCF such that = A is believed, intuitively & is adjusted by shifting the
A-worlds down by a factor of £(A) — this ensures that min(x, A4) is given a new
ranking of 0 (down from x(A4)) — and by shifting all =A-worlds up by a factor of
k (from 0) — ensuring that A is now believed to degree k. Since worlds within
the sets || 4[| and ||=A[| stand in the same relation, each new cluster within x4
will typically be the union of the some set of A-worlds of some fixed rank (w.r.t.
) and some set of = A-worlds of a different fixed rank. In particular, we have:

W () = {w € JA] - k(w) =i+ k(A)} U{w € [[=A]  (w) =i+ k — k(=4)}

Both sets may be empty in which case no worlds are assigned rank ¢ in the
revised OCF. If not, we classify the resulting cluster as follows: if I{Z}k(l) C |A]ll
we say that I{Z}k(l) is a resulting A-cluster; if I{Z}k(l) C ||mA| it is a resulting - A-
cluster; otherwise, 1t i1s a mized cluster. Mixed clusters will play an important
role in the revision of POCFs.

It is easily seen that if & > 0, this is a revision operation that accepts A.13
Note that to effect revision by A in a way that defines a new OCF x4 ;(w) a

13The restriction that & > 0 is made for convenience of presentation. The A, k-
conditionalization of xk can be captured by = A, —k-conditionalization if k£ < 0.
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strength of evidence k& must be associated with the new fact A. Clearly, the revi-
sion process can be iterated, for the A, k-conditionalization of & gives a new OCF
suitable for the revised belief set KA. In other words, A, k-conditionalization
satisfles the Basic Requirement that min(x4 5, T) = min(x, A). Furthermore,
the new OCF 1is strongly related to the original OCF. An agent’s new judge-
ments of plausibility, surprise and entrenchment correspond in a natural way to
its original epistemic state.

We now examine the extent to which Spohn’s A k-conditionalization oper-
ation can be applied to POCFs and provide us with a model of probabilistic
revision which deals with iteration. We first point out that a probabilistic exten-
sion of A, k-conditionalization cannot be viewed as a means of revising standard
Popper functions. As we noted earlier, POCFs have additional structure and
this structure is exploited by A, k-conditionalization. Thus, the view of Pop-
per functions as an appropriate representation of a probabilistic epistemic state
in untenable if we use this revision model to effect changes in epistemic state.
Spohn [28], following Harper, indeed suggests that Popper functions are impov-
erished for precisely this reason.

Let ¥ be a POCF with underlying OCF % and weighting function P. The
Popper function P(-]-) induced by &% is compatible with x in the sense that
its ordered family presentation {P; : k=1(i) # 0} directly corresponds to the
clusters of x: we have Pj(w) > 0 iff x(w) = i When we perform A, k-
conditionalization, we would like the revised POCF K?A  and its ordered famlly
representation to stand in the same correspondence with the revised OCF KA k-

Definition 4.2 Let xF = (k, P) be a POCF. A POCF &Y , isan A, k-conditionalization
of k¥ iff /fik = (k4 , P’y where P’ is an arbitrary (positive) weighting
function.

If P(-]) is the Popper function induced by &%, we use PA*(-1-) to denote the
Popper function corresponding to some A, k-conditionalization /fik. We also
use PZ»A’k to denote elements of the ordered family of p-functions induced by
LRy

Such arbitrary changes leave Kii ; drastically underspecified. More impor-
tantly, this class of change functions admits some unintuitive changes in epis-
temic state. At the very least, when & > 0 we should require that P64’k = P(14)
— revising by A should induce the same objective state of belief as counterfac-
tual conditionalization on A. Furthermore, in analogy with Jeffrey condition-
alization, we might require that an update by A not change the conditional
probabilities within the A-part or the —A-part of P; in other words, we insist
that PA*(B1A) = P(BlA) and PA*(B|-A) = P(B|-A) for all B. Neither of
these restrictions is enforced by arbitrary A, k-conditionalization of x¥. These
conditions can be captured by insisting that the new weighting component of
K?A . keep the relative weights of worlds within the A-part (respectively, the
—A- part) of each new cluster fixed. For resulting A-clusters (resp. —A-clusters)
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the weighting function restricted to that cluster corresponds to the conditional
probability function P;(:|4) (resp. P;(:|-A)) for some i. For resulting mixed
clusters, the p-functions for both the A and —A-parts must be mixed in an ap-
propriate way. We define regular A, k-conditionalizations to capture this notion.

Definition 4.3 Let P; and P; be two p-functions. The p-function P is a non-
trivial §-mizture of (P;, P;) iff P(A) = 6F;(4) + (1 — §)P;(A), where
0<6<l.

Definition 4.4 Let «” = (k, P) be a POCF and m = max{i : 3. (i) #
0}. Let 8, -,6m be a set of mizture factors, 0 < & < 1. We say
/fik = (nAyk,PA’k) 1s a regular A, k-conditionalization with mixture fac-
tors 6y, - -+, 6, of k¥ iff Kii ; 1s an A, k-conditionalization of xF and PA*
satisfies the following propérties:

1. if K?Zlk(i) is a mixed cluster and k4 p(w) = ¢ then:

i Ak () — 5.P(w) .
(a) if w € ||A|| then PH*(w) = S TP( ) wan (v)=i welAT} and
(b) if w € ||=A|| then PA*(w) (1=6)P(w)

= S (PR x(v)=ivel[~All}
2. if K?Zlk(i) is not a mixed cluster and x4 z(w) = i@ then PAR(w) =
P(w)

Intuitively, a regular A, k-conditionalization of & provides a well-behaved
weighting function over k4 . If a cluster induced by x4 ) is not mixed (that
is, it consists solely of A-worlds or = A-worlds), the relative weights of worlds
within that cluster are unchanged from &% . For a mixed cluster I{Z}k(i), the A-
worlds retain the same relative weight but the total weight is fixed by the some
mixture factor 8;; and the total weight of = A-worlds s fixed by its complement
1 —6;. We have assumed the existence of the factors for each cluster in x4 1 (as
well as “empty clusters”), but only the é; corresponding to mixed clusters are
used and need be specified.

For a fixed set of mixture factors it is clear that the regular A, k-conditionalization
of k¥ is unique and induces a fixed Popper function. This Popper function sat-
isfies the properties we expect.

Theorem 4.1 Let ¥ be a POCF and P(-1-) its corresponding Popper func-
tion. Let /fik be a regular A, k-conditionalization of x¥ and PAF(-1.) its
corresponding Popper function. Then P(BTAANC) = PA¥(BTAAC) and
P(BI=ANC) = PA¥(BI=ANAC) for all B,C.

Proof Assume AAC is satisfiable (otherwise P(BJAAC) = PA*(BIAAC) =1
for all B). We have

_ Y{P(w):weEmin(k, ANC) and w [ B}
PIBIANG) = S {P(w): w € min(x, AAC)}
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We also have min(ka 5, AAC) = min(k, AAC). If min(ka ;, AAC) isin
a resulting A-cluster then P4*(w) = P(w) for all w € min(ka 5, AN C).
Otherwise, it is in a mixed cluster and P4*(w) = & P(w). Thus, the
relative weights of all worlds in min(x4 5, AAC') are unchanged and P(B]
ANC) = PA¥(B1TAAC). An analogous argument can be made for
PA¥(BI-AANC). B

Corollary 4.2 P(B]A) = PA*(BlA) and P(B|-A) = PA*(B-A).
Corollary 4.3 If k > 0 then PA*(B]T) = P(BlA).

Gardenfors [12] has proposed a set of postulates for the revision of p-functions
that mirror the postulates (R1)-(R8). We present a modified version of these.*
Let P be a p-function and A some consistent sentence. A probability revision
operation satisfies:

(P1) P3 is a (consistent) p-function.
(P2) Pi(4) =1

(P3) If P(A) > 0 then P} = P(:|4)

(P4) If = A= B then P; = Pj,.

(P5) If P;(B) > 0 then P},5 = Pi(:|B).

Given the previous results, it is quite easy to verify that regular A, k-conditionalization
of k¥ determines a probability revision operation satisfying postulates (P1)-
(P5) if we take P to be the absolute p-function induced by ¥ and P} to be
the p-function induced by /fik (for any k > 0).
Regular A, k-conditionalization of &% is defined using the POCF explicitly
and constructing an unnormalized weighting function. However, the same effect
can be achieved by applying a similar operation to the ordered family presenta-
tion of k¥ to form a revised ordered family. In some sense this operation may
be more natural as operates on the canonical representation of POCFs.

Definition 4.5 Let {P; : k=(i) # 0} be the ordered family of p-functions
induced by some POCF & and let &g, - - -, &,, be a set of mixture factors,
0 < 8; < 1. The regular A, k-conditionalized family of p-functions {PZ»A’k :
I{Z}k(l) + 0} is defined as follows:

& Pcay+i (-] A)+
pAk _ (1= 6) Pipr—n(-a)(-[7A) i Pogay4i(A) > 0, Prggop(aa)(0A4) >0
! Peayi(-]4) if  Peaypi(A) >0, Piyp—n-a)(mA4) =0
Pitr—x(-)(-|74) if Peayi(A) =0, Piyp—w(-a)(m4) >0

Tn particular, we only consider revision by consistent A (see also [22]). Gardenfors permits
revision by some inconsistent A to result in the inconsistent p-function PL.
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Theorem 4.4 Let ¥ be any POCF that induces the ordered family {P;}. Then
the reqular A, k-conditionalization of k¥ using mizture factors &y, - - -, 6, induces
the A, k-conditionalized family of p-functions {PZ»A’k} using the same mizture
factors.

Proof Recall that PZ»A’k is defined (w.r.t. s ,) using the weighting function
restricted to K?Zlk(i). Assume K?Zlk(i) is an A-cluster. Then x=1(i + k —

k(=A)) N [|=4]] = 0 and
kg SAP(w) h(w) =i+ w(4) and wle AAB)
P(B) = Y AP(w): k(w) =i+ k(A) and w | A}

K3

Thus, PZ»A’k(B) = Piyea)(BlA). However, since I{Z}k(l) is an A-cluster,
Pitr—x(-4)(mA) = 0 and the direct A, k-conditionalization of {F;} also
defines P/""(B) = Pijo(a)(B|A).

K3

Similar arguments can be made for resulting —A-clusters and mixed clus-
ters. W

Regular A, k-conditionalization of a POCF or its ordered family has a num-
ber of attractive properties. However, in order to use this procedure for revision
of a POCF, or its associated Popper and p-functions, a fair bit of knowledge
has to be provided. Because POCFs generalize OCFs, the evidence A has to be
specified with a degree of strength (or entrenchment) k. In addition, a sequence
of mixture factors é; must also be specified. Unfortunately, these mixture fac-
tors do not seem to have a natural interpretation in general.'® There are few
hints in the formal structure of a POCF that might guide the selection of the
appropriate é;, or even a single fixed § for all mixtures. A lack of principles
for the selection of mixture factors and intuitive interpretation of their mean-
ing and function make regular A, k-conditionalization, and perhaps POCFs, less
attractive as models of probabilistic revision.

One possible solution to this problem is to treat a POCF as a representation
of some classical p-function P, as suggested in Section 3.3, and treat update by
A,k as Jeffrey conditioning (setting P(A) = p for some appropriate value p) on
this p-function. One may be able to select an appropriate probability p based on
the strength of evidence k; suitable parameter values for A, k-conditionalization

might then be suggested by the classical p-function P that results from clas-
sical Jeffrey conditioning on P. Specifically, recall that if a POCF «¥ induces

150One exception pertains to A, 0-conditionalization. Such a revision is best thought of as
contraction as it ensures that both A and = A are considered completely unsurprising. The
revised POCF ﬁio induces a new absolute p-function P4:° () = pAO (-1T) whose structure is
influenced considerably by §y. In particular, we have P40 (A4) = §, and PA°(=4) = (1 —6).
Thus, regular A, O-conditionalization is a form of weighted contraction that might be viewed
as some type Jeffrey conditionalization setting P(A) = &g.
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an ordered family {P; : k71(i) # 0}, we require the underlying p-function P to
be some additive mixture of the P;:

P(A) = {aiPi(A) - w7(0) # 0}

A, k-conditionalization determines a new POCF Kii ; Which in turn determines a
new ordered family { P : £35. (i) # 0}. To interpret A, k-conditionalization as

e . - . . —=A .
Jeffrey conditioning on P, we require that some p-function P P determined
by Jeffrey conditioning of P — be equivalent to an additive mixture of this new
ordered family:

P (A) = PA) zar DO (0P (A) kg () £ 0)
If such a value p can be found (along with appropriate additive weights b;), it
may be the case that appropriate mixture factors é; are fixed by this relationship.
It turns out that «f any A, k-conditionalization can be interpreted as Jeffrey
conditioning on an underlying classical p-function in the manner suggested, it
must be (equivalent to) some regular A, k-conditionalization, as indicated by the
following lemma. To prove this, we exploit the fact that the Jeffrey conditioning
of P by P(A) = p leaves the conditional p-functions P(-|A) and P(:|-A) un-
changed. Indeed, to guarantee that P’ can be formed using Jeffrey conditioning
on A it is sufficient to show that P/(C|A) = P(C|A) and P'(C|=A) = P(C|-A)
for all C'.

Lemma 4.5 Let k¥ be a POCF with ordered family {P;}, and let P be an
additive mizture of {P;}. Lel Kii p be some arbitrary A, k-conditionalization of
&P with induced ordered family {PZ»A’k}, and let P be defined as some additive
mizture of {PZ»A’k}. IfFA’k =P (i.e., the Jeffrey conditioning of P setting
P(A)=p) for some p, then {PZ»A’k} is a reqular A, k-conditionalization of the
Jamily {P;}.

Proof We prove that the resulting mixed clusters of the A, k-conditionalization
must conform to the constraints of regular A, k-conditionalization. The
proof for A and —A-clusters is similar.

Let K?Zlk(i) be some mixed cluster in Kii . such that

PP 2 8 Py (1A) + (1= 6) Pry—p(oa) (|2 A)

for any 0 < é; < 1. This implies either that a) for some pair of worlds
w, v € ||A]] such that k4 x(w) = k4 r(v) = i, we have

P w) ) Pagayti(w)
PA’k(v) Pre(ayti(v)

K3




or b) a similar relation for the = A-part of K?Zlk(i). (We assume the former;
the proof of the latter case is identical.)

. = - . . Ak . . .
Since P is an additive mixture of {F;} and P~ is an additive mixture of

{PZ»A’k}, we must have

P w) | Plw)

Py T Pl

Thus, P cannot be formed by Jeffrey conditioning on P. W

The Jeffrey conditioning of an underlying classical p-function justifies the use
of regular A, k-conditionalization of x%; but it still cannot aid in the selection
of appropriate mixture factors ¢;. Again, assume that #F induces an ordered
family {P;} and that P = > {a;P;} is an additive mixture of this family. If
. . —Ak .
/fik induces the family {P**}, we want P~ = S°{b; P**} to be an additive
. . . —Ak e
mixture of this family. If 7" can also be produced by Jeffrey conditioning of
P, using Lemma 4.5 it is easy to verify the following fact.!®

Lemma 4.6 P" is produced by Jeffrey conditioning of P by A iff 1) {PZ»A’k}
is the regular A, k-conditionalization of {P;} (using some factors 6; ); and 2) for
any two clusters K?Zlk(i) and K?Zlk(j) of/fik, the new additive weights b; satisfy
the following properyties: 7

(a) If both are mized clusters then

Ap(arti - Pe(aypi(A)  6ib;
r(a)tj - Prayi (A)  65b;

and

Aith—n(=4) * Pigh—n-a)(7A) (1= 6&)b;
Wjpk—n(=A) " Pjgr—r-a)(7A) (1 —=6;)b;

(b) If K?Zlk(i) is @ mized cluster and K?Zlk(j) 1s an A-cluster then

A(A)ti - Pr(ay+i(A) _ Gibi
ar(a)tj - Preayi(A) b

(¢) If K?Zlk(i) is @ mized cluster and K?Zlk(j) is @ = A-cluster then

Aipk—r(~a)  Pigp—n(-a)(7A) (1= 8;)b;

Aj4h—r(~A) " Pj+k—n(—|A)(_'A) b]’

16 A proof is based on the same considerations as those used in the proof of the lemma,
namely, that the conditional p-functions P(:|A) and P(-|-A) must remain unchanged.
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If the additive weights b; are varied, the constraints on suitable mixture factors
8; also change. Rather than restricting the choice of appropriate é;, we have
introduced yet another parameter to be tuned in the revision of a p-function.
This 18 not so problematic, for we may assume that the additive weights are
fixed. After any revision of a POCF, the weight assigned to each p-function
PZ»A’k can be simply that assigned to its predecessor F;; that is, b; = a; in the
above scheme. Of course, this is too stringent, for the number of nontrivial clus-
ters or p-functions may change in the move from «* to Kii ;- More realistically,
we might imagine that these weights be fixed, but normalized to discount those
weights a; that correspond to empty clusters. So suppose P = > {a;P;} and
Pt = Z{biPiA’k}. We call the new p-function P proportional revision
of P (wr.t. to xF) just when Z—; = Z—; whenever the clusters k=1(4), k1(j),
I{Z}k(l) and KZ}k(j) are nonempty. Unfortunately, the requirement of propor-

tionality conflicts with the interpretation of A, k-conditionalization as Jeffrey
conditioning.

Theorem 4.7 There exists ¢ POCF kp such that for no additive mizture P

of its ordered family is there a proportional additive mizture P~ of its A, k-
conditionalization that can be constructed from Jeffrey conditioning of P.

We present a simple counterexample to verify this fact. Let «” be a POCF
with four clusters and associated ordered family of p-functions { Py, Py, P2, Ps}.
Assume Py(A) = Pi(A) = 1 and Py(—A) = P3(=A4) = 1 and that P = agPy +
a1P1 + as P> + asPs. The A, 1-conditionalization of k¥ causes the = A-worlds to

be shifted down one level; thus Kii 1 consists of three clusters. By Lemma 4.5, if

—A,1 . . - . -
P s to be equivalent to the Jeffrey conditionalization of P, then the ordered
family induced by Kii ; must have the form, for some 0 < 6; < 1: P64’1 = Py;

P = 8Py + (1 — 6,)Py; and P = Py. Now, let P! = boPb! 4 b, P 4

. . oA L . .
bzPZA’l. By the constraints described above, if P s to be equivalent to the
Jeffrey conditionalization, we have

@ _ bo
a1_61b1

o541 . . .. -
However, if P s a proportional revision of P then by Lemma 4.6 we must

also have
ap bo

ai B by
This contradicts the fact that 0 < §; < 1.

We notice that this counterexample is a very typical form of probability revi-
sion, and most such “run of the mill” revisions will give rise to the same “impos-
sibility” result. Thus, to treat POCFs as abstractions of absolute p-functions
in order to determine mixture weights é; by appeal to Jeffrey conditioning, one
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must propose criteria according to which new additive factors b; should be se-
lected. Thus, rather than restricting the choice of é;, one introduces yet another
choice, another parameter that must be fixed in the updating of POCF. Revi-
sion of Popper functions using POCFs is somewhat unattractive because of the
epistemological demands on the holder of an epistemic state and the provider
of evidence by which the epistemic state is to be updated. For this reason, 1t 1s
certainly worthwhile exploring simpler alternatives.

4.2 Probabilistic Minimal Conditional Revision

Spohn’s revision method allows for iteration, but cannot be applied to to QRMs,
for the relative plausibility of worlds is not sufficient to determine an updated
ranking; the actual x-ranking of a world’s plausibility is necessary. For this
reason, the extension of Spohn’s method to POCFs cannot be applied to Popper
functions directly — the ordered family representation of a Popper function
merely determines the relative plausibility of worlds and p-functions, not the
magnitude of plausibility. Methods of iterated revision that work directly with
QRMs are therefore most directly applicable to the problem of Popper function
revision.

Several such proposals have been put forth. Safe contraction [3], gener-
alized epistemic entrenchment [25] and the probabilistically motivated system
of Schlechta [26] each take a similar approach to the problem: each assumes
the existence of a “global” ordering of entrenchment over all sentences in the
language. For any belief set K the appropriate revision function is immedi-
ately available, and iteration of the process requires no additional apparatus.
These models have the rather severe drawback that