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Abstract

Mechanism design has found considerable ap-
plication to the construction of agent-interaction
protocols. In the standard setting, the type (e.g.,
utility function) of an agent is not known by other
agents, nor is it known by the mechanism de-
signer. When this uncertainty is quantified prob-
abilistically, a mechanism induces a game of in-
complete information among the agents. How-
ever, in many settings, uncertainty over util-
ity functions cannot easily be quantified. We
consider the problem of incomplete information
games in which type uncertainty isstrict or un-
quantified. We propose the use ofminimax regret
as a decision criterion in such games, a robust
approach for dealing with type uncertainty. We
defineminimax-regret equilibriaand prove that
these exist in mixed strategies for finite games.
We also consider the problem of mechanism de-
sign in this framework by adopting minimax re-
gret as an optimization criterion for the designer
itself, and study automated optimization of such
mechanisms.

1 Introduction

As software agents become better able to act on behalf
of human users, organizations, and businesses, there is an
increasing need to develop environments in which such
agents can interact smoothly, and protocols to ensure that
desired outcomes can be reached. For example, the mi-
gration of many day-to-day business transactions to on-
line market, bargaining, and negotiation systems has led to
the development of more and more sophisticated software
agents that mediate such transactions. However, since the
interests of the parties on whose behalf they act generally
conflict, these agents should reason strategically accord-
ing to the well-studied principles of game theory. Con-
sequently, recent research in computer science and eco-
nomics has focused on the design of economic agents and

the mechanisms through which they interact.

Mechanism design[13] has played a central role in much
of this research—it can be seen to embody the algorithmic
principles of computer science within an economic context.
Key results in mechanism design, such as the revelation
principle, have had a strong influence on the direction taken
by research at the intersection of the two disciplines. How-
ever, recently, limitations of standard approaches to mech-
anism design have been identified, and are starting to be
addressed. Chief among these is the complexity of com-
putation, communication, and the “human factors” faced
by software agents. For instance, mechanisms based on
the revelation principle require agents to reveal theirtype
(generally, their utility function) accurately. This presents a
problem in any of a number of different circumstances: (a)
utility functions are often defined over large, multi-attribute
spaces, and are difficult to communicate effectively and/or
hard to compute accurately; (b) even in compact domains,
obtaining precise utilities (e.g., the precise valuation for
some good) may be computationally difficult (e.g., if the
value of the good must be determined by solving a diffi-
cult optimization problem); and (c) the software agent may
need to engage the user on whose behalf it is acting in or-
der to obtain this utility, but this user may be uncomfortable
specifying utility values to the required degree of precision.

Recent research has begun to examine methods involving
limited or incremental elicitation of types to circumvent
some of these difficulties [1, 7, 17, 18], specifically in the
context of (single-good or combinatorial) auctions. But
the question of mechanism design in general settings when
only partial type information can be practically revealed
has received scant attention. Furthermore, work to date
(generally on auctions) has focused on “classical” mech-
anism design, in which type uncertainty is quantified prob-
abilistically (with the designer and the participating agents
having a common prior over types).

In this paper, we relax the form of the prior over types.
Rather than quantified uncertainty, we assume that uncer-
tainty over types isstrict: all that is known about an agent
is that its type lies within some set of possible types. This



form of uncertainty might arise when, say, we know that
the value an agent places on some good lies within cer-
tain bounds, but have no further probabilistic information
about the valuation. In the context of mechanism design,
an incremental or partial elicitation mechanism may further
refine these bounds by having the agent reveal additional
constraints without fully identifying its type.

To deal with this form of uncertainty, new solution concepts
are required. In the standard formulation, a specific mech-
anism induces aBayesian (incomplete information) game
[13]. However, with strict type uncertainty, the nature of
the induced game is different. In this paper, we adopt the
notion of anincomplete information game with strict type
uncertainty(these are equivalent to games ininformational
form [11]). Since the expected utility of a strategy profile
in a strict incomplete information game cannot be defined,
we propose a more qualitative decision criterion,minimax
regret. By analogy with Bayes-Nash equilibria, we define
a new solution concept—minimax-regret equilibria. Intu-
itively, a minimax-regret equilibrium is a strategy profile in
which each agent minimizes its regret with respect to the
realization of all other agent’s types. We show that such
equilibria must exist in finite games.

With minimax-regret equilibria in place, we then propose
new criteria for mechanism design under strict type uncer-
tainty. We argue that themechanism itselfshould minimize
its regret (in the social choice function), again with respect
to realization of the types of participants. While this no-
tion is applicable to direct mechanisms, we expect it will
be especially critical for partial or incremental revelation
mechanisms. We define novel mechanism design settings,
and suggest various techniques by which the notion ofau-
tomated mechanism design (AMD)[8, 20] can be applied
to mechanisms with strict type uncertainty.

We begin with an overview of relevant background in Sec-
tion 2. We then introduce strict incomplete information
games in Section 3, and define minimax-regret equilibria.
In Section 4 we address the issue of mechanism design un-
derpartial type revelationwith minimax-regret equilibria,
the form of optimization required for AMD, and report on
preliminary experiments for the special case of complete
type revelation. We conclude with a discussion of future
research directions.

2 Background

In this section we provide some brief background on the
key concepts used later in the paper, specifically, games of
incomplete information, mechanism design, and minimax
regret for decision making under strict uncertainty.

2.1 Games of Incomplete Information

Assume a collection of playersi ≤ N , with a set of ac-
tions Ai for each playeri. Let A = ×iAi denote the set

of action profiles. We assume a setΘi of possibletypesfor
eachi, and autility functionui : A × Θi 7→ R. We as-
sume throughout thatAi andΘi are finite (though we dis-
cuss generalizations in several places below). Intuitively,
the type of an agent captures all relevant aspects of the in-
teraction, or game, that are private to that agent. Formally,
an agent’s type determines its utility for different action
profiles (or game outcomes), since most forms of private
information can modeled in this way [13]. As such we of-
ten speak as if an agent’s typeis its utility function. Let
Θ = ×iΘi be the collection oftype profiles. While each
agent knows its own type, it is uncertain about the types
of the others. This is reflected in acommon priorover
Θ wherePr(θ) is the commonly known distribution from
which type profiles are drawn. Agenti’s beliefs about the
type profileθ−i of other players, given its own typeθi, are
given by the conditional distributionPr(θ−i|θi).

A (Bayesian) game of incomplete informationis made up
of the components above: players, actions, types, utility
functions, and common prior. Amixed strategyfor player
i is a mappingσi : Θi 7→ ∆(Ai), associating with each
type θi a distributionσi(θi) over possible action choices.
A strategy ispure if σi(θi) assigns probability 1 to a single
action for eachθi; otherwise it isstrictly mixed. Let Σi

denote the set of (pure or mixed) strategies for agenti, Σ =
×iΣi be the set of strategy profiles, andΣ−i = ×j 6=iΣj be
the set of profiles ranging over all agents excepti.

Fixing the strategies of all other agents toσ−i ∈ Σ−i, the
expected utility of strategyσi for i, given its typeθi, is:

ui(σi|θi, σ−i) =
∑

θ−i∈Θ−i

Pr(θ−i|θi)ui(〈σi(θi), σ−i(θ−i)〉, θi) (1)

where the utility of a mixed strategy profile is defined in
the obvious way. Abest responsefor i to a strategy profile
σ−i is anyσi that maximizes Eq. (1) for each of its types
θi. A strategy profileσ ∈ Σ is aBayes-Nash equilibrium
(BNE)iff σi is a best response toσ−i for eachi. Intuitively,
a BNE is stable in the sense that each agent is maximizing
its expected utility given the strategies of all other agents,
where the expectation is taken with respect to possible re-
alizations of the other agents’s types. Adominant strategy
for agenti is a strategyσi that maximizes Eq. (1) no mat-
ter what strategies are played by the others. Adominant
strategy equilibrium (DSE)is a strategy profile consisting
of dominant strategies for each agenti.

2.2 Mechanism Design

Mechanism design deals with the problem of designing
a game—in which a collection of self-interested agents
interact—so as to optimize some objective on the part of
the designer [13]. More formally, we have a collection of
agents (e.g., potential buyers of some good) and some set
of outcomesO (e.g., the allocation of a good to a particular



agent at a specific price). As above, each agenti has a type
θi ∈ Θi known only to itself and utility functionui, where
ui(o, θi) reflects the utility of outcomeo to agenti if its
type isθi. For example, the type of the agent might dictate
its valuation for the good being auctioned, with its utility
for any outcomeo in which it obtains the good given by its
valuation less the price paid.

The mechanism designer has somesocial choice function
f it wishes to optimize (say, maximize), wheref(o, θ) de-
notes the objective value (to the designer) of outcomeo
when the agent type profile isθ. For example, the designer
may wish to maximize social welfare by ensuring the good
goes to the agent with the highest valuation. Adeterminis-
tic mechanismcomprises a set of actionsAi for each agent
i, and an outcome ruleg : A → O mapping action pro-
filesA into outcomes. Arandomized mechanismassociates
each action profile with a distribution over outcomes. As
such, a mechanism induces a Bayesian game among the
agents. A mechanismimplementsa social choice func-
tion f iff, in equilibrium, the outcome of the game is
o ∈ arg max f(o, θ) whenever the agents types are given
by θ. The mechanism design problem is to find a mecha-
nism that implementsf using the desired notion of equilib-
rium (most commonly, BNE of DSE), possibly subject to
various constraints.

The revelation principle makes the mechanism design
problem somewhat simpler by noting that if a mecha-
nism exists that implementsf , then a direct, incentive-
compatible mechanism exists forf as well. In other words,
we let strategies correspond to types (hence agents directly
reveal their types), and in equilibrium, each agent will
truthfully reveal its type. The revelation principle has led to
an almost exclusive focus on direct, incentive-compatible
mechanisms.

As mentioned above, the use of direct mechanisms in re-
alistic domains faces the problem that revelation of util-
ity functions is quite often impractical. For example, in
large, multi-attribute outcome spaces, simply communicat-
ing a utility function may be problematic unless it has con-
siderable structure. Recent work on preference elicitation
addresses this issue in the context of combinatorial auc-
tions [7]. Even when utility functions are compactly repre-
sentable, computing precise values, or eliciting these from
humans, may prove problematic. The problem of mech-
anism design under such circumstances has recently been
addressed in the context of auctions. Blumrosen and Nisan
[1] propose a model for limited-precision bids in auctions
that is designed to deal with communication complexity,
and devise dominant strategy mechanisms in which agents
(implicitly) reveal upper and lower bounds on their valu-
ations. Parkes [18] addresses the problem of agents with
uncertain valuations facing the decision of whether to pay
the computational cost of refining their utility estimates
when participating in an auction. Larson and Sandholm

[12] study similar phenomenon in bargaining settings.

Much work in mechanism design deals with mechanisms
for very specific settings. However, some general fami-
lies of mechanisms have been constructed that apply rather
widely (e.g., the celebrated Vickery-Clarkes-Grove mecha-
nism) assuming certain restrictive, though reasonable con-
ditions and social choice functions (e.g., the possibility
of payments, quasi-linear utility, and social welfare max-
imization) without requiring assumptions about the spe-
cific priors. Conversely, direct optimization of the ob-
jective (subject to certain constraints) in a way that ex-
ploits the prior can lead to a more algorithmic mathemat-
ical programming framework for mechanism design. My-
erson’s [15] approach to revenue-optimal auction design is
the standard exemplar, giving rise to a class of mechanisms
that can be tailored algorithmically to any specific prior. In
automated mechanism design[8, 20] the specific details of
the problem—outcome space, social choice function, and,
critically, theprior—are taken as input, and one automati-
cally constructs a mechanism by formulating an optimiza-
tion problem that maximizes the social choice function sub-
ject to certain constraints. These constraints specify the
equilibrium concept to be used (BNE, DSE), various ra-
tionality constraints, etc. Conitzer and Sandholm [8] show
how randomized mechanisms in finite settings (specifically,
those with finite type spaces) can be optimized using linear
programming.

2.3 Minimax Regret

The problems of utility elicitation facing direct mecha-
nisms obviously arise in non-strategic decision making
contexts as well. Research on preference elicitation for
single-agent decision making must often address the prob-
lem of making decisions with incompletely or imprecisely
specified utility functions. Whileminimax regretis a com-
mon criterion for decision making under strict uncertainty
[21, 10, 2], only recently has it been proposed as a means
for dealing with imprecisely specified utility [3, 19]. We
briefly overview the notion as applied to imprecise utility.

We assume a set of possible decisionsD from which a spe-
cific decision must be taken on behalf of, or recommended
to, some user (say, by an automated decision system). A
utility function u associates an expected utilityu(d) with
eachd ∈ D. However, the system is unsure of the user’s
utility function, knowing only that it lies in some feasible
setU . For example, the system may have elicited bounds
on the user’s utility for various outcomes, andU repre-
sents the set of utility functions consistent with the bounds
elicited thus far. We define theregretof d w.r.t. u to be

R(d, u) = max
d′∈D

u(d′) − u(d).

This reflects the loss experienced by taking decisiond in-
stead of acting optimally when the true utility function is



u. Themax regretof d w.r.t.U is

MR(d, U) = max
u∈U

R(d, u),

reflecting the worst-case regret ofd should an adversary be
allowed to choose the user’s utility function from feasible
setU . Finally, theminimax optimal decisionw.r.t.U is that
d with minimal max regret:

d∗U = argmin
d∈D

MR(d, U).

While conceptually straightforward, direct computation of
minimax regret is often not feasible, because of the com-
plexity of the decision and utility spaces. As a conse-
quence, when applied to practical problems, care must be
taken to exploit computationally whatever structure (e.g.,
conditional utility independence, graphical action models,
etc.) exists in the problem (see [4, 5, 6, 24] for further mo-
tivation and discussion of computational issues).

3 Games with Strict Type Uncertainty

In this section we define incomplete information games
with strictly uncertain priors. We propose the use of min-
imax regret as a decision criterion for participants in such
a game, define minimax-regret equilibria, and prove that
minimax-regret equilibria exist in mixed strategies.

3.1 Definition

An incomplete information game with strict type uncer-
tainty consists of the same components as a (Bayesian) in-
complete information game, but has aqualitativeor strict
prior rather than a probabilistic prior. Specifically, we as-
sume an action setAi, type spaceΘi, and utility function
ui for each agenti. We assume astrict prior T ⊆ Θ repre-
senting (common) beliefs about possible type profiles held
by the agents in the game. Intuitively,Θ denotes the set
of possible types from a “structural” perspective, whileT
denotes what is believed: only type profilesθ ∈ T are con-
sidered to be possible given the information possessed by
the participants. While we could simply treatΘ itself as
the set of credible types, when we discuss partial and in-
cremental revelation mechanisms, this distinction will be
useful. Strict incomplete information games are equivalent
to games ininformational form[11].

As in the standard setting, we assume each agent knows its
own type. Its beliefs about the types of other agents, given
its typeθi, is given by the set

T (θi) = {θ−i : 〈θi, θ−i〉 ∈ T }

(i.e., those type profiles consistent with its own known
type). Strategies are defined in the usual way as mappings
from types to (mixed) action choices.

3.2 Minimax-regret Equilibrium

The expected utility of a fixed strategyσi as defined in
Eq. (1) requires some distribution over the possible types
of other agents. Without distributional information, we
must adopt some qualitative decision criterion to evaluate
and compare strategies. Here we propose the use of the
minimax-regret decision criterion.

Definition 1 Theregretof strategyσi for agenti with type
θi, given strategy profileσ−i and type profileθ−i of the
other agents, is

Ri(σi|θi, θ−i,σ−i) =
max
σ′

i∈Σi

[ui(〈σ′
i(θi), σ−i(θ−i)〉, θi)

− ui(〈σi(θi), σ−i(θ−i)〉, θi)]. (2)

The max regretof strategyσi w.r.t. prior T , givenθi and
σ−i is

MRi(σi|θi, T, σ−i) = max
θ−i∈T (θi)

Ri(σi|θi, θ−i, σ−i). (3)

Finally, aminimax best responseof agenti to σ−i w.r.t. T
is any strategyσ∗

i satisfying, for allθi ∈ Θi:

σ∗
i ∈ arg min

σi∈Σi

MRi(σi|θi, T, σ−i). (4)

Intuitively, if we fix the behavior and types of all other
agents, the regret of agenti with typeθi for playingσi is
the lossi experiences by playingσi rather than acting op-
timally. Of course, agenti does not know the true types of
the other agents. The max regret ofσi given priorT is the
mosti could regret playingσi (against the fixed strategies
of the others) should an adversary choose its opponents’s
types in a manner consistent with its beliefs. Finally, a
minimax best response is any strategy that minimizes this
worst case loss in the face of such an adversary. Note that
this strategy requires a minimax optimal choice for every
possible type agenti could possess.

Unlike standard best responses, minimax best responses re-
quire agents to adopt a cautious stance with respect to pos-
sible realizations of opponent types. Without probabilistic
information quantifying type uncertainty, minimax regret
seems like the most natural decision criterion that could be
adopted by such agents.

We define the notion of aminimax-regret equilibriumfor a
strict incomplete information game by analogy with Bayes-
Nash equilibrium.

Definition 2 A strategy profileσ is aminimax-regret equi-
librium iff σi is a minimax best response toσ−i for all
agentsi.

We note that other notions of qualitative equilibria have
been proposed, but none have the same flavor as minimax-
regret equilibria. Tennenholtz [23] describes qualitative



equilibria for complete information games that rely on
maximin strategies; but these do not have a clear exten-
sion to incomplete information games with type uncer-
tainty. Work onuncertainty aversioncan be viewed as
incorporating some form of strict type uncertainty, but in
a very different way. Rather than truly qualitative uncer-
tainty, each agent is assumed to have asetof probabilistic
priors (thus combining qualitative and quantitative uncer-
tainty) [22]. Recently, equilibrium analysis of various auc-
tions has been considered using this notion [9, 16]. Analy-
sis of games in informational form naturally bears the clos-
est relation to our work; however, to date, onlyex postequi-
libria have been proposed for such games [11], which are
considerably stronger than minimax-regret equilibria, and
are not guaranteed to exist.

Dominant strategies for strict incomplete information
games can be defined in a similar way: we sayσi is
minimax-dominantif it is a minimax best response for
anystrategiesσ−i adopted by other players.1 A minimax-
dominant strategy equilibrium (minimax-DSE)is any strat-
egy profile consisting of minimax-dominant strategies.

3.3 Existence of Equilibria

Not surprisingly, pure strategy minimax-regret equilibria
for strict incomplete information games do not always ex-
ist (as is the case for BNE in Bayesian games). However,
we can show that mixed-strategy minimax-regret equilibria
exist for any finite game.

Theorem 1 A mixed strategy minimax-regret equilibrium
exists for any strict incomplete information game with finite
agent, action, and type spaces.

Proof sketch:The result can be proved using a similar strat-
egy to classic proofs of the existence of (Bayes) Nash equi-
libria for finite games. We use Kakutani’s fixed point the-
orem to show that the minimax-best-response correspon-
dence (i.e., the mapping from any strategy profile to the
set of profiles obtained by composing individual best re-
sponses to it) has a fixed point—this, by definition, is a
minimax equilibrium. To apply the theorem, we show that
minimax-best-response set for any profile is convex, and
that the correspondence is upper-hemicontinuous. This re-
lies on the piecewise-linear, convex nature of the max regret
function itself (thus having a rather different character than
best response correspondences based on expected utility).
We provide full details in a longer version of the paper.

The characterization of conditions under which minimax-
regret equilibria exist when type spaces are continuous is

1One could alternatively define dominant strategies in a “prior
independent” way by requiring that regret be defined w.r.t.any
type vector inΘ−i. This would be somewhat more consistent
with the typical definition in Bayesian games. This version will
prove useful later.

of obvious interest. We expect that similar characteriza-
tions for Bayesian games might be applicable with suitable
modifications [14].

Because dominant strategies in Bayesian games do not rely
on the precise form on the prior, but only the set of possible
types, we have (not surprisingly):

Proposition 1 Strategy profileσ is a minimax-DSE for a
strict incomplete information game with priorT ⊆ Θ iff it
is a DSE for Bayesian game with type setT .

4 Minimax-based Mechanisms

We now consider the setting in which a mechanism de-
signer is faced with a mechanism design problem in which
prior information over types available to the designer and
the participants cannot be characterized probabilistically.
In other words, type uncertainty is strict. There are many
cases in which probabilistic priors over types may be diffi-
cult or inconvenient to assess, whereas qualitative informa-
tion may be relatively easy to obtain. For example, when
requesting valuation information in an auction, it may be
much more natural to maintain upper and lower bounds
than distributional information. Since the mechanism de-
signer is faced with the same strict uncertainty as the par-
ticipants, the mechanism cannot be realized by optimizing
the social choice function using theexpected valueinduced
by the mechanism with respect to realization of participant
types. We instead propose to view the mechanism designer
as a regret minimizer as well.

If we restrict our attention in the typical fashion to di-
rect mechanisms, then—even with strict type uncertainty—
some generalprior independentmechanisms such as VCG
can be applied when the setting allows (e.g., if we allow
payments and are interested in maximizing social welfare).
But notice that approaches that optimize with respect to
specific (families of) probabilistic priors [15, 8] cannot be
applied in the case of strict type uncertainty. Even though
the mechanism may be able to induce participants to reveal
their typesθ truthfully, it may not be able to simply maxi-
mizef(o, θ) without violating constraints such as incentive
compatability. Thus the designer may regret the choice of
one incentive compatible mechanism relative to another de-
pending on the specific realization of agent types. Rather
than maximizing the expected value off subject to the typ-
ical constraints, we approach the problem by minimizing
the max regret of the mechanism.

The importance of minimax-regret equilibria can be appre-
ciated more fully when considering mechanism design set-
tings in which full types cannot be practically revealed. In
such a case, the mechanism is forced to optimizef with-
out full type information; without a probabilistic prior it
cannot use expectations over types given the partial infor-
mation obtained. To emphasize the added importance of
regret minimization on the part of the mechanism, in this



section we describe strict mechanism design problems and
how a mechanism might handlepartial revelationof types.

4.1 Strict Mechanism Design Problems

A strict mechanism designproblem is a mechanism design
problem—comprising agentsi ≤ N , outcomesO, types
Θi, utilities ui and social choice functionf—in which the
prior T ⊆ Θ reflects strict uncertainty. A mechanism
M = 〈A, g〉 is defined in the standard way, as a set ac-
tionsAi for each player and outcome functiong : A 7→ O
if the mechanism is deterministic, org : A 7→ ∆(O) if it
is randomized. Note that a mechanismM induces a strict
incomplete information game.

We sayM implementsf if, given any type profileθ, the
only action profilesa taken (with positive probability) in
equilibrium are such thatg(a) ∈ arg maxo∈O f(o, θ), pos-
sibly subject to certain constraints.2 SinceM induces a
strict incomplete information game, we can’t use BNE as
our implementation solution concept; but both minimax-
regret equilibria and DSE can be adopted.

When restricting attention to direct mechanisms, the action
space is simplyAi = θi: each agent reports its type (pos-
sibly untruthfully) to the mechanism. Incentive compati-
bility of a strict mechanism can be defined in the standard
way. More interesting is the case where we don’t rely on
full type revelation. We define adirect, partial revelation
(DPR)mechanism as follows: we assume an action setSi

for each agenti, with eachsi ∈ Si a subsetsi ⊆ Θi of pos-
sible types. Intuitively,i’s taking actionsi is interpreted
as a “claim” thatθi ∈ si.3 Note that direct mechanisms
are a special case of DPR mechanisms. We will generally
assume that∪Si = Θi. When this is the case, we can de-
fine truthful strategies: agenti only takes actionsi when
θi ∈ si. An incentive-compatible mechanismin the DPR
case is one in which all agents act truthfully in equilibrium.

In rich settings with a sufficiently sparse action space (i.e.,
severe restrictions on the amount of revelation), it will not
generally be possible to maximizef (subject to relevant
constraints). Instead of insisting on a faithful implemen-
tation of f (i.e., ensuring that we always obtain an out-
comeo ∈ arg max f(o, θ) whenever the type vector isθ),
we might instead require that we maximize theexpected
valueof f relative toθ given whatever intuitive constraints
we wish to place on the mechanism (e.g., incentive com-
patibility, limited revelation, etc.). This is similar in spirit
to “prior-specific” mathematical programming approaches
[15, 8], where the goal is to produce a mechanism that max-
imizesf subject to certain constraints.4

2If g is randomized, then we require thatg(a, o) > 0 only if o
is a maximizing outcome.

3Thus,Si can be viewed (indirectly) as aquery language[18],
though we do not consider incremental querying in this paper.

4None of these approaches consider partial revelation. As dis-
cussed above, the Myerson auction is prior-specific only in the

Once again, though, strict type uncertainty along with par-
tial revelation prevent the mechanism designer from max-
imizing the expectedvalue of f . Instead, we can con-
sider the regret of the mechanism designer: the designer
wishes to find a mechanism that, in equilibrium, minimizes
regret overf with respect to possible realizations of the
agents’s types. Note that we now consider both the regret
of the agents participating in the mechanism—agents con-
sider the regret of their actions w.r.t. their own expected
utility and adopt a minimax-regret equilibrium (or DSE)
given the rules of the mechanism—and of the designer—it
adopts a mechanism that minimizes regret w.r.t. the value
of the social choice function, assuming the agents play a
minimax-regret equilibrium (or DSE).

4.2 Automated Mechanism Design

In the spirit of AMD, we provide a formulation of the op-
timization problem for a finite-type, finite-outcome, strict
mechanism design problem in which the goal is to find an
incentive compatible DPR mechanism satisfying ex-post
rationality.5 Again, we emphasize that direct mechanisms
are a special case of DPR mechanisms; and these may still
require regret minimization due to constraints imposed on
the mechanism.

Let T ⊆ Θ be a common prior over type profiles. LetSi be
the set of possible “partial types” (or subsets)i can reveal,
with S = ×iSi. We’ll assume for ease of presentation
that the distinct reports for eachi are mutually exclusive
(i.e.,si ∩ s′i = ∅ for any two different reports). Given this
fixed action space, any mechanism can be specified by a
collection of parameters〈po

s : o ∈ O, s ∈ S〉, wherepo
s

denotes the probability of outcomeo being realized when
partial-type profiles is revealed. LetT (s) be the collection
of type profiles inT consistent with the partial-type profile
s; defineΘ(s) similarly. Conversely, letS(T ) be the set
of partial-type profiles that correspond to some element of
T (similarly for S(Θ)), and lets(θ) be the unique partial-
type profile consistent withθ. The notationTi(si), Si(Θi),
si(θi), etc. is defined in an analogous fashion.

4.2.1 Formulation of Mechanism Optimization

Restricting attention to incentive compatible mechanisms
(a restriction that must be enforced via constraints on the
optimization), we define the pairwise regret of mechanism
p = 〈po

s〉 w.r.t. mechanismq = 〈qo
s〉 to be

MR(p,q) = max
θ∈T

∑

o

(qo
s(θ) − po

s(θ))f(o, θ) (5)

Intuitively, the regret of mechanismp relative toq is the
maximal loss inf incurred by adoptingp, allowing an ad-

sense that the general mechanism “template” is instantiated to
produce a different concrete mechanism by plugging in any spe-
cific prior.

5With the possibility of payments, the outcome space is no
longer finite; but this can be dealt with separately (see below).



versary to choose the agents’s typesθ and their (truthful)
reportss.6 Mechanismp is minimax optimalif it satisfies

p ∈ argmin
p

max
q

MR(p,q). (6)

The optimization in Eq. (6) can be formulated in different
ways by imposing different constraints on the mechanisms
in question. For instance, we might insist that our chosen
mechanismsp andq be incentive compatible and satisfy
ex post rationality; we formulate this next. But other re-
strictions are possible, and one could even formulate regret
using different restrictions onp andq (e.g., by allowing the
adversary to consider a wider space of mechanismsq than
the designer can forp, or even allowing it to make “per-
fect” outcome choices, thus giving it more power still).

Converting the minimax program that encodes Eq. (6) into
a minimization leads to the following formulation:

min
δ,p

δ

s.t.
∑

o

(qo
s − po

s)f(o, θ) ≤ δ ∀q, s, θ ∈ Θ(s) (7)

Ri(si, s
′
i|θi, θ−i,p) ≤ min

d∈∆(Si)
MRi(d|θi, T−i,p)

∀i, si, s
′
i, θi ∈ Ti(si), θ−i ∈ T−i (8)

∑

o

po
sui(o, θi) ≥ 0 ∀i, si, θi ∈ Ti(si) (9)

∑

o

po
s = 1 ∀s (10)

po
s ≥ 0 ∀s, o (11)

The variables in this program are parameterspo
s of the

mechanismp being optimized (constrained by the obvious
simplex constraints (10) and (11)), andδ, measuring the
minimax regret ofp. The aim then is to minimizeδ subject
to the constraints above. We now describe the role of each
of the constraint sets (7–9) in turn.

The (infinite) collection ofregret constraints(7) ensures
that the regret ofp, from the mechanism designer’s per-
spective, with respect to any alternative mechanismq is
less thanδ. This therefore “defines”δ as the max regret
of p. This effectively replaces the maximization overq in
Eq. (6) by universal quantification. We will see below how
constraints on the space of “adverarial” mechanismsq are
taken into account.

The (nonlinear)IC-constraints(8) ensure incentive com-
patibility of the mechanismp. Here we define

Ri(si, s
′
i|θi, θ−i,p) =

∑

o

(po
s′

i,s−i(θ−i)
− po

si,s−i(θ−i)
)ui(o, θi)

6If we allow “overlapping” reports in which several reports
correspond to the same type, we can extend this definition by (ad-
versarially) maximizing overs ∈ S(θ).

which is the pairwise regret of agenti should it reportsi

instead ofs′i in mechanismp when its true type isθi and
others have typeθ−i (and truthfully reports−i(θ−i)). The
right-hand side of the constraint refers to alternative (ran-
domized) reporting strategiesd ∈ ∆(Si) thati could adopt,
and their maximum regret in mechanismp (we address
this below). By quantifying over all typesθi that “truth-
fully” correspond to the reported partial typesi, we en-
sure that agents have incentive to report truthfully (i.e., the
max regret of reporting truthful partial typesi w.r.t. p is
no greater than the max regret of any randomized strategy).
Notice that this defines the value of truthful reporting in
a minimax-regret equilibrium. It is possible to insist on a
minimax-DSE in an entirely analogous fashion.

TheEPR-constraints(9) enforceex post rationality: each
i will participate inp even knowing the true types of the
other players, since its expected utility for participating is
non-negative (we assume a baseline utility of zero for non-
participation). These IC and EPR constraint sets are analo-
gous to those proposed in [8], with expected utility replaced
by regret minimization.

Given this formulation, there are two key practical difficul-
ties in solving this optimization problem. First, the set of
regret constraints (7) is infinite, preventing us from direct
optimization as a finite mathematical program. Second, the
IC-constraints (8) are nonlinear due to the presence of the
minimization on the RHS of each of the constraints. Note
however that all other constraints are linear. We address
each of these two problems in turn, resulting in an algo-
rithm for regret-based mechanism design involving only
the solution of linear, mixed-integer programs.

4.2.2 Constraint Generation

Practically, we deal with the infinite number of regret con-
straints by constraint generation. Specifically, we solve a
relaxed version of the program by considering only a fi-
nite subset of the constraints and linearizing any IC con-
straints (see below). Given a relaxed solution〈p, δ〉, we
then find the maximally violated regret constraint by find-
ing the mechanism parametersq and partial type reports
and type profileθ that maximize the regret ofp. This is a
mixed integer quadratic program:

max
(Iθ),q

∑

o

(qo
s(θ) − po

s(θ))Iθf(o, θ)

s.t. IC, EPR and simplex constraints onq (12)
∑

θ

Iθ = 1 (13)

where theIθ are boolean variables indicating which type
profile θ (and therefore whichs) is chosen. Here the con-
straints are either linear or can be linearized (see below)
but the objective is quadratic. This optimization can be
reformulated as a mixed integerlinear program (MIP) as



follows:

max
(Iθ),q,(Y o

θ )

∑

o

Y o
θ f(o, θ)

s.t. IC, EPR and simplex constraints

Iθ · lb ≤ Y o
θ ≤ Iθ · ub ∀o, θ (14)

Y o
θ ≤ (qo

s(θ) − po
s(θ)) − lb · (1 − Iθ)

∀o, θ wheref(o, θ) ≥ 0 (15)

Y o
θ ≥ ub · (1 − Iθ) − (qo

s(θ) − po
s(θ))

∀o, θ wheref(o, θ) < 0 (16)

wherelb andub are bounds on the value of(qo
s(θ) − po

s(θ))
(i.e.,−1 and1). The trick here is to introduce new variables
(Y o

θ ) to replace the product in the quadratic objective and to
add constraints that force those variables to0 if they don’t
correspond to the chosenθ (14) or to the true value of the
original product if they do (15 and 16).

If the regret induced byq exceedsδ, then this regret con-
straint is violated at the proposed solution, so we add the
constraint (7) corresponding toq, s, andθ. The optimiza-
tion solved to generate mechanismq can involve the same
restrictions (e.g., IC, EPR) as those forp, or we may relax
these to give the adversary more power.

4.2.3 Constraint Linearization

We adopt a similar strategy for dealing with the nonlin-
ear IC constraints. The min on the right-hand side of con-
straint (8) cannot be expressed linearly. So given the cur-
rent solutionp, we compute the stochastic reportd for each
agenti, and each feasible typeθi, that has minimax regret
in mechanismp given thati has typeθi. This can be solved
using a straightforward linear minimization if we enumer-
ate all types (or we can use constraint generation to pre-
vent doing so). To determine whether any of the IC con-
straints fori, θi are violated, we can either explicitly com-
puteRi(si, s

′
i|θi, θ−i,p) for si = si(θi), and alls′i and

θ−i, or we can simply maximizeRi (as an LP). Finally,
we can test whether any of these constraints is violated by
comparing the maximumRi value obtained with the value
of the solution of the min on the right-hand side of the con-
straint. If a violation exists, we add the maximally violated
constraint (or all constraints corresponding to the agent and
type in question) to tighten the master LP.

Once the maximally violated (regret and IC) constraints
have been added to the LP, we re-solve the tightened LP
to obtain a new solutionp. When we get to a point where
no violated constraints are found, we are assured that the
minimax optimal mechanism has been computed. This
approach reduces the entire optimization problem to a se-
quence of LPs and MIPs.

4.2.4 Payments

If one allows payments among participants (one could
hardly design an auction without payments), the transfer of

money can be encoded within the outcome spaceO. How-
ever, this will render the outcome space infinite and make
the finite optimization above impossible (at least in this
explicit form). However, under the assumption of quasi-
linear utility, we can treat payments separately from the
outcome space itself, as is standard in mechanism design.
The method above can then easily be adapted by including
variables for payments that are separate from the outcome
variables. In such settings, optimization criteria such as
revenue maximization can be considered, as can constraints
such as budget balance or no deficit.7

4.3 Experimental Results

We have experimented with this approach to automated
strict mechanism design in the special case of direct mech-
anisms (i.e., complete revelation) with IC and EPR. We
consider two objective functions—social welfare and rev-
enue (when payments are permitted)—and two types of
adversaries—an “omniscient” adversary that can pick the
optimal outcome for each revealed type vector without re-
gard to whether the players would actually reveal truthfully,
or a “constrained” adversary that picks, for each possible
type vector, an IC, EPR mechanism that maximizes the
objective function. In the case of mechanisms with pay-
ments, we have experimented with various payment con-
straints: budget balance (sum is zero), no deficit (sum is
non-negative) or unconstrained.

The first problem we consider is a strictly uncertain variant
of the simple two-player, two-type “Divorce Settlement”
problem [20], in which an arbitrator decides among one of
four options for dealing with a jointly owned painting in
a divorce: the husband gets the painting; the wife gets it;
it is hung in a museum; or it is burned. The husband and
wife each have two possible types, low (less attached to the
painting) and high (more attached). The utility function of
the low type is: 2 (get it), 0 (other gets it); 1 (museum); -10
(burn). For the high type, utility is 100, 0, 50 -10.

Figure 1 shows the max-regret minimizing mechanism un-
der social welfare (with no payments). This mechanism is
identical for “omniscient” and “constrained” adversaries.8

The max regret of this mechanism is27.7. Note that this
mechanism, unlike those derived in [20], is symmetric,
treating the husband and wife equally.

When maximizing social welfare with payments (regard-
less of payment constraints) a zero-regret mechanism can
be derived (in the no deficit case this is not surprising since
a VCG mechanism would optimize welfare). The mecha-
nism always gives the painting to the husband, except when
the wife’s utility for it is strictly higher; and if a party with

7Our formulation is generalized as in AMD [8].
8In all problems described here, these two cases lead to the

same result: for each type vector, there is an IC-EPR mechanism
with the same objective value as the optimal outcome choice of
the omniscient adversary.



Low High

L
0.5/0.5

0/0
.2273/.7273

0/.0455

H
.7273/.2273

0/.0455
.4545/.4545

0/.0909

Figure 1:Regret-minimizing mechanism for the Divorce Settle-
ment problem (social welfare, no payments). Each cell shows the
probability of each of the four outcomes as a function of the re-
port of the husband (row) and wife (column): husband/wife at the
top and museum/burn at the bottom of each cell.

Low High

L
.4545/.4545

0/.0909
0/1
0/0

H
1/0
0/0

0/1
0/0

Low High
L 0/0 0/55.4545
H 55.4545/0 0/55.4545

Figure 2: Divorce Settlement (max revenue, payments, no
deficit). Top matrix shows outcome probabilities, the bottom ma-
trix payments.

high type receives the painting, it must pay the designer
just enough to remove any incentive to lie. When max-
imizing revenue, the adversary is always able to extract
payments equal to the highest utility of the agents. The
mechanism designer however cannot do as well (with an
IC-EPR mechanism) as the adversary, but it is interesting
to note that being allowed to run a deficit actually helps
reduce regret. Figures 2 and 3 show the mechanisms for
both the No Deficit and Deficit Allowed cases. In the for-
mer, the designer can extract a payment of55.4545 from
the party receiving the painting, except when both have low
types, in which case no payment is required. In the latter
case, taking the risk of giving money to both agents in the
Low/Low profile enables the designer to extract a higher
payment when at least one has high type. The regret of
44.546 in the No Deficit case is significantly reduced to
15.183 by allowing a deficit.

We have also experimented with our approach with one-
item, two-agent auctions, with a finite set of possible val-
uations. We experimented with five types per agent (with
valuations0, 0.25, 0.5, 0.75 and1) following the exam-
ple of [20]; and also with three types (with valuations
of 0.25, 0.5 or 0.75), a subset of the original five types.
The minimax regret levels are summarized in Table 1 for
mechanisms with payments and a No Deficit constraint,
against a “constrained” adversary. Naturally, the regret of
the three-type mechanisms are lower since there is “less
uncertainty”. Note that regret reduction strongly suggests
how incremental type elicitation could be used in the de-
sign of mechanisms. When optimizing for social welfare, a
zero-regret mechanism is achieved (not surprisingly, since
a second-price auction can maximize social welfare with
dominant strategies).

Low High

L
.1549/.1549

0/.6901
0/1
0/0

H
1/0
0/0

0/1
0/0

Low High
L −6.5915/ − 6.5915 0/84.8169
H 84.8169/0 0/84.8169

Figure 3: Divorce Settlement (max revenue, payments, deficit
allowed). Top matrix shows outcome probabilities, the bottom
matrix payments.

Social Welfare Revenue
Auction-5 0 0.3264
Auction-3 0 0.1797

Table 1:Regret for the five- and three-type auctions using social
welfare and revenue maximization (under No Deficit constraint).

A number of approaches to scaling the automated optimiza-
tion of mechanisms in settings of strict uncertainty could be
adopted. The optimization needed is more complex than in
standard AMD because of the minimax optimization crite-
rion. Further empirical study is needed to gauge the com-
plexity and convergence properties of the constraint gener-
ation process. Apart from that, however, the scaling issues
facing strict AMD are similar to those facing AMD in the
expected utility context; and many of the solutions will be
similar. We discuss some of these issues in the next section.

5 Concluding Remarks

We have introduced strict incomplete information games
as a variant of Bayesian games in which type uncertainty is
strict. We proposed minimizing max regret with respect
to possible realizations of other agent types as a natural
optimization criterion for players in such games, and de-
fined minimax equilibria. We also argued that strict un-
certainty is natural in many mechanism design settings;
and that mechanisms themselves, especially when forced
to rely on partial type revelation, must deal with strict type
uncertainty when deciding on outcomes. We showed how
the minimax regret optimization of mechanisms can be re-
duced to a series of LPs and MIPs in certain circumstances.

This work forms a starting point for further investigation
into mechanism design with incremental or partial type rev-
elation. As argued earlier, in these settings semi-qualitative
decision criteria such as minimax regret will often be most
appropriate from the perspective of mechanism optimiza-
tion. A number of interesting directions remain to be pur-
sued. We are interested in developing more general mech-
anisms (like VCG) involving partial or incremental elici-
tation under strict type uncertainty. The specific proposals
for strict AMD suggested here need to be further explored
empirically. Along these lines, we hope to explore the ap-
proximate optimization of mechanisms.



Of interest also are issues that face (and are being addressed
in) classical AMD, for example, exploiting structure in the
action space, outcome space, and type spaces of agents
for computational benefit. Dealing with continuous type
spaces is critical for practical problems, since utility func-
tions are usually continuously parameterized. Notice that
finite message mechanisms can deal with continuous type
spaces effectively through partial revelation (e.g., using the
kinds of partial-type mappings suggested here). It should
be relatively straightforward to extend our approach to min-
imax mechanism optimization to such settings. Within this
context, we might also consider methods for optimizing the
“meaning” of reported partial types, sequential revelation
of types, and the means to address the tradeoff between
communication cost and mechanism value.
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