
Constraint-based Optimization with the Minimax
Decision Criterion

Craig Boutilier1, Relu Patrascu2, Pascal Poupart1, and Dale Schuurmans2

1 Dept. of Computer Science, University of Toronto, Toronto, ON, M5S 3H5, CANADA,
cebly,ppoupart@cs.toronto.edu

2 School of Computer Science, University of Waterloo, Waterloo, ON, N2L 3G1, CANADA,
rpatrascu,dale@cs.uwaterloo.ca

Abstract. In many situations, a set of hard constraints encodes the feasible con-
figurations of some system or product over which users have preferences. We
consider the problem of computing a best feasible solution when the user’s util-
ities are partially known. Assuming bounds on utilities, efficient mixed integer
linear programs are devised to compute the solution with minimax regret while
exploiting generalized additive structure in a user’s utility function.

1 Introduction

The problem of interactive decision making has received a fair amount of attention
over the years [10, 17], but recently has seen increasing interest within AI as automated
decision aids become more prevalent. As has been argued elsewhere [6, 4], there are
many situations in which the set of decisions and their dynamics are fixed, while the
utility functionsof different users vary widely. In such a case, some form of utility
elicitation must be undertaken in order to capture user preferences to a sufficient degree
to allow an (approximately) optimal decision to be taken. Different approaches to this
problem have been proposed, including Bayesian methods that quantify uncertainty
about preferences probabilistically [7, 4], and methods that simply pose constraints on
the set of possible utility functions and refine these incrementally [17, 5, 16].

These issues arise as well in the context of constraint-based optimization problems.
For instance, in a car rental scenario, possible configurations are defined by attributes
such as automobile size and class, manufacturer, seating and luggage capacity, etc.
Available cars are limited by the configurations offered by manufacturers and stock
availability, with hard constraints used to encode infeasible configurations (e.g., no lux-
ury sedans have 4-cylinder engines). Different customers have different preferences for
configurations in this restricted decision space [14], and this information must be ob-
tained in an effective way. Typically, categorical preferences are obtained from the cus-
tomer, and imposed as constraints; but if no feasible solution is found, these constraints
are relaxed incrementally.

While interactive preference elicitation has received little attention in the CSP com-
munity, optimizing with respect to a given set of preferences over configurations has
been studied extensively, with many frameworks proposed for modeling such systems



[15, 3]. Most frameworks can be viewed as adding “soft” constraints that have associ-
ated penalties or values that indirectly represent a user’s preferences for different config-
urations. However, modeling preferences as constraints and assuming complete utility
information is often problematic. For instance, users may have neither the ability nor
the patience to provide full utility information to a system. Furthermore, in many if not
most instances, an optimal decision (or some approximation thereof) can be determined
with a very partial specification of the user’s utility function.

In this paper, we adopt a somewhat different view. We assume a user’s preferences
are represented directly as a utility function over possible configurations. In the car
rental scenario, this utility function can be thought as a measure of the value (not neces-
sarily monetary) of each car from the customer’s point of view. Given a utility function
and the hard constraints defining the decision space, we have a standard constraint-
based optimization problem. However, as argued earlier, it is unrealistic to expect users
to express their utility functions with complete precision, nor will we generally require
full utility information to make good decisions. Thus we are motivated to consider the
problem of “optimizing” in the presence of partial utility information. Specifically, we
assume that bounds on utility function parameters are provided, and consider the prob-
lem of finding a feasible solution that minimizesmaximum regret[11] within the space
of feasible utility functions. We show that this minimax problem can be formulated and
solved using a set of linear integer programs (IPs) and mixed integer programs (MIPs)
in the case where utility functions have no structure. In practice, some utility structure
is necessary if we expect to solve problems of realistic size. We therefore also consider
problems where utility functions can be expressed using ageneralized additive form
[1] (which includes linear functions and graphical models like UCP-nets [5] as special
cases). We derive two solution techniques for solving such structured problems: the first
gives rise to a MIP with fewer variables combined with an effective constraint genera-
tion procedure; the second encodes the entire minimax problem as a single MIP using
a cost-network to formulate a compact set of constraints.

Though our emphasis is on solving problems using the minimax regret criterion,
we also briefly discuss how preference elicitation relates to this model. Specifically, we
describe methods that can be used to refine utility uncertainty in a way that quickly
reduces minimax regret. Throughout, our emphasis is on the compact formulation and
solution of the constrained optimization problems as mixed integer programs. While
these can be solved using a variety of techniques, including branch-and-bound methods
with various constraint propagation techniques, we do not consider specialized methods
for solving these MIPs (our experiments, for example, use generic MIP solvers). We
leave this investigation to future research.

2 Constraint-based Optimization and Minimax Regret

We begin by describing the basic problem assuming a known utility function to estab-
lish background and notation, and then define the minimax regret decision criterion for
solving constraint-based decision problems given only incomplete utility information.



2.1 Optimization with Known Utility Functions

We assume a finite set of attributesX = {X1, X2, . . . , XN} with finite domains. An
assignmentx ∈ Dom(X) is often referred to as astate. For simplicity of presentation,
we assume these attributes are boolean, but nothing important depends on this. We also
have a set of hard constraintsC over these attributes. Each constraintC`, ` = 1, ..., L, is
defined over a setX[`] ⊂ X, and thus induces a set of legal configurations of attributes
in X[`]. We assume that the constraintsC` are represented in some logical form and can
be expressed compactly: for example, we might writeX1 ∧ X2 ⊃ ¬X3 to denote the
legal configurations ofX1, X2, X3. We letFeas(X) denote the subset offeasible states
(i.e., assignments satisfyingC).

Suppose we have a known utility functionu : Dom(X) → R. Our aim is to find an
optimal feasible statex∗; i.e., any

x∗ ∈ arg max
x∈Feas(X)

u(x).

For this reason, we sometimes call feasible statesdecisions. This problem can be for-
mulated in an explicit fashion as a (linear) 0-1 integer program:

max
{Ix,Xi}

∑
x

uxIx subject toA andC, (1)

where we have:

– variablesIx: for eachx ∈ Dom(X), Ix is a boolean variable indicating whetherx
is the decision made (i.e., state chosen).

– variablesXi: Xi is a 0-1 variable corresponding to theith attribute.
– coefficientsux: for eachx ∈ Dom(X), constantux denotes the (known) utility of

statex.
– constraint setA: for each variableIx, we impose a constraint that relates it to its

corresponding variable assignment. Specifically, for eachXi: if Xi is true inx, we
constrainIx ≤ Xi; and if Xi is false inx, we constrainIx ≤ 1 − Xi. We denote
byA these constraints.

– constraint setC: we impose each feasibility constraintC` on the attributesXi ∈
X[`]. Logical constraints can be written in a natural way as linear constraints [8].

Note that this formulation assures that, if there is a feasible solution (given the con-
straintsA andC), then exactly oneIx will be non-zero.3

2.2 Graphical Utility Models

Unfortunately the IP formulation above is not compact since there is oneIx variable
per state and the number of states is exponential in the number of attributes. In suchflat
utility functions, it is not generally possible to formulate the optimization concisely. By
contrast, if some structure on the utility function is imposed, say, in the form of afac-
toredgraphical model, we are then generally able to reduce the number of variables to

3 We assume the utility function is non-negative.



be linear in the number of parameters of the graphical model. We consider here the GAI
(generalized additive independence) model [1] because of its generality (encompassing
both linear models [13] and UCP-nets [5] as special cases).4

Specifically, assume that our utility function can be written as the sum ofK local
utility functions, orfactors, over small sets of variables:

u(x) =
∑
k≤K

fk(x[k]). (2)

Here each functionfk depends only on a local family of attributesX[k] ⊂ X. We
denote byx[k] the restriction of statex to the attributes inX[k]. An IP similar to Eq. 1
can be used to solve for the optimal decision in the case of a GAI model:

max
{Ix[k],Xi}

∑
k≤K

∑
x[k]∈Dom(X[k])

ux[k]Ix[k] subject toA andC. (3)

Instead of one variableIx per state, we now have a set oflocal state variablesIx[k] for
each familyk and each instancex[k] ∈ Dom(X[k]). Similarly, we have one associated
constant coefficientux[k] denotingfk(x[k]). Ix[k] is true iff the assignment toX[k] is
x[k]. EachIx[k] is related logically to the attributesX ∈ X[k] by constraint setA as
before, and constraint setC is also imposed as above.

Notice that the number of variables and constraints in this IP (excluding the ex-
ogenous feasibility constraintsC) is now linear in the number of parameters of the
underlying utility model, which will be linear in the number of attributes|X| if we as-
sume that the size of each utility factorfk is bounded. This compares favorably with
the exponential size of the IP for unfactored utility models in Sec. 2.1.5

2.3 Minimax Regret

If the utility function is unknown, then we have a slightly different problem. We can-
not maximize expected utility because the utility function is unspecified. However, if
we have constraints on the utility function (e.g., in the form of bounds), we can opti-
mize using other criteria. A very natural criterion isminimax regret[11, 5, 16]: prefer
the (feasible) assignmentx that obtains minimum max-regret, where max-regret is the
largest quantity by which one could “regret” choosing actionx (while allowing the
utility function to vary within the bounds).

More formally, letU denote the set of feasible utility functions, reflecting our partial
knowledge of the user’s preferences. The setU may be a finite; but more commonly it
will be continuous, defined by bounds (or constraints) on (sets of) utility valuesu(x)
for various states. Thepairwise regretof statex with respect to statex′ over feasible
utility setU is defined as

R(x,x′,U) = max
u∈U

u(x′) − u(x), (4)

4 For example, UCP-nets encompass GAI with some additional restrictions. Hence any algo-
rithm for GAI models automatically applies to UCP-nets, though one might be able to exploit
the structure of UCP-nets foradditionalcomputational gain.

5 Generally, this IP would be solved using some form of search directly on theXi variables, in
which case there would be no need to explicitly representIx[k] (state) variables.



which is the most one could regret choosingx instead ofx′ (e.g., if an adversary could
impose any utility function inU). Themaximum regretof decisionx is:

MR(x,U) = max
x′

R(x,x′,U) (5)

= max
x′

max
u∈U

u(x′) − u(x) (6)

Theminimax regretof feasible utility setU is:

MMR(U) = min
x

MR(x,U) (7)

= min
x

max
x′

max
u∈U

u(x′) − u(x) (8)

If the only information we have about a user’s utility function is that it lies in
the setU , then a decisionx∗ that minimizes max-regret—that is, anx∗ such that
MR(x∗,U) = MMR(U)—seems reasonable. Specifically, without distributional in-
formation over the set of possible utility functions, choosing (or recommending) a
minimax-optimaldecisionx∗ minimizes the worst case loss with respect to possible
realizations of the utility functionu ∈ U . Our goal is now to formulate the minimax
regret optimization (Eq. 8) in a computationally tractable way.

3 Minimax Regret with Flat Utility Models

If we make no assumptions about the structure of the utility function, Eq. 8 can be
interpreted directly as a semi-infinite, quadratic, mixed-integer program (MIP):

min
{Mx,Ix,Xi}

∑
x

MxIx subj. to

{
Mx ≥ ux′ − ux ∀x ∈ X, x′ ∈ Feas(X′), u ∈ U
A andC

where we have:

– variablesMx: for eachx, Mx is a continuous variable denoting the max regret
when that state is chosen.

– variablesIx: for eachx, Ix is a boolean variable indicating whetherx is the state
chosen.

– coefficientsux: for eachu ∈ U and each statex, ux denotes the utility ofx given
utility function u.

– constraint setsA andC (defined as above).

The set of constraints on theMx variables is problematic. First, ifU is continuous
(the typical case we consider here), then the set of constraints of the formMx ≥ ux′ −
ux is also also continuous, since it requires that we “enumerate” all utility valuesux

andux′ corresponding to any utility functionu ∈ U . Furthermore, it is critical that
we restrict our attention to those constraints associated withx′ in the feasibleset of
states (i.e., those satisfyingC). Fortunately, we can often tackle this seemingly complex
optimization in much simpler stages.

In this paper we consider the case where all utility parametersux are independent
and have simple upper and lower bounds (e.g., asking standard gamble queries would



provide such bounds [7, 4]). Specifically, we assume an upper boundux↑ and a lower
boundux↓ on eachux, thus defining the feasible utility setU . These assumptions allow
us to compute the minimax regret in three simpler stages, which we now describe.6

First, we note that the pairwise regret for an ordered pair of states can be easily
computed since eachux is bounded by an upper and lower bound:R(x,x′,U) = u′

x↑−
ux↓ if x 6= x′, andR(x,x′,U) = 0 if x = x′. Let rx,x′ denote this pairwise regret
value for eachx, x′, which we now assume has been pre-computed for all pairs.

Second, using Eq. 5, we can also compute the max regretMR(x,U) of any statex
based on the pre-computed pairwise regret valuesrx,x′ . Specifically, we can enumerate
all feasible statesx′, retaining the largest pairwise regret:

MR(x,U) = max
x′∈Feas(X′)

rx,x′ . (9)

Alternatively, we can search through feasible states “implicitly” with the following IP:

MR(x,U) = max
{Ix′ ,X′

i}

∑
x′

rx,x′Ix′ subject toA andC. (10)

Third, lettingmx denote the value ofMR(x,U), we can then compute the minimax
regretMMR(U) readily. We simply enumerate all feasible statesx and retain the one
with the smallest (precomputed) max regret valuemx:

MMR(U) = min
x∈Feas(X)

mx (11)

Again, this enumeration may be done implicitly using the following IP:

MMR(U) = min
{Ix,Xi}

∑
x

mxIx subject toA andC. (12)

In this flat model case, the two IPs above are not necessarily practical, since they require
one indicator variable per state. However, this reformulation does show that the original
quadratic MIP with continuous constraints can be solved in stages using finite, linear
IPs. More importantly, these intuitions will next be applied to develop an analogous
procedure for graphical utility models.7

4 Minimax Regret with Graphical Models

The optimization for flat models is interesting in that it allows us to get a good sense
of how minimax regret in a constraint-satisfaction setting works. From a practical per-
spective, however, the above model has little to commend it. By solving IPs with one
Ix variable per state, we have lost all of the advantage of using a compact and natu-
ral constraint-based approach to problem modeling. As we have seen when optimizing

6 This transformation essentially reduces thesemi-infinite quadraticMIP to afinite linear IP.
7 Note that this strategy hinges on the fact that we can independently determine upper and lower

bounds on the utility value of each state. If utility values are correlated by more complicated
constraints, this strategy may not work.



with known utility functions, if there is noa priori structure in the utility function, there
is very little one can do but enumerate (feasible) states. On the other hand, when the
problem structure allows for modeling via factored utility functions the optimization
becomes more practical. We now show how much of this practicality remains when our
goal is to compute the minimax-optimal state, given uncertainty in afactoredutility
function represented as a graphical model.

Assume a set of factorsfk, k ≤ K, defined over local familiesX[k], as described in
Sec. 2.2. The parameters of this utility function are denoted byux[k] = fk(x[k]), where
x[k] ranges overDom(X[k]). As in the flat-model case, we assume upper and lower
bounds on each of these parameters, which we denote byux[k]↑ andux[k]↓, respectively.
By definingu(x) as in Eq. 2, pairwise regret, max regret and minimax regret are all
defined in the same manner outlined in Sec. 2.3. We now show how to compute each of
these quantities in turn.

4.1 Computing Pairwise Regret and Max Regret

As in the unfactored case (Sec. 3), it is straightforward to compute the pairwise regret
of any pair of statesx andx′. For each factorfk and assignment pairx[k],x′[k], we
define thelocal pairwise regret: rx[k],x′[k] = ux′[k]↑ − ux[k]↓ whenx[k] 6= x′[k], and
rx[k],x′[k] = 0 whenx[k] = x′[k]. With factored models,R(x,x′,U) is the sum of local
pairwise regrets:

R(x,x′,U) =
∑

k

rx[k],x′[k]. (13)

We can compute max regretMR(x,U) by substituting Eq. 13 into Eq. 5:

MR(x,U) = max
x′∈Feas(X′)

∑
k

rx[k],x′[k] (14)

which leads to the following IP formulation:

MR(x,U) = max
{Ix′[k],X

′
i}

∑
k

∑
x′[k]

rx[k],x′[k]Ix′[k] subject toA andC (15)

The above IP differs from its flat counterpart (Eq. 10) in the use of one variableIx′[k]

per utility parameter, and is thus more compact and efficiently solvable.

4.2 Computing Minimax Regret

We can compute minimax regretMMR(U) by substituting Eq. 14 into Eq. 7:

MMR(U) = min
x∈Feas(X)

max
x′∈Feas(X′)

∑
k

rx[k],x′[k] (16)



which leads to the following MIP formulation:

MMR(U) = min
{Ix[k],Xi}

max
x′∈Feas(X′)

∑
k

∑
x[k]

rx[k],x′[k]Ix[k] subject toA andC (17)

= min
{Ix[k],Xi,M}

M

subject to

{
M ≥ ∑

k

∑
x[k] rx[k],x′[k]Ix[k] ∀x′ ∈ Feas(X′)

A andC (18)

In Eq. 17, we introduce the variables for the minimization, while in Eq. 18 we transform
the minimax program into a min program. The new continuous variableM corresponds
to the max regret of any state. In contrast with the flat IP (Eq. 12), this MIP has a
number ofIx[k] variables that is linear in the number of utility parameters. However,
this MIP is not generally compact because Eq. 18 has one constraint per feasible state
x′. Nevertheless, we can get around the potentially large number of constraints in either
of two ways.

Constraint Generation The first technique we consider for dealing with the large
number of constraints in Eq. 18 isconstraint generation, a common technique in op-
erations research for solving problems with large numbers of constraints (much like
cutting plane and column generation methods). This approach proceeds by repeatedly
solving the MIP in Eq. 18, but using only a subset of the constraints onM associated
with the feasible statesx′. At the first iteration, all constraints onM are ignored. At
each iteration, we obtain a solution indicating some decisionx with purported minimax
regret; however, since certain unexpressed constraints may be violated, we cannot be
content with this solution. Thus, we look for the unexpressed constraint onM that is
maximally violated by the current solution. This involves finding awitnessx′ that max-
imizes regret w.r.t. the current solutionx ; that is, a decisionx′ (and, implicitly, a utility
function) that an adversary would chose to cause a user to regretx the most.

Recall that finding the feasiblex′ that maximizesR(x,x′,U) involves solving a sin-
gle IP given by Eq. 15. We then impose the specific constraint associated with witness
x′ and re-solve the MIP in Eq. 18 at the next iteration with this additional constraint. It
is not hard to see that if no constraint is violated at the current solutionx, thenx is the
minimax-optimal configuration. The procedure is finite and guaranteed to arrive at the
optimal solution. The constraint generation routine is not guaranteed to finish before it
has the full set of constraints, but is relatively simple and in practice (as we will see)
tends to generate a very small number of constraints. Thus in practice we solve this very
large MIP using a series of small MIPs, each with a small number of variables and a set
of active constraints that is also, typically, very small.

A Cost Network Formulation A second technique for dealing with the large num-
ber of constraints in Eq. 18 is to use a “cost network” to generate acompactset of
constraints that effectively summarizes this set. This type of approach has been used
recently, for example, to solve Markov decision processes [12]. The main benefit of



the cost network approach is that, in principle, it allows us to formulate a MIP with a
feasible number of constraints.8

To formulate a compact constraint system, we first transform the MIP of Eq. 18 into
the following equivalent MIP by introducing penalty termsρx[`] for each feasibility
constraintC`:

MMR(U) = min
{Ix[k],Xi,M}

M

subject to

{
M ≥ ∑

k

∑
x[k] rx[k],x′[k]Ix[k] +

∑
` ρx′[`] ∀x′ ∈ Dom(X′)

A andC

= min
{Ix[k],Xi,M}

M

subject to




M ≥ ∑
k Rx′[k] +

∑
` ρx′[`] ∀x′ ∈ Dom(X′)

Rx′[k] =
∑

x[k] rx[k],x′[k]Ix[k] ∀k,x′[k] ∈ Dom(X′[k])

A andC
(19)

The MIP of Eq. 18 has one constraint onM per feasible statex′, whereas the MIP of
Eq. 19 has one constraint per statex′ (whether feasible or not). Therefore, to effectively
maintain the feasibility constraints onx′, we add penalty termsρx′[`] that essentially
make a constraint onM meaningless when its corresponding statex′ is infeasible. This
is achieved by defining a local penalty functionρ`(x′[`]) for each logical constraintC`

that returns−∞ whenx′[`] violatesC` and0 otherwise.
This transformation has, unfortunately, increased the number of constraints. How-

ever, it in fact allows us to rewrite the constraints in a much more compact form, as
follows. Instead of enumerating all constraints onM , we analytically construct the con-
straint that provides thegreatest lower bound, while simply ignoring the others. This
greatest lower boundGLB is computed by taking the max of all constraints onM :

GLB = max
x′

∑
k

Rx′[k] +
∑

`

ρx′[`]

= max
x′
1

max
x′
2

. . . max
x′

N

∑
k

Rx′[k] +
∑

`

ρx′[`]

This maximization can be computed efficiently by usingvariable elimination[9], a
well-known form of non-serial dynamic programming [2]. The idea is to distribute
the max operator inward over the summations, and then collect the results as new
terms which are successively pulled out. Space precludes a detailed presentation of
the algorithm—we instead illustrate its workings by means of an example.

To illustrate, consider the following simple example. Suppose we have the attributes
X1, X2, X3, X4, a utility function decomposed into the factorsf1(x1, x2), f2(x2, x3),

8 We have observed, however, the constraint generation approach described above is usually
faster in practice and much easier to implement, even though it lacks the same worst case
run-time guarantees. Indeed, this same fact has been observed in the context of MDPs [18].



f3(x1, x4) and two logical constraints with associated penalty functionsρ1(x1) and
ρ2(x3, x4). We then obtain

GLB = max
x′
1

max
x′
2

max
x′
3

max
x′
4

Rx′
1,x′

2
+ Rx′

2,x′
3
+ Rx′

1,x′
4
+ ρx′

1
+ ρx′

3,x′
4

= max
x′
1

[ρx′
1
+ max

x′
2

[Rx′
1,x′

2
+ max

x′
3

[Rx′
2,x′

3
+ max

x′
4

[Rx′
1,x′

4
+ ρx′

3,x′
4
]]]]

by distributing the individualmax operators inward over the summations. To compute
theGLB, we successively formulate new terms that summarize the result of completing
eachmax in turn, as follows:

Let Ax′
1,x′

3
= max

x′
4

Rx′
1,x′

4
+ ρx′

3,x′
4

Let Ax′
1,x′

2
= max

x′
3

Rx′
2,x′

3
+ Ax′

1,x′
3

Let Ax′
1

= max
x′
2

Rx′
1,x′

2
+ Ax′

1,x′
2

Let GLB = max
x′
1

ρx′
1
+ Ax′

1

Notice that this incremental procedure can be substantially faster than enumerating
all statesx′. In fact the complexity of each step is only exponential in the local subset
of attributes that indexes each auxiliaryA variable.

Based on this procedure, we can substitute all the constraints onM in the MIP
in Eq. 19 with the following compact set of constraints that analytically encodes the
greatest lower bound onM :

Ax′
1,x′

3
≥ Rx′

1,x′
4
+ ρx′

3,x′
4

∀x′
1, x

′
3, x

′
4 ∈ Dom(X ′

1, X
′
3, X

′
4)

Ax′
1,x′

2
≥ Rx′

2,x′
3
+ Ax′

1,x′
3

∀x′
1, x

′
2, x

′
3 ∈ Dom(X ′

1, X
′
2, X

′
3)

Ax′
1
≥ Rx′

1,x′
2
+ Ax′

1,x′
2

∀x′
1, x

′
2 ∈ Dom(X ′

1, X
′
2)

M ≥ ρx′
1
+ Ax′

1
∀x′

1 ∈ Dom(X ′
1)

By encoding constraints in this way, the constraint system specified by the MIP
in Eq. 19 can be generally encoded with a small number of variables and constraints.
Overall we obtain a MIP where: the number ofIx variables is linear in the number of
parameters of the utility function; and the number of auxiliary variables and constraints
that are added is locally exponential w.r.t. the largest subset of attributes indexing some
auxiliary variable. In practice, since this largest subset is often very small compared
to the set of all attributes, the resulting MIP encoding is compact and readily solvable.
More precisely, the complexity of this algorithm depends on the order in which the
variables inX′ are eliminated, but is exponential in the tree width of the graph induced
by the elimination ordering (which is generally only locally exponential) [9].

5 Empirical Results

To test the plausibility of this approach we implemented the solution strategy outlined
above and ran a series of experiments to determine whether graphical structure was
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Fig. 1. Car Problem.

sufficient to permit practical solution times. We implemented the constraint generation
approach outlined in Sec. 4.2 and used CPLEX as the generic IP solver. Our experiments
considered two realistic domains—car rentals and house buying—as well as randomly
generated synthetic problems. In each case we imposed a factored graphical structure
to reduce the required number of utility parameters (upper and lower bounds).

For the house buying problem, we modeled the domain with 20 (multivalued) vari-
ables that specify various attributes of single family dwellings that are normally relevant
to making a purchase decision. The variables we used included: square footage, age,
size of yard, garage, number of bedrooms, etc. In total, there were 47,775,744 possible
configurations of the variables.We then used a factored utility model consisting of 29
local factors, each defined only on one, two or three variables. In total, the number of
local utility values (utilities for local configurations) was reduced to 160. Therefore a
total of 320 upper and lower bounds had to be specified, a significant reduction over the
nearly108 values that would have been required using a unfactored model. The local
utility functions represented complementarities and substitutabilities between variables,
such as requiring a large yard and a fence to allow a pool, etc.

The rental car problem features 26 multi-valued variables encoding attributes rele-
vant to consumers considering a car rental, such as: automobile size and class, manu-
facturer, rental agency, seating and luggage capacity, etc. The total number of possible
variable configurations is 61,917,360,000. There are 36 local utility factors, each de-
fined on at most five variables. Constraints encode infeasible configurations (e.g., no
luxury sedans have 4-cylinder engines).

For both the car and real estate problems, we first computed the configuration with
minimax regret given manually chosen bounds on the utility functions. The generation
technique of Sec. 4.2 took 40 sec for the car problem and 2 sec for the real estate prob-
lem. Interestingly, only 7 constraints were generated in finding the minimax-optimal
configuration in both the car and real estate problems (out of the 61,917,360,000 and
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Fig. 2. Real estate problem.

47,775,744 constraints, respectively). The structure exhibited by the utility functions of
each problem is largely responsible for this small number of required constraints.

In practice, the minimax regret techniques proposed in this paper would normally
be interleaved with some preference elicitation technique. As the bounds on utility pa-
rameters get tighter, we would like to know the impact on the running time of our
constraint generation algorithm. To that effect, we carried out an experiment where we
randomly set bounds, but with varying degrees of tightness. Figures 1 and 2 show how
tightening the bounds decreases the running time exponentially, and the number of con-
straints generated. For this experiment, bounds on utility were generated at random,
but the difference between the upper and lower bounds of any utility was capped at a
fixed percentage of some predetermined range. Figures 1 and 2 show scatterplots of
random problems for varying percentages. As those figures suggest, a significant speed
up is obtained as elicitation converges to the true utilities. Intuitively, the optimization
required to compute minimax regret benefits from tighter bounds since some config-
urations emerge as clearly dominant, which in turn requires the generation of fewer
constraints.

We carried out a second experiment with synthetic problems. A set of random prob-
lems of varying sizes was constructed by randomly setting the utility bounds as well
as the variables on which each utility factor depends. Each utility factor depends on at
most 3 variables and each variable has at most 5 values. Figure 3 shows the results as
we vary the number of variables and factors (the number of factors is always the same
as the number of variables). The running time and the number of constraints generated
increases exponentially with the size of the problem. Note however that the number of
constraints generated is still a tiny fraction of the total number of constraints (if they
were all enumerated). For problems with 10 variables, only 8 constraints were neces-
sary (out of 278,864) on average; and for problems of 30 variables, only 47 constraints
were necessary (out of2.8 × 1016) on average.
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Fig. 3. Artificial random problems – varying sizes

We also tested the impact of elicitation on the efficiency of our constraint generation
technique in Figure 4. Here, problems of 30 variables and 30 factors were generated
randomly while varying the relative range of the utilities w.r.t. some predetermined
range. Each factor has at most 3 variables chosen randomly and each variable can take
at most 5 values. Once again, as the bounds get tighter, some configurations emerge as
clearly dominant, which allows an exponential reduction in the running time as well as
the number of required constraints.

6 Concluding Remarks

We have developed a technique for computing minimax optimal decisions in constraint-
based decision problems when a user’s utility function is only partially specified in the
form of upper and lower bounds on utility parameters. While the corresponding opti-
mizations are potentially complex, we derived methods whereby they could be solved
effectively using several IPs and MIPs. Furthermore, we showed how graphical struc-
ture in the utility model could be exploited to ensure that the resulting IPs are compact
or could be solved using an effective constraint generation procedure.

There are a number of directions in which this work can be extended. Of critical
importance is the development of good elicitation strategies that reduce minimax regret
quickly. While this work has focused on the computation of minimax-optimal assign-
ments to variables, our current thrust is the incorporation of this approach into querying
strategies that can be used to tighten only the most relevant utility parameter bounds.
We have devised several elicitation strategies that we hope will work well in practice;
but these have yet to be implemented (so their performance still needs to be verified).
We briefly describe two of these methods.
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Fig. 4. Artificial random problems – varying relative utility range.

The optimistic query methodworks as follows: at each iteration we compute the
maximax optimalstatex∗ (i.e, that with the greatest upper bound on utility). We then
query the user about the utility parameters of that factor in such a way that its lower
bound on utility is raised to be close (say, withinε) to the upper bound of the state
with the second-highest upper bound (which can be computed in a similar way), or its
upper bound is reduced to below that of the second state. In either case, we have made
progress: in the first case, we have reduced minimax regret toε; in the second case, we
have reduced the regret of every other decision (by an amount equal to the reduction of
the upper bound forx∗, lessε).

Thecurrent solution query methodinvolves computing the minimax optimal state
x∗ using one of the methods described, as well as its regret-maximizing “witness”xw

(i.e., the state an adversary chooses in order to maximize our regret). We then ask
queries about the utility parameters at the both states (e.g., asking a midpoint query
about each parameter, thus reducing each interval by half). The intuition behind this ap-
proach is that gaining tighter information about the current minimax optimal allocation
and its witness is the best way to ensure an improvement in regret level (since these are
the parameters that play a role in the active constraints at the current solution).

Apart from elicitation, we are also exploring the use of search and constraint-
propagation methods for solving the constraint-optimization problems associated with
computing minimax regret. Our goal in this paper was to provide a precise formulation
of these computational problems as integer programs, and use off-the-shelf software
to solve them. We expect that optimization techniques that are specifically directed to-
ward these problems should prove fruitful. Along these lines, we hope to develop deeper
connections to existing work on soft constraints, valued CSPs, etc. Finally, we are quite
interested in the possibility of integrating Bayesian methods for reasoning about uncer-
tain utility functions with the constraint-based representation of the decision space.
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