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1



1 IntroductionMost theories of belief revision take belief sets, or sets of (objective) sentencesto be the target of the revision process. A revision function maps one beliefset into another in response to some new piece of evidence A. The informationthat determines the exact nature of this mapping can be represented in variousways | for instance, as an entrenchment relation or a set of conditional beliefs| and together with the belief set constitutes an agent's epistemic state.It has frequently been suggested that a belief set can be viewed as an abstrac-tion of a more �ne-grained, quantitative epistemic state, namely a probabilityfunction (p-function) that captures degrees of belief. We take the top of thep-function P (i.e., those A such that P (A) = 1) to be the agent's belief set, butallow further discriminations among non-beliefs to be held [12, 22]. Of course,the revision problem in this setting requires somewhat more machinery; butonce a method for revising a p-function is in hand, revision of the correspond-ing belief set comes for free: we simply take the revised belief set to be the top ofthe revised p-function. Probabilistic revision seems to have received somewhatless attention than its qualitative counterpart, in some measure due to the factthat Popper functions (or to use Stalnaker's [29] more suggestive terminology,counterfactual probability functions) provide a rather natural and robust repre-sentation of an epistemic state and revision method in such a setting. By nowthe connections between Popper functions and the qualitative representationsof revision functions are well-understood [29, 30, 28, 12, 22] and con�rm thatthe \belief as top of a p-function" perspective is tenable.The problem of iterated revision requires that a revision function producenot only a new belief set or p-function, but a new epistemic state to guide sub-sequent revisions. On this count many theories are silent and in general, aspointed out by Harper [18], the problem is a di�cult one. However, some pro-posals for iterated revision in the qualitative setting have been put forth. In thisarticle we examine the extent to which similar considerations can be adaptedto iterated probabilistic revision. We pay special attention to Spohn's [28] ordi-nal conditional functions (OCFs) and the author's [5, 7] proposal for minimalconditional (MC) revision. Spohn's model imposes additional structure on theusual revision functions requiring that the entrenchment and plausibility of sen-tences be quanti�ed and that the evidence causing revision have an associatedstrength. The \probabilized" OCFs we introduce further impose such informa-tional demands on the incorporated evidence that the naturalness of the modelmust be called into question. In addition, we show that under certain naturalinterpretations, the updates sanctioned by this model cannot be justi�ed byappeal to conditionalization. We then examine a simpler, more impoverishedmodel that allows the direct (iterated) revision of Popper functions and examinesome of its properties.We begin by introducing the AGM theory of revision, a semantic model ofrevision functions and Spohn's notion to OCFs in Section 2. In Section 3 we2



discuss the connection to Popper functions and present a probabilistic versionof OCFs, as well as giving a quasi-in�nitesimal interpretation of these modelsreminiscent of Adam's [1] "-semantics. This interpretation suggests that, moregenerally, one may be able to interpret Popper functions as an appropriate ab-straction or summarization of a classical p-function. We then address the ques-tion of iterated revision of probability functions in Section 4. We �rst discussthe probabilistic OCF model and show that the extension of Spohn's updatemethod to this case is not straightforward. In particular, certain parametersare required to make sense of this model, parameters whose interpretation isunclear. Furthermore, we show that adopting the view that Popper functionscorrespond to classical p-functions and that revision corresponds to some formof conditionalization does not help �x these parameters. We then examine theprobabilistic version of MC-revision and its di�culties. The net result is asomewhat negative conclusion: the revision of probabilistic belief states is notas straightforward, nor as well-understood, as we might have thought.2 Non-Probabilistic Belief RevisionWe assume an agent to have a deductively closed set of beliefs K taken fromsome underlying language. For concreteness, we will assume this language to bethat of classical propositional logic L, generated by some set of variables P, andwith an associated consequence operation Cn. To keep the technical details toa minimum we assume that P is �nite, giving rise to a �nitary language. Thiswill simplify the discussion of probability functions in the next section. We letW denote the �nite set of possible worlds (or valuations) suitable for L. Anyworld w that satis�es A 2 L (denoted w j= A) is dubbed an A-world, the setof which is denoted kAk. We also use this notation for sets of sentences S, kSkdenoting those worlds satisfying each element of S. The identically true andfalse propositions are denoted > and ?, respectively.2.1 The AGM ModelThe expansion of K by new information A is the belief set K+A = Cn(K [fAg). The revision of K by A is denoted K�A. The process of revision requiressome care, for A may contradict elements of K. Alchourr�on, G�ardenfors andMakinson [2] propose a method for logically delimiting the scope of acceptablerevisions. To this end, the AGM postulates below, are maintained to hold forany reasonable notion of revision [12].(R1) K�A is a belief set (i.e. deductively closed).(R2) A 2 K�A.(R3) K�A � K+A . 3



(R4) If :A 62 K then K+A � K�A.(R5) K�A = Cn(?) i� j= :A.(R6) If j= A � B then K�A = K�B .(R7) K�A^B � (K�A)+B .(R8) If :B 62 K�A then (K�A)+B � K�A^B .It is clear that the epistemic state of an agent cannot consist of a belief set Kalone, for K does not contain the information required to determine its revision.At the very least, an epistemic state might be a hK; �i, where � is some revisionfunction. Less direct but more natural representations of the revision function(at least applied to K) are possible. Among these are entrenchment relations[13, 12] and conditional belief sets [12, 5]. We brie
y describe entrenchmentrelations below; but the crucial feature is the fact that they capture the revisionpolicies of the agent, the information necessary to revise K to form K�A.Semantically, the epistemic state of an agent can be captured using a qual-itative revision model.1 Assuming a �xed set W of possible worlds, a revisionmodel is a transitive, connected ordering relation � over W .De�nition 2.1 A qualitative revision model (QRM) over W is any relation� � W �W such that: a) if w � v and v � u then w � u; and b) eitherw � v or v � w for all v; w 2W .The interpretation of � is as follows: v � w i� v is as at least as plausible a stateof a�airs as w. Plausibility is a pragmatic measure that re
ects the degree towhich one would accept w as a possible state of a�airs. If v is more plausible thanw, loosely speaking v is \more consistent" with the agent's beliefs than w. Since� is a total preorder, W is partitioned into �-equivalence classes, or clustersof equally plausible worlds. These clusters are themselves totally ordered by�. Thus, � can be viewed as a qualitative ranking relation, assigning to eachworld a degree of plausibility. A K-QRM is a QRM that captures the epistemicstate of an agent with belief set K. In particular, we require that epistemicallypossible worlds be more plausible than epistemically impossible worlds, and thatall epistemically possible worlds are equally plausible. In other words, K-worldsshould be exactly those minimal in �:De�nition 2.2 A K-QRM is any QRM such that w � v for all v 2 W i�w j= K.For any A 2 L we de�nemin(�; A) = fw 2 W : w j= A; and v j= A implies w � v for all v 2Wg1The presentation is based on the ordering model and logic described in [9, 6]. In our �nitesetting, this model has no essential di�erences from Grove's [14] system of spheres model.4



For any satis�able A we have min(�; A) 6= ;.2 Intuitively, min(�; A) is the setof most plausible A-worlds. When A is learned, it is this set of worlds thatis adopted as the new set of epistemic possibilities. Thus, K�A can be de�nedsemantically as kK�Ak = min(�; A)and B 2 K�A i� min(�; A) � kBk. It is easy to verify (see [14, 9]) that therevision function induced by a K-QRM satis�es postulates (R1){(R8). Fur-thermore, any function that satis�es the postulates is representable with such amodel.3Within this setting we can de�ne the relative degree of surprise associatedwith sentences as well as the relative entrenchment of beliefs. We say A is at nomore surprising than B i� min(�; A) � min(�; B). Intuitively, this re
ects thedegree to which an agent is willing to accept A as an epistemic possibility. If Ais less surprising than B then A ^ :B 2 K�A_B . If A and B are both believed,we say A is more entrenched than B i� :B is less surprising than :A. Thisrelation holds when an agent is more willing to give up belief in B than A.2.2 Ordinal Conditional FunctionsSpohn [28] introduced a related but somewhat more detailed model of beliefrevision based on ordinal conditional functions or OCFs. Instead of a simpleordering of plausibility over possible worlds, a world is ranked on an ordinalscale according to its degree of plausibility. Spohn recognized that while aqualitative ranking may be appropriate for revising a belief set, this detailedinformation may be critical when one considers how an entire epistemic stateis to be updated.4 To simplify the presentation, we assume that plausibility ismeasured on an integer scale.De�nition 2.3 An ordinal conditional function (OCF) over W is a function� :W !N such that ��1(0) 6= ;.The value �(w) indicates the degree of plausibility of situation w, where �(w) <�(v) indicates that w is more plausible than v. We take the worlds w suchthat �(w) = 0 to be those considered epistemically possible by an agent. Therestriction ��1(0) 6= ; ensures that the agent's belief set is consistent. As withQRMs, only certain OCFs are appropriate for an agent with belief set K.De�nition 2.4 A K-OCF is any OCF such that2If we relax the �niteness restriction, this condition can be guaranteed by imposing acertain type of well-foundededness constraint on �.3More accurately, an AGM revision function is representable by a collection of models f�g,with one ordering for each belief set K. Note that if A is unsatis�able, min(�; A) = ; andK�A = L.4We will elaborate on this point in Section 4.5



�(w) = 0 i� w j= KA K-OCF induces a revision function in the obvious fashion. For any A 2 L wede�nemin(�;A) = fw 2W : w j= A; and v j= A implies �(w) � �(v) for all v 2WgDe�ning kK�Ak = min(�;A) then determines a revision function that satis�esthe AGM postulates. Clearly each K-OCF is equivalent to a unique K-QRMunder the de�nition of K�A; but a K-QRM is equivalent to a great number ofK-OCFs.5 The added expressive power of OCFs will be exploited when wediscuss iterated revision and revision of epistemic states in Section 4.We can extend the plausibility ranking � to sentences, de�ning�(A) = minf�(w) : w j= AgThe lower �(A) the less surprising A is, with the least degree of surprise (orepistemic possibility) indicated by �(A) = 0. Note that either �(A) or �(:A)(or both) are zero, and A is believed i� �(:A) > 0. The entrenchment of a beliefis again the dual of surprise: the greater �(:A), the more entrenched belief inA is.3 Probabilistic Revision ModelsQRMs and OCFs are possible representations of an agent's epistemic state. Anysuch model characterizes a unique belief set K as well as a (single-step) revisionpolicy that determines the revised belief set K�A. However, belief sets allowonly very coarse distinctions in epistemic attitude toward propositions: theycan be accepted (A 2 K), rejected (:A 2 K) or indeterminate (A;:A 62 K).One might expect an agent to give more or less credence to certain disbelievedpossibilities, to be more disposed to one possibility than another without fullyaccepting or believing the �rst. Thus, we may suppose that an agent's beliefset is determined by a probability function (p-function) P : L! [0; 1], satisfyingthe following conditions:1. If ` A � B then P (A) = P (B)2. If ` A � :B then P (A _B) = P (A) + P (B)3. If ` A then P (A) = 1Accepted (rejected) propositions are those A such that P (A) = 1 (P (A) =0). However, indeterminate propositions are now graded according to their5This distinction is analogous to that made by Spohn [28] between OCFs and SCFs.6



probability.6 The function P?(A) = 1 for all A 2 L is dubbed the inconsistentp-function and will sometimes be treated as a p-function (corresponding to thebelief set K? = L).Rather than taking belief sets as primitive, we assume that an epistemicstate contains a p-function from which a belief set K is derived.De�nition 3.1 A p-function P is compatible with a belief set K just whenP (A) = 1 i� A 2 K.Each p-function is compatible with a unique (deductively closed) belief set K.Since many p-functions are compatible with a �xed K, we take p-functions tobe the basic notion from which belief sets are derived. This corresponds tothe well-used tactic (e.g., [12, 22]) of de�ning a belief set to be the top of a p-function. We de�ne the conditional probability P (BjA) as P (A^B)P (A) if P (A) 6= 0;by convention we set P (BjA) = 1 for all B otherwise.Semantically, a p-function can be characterized by a (normalized) weightingfunction P : W ! [0; 1] such that PfP (w) : w 2 Wg = 1. This induces ap-function (over L) via the standard relationship:P (A) =XfP (w) : w j= AgWe use P to denote both the weighting function and the induced p-function sinceeach uniquely determines the other. We will also use unnormalized weightingfunctions, which assign arbitrary positive weights to worlds. An unnormalizedfunction P 0 determines a normalized function P as follows:P (w) = P 0(w)PfP (v) : v 2WgWe note that if P is compatible with K then P (w) > 0 i� w j= K. So it isprecisely the epistemically possible worlds that are accorded positive probability.3.1 Counterfactual Probability ModelsThe notion of compatibility can be extended to QRMs in the obvious way: wesay a p-function P is compatible with QRM � i� P is compatible with the beliefset K induced by �. Since the epistemic possibilities given by K correspondto the set of worlds minimal in �, an appropriate p-function can be imposedby a weighting function P with the property that P (w) > 0 i� w 2 min(�;>).An agent's epistemic state might then be taken to consist of a QRM � togetherwith a compatible p-function P . But, while � is su�cient to determine thecontent of K�A, a revised epistemic state must include a revised p-function P �A;6Note that notions such as entrenchment or plausibility of sentences do not make any suchdistinction between indeterminate propositions.7



and � does not contain the required information. Some method for revisingp-functions is needed.In the special case where :A 62 K (or equivalently, P (A) > 0), we canuse conditionalization of P by A to e�ect revision by A and derive a revisedp-function. We simply set P �A = P (�jA). The following observation is straight-forward (see, e.g., [12]).Proposition 3.1 Let � be a K-QRM such that :A 62 K, let P be a p-functioncompatible with �, and let P �A = P (�jA). Then P �A is compatible with K�A.Thus \consistent" revision and conditionalization correspond in the desiredmanner. If :A 2 K then P (A) = 0 and de�ning P �A via conditionalizationresults in the inconsistent p-function P?. To alleviate this di�culty, we intro-duce nonstandard conditional p-functions, or Popper functions [29, 30, 12, 22].A Popper function is a mapping P : L� L! [0; 1] satisfying [22]:1. P (A"A) = 12. P (�"A) is a p-function3. If ` A � B then P (C"A) = P (C"B)4. P (A ^B"C) = P (A"C) � P (B"A^ C)An absolute p-function is de�ned by setting P (A) = P (A">).7By taking conditional probability as the primitive relation we can imposenontrivial constraints on the value of P (B"A) even when P (A) = 0, and revisionof a p-function can be de�ned by taking P �A(B) = P (B"A). The relationshipbetween the revision of p-functions using nonstandard conditionalization andthe AGM revision of beliefs sets is quite close (see, e.g., [12, Ch.5] or [22]).We take revision of a p-function P as de�ned above to be basic, assuming Pis determined by an appropriate Popper function. This induces an revisionfunction on belief sets, where K is the top of P and K�A is the top of P �A.Such qualitative revision functions satisfy the AGM postulates, suggesting thatthe Popper functions are an appropriate representation of probabilistic revisionfunctions.This relationship can be understood from a semantic perspective as well.The semantics of simple p-functions uses probability weights on epistemicallypossible worlds (consistent with the induced belief set K). This can be extendedto Popper functions by associating weights with all worlds W , regardless oftheir plausibility ranking according to �. In this way, the relative probabilityof worlds within the set min(�; A) is speci�ed and a compatible p-function P �Acan be derived. The weights of worlds in the same cluster of � captures theirrelative likelihood should the agent accept them as epistemically possible. Theycan be viewed as counterfactual probabilities in the sense of Stalnaker [29].7We will consistently use P (�j�) to denote standard conditional probability functions andP (�"�) to denote nonstandard, Popper functions.8



De�nition 3.2 �P= h�; P i is a counterfactual probability model (CPM) i�(a) � is a QRM; and(b) P :W ! (0; 1]De�nition 3.3 Let �P= h�; P i be a CPM. The counterfactual probability ofB given A (relative to �P ) isP (B"A) = PfP (w) : w 2 min(�; A) and w j= BgPfP (w) : w 2 min(�; A)gDe�nition 3.4 The factual probability of A (relative to M ) isP (A) = P (A">)Clearly, the factual probability function P is a p-function. We take the uncon-ditional, factual probability function P to de�ne the objective epistemic stateof the agent in the usual way. This factual p-function is compatible with theQRM component of the CPM.Proposition 3.2 Let �P= h�; P i be a CPM such that � determines belief setK. Then P (A) = 1 i� A 2 K.We de�ne factual conditional probability in the usual way for P , and denotethis with the usual conditioning bar:De�nition 3.5 P (BjA) = P (A^B)P (A) for all A such that P (A) > 0.We can now describe the new p-function P �A that results when the agent'soriginal epistemic state P is revised by A. This revision will proceed by meansof counterfactual conditionalization.De�nition 3.6 Let P be the factual p-function determined by M . The revisedfactual probability function P �A is given byP �A(B) = P (B"A)The (factual) p-function of an agent after such a revision is P �A. The follow-ing results are easy to verify, and are simple restatements of well-known facts.We emphasize them as they indicate that the process of counterfactual con-ditionalization conforms to the rationality constraints imposed by our originalqualitative considerations.Proposition 3.3 If A is satis�able then P �A is a (consistent) p-function.Theorem 3.4 The p-function P �A is compatible with the belief set K�A.9



Theorem 3.5 If P (A) > 0 then P �A(B) = P (BjA).Thus CPMs are consistent extensions of the AGM theory to the probabilisticcase, just like Popper functions. That CPMs in fact determine Popper functionscan be seen by appeal to the representation result of van Fraassen [30]. Hedemonstrates that Popper functions can be represented by an ordinal family ofp-functions, or a sequence of p-functions ranked according to plausibility. In our�nitary setting, we can use a �nite ordered family fP1; � � � ; Png of p-functionsover L. The minimal A-permitting p-function PA is the �rst Pi in the sequencethat accords A positive probability; that is, PA = Pi where Pi(A) > 0 andPj(A) > 0 only if j � i. We can use this family to de�ne a counterfactualprobability function as follows: if Pi(A) > 0 for some i, we de�ne P (B"A) =PA(BjA); if Pi(A) = 0 for all i, we call A an abnormal proposition and setP (B"A) = 1 for all B. van Fraassen shows that any such conditional operatoris a Popper function and that any Popper function is representable by such afamily.Indeed, the stronger representation result of Spohn [27] can be adopted inour �nitary setting. Following Spohn, we say an ordered family is dimensionali� for each Pi there is a sentence Ai such that Pi(Ai) = 1 and Pj(Ai) = 0 forall j < i. If all p-functions are �-additive, dimensional ordered families can beused to represent Popper functions. Dimensional ordered families have severalnice properties, including minimality in the sense that the ordered family of p-functions cannot be replaced by a smaller family. Indeed, a dimensional familysatis�es an even stronger minimality requirement, for the elements of Pi areorthogonal: if i 6= j then Pi(A) = 1 and Pj(A) = 0 for some A [12]. Thus, notonly is the family itself as small as possible, its elements are as well.A simple reconstruction of CPMs demonstrates that they are equivalent to�nite ordered families of p-functions and thus equivalent to Popper functions.While rather straightforward, we spell out the connection in detail since we willexploit the correspondence frequently below. For any QRM �, let W1 � � �Wndenote the equivalence classes of W determined by �. That is, for each Wi,if w; v 2 Wi then w � v; and if w 2 Wi, v � w and w � v then v 2 Wi.Furthermore, assume that if i < j then there is some w 2Wi, v 2Wj such thatw < v. Let �P be a CPM. For each equivalence class Wi de�ne a (normalized)weighting function (and equivalent p-function) Pi asPi(w) = P (w)PfP (v) : v 2Wigif w 2 Wi and Pi(w) = 0 if w 62 Wi. We call fPi : i � ng the ordered familyof p-functions induced by �P . A counterfactual probability function can bede�ned using the relationship:P (B"A) = PA(BjA)10



It is easy to verify that this counterfactual probability function is exactly thatdetermined by the original CPM. Furthermore, given any such ordered familyof p-functions, it is easy to construct a corresponding CPM. The results of vanFraassen and Spohn ensure that CPMs determine Popper functions and that anyPopper function is representable by a CPM.8 Furthermore, the ordered familygenerated is dimensional | it is therefore minimal and consists of pairwiseorthogonal elements.In the sequel we will use the original de�nition of CPMs and their represen-tation as a minimal, orthogonal ordered family of p-functions interchangeably.3.2 Probabilistic OCFsJust as we probabilized QRMs by adding probability weights to the worlds inthe qualitative ranking, we can probabilize OCFs.9De�nition 3.7 �P = h�; P i is a probabilistic ordinal conditional function (POCF)i�(a) � is an OCF; and(b) P :W ! (0; 1]The Popper function P (�"�) induced by a POCF is de�ned in exactly the samefashion as for CPMs. A POCF determines a minimal, orthogonal ordered familyof p-functions in precisely the same way as CPMs. However, we will index theelements of this ordered family by the �-ranking associated with the worlds overwhich it is de�ned; that is, the ordered family will be writtenfPi : ��1(i) 6= ;gWhile POCFs and Popper functions correspond in the obvious way, we seethat many di�erent POCFs are equivalent to the same CPM and induce thesame Popper function. Thus we might think of POCFs as a Popper functionwith additional structure.3.3 A Standard Interpretation of POCFsIf one is going to use probabilities as degrees of belief, it seems natural toquestion the need for Popper functions, ordered families of p-functions and(categorical) belief sets. If one is going to allow a sentence A inK to be retracted8We should point out that since CPMs assign non-zero weight to every element ofW , theycan only represent Popper functions such that no consistent A is abnormal; that is, we musthave P (:AjA) = 0. To capture all Popper functions, we can simply relax the requirementof non-zero weight, thus allowing abnormal elements. We will not be concerned with suchfunctions in the sequel.9Indeed, in his original paper Spohn suggests that OCFs could be probablized.11



when :A is learned, why not simply assign A some degree of belief less than1 in the �rst place and use standard techniques such as conditionalization toincorporate new items of belief?If one wishes to allow the possibility that any \belief" can be overturnedgiven the proper evidence, then full belief can be granted only to tautologies,and every contingency must have some positive probability. To take a slightlyless extreme view, one might accord observational reports (say) the status offull belief, but still no conclusions drawn from these would be certain. Pre-sumably, there are certain computational advantages to be gained by ruling outpossibilities that are very unlikely [10, 17]. Chief among these is the ability toexploit logical rules of inference. Such rules allow conclusions to be reached inmanner that is independent of context, in contrast to probabilistic inference.The locality of logical rules can be exploited if parts of the belief are (treated asif they are) fully belief [23].It may also be that the cost associated with reaching incorrect (unhedged)conclusions and being forced to revise the belief set is outweighed by the prob-ability of being correct. We might therefore think of a constraint B 2 K�A as aninstantiation of an acceptance rule [20]. If B 2 K�A is satis�ed by the epistemicstate of an agent, we take it to mean that there is a certain utility associatedwith complete acceptance of B given A.10 On this view, it is reasonable to allowa conditional belief B 2 K�A to be held even when :A is accorded full belief,P (:A) = 1. Consequently, we do not take a P (A) = 0 to indicate that A is(logically or physically) impossible, but simply that is is not, to use Levi's [21]terminology, a serious possibility.To make sense of this perspective, it should be possible to interpret a Popperfunction, a CPM or a POCF as some sort of abstraction of a classical, absolutep-function. There should be some \true" p-function P such that the Popperfunction P induces the appropriate beliefs with respect to P . Furthermore, if Pis representable by some minimal, orthogonal ordered family fPig of p-functions,the true p-function P should be constructed through some combination of theelements Pi. In particular, we expect P to be some additive mixture of the Pi;that is, P (A) = a1 �P1(A) + � � �an � Pn(A)Of course, not any additive mixture will do. We expect a mixture to justifyin some way the \acceptance rules" implicit in the Popper function. Below wesuggest one such interpretation, whereby if some proposition is more plausiblethan another, the �rst can be made arbitrarily more probable than the secondwith respect to P . We remark that other interpretations are possible that canbe modeled using an additive mixture of the family fPig.11 We do not suggest10We do not address here the issue of how one determines appropriate acceptance rules.Below we show how such acceptance rules can interpreted in a very strong probabilistic waythat guarantees this to be the case; but in general decision-theoretic criteria should be broughtto bear [24, 8].11One example is using standard acceptance rules so that P �A(B) = k ensures that P (BjA) >12



that this interpretation is the correct way to view Popper functions, but simplypresent it as an alternative to illustrate the feasibility of this point of view.Imagine an agent whose epistemic state is represented as a POCF which, byour standard construction, determines an ordered family fPi : ��1(i) 6= ;g. Wesuppose that P is an absolute p-function abstracted by this POCF. The seriouspossibilities admitted by the agent are those sentences A such that �(A) = 0.If A is a serious possibility and B is not, we should expect that A is moreprobable than B by some signi�cant factor, for instance, P (A) � " � P (B)for some su�ciently small " > 0. Furthermore, we should expect that thedegree of plausibility of a proposition (its �-rank) determines the extent of thisdi�erence. In general, we require that if �(A) + i = �(B) for some i > 0 thenP (A) � "i � P (B). That is, more plausible sentences can be made arbitrarilymore probable than less plausible sentences, and di�erence in plausibility forcesa \lower bound" on this di�erence. For any POCF, such a p-function P can beconstructed as an additive mixture of its ordered family.Theorem 3.6 Let h�; P i be a POCF determining an ordered family fPi : ��1(i) 6=;g. For any su�ciently small ", there exists a p-function P =Pfai � Pig suchthat if �(A) + i = �(B) for some i > 0 then P (A) � "i � P (B).Proof For simplicity, we assume that " satis�es the rather weak constraintthat "i � Pj>i "j (although for somewhat larger " the construction canbe modi�ed). To prove the result we must determine appropriate parame-ters ai. LetWi = fw : �(w) = ig. We have by construction that Pi(w) > 0i� w 2 Wi, where Pi denotes the (normalized) weighting function corre-sponding to p-function Pi. For each Pi de�nemin(Pi) = minfPi(w) : w 2WigNote that min(Pi) � 1. We de�ne the (unnormalized) additive parametersas follows: aj = "2j �Yi<jfmin(Pi)gThe p-function P is the represented by the weighting function (wherew 2Wj): P (w) = Pj(w) � "2j �Yi<jfmin(Pi)gNow suppose �(A) = k and �(B) = k + i. In the following, P is unnor-malized since the additive parameters ai are unnormalized; but all rela-tionships hold when normalization is performed. Recall that min(Pi) � 1.k � (1� ") for some small " > 0. A variant of Adam's [1] semantics for conditionals can beused to verify that such an interpretation can be given and that it corresponds to an additivemixture (where the weights ai are a function of ").13



Since �(A) = k, Wk \ kAk 6= ;. SoP (A) � min(Pk) � "2k �Yj<kfmin(Pj)g� min(Pk) � "2k �Yj�kfmin(Pj)gSince �(B) = k + i, Wj \ kBk = ; for all j < k + i. SoP (B) � nXj=k+if"2j �Yl<jfmin(Pl)gg� Yj�kfmin(Pj)g � nXj=k+if"2j � j�1Yl=k+1fmin(Pl)gg� Yj�kfmin(Pj)g � nXj=k+if"2jg� Yj�kfmin(Pj)g � "2k+i� Yj�kfmin(Pj)g � "2k � "i� P (A) � "i�Thus for any small " > 0, a suitable p-function can be constructed that validatesthe relationship imposed by the POCF. The p-function constructed in this proofalso has the property that if �(A) = i then P (A) � "i.Proof If �(A) = i then P (A) � Qnj=if"2jgQnj=0f"2jgThus, P (A)"i � Qnj=if"2jgQnj=0f"i+2jgSo P (A)"i � 1 and P (A) � "i. �Thus a POCF can be viewed as an abstract representation of some reasonableadditive mixture of its corresponding ordered family of p-functions. Again,other reasonable mixtures are possible | the crucial point is that classicalinterpretations of POCFs based on additive mixtures of their ordered familypresentations are feasible. 14



4 Iterated RevisionOne di�culty faced by the revision models presented to this point is that they donot lend themselves to iteration. In the nonprobabilistic case an epistemic stateis represented by a QRM or OCF suitable for some belief set K, and describes theform to be taken by a new belief set K�A. But nothing in these models suggestswhat form should be taken by the new epistemic state, a new QRM or OCFsuitable for K�A. This new model is necessary to process subsequent revisionsof K�A. Similar considerations apply to probabilistic models, be they CPMs(simple Popper functions) of POCFs (structured Popper functions) suitable forsome initial p-function P . While they dictate the precise form of P �A, theyprovide no guidance for the construction of a new probabilistic epistemic state(a CPM or POCF). This di�culty was �rst noticed by Harper [18].In the nonprobabilistic setting, G�ardenfors [12] circumvented this di�cultyby introducing the notion of a belief revision system, a setK of belief sets and anAGM revision function � that maps hK;Ai (where K 2K and A 2 L) to K�A 2K. Since � is de�ned for allK 2K, the revision ofK�A is determined and iteratedrevision proceeds unobstructed. Such a model of iteration is unattractive for tworeasons. First, the revision of a belief set K is �xed. An agent with objectivebelief set K cannot accept di�erent revision policies with respect to K (forexample, at di�erent times). Since there are many QRMs and OCFs suitablefor any �xed K, there seems little reason to expect an agent to choose one suchepistemic state once and for all. The second undesirable feature of this model isits generality. The revision of K is dictated by a plausibility ordering � suitablefor K. A belief revision system requires that the revision of K�A also be modeledby (or representable as) a new plausibility ordering ��A.12 However, it imposesno constraints on the relation between � and ��A other than what we dub theBasic Requirement.The Basic Requirement: If � is a K-QRM determining revision function �,then the revision model ��A must be such that min(��A;>) = min(�; A).Thus, essentially arbitrary changes in the plausibility ordering � are permitted.Equivalently, an agent is permitted to make arbitrary changes in its judgementsof the relative entrenchment and plausibility of propositions. A model of iteratedrevision that imposes additional structure on the change of epistemic state istherefore desirable.Lindstr�om and Rabinowicz [22] have proposed a similar model for the re-vision of p-functions. They suggest that each p-function be associated witha unique Popper function. The Popper function associated with p-function Pdetermines the revised p-function P �A as described in the last section. Subse-quent revision of P �A is determined by its corresponding Popper function. Theunattractive features of belief revision systems are inherited by this probabilistic12Analogous remarks hold for the revision of OCFs.15



model of iteration: each p-function is bound to a single revision policy (Popperfunction) and the relationship between a Popper function and its revision canbe arbitrary.4.1 Iteration using POCFsAs we hinted in Section 2.3, the integer degrees of plausibility associated withworlds and propositions in Spohn's OCFs play a crucial role in iterated revision.Indeed, Spohn's model of revision, in contrast with the AGM theory, is in
u-enced primarily by the problem of iteration, with revision by A de�ned so that anew OCF is produced. Our presentation of the revised belief set K�A determinedby an OCF � is a mere by-product of Spohn's model of belief dynamics, whichwe now present.In OCFs beliefs are held with a speci�ed degree of strength. If :A 2 K, thenthe strength of belief in :A is �(A). If revision of K by A is not only to producea new belief set K�A, but also a new OCF ��A, then the strength with which Ais to be held in the revised OCF must be given, for otherwise the revision willbe underdetermined. In a manner reminiscent of Je�rey conditionalization [19],we de�ne the A; k-conditionalization of � as follows.De�nition 4.1 Let � be an OCF, A 2 L be satis�able, and k � 0. The A; k-conditionalization of � is the OCF �A;k where�A;k(w) = � �(w)� �(A) if w 2 kAkk + (�(w) � �(:A)) if w 2 k:AkIf � is an OCF such that :A is believed, intuitively � is adjusted by shifting theA-worlds down by a factor of �(A) | this ensures that min(�;A) is given a newranking of 0 (down from �(A)) | and by shifting all :A-worlds up by a factor ofk (from 0) | ensuring that A is now believed to degree k. Since worlds withinthe sets kAk and k:Ak stand in the same relation, each new cluster within �A;kwill typically be the union of the some set of A-worlds of some �xed rank (w.r.t.�) and some set of :A-worlds of a di�erent �xed rank. In particular, we have:��1A;k(i) = fw 2 kAk : �(w) = i + �(A)g [ fw 2 k:Ak : �(w) = i + k � �(:A)gBoth sets may be empty in which case no worlds are assigned rank i in therevised OCF. If not, we classify the resulting cluster as follows: if ��1A;k(i) � kAkwe say that ��1A;k(i) is a resulting A-cluster; if ��1A;k(i) � k:Ak it is a resulting :A-cluster; otherwise, it is a mixed cluster. Mixed clusters will play an importantrole in the revision of POCFs.It is easily seen that if k > 0, this is a revision operation that accepts A.13Note that to e�ect revision by A in a way that de�nes a new OCF �A;k(w) a13The restriction that k � 0 is made for convenience of presentation. The A; k-conditionalization of � can be captured by :A;�k-conditionalization if k < 0.16



strength of evidence k must be associated with the new fact A. Clearly, the revi-sion process can be iterated, for the A; k-conditionalization of � gives a new OCFsuitable for the revised belief set K�A. In other words, A; k-conditionalizationsatis�es the Basic Requirement that min(�A;k;>) = min(�;A). Furthermore,the new OCF is strongly related to the original OCF. An agent's new judge-ments of plausibility, surprise and entrenchment correspond in a natural way toits original epistemic state.We now examine the extent to which Spohn's A; k-conditionalization oper-ation can be applied to POCFs and provide us with a model of probabilisticrevision which deals with iteration. We �rst point out that a probabilistic exten-sion of A; k-conditionalization cannot be viewed as a means of revising standardPopper functions. As we noted earlier, POCFs have additional structure andthis structure is exploited by A; k-conditionalization. Thus, the view of Pop-per functions as an appropriate representation of a probabilistic epistemic statein untenable if we use this revision model to e�ect changes in epistemic state.Spohn [28], following Harper, indeed suggests that Popper functions are impov-erished for precisely this reason.Let �P be a POCF with underlying OCF � and weighting function P . ThePopper function P (�"�) induced by �P is compatible with � in the sense thatits ordered family presentation fPi : ��1(i) 6= ;g directly corresponds to theclusters of �: we have Pi(w) > 0 i� �(w) = i. When we perform A; k-conditionalization, we would like the revised POCF �PA;k and its ordered familyrepresentation to stand in the same correspondence with the revised OCF �A;k.De�nition 4.2 Let �P = h�; P i be a POCF. A POCF �PA;k is anA; k-conditionalizationof �P i� �PA;k = h�A;k; P 0i where P 0 is an arbitrary (positive) weightingfunction.If P (�"�) is the Popper function induced by �P , we use PA;k(�"�) to denote thePopper function corresponding to some A; k-conditionalization �PA;k. We alsouse PA;ki to denote elements of the ordered family of p-functions induced by�PA;k.Such arbitrary changes leave �PA;k drastically underspeci�ed. More impor-tantly, this class of change functions admits some unintuitive changes in epis-temic state. At the very least, when k > 0 we should require that PA;k0 = P (�"A)| revising by A should induce the same objective state of belief as counterfac-tual conditionalization on A. Furthermore, in analogy with Je�rey condition-alization, we might require that an update by A not change the conditionalprobabilities within the A-part or the :A-part of P ; in other words, we insistthat PA;k(B"A) = P (B"A) and PA;k(B":A) = P (B":A) for all B. Neither ofthese restrictions is enforced by arbitrary A; k-conditionalization of �P . Theseconditions can be captured by insisting that the new weighting component of�PA;k keep the relative weights of worlds within the A-part (respectively, the:A-part) of each new cluster �xed. For resulting A-clusters (resp. :A-clusters)17



the weighting function restricted to that cluster corresponds to the conditionalprobability function Pi(�jA) (resp. Pi(�j:A)) for some i. For resulting mixedclusters, the p-functions for both the A and :A-parts must be mixed in an ap-propriate way. We de�ne regular A; k-conditionalizations to capture this notion.De�nition 4.3 Let Pi and Pj be two p-functions. The p-function P is a non-trivial �-mixture of hPi; Pji i� P (A) = �Pi(A) + (1 � �)Pj(A), where0 < � < 1.De�nition 4.4 Let �P = h�; P i be a POCF and m = maxfi : ��1A;k(i) 6=;g. Let �0; � � � ; �m be a set of mixture factors, 0 < �i < 1. We say�PA;k = h�A;k; PA;ki is a regular A; k-conditionalization with mixture fac-tors �0; � � � ; �m of �P i� �PA;k is an A; k-conditionalization of �P and PA;ksatis�es the following properties:1. if ��1A;k(i) is a mixed cluster and �A;k(w) = i then:(a) if w 2 kAk then PA;k(w) = �iP (w)PfP (v):�A;k(v)=i;v2kAkg ; and(b) if w 2 k:Ak then PA;k(w) = (1��i)P (w)PfP (v):�A;k(v)=i;v2k:Akg2. if ��1A;k(i) is not a mixed cluster and �A;k(w) = i then PA;k(w) =P (w)Intuitively, a regular A; k-conditionalization of �P provides a well-behavedweighting function over �A;k. If a cluster induced by �A;k is not mixed (thatis, it consists solely of A-worlds or :A-worlds), the relative weights of worldswithin that cluster are unchanged from �P . For a mixed cluster ��1A;k(i), the A-worlds retain the same relative weight but the total weight is �xed by the somemixture factor �i; and the total weight of :A-worlds s �xed by its complement1� �i. We have assumed the existence of the factors for each cluster in �A;k (aswell as \empty clusters"), but only the �i corresponding to mixed clusters areused and need be speci�ed.For a �xed set of mixture factors it is clear that the regularA; k-conditionalizationof �P is unique and induces a �xed Popper function. This Popper function sat-is�es the properties we expect.Theorem 4.1 Let �P be a POCF and P (�"�) its corresponding Popper func-tion. Let �PA;k be a regular A; k-conditionalization of �P and PA;k(� " �) itscorresponding Popper function. Then P (B "A ^ C) = PA;k(B "A ^ C) andP (B":A^ C) = PA;k(B":A^ C) for all B;C.Proof Assume A^C is satis�able (otherwise P (B"A^C) = PA;k(B"A^C) = 1for all B). We haveP (B"A^ C) = PfP (w) : w 2 min(�;A ^ C) and w j= BgPfP (w) : w 2 min(�;A ^ C)g18



We also have min(�A;k; A^C) = min(�;A^C). If min(�A;k; A^C) is ina resulting A-cluster then PA;k(w) = P (w) for all w 2 min(�A;k; A ^ C).Otherwise, it is in a mixed cluster and PA;k(w) = �iP (w). Thus, therelative weights of all worlds in min(�A;k; A^C) are unchanged and P (B"A ^ C) = PA;k(B "A ^ C). An analogous argument can be made forPA;k(B":A ^ C). �Corollary 4.2 P (B"A) = PA;k(B"A) and P (B":A) = PA;k(B":A).Corollary 4.3 If k > 0 then PA;k(B">) = P (B"A).G�ardenfors [12] has proposed a set of postulates for the revision of p-functionsthat mirror the postulates (R1){(R8). We present a modi�ed version of these.14Let P be a p-function and A some consistent sentence. A probability revisionoperation satis�es:(P1) P �A is a (consistent) p-function.(P2) P �A(A) = 1.(P3) If P (A) > 0 then P �A = P (�jA)(P4) If j= A � B then P �A = P �B .(P5) If P �A(B) > 0 then P �A^B = P �A(�jB).Given the previous results, it is quite easy to verify that regularA; k-conditionalizationof �P determines a probability revision operation satisfying postulates (P1){(P5) if we take P to be the absolute p-function induced by �P and P �A to bethe p-function induced by �PA;k (for any k > 0).Regular A; k-conditionalization of �P is de�ned using the POCF explicitlyand constructing an unnormalized weighting function. However, the same e�ectcan be achieved by applying a similar operation to the ordered family presenta-tion of �P to form a revised ordered family. In some sense this operation maybe more natural as operates on the canonical representation of POCFs.De�nition 4.5 Let fPi : ��1(i) 6= ;g be the ordered family of p-functionsinduced by some POCF �P and let �0; � � � ; �m be a set of mixture factors,0 < �i < 1. The regular A; k-conditionalized family of p-functions fPA;ki :��1A;k(i) 6= ;g is de�ned as follows:PA;ki = 8>><>>: �iP�(A)+i(�jA)+(1� �i)Pi+k��(:A)(�j:A) if P�(A)+i(A) > 0; Pi+k��(:A)(:A) > 0P�(A)+i(�jA) if P�(A)+i(A) > 0; Pi+k��(:A)(:A) = 0Pi+k��(:A)(�j:A) if P�(A)+i(A) = 0; Pi+k��(:A)(:A) > 014In particular, we only consider revision by consistentA (see also [22]). G�ardenfors permitsrevision by some inconsistent A to result in the inconsistent p-function P?.19



Theorem 4.4 Let �P be any POCF that induces the ordered family fPig. Thenthe regular A; k-conditionalization of �P using mixture factors �0; � � � ; �m inducesthe A; k-conditionalized family of p-functions fPA;ki g using the same mixturefactors.Proof Recall that PA;ki is de�ned (w.r.t. �PA;k) using the weighting functionrestricted to ��1A;k(i). Assume ��1A;k(i) is an A-cluster. Then ��1(i + k ��(:A)) \ k:Ak = ; andPA;ki (B) = PfP (w) : �(w) = i+ �(A) and w j= A ^BgPfP (w) : �(w) = i+ �(A) and w j= AgThus, PA;ki (B) = Pi+�(A)(BjA). However, since ��1A;k(i) is an A-cluster,Pi+k��(:A)(:A) = 0 and the direct A; k-conditionalization of fPig alsode�nes PA;ki (B) = Pi+�(A)(BjA).Similar arguments can be made for resulting :A-clusters and mixed clus-ters. �Regular A; k-conditionalization of a POCF or its ordered family has a num-ber of attractive properties. However, in order to use this procedure for revisionof a POCF, or its associated Popper and p-functions, a fair bit of knowledgehas to be provided. Because POCFs generalize OCFs, the evidence A has to bespeci�ed with a degree of strength (or entrenchment) k. In addition, a sequenceof mixture factors �i must also be speci�ed. Unfortunately, these mixture fac-tors do not seem to have a natural interpretation in general.15 There are fewhints in the formal structure of a POCF that might guide the selection of theappropriate �i, or even a single �xed � for all mixtures. A lack of principlesfor the selection of mixture factors and intuitive interpretation of their mean-ing and function make regular A; k-conditionalization, and perhaps POCFs, lessattractive as models of probabilistic revision.One possible solution to this problem is to treat a POCF as a representationof some classical p-function P , as suggested in Section 3.3, and treat update byA; k as Je�rey conditioning (setting P (A) = p for some appropriate value p) onthis p-function. One may be able to select an appropriate probability p based onthe strength of evidence k; suitable parameter values for A; k-conditionalizationmight then be suggested by the classical p-function PA;p that results from clas-sical Je�rey conditioning on P . Speci�cally, recall that if a POCF �P induces15One exception pertains to A; 0-conditionalization. Such a revision is best thought of ascontraction as it ensures that both A and :A are considered completely unsurprising. Therevised POCF �PA;0 induces a new absolute p-function PA;0(�) = PA;0(�">) whose structure isin
uenced considerably by �0. In particular, we have PA;0(A) = �0 and PA;0(:A) = (1� �0).Thus, regular A; 0-conditionalization is a form of weighted contraction that might be viewedas some type Je�rey conditionalization setting P (A) = �0.20



an ordered family fPi : ��1(i) 6= ;g, we require the underlying p-function P tobe some additive mixture of the Pi:P (A) =XfaiPi(A) : ��1(i) 6= ;gA; k-conditionalization determines a new POCF �PA;k which in turn determines anew ordered family fPA;ki : ��1A;k(i) 6= ;g. To interpret A; k-conditionalization asJe�rey conditioning on P , we require that some p-function PA;p | determinedby Je�rey conditioning of P | be equivalent to an additive mixture of this newordered family:PA;p(A) = PA;k(A) �df XfbiPA;ki (A) : ��1A;k(i) 6= ;gIf such a value p can be found (along with appropriate additive weights bi), itmay be the case that appropriate mixture factors �i are �xed by this relationship.It turns out that if any A; k-conditionalization can be interpreted as Je�reyconditioning on an underlying classical p-function in the manner suggested, itmust be (equivalent to) some regular A; k-conditionalization, as indicated by thefollowing lemma. To prove this, we exploit the fact that the Je�rey conditioningof P by P (A) = p leaves the conditional p-functions P (�jA) and P (�j:A) un-changed. Indeed, to guarantee that P 0 can be formed using Je�rey conditioningon A it is su�cient to show that P 0(CjA) = P (CjA) and P 0(Cj:A) = P (Cj:A)for all C.Lemma 4.5 Let �P be a POCF with ordered family fPig, and let P be anadditive mixture of fPig. Let �PA;k be some arbitrary A; k-conditionalization of�P with induced ordered family fPA;ki g, and let PA;k be de�ned as some additivemixture of fPA;ki g. If PA;k = PA;p (i.e., the Je�rey conditioning of P settingP(A)=p) for some p, then fPA;ki g is a regular A; k-conditionalization of thefamily fPig.Proof We prove that the resulting mixed clusters of the A; k-conditionalizationmust conform to the constraints of regular A; k-conditionalization. Theproof for A and :A-clusters is similar.Let ��1A;k(i) be some mixed cluster in �PA;k such thatPA;ki 6= �iP�(A)+i(�jA) + (1� �i)Pi+k��(:A)(�j:A)for any 0 < �i < 1. This implies either that a) for some pair of worldsw; v 2 kAk such that �A;k(w) = �A;k(v) = i, we havePA;ki (w)PA;ki (v) 6= P�(A)+i(w)P�(A)+i(v)21



or b) a similar relation for the :A-part of ��1A;k(i). (We assume the former;the proof of the latter case is identical.)Since P is an additive mixture of fPig and PA;k is an additive mixture offPA;ki g, we must have PA;k(w)PA;k(v) 6= P (w)P (v)Thus, PA;k cannot be formed by Je�rey conditioning on P . �The Je�rey conditioning of an underlying classical p-function justi�es the useof regular A; k-conditionalization of �P ; but it still cannot aid in the selectionof appropriate mixture factors �i. Again, assume that �P induces an orderedfamily fPig and that P = PfaiPig is an additive mixture of this family. If�PA;k induces the family fPA;ki g, we want PA;k =PfbiPA;ki g to be an additivemixture of this family. If PA;k can also be produced by Je�rey conditioning ofP , using Lemma 4.5 it is easy to verify the following fact.16Lemma 4.6 PA;k is produced by Je�rey conditioning of P by A i� 1) fPA;ki gis the regular A; k-conditionalization of fPig (using some factors �i); and 2) forany two clusters ��1A;k(i) and ��1A;k(j) of �PA;k, the new additive weights bi satisfythe following properties:(a) If both are mixed clusters thena�(A)+i � P�(A)+i(A)a�(A)+j � P�(A)+j(A) = �ibi�jbjand ai+k��(:A) � Pi+k��(:A)(:A)aj+k��(:A) � Pj+k��(:A)(:A) = (1� �i)bi(1� �j)bj(b) If ��1A;k(i) is a mixed cluster and ��1A;k(j) is an A-cluster thena�(A)+i � P�(A)+i(A)a�(A)+j � P�(A)+j(A) = �ibibj(c) If ��1A;k(i) is a mixed cluster and ��1A;k(j) is a :A-cluster thenai+k��(:A) � Pi+k��(:A)(:A)aj+k��(:A) � Pj+k��(:A)(:A) = (1� �i)bibj16A proof is based on the same considerations as those used in the proof of the lemma,namely, that the conditional p-functions P (�jA) and P (�j:A) must remain unchanged.22



If the additive weights bi are varied, the constraints on suitable mixture factors�i also change. Rather than restricting the choice of appropriate �i, we haveintroduced yet another parameter to be tuned in the revision of a p-function.This is not so problematic, for we may assume that the additive weights are�xed. After any revision of a POCF, the weight assigned to each p-functionPA;ki can be simply that assigned to its predecessor Pi; that is, bi = ai in theabove scheme. Of course, this is too stringent, for the number of nontrivial clus-ters or p-functions may change in the move from �P to �PA;k. More realistically,we might imagine that these weights be �xed, but normalized to discount thoseweights ai that correspond to empty clusters. So suppose P = PfaiPig andPA;k = PfbiPA;ki g. We call the new p-function PA;k a proportional revisionof P (w.r.t. to �P ) just when aiaj = bibj whenever the clusters ��1(i), ��1(j),��1A;k(i) and ��1A;k(j) are nonempty. Unfortunately, the requirement of propor-tionality con
icts with the interpretation of A; k-conditionalization as Je�reyconditioning.Theorem 4.7 There exists a POCF �P such that for no additive mixture Pof its ordered family is there a proportional additive mixture PA;k of its A; k-conditionalization that can be constructed from Je�rey conditioning of P .We present a simple counterexample to verify this fact. Let �P be a POCFwith four clusters and associated ordered family of p-functions fP0; P1; P2; P3g.Assume P0(A) = P1(A) = 1 and P2(:A) = P3(:A) = 1 and that P = a0P0 +a1P1+ a2P2+ a3P3. The A; 1-conditionalization of �P causes the :A-worlds tobe shifted down one level; thus �PA;1 consists of three clusters. By Lemma 4.5, ifPA;1 is to be equivalent to the Je�rey conditionalization of P , then the orderedfamily induced by �PA;1 must have the form, for some 0 < �1 < 1: PA;10 = P0;PA;11 = �1P1 + (1� �1)P2; and PA;12 = P3. Now, let PA;1 = b0PA;10 + b1PA;11 +b2PA;12 . By the constraints described above, if PA;1 is to be equivalent to theJe�rey conditionalization, we havea0a1 = b0�1b1However, if PA;1 is a proportional revision of P then by Lemma 4.6 we mustalso have a0a1 = b0b1This contradicts the fact that 0 < �1 < 1.We notice that this counterexample is a very typical form of probability revi-sion, and most such \run of the mill" revisions will give rise to the same \impos-sibility" result. Thus, to treat POCFs as abstractions of absolute p-functionsin order to determine mixture weights �i by appeal to Je�rey conditioning, one23



must propose criteria according to which new additive factors bi should be se-lected. Thus, rather than restricting the choice of �i, one introduces yet anotherchoice, another parameter that must be �xed in the updating of POCF. Revi-sion of Popper functions using POCFs is somewhat unattractive because of theepistemological demands on the holder of an epistemic state and the providerof evidence by which the epistemic state is to be updated. For this reason, it iscertainly worthwhile exploring simpler alternatives.4.2 Probabilistic Minimal Conditional RevisionSpohn's revision method allows for iteration, but cannot be applied to to QRMs,for the relative plausibility of worlds is not su�cient to determine an updatedranking; the actual �-ranking of a world's plausibility is necessary. For thisreason, the extension of Spohn's method to POCFs cannot be applied to Popperfunctions directly | the ordered family representation of a Popper functionmerely determines the relative plausibility of worlds and p-functions, not themagnitude of plausibility. Methods of iterated revision that work directly withQRMs are therefore most directly applicable to the problem of Popper functionrevision.Several such proposals have been put forth. Safe contraction [3], gener-alized epistemic entrenchment [25] and the probabilistically motivated systemof Schlechta [26] each take a similar approach to the problem: each assumesthe existence of a \global" ordering of entrenchment over all sentences in thelanguage. For any belief set K the appropriate revision function is immedi-ately available, and iteration of the process requires no additional apparatus.These models have the rather severe drawback that any objective belief set Kis associated with a unique revision function. Furthermore, such an orderingdetermines globally preferred belief sets. Hansson [16] proposes that insteada revision method be associated with belief bases rather belief sets. Thus, thesame belief set may be revised in di�erent ways if it is generated by di�erentbases in each instance. In our setting, the revision of a belief set need not betied to its underlying belief base.17We will examine in detail the probabilistic extension of the method of min-imal conditional (MC) revision [7, 5, 4]. Given a QRM � suitable for somebelief set K, a scheme for iterated revision must produce not only a revisedbelief set K�A, but also a new QRM ��A. This QRM must satisfy the Basic Re-quirement that min(��A;>) = min(�; A). MC-revision is based on the intuitionthat the rest of the structure of � should be left intact to the greatest extentpossible. The set of worlds min(�; A) becomes most plausible, while the relativeplausibility of all other worlds remains unchanged.De�nition 4.6 Let � be a QRM. The MC-revision operator � maps � into17Of course, such ties can be added. Work on base contraction [15, 16, 11] can be viewedin this light. 24



��A, for any A 2 L, where a) if v 2 min(�; A) then v ��A w for all w 2 Wand w ��A v i� w 2 min(�; A); and b) if v; w 62 min(�; A) then w ��A v i�w � v.Given ��A, the revised belief set K�A is de�ned in the obvious way as thosesentences true on the set min(��A;>), clearly satisfying the AGM postulates.Iterated revision of K�A proceeds using the new QRM ��A to guide the process.We do not elaborate on the properties of MC-revision here. However, we notethat this method produces a new QRM that preserves as much of the originalentrenchment relation as is consistent with the AGM postulates.18 Also ofinterest is the fact that any sequence of revisions A1; � � �An can be reduced toa single uniterated revision A; that is, there is a characteristic sentence A 2 Lfor the sequence such that ((K�A1)�A2 � � �)�An = K�A. Furthermore, this A can bedetermined using the entrenchment information captured by the original QRM�. However, the ordering ((��A1)�A2 � � �)�An is generally not equivalent to ��A (norgenerally does there exist a single A that has the same e�ect on the ordering).The method of MC-revision can be extended to CPMs, the probabilisticcounterpart of QRMs, in a rather straightforward way, just as A; k-conditionalizationwas extended to POCFs.De�nition 4.7 Let �P= h�; P i be a CPM. The MC-revision of �P by (con-sistent) A 2 L is �PA= h��A; P i, where ��A is the MC-revision of � byA.Note that the weighting function P remains unchanged in the move from�P to �PA. This is feasible because of the structure of MC-revision: the clustermin(�; A) is \split" and its A-part becomes most plausible, while all otherclusters remain unchanged. Thus, no clusters are combined and the relativeweights need not be altered to preserve the appropriate conditional probabilities(given A and :A). This stands in stark contrast with the potentially drasticchanges to weights required when revising POCFs. In particular, we have thefollowing.Theorem 4.8 Let �P be a CPM and P (�"�) its corresponding Popper function.Let �PA be the MC-revision of �P and PA(�"�) its corresponding Popper function.Then P (B"A^C) = PA(B"A^C) and P (B":A^C) = PA(B":A^C) for allB;C.Proof Assume A^C is satis�able (otherwise P (B"A^C) = PA;k(B"A^C) = 1for all B). We haveP (B"A^ C) = PfP (w) : w 2 min(�; A ^ C) and w j= BgPfP (w) : w 2 min(�; A ^ C)g18We refer to [7, 4] for details; equivalently, MC-revision produces the minimal possiblechange in an agent's set of conditional beliefs.25



We also have min(�PA ; A ^ C) = min(�; A ^ C). Since the weights of theworlds in min(�; A ^ C) is unchanged, P (B"A ^C) = PA(B"A ^ C). Ananalogous argument can be made for PA(B":A ^ C). �Corollary 4.9 P (B"A) = PA(B"A) and P (B":A) = PA(B":A).Corollary 4.10 PA(B">) = P (B"A).It is easy to see, as a result, that MC-revision of of �P determines a probabilityrevision operation satisfying postulates (P1){(P5) if we take P to be the absolutep-function induced by �P and P �A to be the p-function induced by �PA.We can apply the operation of MC-revision directly to the minimal, or-thogonal ordered family of p-functions induced by a CPM. Intuitively, a familyP0; � � �Pn mutates into the sequence Pk(�jA); P0; � � �Pk�1; Pk(�j:A); Pk+1; � � �Pn,where Pk is the �rst p-function in the original sequence that gives A positiveprobability. Of course, if Pk(:A) = 0, the term Pk(�j:A) is deleted from thesequence.De�nition 4.8 Let fPi : 0 � i � ng be the ordered family of p-functions in-duced by some CPM �P . Let Pk be the minimalA-permitting p-functionin this sequence for some consistent A 2 L. The MC-revised family ofp-functions fPAi g is de�ned as follows:PA0 = Pk(�jA)PAi+1 = Pi for 0 � i < kPAk+1 = Pk(�j:A) if Pk(:A) > 0= Pk+1 if Pk(:A) = 0PAi+1 = Pi for k < i � n; if Pk(:A) > 0= Pi+1 for k < i � n; if Pk(:A) = 0The following theorem is immediate.Theorem 4.11 Let �P be any CPM that induces the ordered family fPig. Thenthe MC-revision of �P by A induces the MC-revised family of p-functions fPAi g.There are some crucial di�erences between MC-revision and regular A; k-conditionalization. First, since clusters in a CPM can only be split by MC-revision, the need for mixture factors (the �i used above) is obviated. Fur-thermore, revision by A need not be accompanied by a degree of entrenchmentor \weight of evidence" parameter k as is the case for A; k-conditionalization.Finally, since the result of MC-revision is determined solely by the structureof a CPM or its ordered family representation (and not by the magnitudes ofplausibility measures), it is well-de�ned for any Popper function and uniquelydetermines a revised Popper function. In general, we will take the MC-revision26



of a Popper function to be the Popper function corresponding to the MC-revisionof its minimal, orthogonal ordered family representation.One drawback of MC-revision is that new beliefs are accepted with whatmight be termed a \minimal" degree of entrenchment. Only the most plausi-ble A-worlds are shifted in relative plausibility; if some new fact B is learnedsubsequently and :B 2 K�A then A is at great risk of being retracted.19 How-ever, without degrees of entrenchment whose magnitudes can be compared, thismight be the best we can hope for. Furthermore, the use of MC-revision torevise Popper functions has the following appealing property: subject to theconstraints of (P1){(P5), the MC-revision of a Popper function changes as fewconditional probabilities as possible. In other words, MC-revision represents theminimal possible change of a Popper function required to capture revision byA.20Lemma 4.12 Let P (�"�) be a Popper function and let PA(�"�) be the Popperfunction determined by the MC-revision of P by any consistent A 2 L. IfP (B"A) = 0 then PA(C"B) = P (C"B) for all B;C 2 L.Proof We assume B;C are consistent, for the lemma holds trivially otherwise.Let fPig be the ordered family of p-functions induced by P and let fPAi gbe the revised ordered family determining PA. Denote by PC (resp. PAC )the minimal C-permitting p-function in fPig (resp. fPAi g). Since P (B"A) = 0, we have that PB and PA are distinct. By de�nition of fPAi g, weare guaranteed that PB = PAB ; thus, PA(C"B) = P (C"B) for all B;C.�Lemma 4.13 Let P (�"�) be a Popper function and let PA(�"�) be the Popperfunction determined by the MC-revision of P by any consistent A 2 L. IfP (B"A) > 0 then PA(C"B) = P (C"A^B) for all B;C 2 L.Proof The proof proceeds as that of the previous lemma. By de�nition offPAi g, we have that PA0 = PA(�jA). Since P (B " A) > 0, we havePA(BjA) = PA0 (B) > 0. Thus PAB = PA0 and PA(� "B) = PA0 (�jB) =PA(�jA ^B). So, we have PA(C"B) = P (C"A^B) for all B;C. �19A similar point is made by Spohn [28] who brie
y describes and dismisses a proposalmuch like MC-revision for QRMs.20By \minimal change" we mean that PA(C"B) = P (C"B) for as many C; B as possible,where PA is the Popper function induced by MC-revision of P . Other notions of minimalchange, as applied to p-functions, include the cross-entropy measure of a distribution andits revised counterpart [32, 31]. Unfortunately, such a measure is not directly applicable toPopper functions | unless we give them a classical interpretation as in Section 3. In thecase where such a measure is applicable | when P (A">) > 0 | both MC-revision andA; k-conditionalization hold up to the test with respect to the absolute p-functionP (�">) > 0,for both perform ordinary conditioning by A on this p-function, and therefore minimize cross-entropy. 27



Notice that the conditional probability PA(C "B) may be di�erent fromP (C " B) after revision in the case where P (B " A) > 0, as indicated byLemma 4.13. However, these changes are required if the revision function ap-plied to the induced absolute function P (�j>) is to satisfy postulate (P5). ByLemma 4.12 all other conditional probabilities are unchanged. Thus, we areguaranteed that MC-revision minimally changes the Popper function. Formally,we say that P 0 is more similar to P than P 00 is just whenfhA;Bi : P 00(A"B) = P (A"B)g � fhA;Bi : P 0(A"B) = P (A"B)gTheorem 4.14 Let � be a revision function satisfying (P1){(P5). Let P (�"�)be a Popper function with underlying p-function P (�j>), and let P 0(�"�) be aPopper function suitable for P �A. Then P 0 is maximally similar to P i� P 0 isthe MC-revision of P .Finally, we see that the information content of the sequence of underlyingp-functions induced by a sequence of revisions is nondecreasing.De�nition 4.9 Let P;Q be p-functions. We say P is less informative than Qi� Q can be obtained from P by nontrivial conditionalization; that is, ifQ = P (�jA) for some A such that 0 < P (A) < 1.Proposition 4.15 Let P (�"�) be a Popper function and P = P (�">) its under-lying p-function. Let PA1 , (PA1)A2 , : : : (((PA1)A2) � � �)An) be the sequence ofp-functions induced by the revision of P by A1; � � �An. Then (((PA1)A2 ) � � �)Ai )is not less informative than (((PA1 )A2) � � �)Aj ) if i � j.5 Concluding RemarksWe have presented some considerations on the iterated revision of probabilityfunctions. We have described two possible models of the process. The �rst isbased on a probabilistic extension of Spohn's OCFs and updating mechanism.Di�culties arise due to the epistemological demands placed on the epistemicstate of POCFs and on the provider of evidence. It remains to be seen if rea-sonable criteria can be proposed for the selection of mixture factors requiredto combine p-functions in the manner dictated by Spohn's proposal. A sec-ond model, MC-revision, is based more directly on the structural properties ofPopper functions and allows for minimal changes in an agent's conditional prob-abilities. Unfortunately, this model does not allow degrees of entrenchment tobe associated with evidence (nor could it deal with those if they were provided).As such, the minimal and weakest change to the Popper function is adopted. Weconclude that the revision of probabilistic belief states is not as well-understoodas we might have imagined, and that it is not as well-behaved as we might hope.28
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