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ABSTRACT
We investigate the design of iterative, limited-precision mechanisms
for single-good auctions with dominant strategy equilibria. Our
aim is to design mechanisms that minimize the number of bits re-
quired to determine approximately optimal allocations by sequen-
tially asking bidders to reveal their valuations with increasing preci-
sion, and limiting participation to those bidders who might win. We
prove several necessary conditions that severely restrict the space of
mechanisms satisfying our criteria. We also study empirically the
optimization of the parameters of our sequential mechanisms, and
how number of bidders and cost of communication impact expected
amount of communication, expected loss in welfare, and other mea-
sures. Finally, we show that incremental limited-precision mecha-
nisms offer advantages over fixed, single-shot mechanisms.

Categories and Subject Descriptors
J.4 [Computer Applications]: Social and Behavioral Sciences—
economics; I.2.11 [Artificial Intelligence ]: Distributed Artificial
Intelligence—intelligent agents, multiagent systems

Keywords
auctions, approximation, mechanism design, revelation principle

1. INTRODUCTION
Day-to-day business transactions have come to rely increasingly

on the computer networks that link market participants by provid-
ing fast, seamless communication and negotiation channels. This
migration to online negotiation has led to the development of more
and more sophisticated software agents that mediate such transac-
tions. However, since the interests of the parties on whose behalf
such agents act generally conflict, ideally such agents should rea-
son strategically according to the well-studied principles of game
theory and economics. As such, recent research in computer sci-
ence and economics has focused on the design of economic agents
and the mechanisms through which they interact.

Draft. Comments welcome.
ACM-EC2005 Vancouver BC
Copyright 2004 .

Mechanism design[10] has played a central role in much of this
research. Key results in mechanism design, such as the revelation
principle, have had a strong influence on the direction taken by re-
search at the intersection of the economics and computer science.
However, recently, limitations of standard approaches to mecha-
nism design have been identified, and are starting to be addressed.
Chief among these is the computational complexity of the problems
faced by software agents who must interact. For instance, mecha-
nisms based on the revelation principle must reveal their type (gen-
erally, their utility function) accurately. This presents a problem
in circumstances where utility functions are large and difficult to
communicate effectively and/or hard to compute accurately. Re-
cent research has begun to examine methods involving limited or
incremental elicitation of types to circumvent some of these diffi-
culties (see, e.g., [1, 2, 14, 12, 13, 8, 3], much of this in the context
of (single-good or combinatorial) auctions.1

In this paper, we pursue the same line of research. Specifi-
cally, in the context of single-good auctions, we develop and an-
alyze mechanisms that allow bids withlimited precisionand that
incrementally elicit bids by allowing bidders to sequentially refine
their bids. We propose various natural constraints on such incre-
mental mechanisms—such as an activity constraint that removes
any bidder from the auction if they provably do not have the high-
est valuation—and show that any mechanism satisfying these con-
straints, and having dominant strategy equilibria, must have a very
restricted form. Specifically, it must take the form of an ascending-
style auction (much like a Japanese auction) in which the space of
bidders’ actions can be safely restricted to just two actions. We then
study one class of mechanisms of this type in detail. Ouradaptive,
symmetric, incremental auction (ASIA)is parameterized by a (con-
ditional) sequence of price levels, but has simple dominant strate-
gies based on any such thresholds. Because of this, the thresholds
can be optimized with respect to specific priors over bidder types,
using a straightforward Markov decision process formulation. In
this respect, we combine the spirit of traditional mechanism design
(where typically, though not exclusively, dominant-strategy induc-
ing mechanisms exist independent of the priors), optimal auction
design [11] (where the mechanism varies in a parameterized way
with the prior), and automated mechanism design [5] (where the
mechanism is optimized using the specific priors). Importantly, we
can optimize the mechanism to account for cost of communica-
tion (or computation) as well [13]. Finally, we show that by relax-
ing some of the original constraints, a stochastic variant of ASIA
(STASIA) emerges. This mechanism is interesting for two reasons.
First, it maintains the benefits of the original mechanism, but with
much improved efficiency and revenue properties. Second, it can

1For other criticisms of the revelation principle, see [4].



be shown that, under certain conditions, STASIA is superior to any
threshold-based, single-shot auction.

We begin in Section 2 with a discussion of relevant background
and a brief overview of related work on mechanism design for auc-
tions that adopts limited precision or incremental bidding. We dis-
cuss a simple one-shot, limited-precision mechanism with atake-
it-or-leave-itopportunity in Section 3 in order to introduce simple
limited-precision mechanisms and the optimization of their param-
eters. Our main results are found in Sections 4 and 5. In Section 4
we describe an incremental mechanism based on the same limited-
precision principles. We show that, under certain assumptions, all
mechanisms must have a very restricted “ascending” form. We also
describe a model for the optimization of price thresholds, how it
reduces the expected amount of communication, and the impact of
communication cost. In Section 5 we present STASIA, a stochastic
version of the ASIA mechanism, and compare its performance to
the deterministic version. We also discuss the advantages of STA-
SIA relative to the one-shot, threshold-based mechanisms of Blum-
rosen and Nisan [1].

2. INCREMENTAL ELICITATION
Mechanism design deals with the problem of designing a game—

in which a collection of self-interested agents interact—so as to
optimize some objective on the part of the designer [10]. More for-
mally, we suppose we have a collection of agents (e.g., potential
buyers of some good) and some set of outcomesO (e.g., the al-
location of a good to a particular agent at a specific price). Each
agenti has a typeti ∈ Ti known only to itself and utility function
ui over types and outcomes, whereui(ti, o) reflects the utility of
outcomeo to agenti if its type is ti. For example, the type of the
agent might dictate its valuation for the good being auctioned, and
its utility for any outcomeo in which it obtains the good as given by
its valuation less the price paid. We generally assume some com-
monly known prior overTi for eachi. We suppose the mechanism
designer has somesocial choice objectivef it wishes to optimize,
wheref(~t, o) denotes the objective value (to the designer) of out-
comeo when the agents (jointly) have type vector~t ∈ ×Ti. For
example, the designer may wish to maximize social welfare by en-
suring the good goes to the agent with the highest valuation; thus
f would denote the total welfare of outcomeo given type profile
~t. A (deterministic) mechanismcomprises a set of strategiesΣi for
each agenti, and an outcome ruleg : Σ → O mapping strategy
profilesΣ = ×Σi into outcomes. As such a mechanism induces
a Bayesian game among the agents. A mechanismimplementsa
social choice objectivef iff, in equilibrium, the outcome of the
game iso ∈ arg max f(~t, o) whenever the agents types are given
by~t.2 The mechanism design problem then corresponds to finding
a mechanism that implementsf using the desired notion of equilib-
rium (commonly, Bayes-Nash or dominant strategy equilibrium).

The revelation principlemakes the mechanism design problem
somewhat simpler by noting that if a mechanism exists that imple-
mentsf , then a direct, incentive-compatible mechanism exists for
f as well. In other words, we let strategies correspond to types
(hence agents directly reveal their types), and in equilibrium, each
agent will truthfully reveal its type [10]. The revelation principle
has led to an almost exclusive focus on direct, incentive-compatible
mechanisms.

Direct mechanisms have several drawbacks. Most importantly,
the requirement that agents report their true type accurately and

2More commonly, one speaks of implementing a social choice
functionfc [10]. These views are equivalent if one definesfc(~t) =

arg max f(~t, o).

completely imposes a severe, and often unnecessary, burden on
agents in terms of computation (e.g., to accurately compute their
valuation for a good) and communication. In general settings, sim-
ply communicating a full utility function to the mechanism can be
prohibitive (e.g., in combinatorial auctions) [3]. But even when
utility function can be represented by a single number, computing
this accurately may be costly [13] and the level of precision re-
quired to maximizef may not require accurate reporting (e.g., if
the agent with the highest valuation for a good has a valuation that
is very different from all others, then this can be determined with
bids of very limited precision). Furthermore, communication costs
for single valuations may be relevant in high volume settings, such
as auctions for packet routing [1].

In the context of single-good auctions, significant research has
tackled these problems. Among these, the work of Blumrosen,
Nisan and Segal [1, 2] bears the closest relation to ours, studying
in great theoretical detail many of the issues we focus on here. In
their work, bidders for a single good can offer one ofk distinct bids,
requiring communication oflg(k) bits. Because the possibility of
“ties” can have an effect on revenue or welfare (since it becomes
impossible to distinguish valuations to arbitrary precision), they in-
troduce tie-breaking rules that use a fixed ordering of bidders, giv-
ing priority to bidders higher in the ordering. They show that such
priority gamesgive rise to dominantthreshold strategies, where
each agent adopts a set of threshold values and associates a specific
bid with each induced interval. In the terms we describe below,
we view this as alimited-precisionmechanism, since bidders can
be interpreted as revealing their valuation directly (and “truthfully”
since we can assigna priori a meaning to each bid based on the
dominant threshold strategy of any agent), but with limited preci-
sion. As such, the mechanism can be designed with the thresholds
given first.

The results of [1, 2] show that, for any prior over valuations,
there exists a priority game that is welfare-optimal among those
mechanisms allowing at mostk distinct bids, and that the welfare
loss relative to an optimal unlimited communication auction (e.g.,
a Vickrey auction [16]) is bounded byO( 1

k2 ) for a fixed number of
players (and this bound is tight in the case of uniformly distributed
valuations). In [2], asequentialmechanism is considered in which
bidders reveal their bits in sequence, but with full knowledge of
all previously revealed bits by other players. While such mecha-
nisms can do better, the gain is limited in the sense that a one-shot
mechanism can achieve the same welfare with only twice as much
communication.

The sequential mechanisms we consider in this paper have a
very different flavor to those above. In spirit, they are more rem-
iniscent of ascending auctions, and the work of Parkes [13], who
considers the cost of preference elicitation. Parkes’s model admits
agents with uncertain valuations, who must decide whether to re-
fine bounds on their current valuation in order to bid in various
forms of auctions. A computational cost is assumed, and the focus
is on the computational strategies of the bidding agents themselves
(rather than the mechanism design problem).3

The bisection auction of [7] is sequential as well, refining the
mechanism’s estimates of agent valuations up to some limited pre-
cision, but otherwise duplicating a Vickrey auction. In order to de-
termine payment, losing bidders must continue to answer queries
until the second-highest price can be determined to the required
degree of precision. Survival auctions [6] bear some relation in
motivation to our work as well—however these auctions do allow

3Larson and Sandholm [8, 9] study similar phenomenon in auctions
and bargaining settings, deriving equilibria that account for cost of
computation.



for revelation of full precision bids. Survival auctions combine as-
pects of sealed-bid and ascending auctions to speed up ascending
auctions by eliminating bidders at each round and setting minimum
bids at each round. Finally, the model of rational computation pro-
posed in [15] bears some relationship to our work, considering the
question of the communication complexity of computing certain
functions through auction-like mechanisms.

Our model incorporates various aspects of all of the work de-
scribed above. Our general view can be characterized as follows.
Rather than consider direct mechanisms in which an agent’s type is
revealed fully, we are interested inlimited-revelation mechanisms,
in which the set of strategies is limited. For example, if only a fi-
nite number of strategies are made available to each agent in the
case where the type space is continuous (e.g., the space of valua-
tions is the interval[0, 1]), strategy choice cannot be used to fully
distinguish type. Note that the amount of communication required
to signal a choice to the mechanism islg(k) bits if only k strategies
are allowed. Adirect limited revelation mechanism is one in which
each strategy is interpreted as corresponding to a subset of possible
types. All of the aforementioned work can be viewed as direct in
this sense. Alimited-precisionmechanism is a direct mechanism in
which each strategy choice can be associated with a unique utility
interval (or hyperrectangle in the multidimensional case), and can
be viewed as conveying the agent’s type with limited precision.

We also considerincrementalmechanisms, iterative mechanisms
in which the types of agents are revealed sequentially. Intuitively,
we require that each move by an agentrefinesthe space of possible
valuations for that agent. Incremental mechanisms have a certain
intuitive appeal, since for many mechanism optimization criteria,
a sequential approach where valuations are refined allows certain
agents to be “ruled out” early, thus obviating the need for them to
compute or communicate their valuations with maximum precision.
This can be exploited to great effect [13, 7].

Finally, we wish to consider the use of optimization criteria in the
mechanism design problemthat account for properties of the mech-
anism itself.For example, when maximizing social welfare, if we
assume that each bit communicated to the mechanism has a certain
cost, it makes sense to incorporate the expected cost of commu-
nication in the objective function when designing the mechanism.
While much of the work above motivates limited revelation by ap-
pealing to cost of computation or communication, none (explicitly)
considers the problem of designing mechanisms in which this fac-
tors into the objective. We willexplicitly consider this (albeit in a
somewhat restricted way).

3. A ONE-SHOT TIOLI MECHANISM
We assume a single good is to be auctioned to a set ofn play-

ers, each playeri having valuationvi ∈ [0, 1] for the good, where
vi is drawn from some commonly known priorfi. We begin by
describing an especially simple one-shot, limited-precision mecha-
nism that is similar is many ways to priority games [1, 2], specifi-
cally in its use of thresholds. This sets the stage for discussion of
our main results on incremental mechanisms. Ourlimited-precision,
take-it-or-leave-it (LP-TIOLI)auction works as follows: we fix a
set of k prices,0 ≤ p1 < p2 < . . . < pk ≤ 1. Each bidder
announces one of these prices to the mechanism; letB be the set
of such bids. If only one bidder announces the highest bid inB,
the good is allocated to this bidder at the second highest bid (from
among thek possible bids). If the highest bid is offered by two
or more bidders, a random highest bidder is selected and is made
a take-it-or-leave-it (TIOLI) offer for the good at the highest bid
price (see [14] for more on TIOLI offers). If the offer is rejected,
the good goes unallocated. Thus, LP-TIOLI can be viewed as a

limited-precision variant of a second-price auction (the highest bid-
der is selected and offered the good for the second-highest bid) with
the addition of a TIOLI option offered to the winner in the case of
ties. The mechanism differs from priority games in that players are
treated symmetrically, and in the added TIOLI component.4

It is not hard to see that LP-TIOLI has a dominant strategy equi-
librium: each agent should bid the least pricepl at least as great as
her valuationvi; that is, bid anypl such thatpl−1 ≤ vi ≤ pl. It
should be clear that if the highest bid excluding that ofi is greater
thanpl or less thanpl−1, then biddingpl is optimal (much as in a
Vickrey auction). If the highest bid ispl, theni biddingpl offers a
utility of 0 (since she will refuse the offer at pricepl if chosen); but
any bid above or belowpl has utility less than or equal to 0.

We note that the TIOLI component is critical to the existence
of dominant strategies.5 If we removed the TIOLI component and
simply considered a limited-precision second-price auction, there
are cases in which bidding above her valuation is an agent’s best
move, and cases in which bidding just below her valuation is opti-
mal. The best choice depends on the prior over other agent valua-
tions, thus requiring a Bayes-Nash equilibrium analysis. Interest-
ingly, one can derivethreshold-basedBayes-Nash equilibria.

Note that in the dominant strategy equilibrium, the good will
be allocated in the case that there is a unique highest bidder, and
optimal welfare will result. The case of multiple highest bidders
results in the good remaining unallocated, leading to a loss in effi-
ciency and revenue. One can optimize this mechanism by setting
price thresholds appropriately and optimizing for either expected
revenue or social welfare, exploiting specific distributional infor-
mation. One appeal of this mechanism is that the dominant strat-
egy equilibrium has the same form regardless of the specific prices.
Thus, optimization of price thresholds has no impact on the strate-
gic reasoning of the bidders (e.g., approximation of the optimal
parameters won’t change a bidder’s strategic deliberations).

As an exercise, we used gradient ascent to derive (locally) opti-
mal price levels for LP-TIOLI using both expected revenue and ex-
pected welfare (we omit the expressions for expected revenue and
welfare for LP-TIOLI as a function of the pricespi). Figure 1(a)
shows the expected revenue as a function of the number of possible
bids for two bidders, each with valuations drawn from a (truncated)
half-Gaussian density function. The unoptimized prices (uniformly
set at0, 1/k, 2/k, . . .) fare much worse than the optimized prices.

Note that the revenue exceeds that of a Vickrey auction by a con-
siderable margin and approaches that of the optimal (Myerson) auc-
tion [11]. Even though the good remains unallocated in many cases,
the fact the second-highest bid lies above the second-highest valu-
ation ensures that more surplus is extracted from the winner when
the good is allocated (relative to Vickrey). Figure 1(b) shows sim-
ilar results for five bidders with uniformly distributed valuations.
Here the probability of leaving the good unallocated outweighs the
benefit of using limited precision.

A rough approximation of loss in efficiency, measured as the
probability of the good not being allocated (recall that by the rules
of LP-TIOLI if the good is allocated, it must go to the bidder with
the highest valuation), is shown for the five-bidder, uniform val-
uation case in Figure 1(c). Finally, we illustrate the (locally) op-
timized price levels found by gradient ascent for the two-bidder,
uniform case in Figure 2. Note the implicit setting of a “reservation
value” of0.5 in the case of revenue maximization (exactly as in the
Myerson auction).

4Blumrosen and Nisan [1] show that symmetric mechanisms, in the
two-player case, are not as efficient as priority games.
5Simply leaving the good unallocated in the case of a tie would
have the same effect.
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Figure 1: (a) Expected revenue (truncated half-Gaussian,µ = 0, σ = 0.3); (b) Expected revenue (uniform distribution); (c) Proba-
bility of good unallocated (uniform distribution).

The approach to optimization is closely related to optimal auc-
tion design [11] and automated mechanism design (AMD) [5] in
the sense that we wish to optimize the mechanism using specific
distributional information; however, we restrict our attention to a
class of mechanisms with specific parameterized dominant strate-
gies, and simply optimize the parameters, rather than leaving the
whole mechanism “up for grabs.” The optimization task need not
be limited to the traditional objectives, but can incorporate “mech-
anism properties” such as expected amount of communication as
well. In the next section on incremental mechanisms, we will study
optimization with respect to welfare that accounts for the cost of
communication.

4. AN INCREMENTAL, LIMITED PRECI-
SION MECHANISM

While LP-TIOLI achieved the objective of limiting both com-
munication and revelation, it is not very flexible in the following
sense. Many agents may reveal much more about their valuations
than is required to determine the desired outcome. For example,
even thoughk bits of precision may be used, we may easily be
able to rule out many (or most) bidders as potential winners with
far fewer thank bits. Doing so allows the mechanism to engage
in precise elicitation of valuation only of a few players, reducing
overall communication or computation cost. This leads to a natural
motivation for sequential, orincrementalmechanisms [13, 7]. For
example, if one wants to maximize social welfare where commu-
nication cost is included, an incremental mechanism offers greater
potential than a one-shot mechanism.

In this section, we introduce a class of incremental mechanisms
for single good auctions by proposing a set of intuitive restrictions
on how the mechanism proceeds. We show that all such mecha-
nisms with dominant strategy equilibria have a very specific “as-
cending” nature, and describe how to optimize the messages (or
prices) for one such mechanism.

4.1 General Assumptions
We consider iterative mechanisms for the allocation of a single

good, in which bidders make moves sequentially (possibly with in-
direct knowledge of the prior moves of other players). Furthermore,
using the terminology introduced above, we will considerdirect,
incrementalmechanisms, where each move is viewed as providing
some information about the player’s valuation, and each succes-
sive moverefinesthe information revealed earlier. The mechanism
proceeds in iterations, with each player making a move each time.

We restrict the class of mechanisms further by imposing some
restrictions that seem rather natural in the space of single-good auc-

0

0.2

0.4

0.6

0.8

1

P
ric

e 
le

ve
l

0

0.2

0.4

0.6

0.8

1

P
ric

e 
le

ve
l

Figure 2: Optimized prices (revenue, welfare)

tions. As before we assume each agenti has valuationvi ∈ [0, 1].

• Agents reveal one of a finite setM t of messages at each
roundt (possibly with activity constraints).

• Finite sequences of messages are comparable. In other words,
there exists a total order≤ such that eitherm ≤ m′ or
m′ ≤ m for any lengtht message sequencem and lengtht′

message sequencem′. As a consequence, for anyt, there is
a minimum and maximum sequence of lengtht, and a min-
imum and maximum “extension” of any such lengtht se-
quence to lengtht + k. This allows message sequences to be
interpreted as bids, and the mechanism to be interpreted as
limited precision.6

• The auction is fully deterministic in a sense that a good is
never allocated randomly. To formalize this we assume that
the auction terminates at iterationt with an allocation of the
good only ift is such that some bidder has specified a unique
greatest message sequence. The good is allocated to that
bidder. This takes advantage of the sequential nature of the
mechanism in an intuitive and powerful way. Note that the
auction may terminate at some finite stage without allocating
the good if no bidder has offered a unique greatest message
sequence.

• We assume quasi-linear utility andex postrationality. As
such, only the winner makes a payment.

6This is not to say that this is the only way of realizing incremen-
tal elicitation. Arbitrary query languages (e.g., asking agents to
communicate upper and lower bounds on valuations) are certainly
possible [13]. We consider only mechanisms that can be viewed as
allowing “limited-precision bids.”



A strategyσi for agenti in such an incremental mechanism re-
quires a choice of messagemt at each roundt as a function of its
type vi and its historyht−1

i up to that point. For simplicity, we
assume thati knows only what she has bid, not what other players
have bid (and when we discuss limiting participation, whether or
not she is active). But the results below do not rely on this. We
let σi(vi) to denotei’s choice of action as a function of history
when her valuation isvi, andσ−i to denote the strategy profile of
all agents excepti.

We are interested in mechanisms satisfying the restrictions above
in which dominant strategy equilibria exist. It turns out that all
such mechanisms have a very specific form, in particular, they are
increasing price mechanisms:

Defn 1 An iterative mechanism is anincreasing price mechanism
if the following condition holds for any playeri. Letvi bei’s valua-
tion and lets−i be any sequence of moves of all other players (with
s−i[k] denoting the lengthk initial segment). Lett be the least iter-
ation at whichi can win the good playing against sequences−i and
pay a pricep ≤ vmax

i , andsi a sequence of moves that achieves
this. Then for any other sequencesŝ−i, ŝi whereŝ−i[t] = s−i[t],
if i wins playingŝi against̂s−i at some stagek > t with price p̂,
thenp̂ ≥ p.

Intuitively, an increasing price mechanism has the following prop-
erty for any playeri: if we fix the moves of her opponent, and let
t be the earliest round at whichi could win, then the price paid by
i at roundt (against these fixed opponents), should she choose a
strategy that wins att, must be no more than the price paid ifi wins
at any later round against the same opponent moves.

Proposition 1 All single-good, incremental auctions satisfying the
conditions above and having dominant strategy equilibria are in-
creasing price mechanisms.

Proof sketch: Suppose the incremental mechanism is not an in-
creasing price mechanism. Then for some playeri we can find an
opponent strategy profileσ−i wherei can win with positive util-
ity at roundt (i.e., pay less than her valuation), but can win with
greater utility at a later roundk (by paying less). Thus the optimal
σi would choose moves that ensure winning at some roundk > t.
However, against such aσi, we can easily construct an alternative
profile σ′

−i wherei loses by playingσi but could win (with posi-
tive utility) using an alternative strategy. To see this, consider some
σ′
−i where at every iteration aftert at least one opponent ofi bids at

least as high as the bid dictated byσi; this ensures thati will never
be able to win after iterationt. However, by assumptioni could
win at t with positive utility were she to follow a different strategy.
Therefore, there does not exist a dominant strategy fori. J

We now consider another important restriction on the class of
incremental mechanisms that is facilitated by the sequential nature
of the elicitation process. We say that an incremental mechanism
limits participation iff no player is allowed to participate once her
utility function has been refined to the extent necessary to permit
optimization of the mechanism’s objective. In our limited-precision
auction setting, this corresponds to the following activity rule: a
player remainsactiveas long as her message sequence is at least as
great as that of any other bidder. This implies that if the auction has
not yet terminated, theni is active iff her bids at all prior rounds
have been tied with other highest bids. Limiting participation is
one of the main factors that allow us to achieve a reduction in both
communication and revelation. Intuitively, it ensures that we deal
only with players whose valuations are potentially high enough to
win and to remove everyone else from the auction.

The following lemmas describe necessary conditions that must
hold for any incremental auction with limited participation to have
dominant strategy equilibria.

Lemma 1 Let playeri have dominant strategyσi and valuationvi.
Letσ−i andv−i be such that ifσi(vi) is played againstσ−i(v−i),
the mechanism terminates at iterationt with i winning and paying
pi < vi. Then for anyv′

i ≥ vi and any dominant strategyσ′
i, if i

playsσ′
i(v

′
i) againstσ−i(v−i), we must have: (a)i wins and pays

pi (as withσi(vi)); and (b) the mechanism terminates at iteration
t (as withσi(vi)).

Proof sketch(a) Assume the claim is not true. Then we can show
that there exists a strategyσ′′ s.t. for some valuationv′′

i ≥ vi player
i would chose to playσ′′

i (v̂i) for somev̂i instead of his dominant
strategyσ′

i(v
′′
i ). This shows thati does not have a dominant strat-

egy. (b) Assume the claim is not true. Then by claim (a), we can
show that there exists a player without a dominant strategy, using
the same approach as in proof of Proposition 1.J

Intuitively, Lemma 1 shows that with limited participation, ifi
has valuationvi and wins at iterationt with pricep using a domi-
nant strategy, then for any greater valuation, it must win at the same
iteration for the same price using any dominant strategy, against
fixed opponents.

Defn 2 TheLast Profitable Iterationfor i, given historyht and val-
uationvi is defined as follows: we sayLPI (vi, h

t) = now if there
exist moves of other players such thati can profitably win at round
t+1, but cannot profitably win at any future round;LPI (vi, h

t) =
future if there exist moves of other players such thati can prof-
itably win at some round later thant + 1; LPI (vi, h

t) = past
otherwise.

Note that it is weakly dominant to avoid winning after iteration
t + 1 if LPI (vi, h

t
i) = now , since ifi wins at any iteration greater

thant she would make a payment equal to at least her valuation.7

Lemma 2 Let playeri have dominant strategyσi and valuation
vi. Suppose there exists someσ−i, v−i such that, ifi playsσi(vi)
againstσ−i(v−i) (inducing historyht

i), thenLPI (vi, h
t
i) = future

and playeri remains active at iterationt + 1. Then for any other
bvi ≥ vi and any dominant strategybσi it must be the case that ifi
playsbσi(bvi) againstσ−i(v−i) (inducing historŷht

i up to iteration
t), we must havehr

i = ĥr
i and σi(vi, h

r
i ) = bσi(bvi, ĥ

r
i ), for all

r ≤ t.

Proof sketch:SinceLPI (vi, h
t
i) = future , it is possible fori to

win against someσd
−i with positive utility at some iterationk >

t + 1, whereσd
−i is identical toσ−i for all histories up to lengtht.

Lemma 1 ensures that for allbvi ≥ vi and any dominant strategybσi,bσi(bvi) wins againstσd
−i with the same payment and at the same it-

eration asσi(vi). Then, assuming limited participation, we can use
an inductive argument to show that all histories and bid sequences
will be the same. J

The results above lead to some interesting conclusions. If player
i, with valuationvi, is facing a historyht

i whereLPI (vi, h
t
i) =

future , then any dominant strategy must choose the same actions
(against the same opponent moves) at all stages prior tot for any
valuationv′

i ≥ vi. Thus ifLPI (vi, h
t
i) = future, i is not required

to “bid” so much as she must simply signal her willingness to par-
ticipate in the future. The only time an “interesting” message is
7Any player can avoid winning by always offering the “least” mes-
sageminbid at each iteration.



proposed is whenLPI (vi, h
t
i) = now . This severely restricts the

space of limited-precision mechanisms that admit dominant strate-
gies. The next lemma describes another useful restriction.

Lemma 3 Supposei has a dominant strategy and that for some
historyht

i and valuationvi, LPI(vi, h
t
i) = now . Then there is a

dominant strategyσi in whichσi(vi, h
k
i ) = minbid for anyk >

t + 1 and historyhk
i s.t.hk

i [t] = ht
i.

Proof Sketch:SinceLPI(vi, h
t
i) = now , if i wins at any iteration

later thant + 1, she pays a price at least as high as her valuation.
Therefore it is weakly dominant in this case to ensure the object is
never won. Since the object is allocated only to auniquehighest
bidder, biddingminbid is optimal, since it ensuresi never wins.
J

Lemma 3 implies that, should all agents follow the suggested
dominant strategy, then if there is a tie among the highest bidders,
and each is at their LPI, then the object will never be allocated.
Hence, extra communication from this point will be wasted.

From this section we would like the reader to retain the effect the
necessary conditions have on the structure of any auction fitting the
given requirements. To reiterate, in defining the auction it is suf-
ficient to provide the players with just two possible actions during
all iterations (except possibly the last one), also to reduce commu-
nication costs the players should be removed from the auction as
soon as they are found to be suboptimal.

Finally, in what follows, we will assume mechanisms are sym-
metric. Thus the mechanism determines its outcomes (i.e., winners
and payments) in a way that is independent of a player’s identity.

To summarize, given the assumptions and requirements discussed,
the structure of the auctions one need consider are rather restricted.
Specifically, in defining the auction it is sufficient to provide play-
ers with just two possible actions (except possibly the last iter-
ation). Furthermore, to reduce communication costs the players
should be removed from the auction as soon as they are fail to re-
main among the “high bidders.”

4.2 Examples of Incremental Mechanisms
We now define two symmetric, incremental elicitation mecha-

nisms that satisfy the properties derived above.
The first mechanism is a simpleadaptive, symmetric, incremen-

tal auction (ASIA)with a TIOLI flavor. The rules of this mechanism
are in fact very similar to the rules of theJapanese auctionwith
discrete bid levels. ASIA operates as follows. Initially, all play-
ers are active. At iterationt, the mechanism announces pricept to
all active players, withpt ≥ pt−1. All active players reveal either
1, indicating a willingness to purchase the good forpt (intention
to participate), or 0, indicating a desire to become inactive. The
mechanism terminates when: only one player bids 1, in which case
that player receives the good and pays the last announced price; or
all active players bid 0, in which case the good is not assigned and
no payments are made.

Proposition 2 In the ASIA mechanism, it is a weakly dominant
strategy of any playeri with valuationvi to bid 1 at iterationt
as long asvi > pt, and to bid 0 otherwise.

The ASIA mechanism is basically an ascending-price auction
with bid levels set by the mechanism. As long as the sequence
of announced prices is non-decreasing, Proposition 2 will hold no
matter what prices are announced. Furthermore, as the mechanism
is aware of how many players are currently active, an opportunity
for optimization of the prices exists. We discuss this in the next sec-
tion. It is worth noting that the auction may not terminate if there
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Figure 3: Comparison of loss in welfare in ASIA under opti-
mized policy vs. ASIA underDivide(k) price update rule

are two or more bidder valuations that lie above the “highest price”
that a specific instance of the ASIA mechanism could announce
(e.g., if there is somev′, v′′ ∈ [0, 1] for two distinct bidders s.t.
v′ > pt, v′′ > pt for all t). This can be prevented of course if
the prices are set so thatpt = vmax for some finitet. Note also
that early termination (e.g., stopping at roundt before a highest bid
is determined) does not affect incentives or the dominant strategies
above.

Thesecond-price, symmetric incremental auction (SPSIA)incor-
porates the LPI notion more directly than ASIA. The mechanism
operates as follows. At each iterationt, a price interval[at, bt] is
announced to all active players, whereat < bt. We require only
thatak ≥ bk−1 for anyk > 1. All active players then announce 0
or 1, where as before 1 indicates “Intention to participate” and 0 in-
dicates that the player wishes to become inactive. The auction con-
tinues as long as two or more players bid 1. If only one player bids
1 or if all players bid 0 at iterationt, then the mechanism announces
n prices in the interval[at, bt] and runs the LP-TIOLI auction for
the active players. SPSIA is, in essence, a combination of ASIA
and LP-TIOLI. This is reflected in dominant strategy equilibrium
for the game.

Proposition 3 It is a weakly dominant strategy of any playeri in
SPSIA to bid 1 (“intention to participate”) at iterationt as long
as vi > bt (which means thatLPI (ht

i, vi) = future). Other-
wise, the player should bid 0. If at any point the player is asked
to choose from some set of prices she should pick the (announced)
price which is just above her valuation.

4.3 Optimization of Prices
As with the LP-TIOLI, the incremental mechanisms described

above can easily be optimized to account for specific distributions
over valuations. As well, like LP-TIOLI, the existence of simple
dominant strategies that are independent of the price thresholds al-
low straightforward sequential optimization to be applied. In this
section, we describe a Markov decision process (MDP) model that
allows optimization of the prices for ASIA, and examine its perfor-
mance empirically.

We assume a finite horizonT , after which round the auction will
terminate if no unique highest bidder has been determined. Note,
that this does not affect the dominant strategy equilibrium, since
if the auction is forced to terminate at roundT it will do so with-
out an allocation. Assume a prior densityf over valuations (for
simplicity we assume this is the same for all bidders). We wish to
set prices to optimize social welfare, possibly including the cost of
communicating (or computing bids). We do this by formulating the
optimization as an MDP as follows: states are pairs〈p, m〉, wherep



is the prior price threshold andm is the number of active bidders.8

We usec(m) to denote the communication cost as a function of the
number ofactivebiddersm.9 At any stagek < T , and at any state
〈pk−1, m〉 wherem > 1, we can set any pricep ≥ pk−1. If m = 0
or m = 1, the auction terminates. We define the optimalk-stage
value function (reflecting expected welfare)EW k and Q-function
as follows:

EW k(pk−1, 0) = 0

EW k(pk−1, 1) = Ef (v|v > pk−1)

EW k(pk−1, m > 1) = max
pk>pk−1

Qk(pk−1, m, pk) − c(m)

Qk(pk−1, m, pk) = Pr(1bid|pk−1, m, pk)EW k+1(pk, 1)

+
X

2≤n≤m

Pr(nbids|pk−1, m, pk)EW k+1(pk, n)

HerePr(nbids|pk−1, m, pk) is the probability of exactlyn bid-
ders, amongm bidders with valuations greater thanpk−1, having
valuations greater thanpk.

We computed optimal policies for varying numbers of bidders
and communication costs, assuming uniformly distributed valua-
tions and using simple price discretization to keep the action space
of the MDP finite.10 These policies were examined, and the per-
formance of ASIA was measured by simulating 100,000 runs of
each optimized auction, using randomly drawn valuations for each
bidder.

Some general observations verify expected behavior: for exam-
ple, price thresholds within the same stage of a given auction are
set higher when more bidders are active.

To demonstrate the benefit of computing a policy versus using
a fixed price selection rule, we also simulated the performance of
ASIA under theDivide(k) price update rule. We briefly state the
definition of Divide(k) here; we defer motivation and further dis-
cussion to the next section.

Defn 3 Define the price update ruleDivide(k) as follows. Given
any fixedk > 1, an iterative mechanism operating under this rule
would announce the pricep0 = 1

k
at iteration 0. At any other iter-

ationt > 0 the mechanism would announcept = pt−1 +
1−pt−1

k
.

The parameterk was set in such a way as to force ASIA withDi-
vide(k)to use the same average number of bits per player as ASIA
with an optimized policy (assuming zero communication cost and
uniform priors). We then compared the resulting loss in welfare for
each price selection strategy. Figure 3 demonstrates that under the
optimized policy, ASIA achieves a much smaller loss in welfare.11

8The number of bidders is a sufficient characterization of state as-
suming identical priors. Bidder identities could be used in more
general circumstances.
9In what follows we model only bidder communication costs, not
those incurred by announcing prices. We could alternatively view
these communication costs as a crude surrogate for thecomputa-
tional costsincurred by bidders when determining or refining their
valuation to the required precision. More general forms of the func-
tion c(m) are also possible.

10The discretization (with 1000 possible prices over[0, 1]) is largely
for simplicity: methods for continuous state and action spaces
could easily be adopted. Note also that approximation methods
for solving MDPs will not impact the strategic properties of the
mechanism produced.

11However, this fact should be considered in the context of the gen-
eral performance ofDivide(k). As we show in the next section,
Divide(k) exhibits some good properties which make it a feasible
alternative to an optimized policy.

Figure 4(a) shows the relation between the cost of communi-
cation (per bit) and the expected amount of communication per
player until mechanism completion (each auction is optimized for
the specific communication cost and maximum number of play-
ers). As expected, the amount of communication decreases as cost
increases. Furthermore, per-player communication is lower with a
greater number of players, since (in expectation) more players can
be eliminated from the auction earlier. Figure 4(b) demonstrates the
relation between communication cost and the loss in welfare (rela-
tive to the welfare optimal outcome). While this suggests that ASIA
fares worse with increasing numbers of players, we can recast our
results by considering loss in welfare as a function of the amount of
per-player communication. Figure 4(c) demonstrates that, in fact,
with more players ASIA requireslessper-player communication to
achieve the same loss in welfare. This gain is due to the fact that
with a greater number of players, the policy can initially be more
“aggressive,” eliminating more players right away. Once only a
few active players remain, the policy can become more conserva-
tive, which results in a higher chance of allocating the good. The
sequential mechanism also appears to offer considerable improve-
ment over the one-shot, LP-TIOLI mechanism with respect to wel-
fare loss per bit of communication.

5. USING STOCHASTICITY TO GAIN EF-
FICIENCY

Blumrosen and Nisan [1] showed that, in the context of single-
shot auctions, symmetric mechanisms—those that treat all players
equally—are suboptimal relative to asymmetric mechanisms Their
priority gamesincorporate tie-breaking rules based on a fixed or-
dering of the players. Essentially, this implies that the mechanism
embodies a preference ordering over players, so that in the event
that multiple players state the same “limited-precision desire” for
the good, the mechanism always allocates it to the most preferred
player. Thus the mechanism exhibits a certain unfairness.12

We have thus far constrained our attention to the mechanisms
that are nondiscriminatory, with this notion taken to the extreme:
whenever the mechanism ends without determining a unique high-
est bidder, the good remains unallocated. This is true for bothLP-
TIOLI and the incremental auctions.13 For incremental auctions,
this sort of allocative decision arises due to thedeterminismas-
sumption made in the previous section. Since we only want to
allocate the good to a player with the highest valuation, we have
to disallow any sort of randomness in this decision. Although de-
terminism (along with our other assumptions) imposes strict con-
straints on the form of incremental mechanisms, it clearly leads to
a potential loss in efficiency and revenue.

5.1 Stochastic ASIA
To alleviate this problem we need to relax the assumption of al-

locating only to the unique highest bidder (given limited precision
it might not always be possible to find this player). There are a
number of ways of doing this. One would be to follow the style of
priority gamesand introduce discrimination between players. An
alternative approach is to relax the determinism assumption, but
force the mechanism to be “fair” in expectation. This is the ap-
proach we consider here.

12Of course, should the priority ordering be determined randomly
(and fairly) in advance, some of this concern may be mitigated.

13Although the rules ofLP-TIOLI state that in case of a tie the good
is offered randomly, any rational player will reject this offer; there-
fore it is outcome equivalent to forgo making any offers and not
allocate the good.
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Figure 4: (a) Required bits per player as costs vary; (b)Average welfare loss as costs vary; (c) Average welfare vs. bits per player.

We propose the following variant of ASIA, which we callStochas-
tic ASIAor STASIA. STASIA has a dominant strategy equilibrium,
but, as opposed to ASIA it always allocates the good. This mecha-
nism operates as follows.

• As in ASIA, initially all the players are active. Denote the
set of active players byA.

• At each iterationt, the mechanism randomly (and uniformly)
holds outone of the active players, say, playeri. It then
announces pricept to all active players, withpt ≥ pt−1.

• All active playersexceptthe holdout playeri are asked to
reveal either 1, indicating a willingness to purchase the good
for pt (intention to participate), or 0, indicating a desire to
become inactive.

• If all players inA − {i} reveal 0, the good is allocated toi
for pricept−1.

• If at least one of the players inA−{i} reveals 1, theni is also
asked to reveal either 0 or 1 (with the same interpretation):

– If only one active player (including the holdout) reveals
1, then this player receives the good and payspt.

– If more than one active player (including the holdout)
reveals 1, then the game moves into the next iteration
(with only players revealing 1 remaining active).

Proposition 4 In the STASIA mechanism, it is a weakly dominant
strategy for any playeri with valuationvi (if given the opportu-
nity bid) to bid 1 at iterationt as long asvi > pt, and to bid 0
otherwise.

Proof sketch:Suppose playeri is held out at staget. Then the only
time i is asked a to bid is when at least one other player has bid for
the good at the current pricept. If vi > pt, reporting 1 ensures a
payoff of 0 or more; while reporting 0 will always result in payoff
of 0. Alternatively, if vi ≤ pt reporting 0 ensures a payoff of 0,
while reporting 1 will give a payoff less than or equal to 0. The
case wheni is not held out is similar. J

As was mentioned above, without the determinism assumption,
the necessary conditions for the mechanism to have a dominant
strategy equilibrium, described in the previous section, no longer
hold. However, it is easy to see that STASIA belongs to the space
of increasing price mechanisms. Furthermore, as with ASIA, the

form of the dominant strategy is independent of the precise values
of the price thresholds, which allows us to use a similar approach
to mechanism optimization. Before proceeding to the performance
results of STASIA with optimized price policies, we provide a gen-
eral comparison of STASIA to the one-shot auctions.

5.2 Stochastic ASIA versus One-shot Auctions
In this section we analyze and compare the performance of two

auction types under the assumption that the players’ valuations are
independently distributed according to the uniform distribution. The
purpose of this section is to show that, with large and variable num-
ber of players, incremental auctions, specifically STASIA, can be
significantly better than limited-precision, fixed-structure, threshold-
based, one-shot auctions. Even though the analysis is performed
under an unrealistic assumption of IID uniform distribution, it is
sufficient for demonstrating that incremental auctions can be better
than even the optimal one-shot auctions of Blumrosen and Nisan.

Consider the behavior of afixed structure(the auction structure
is known before the number of participants in announced) one-shot,
limited-precision, threshold auction as the number of participants is
increased. As more players enter the auction the expected highest
valuation of this group rises. However, the expected welfare of a
fixed structure one-shot auction will eventually start to fall or will
stabilize at some fixed level (below the expected welfare of the op-
timal auction with unrestricted communication). This is very easy
to see in the case ofLP-TIOLI. As the number of players increases
so does the probability of having a tie, which implies that eventu-
ally the probability of not allocating the good will become large
enough to outweigh any increase in the expected highest valuation.
This problem is not as pronounced in the case of priority games.
However, even a priority game has the highest fixed price thresh-
old, therefore as the number of players increases and the highest
valuation of the group reaches this price threshold, the expected
loss in welfare will be bounded above by a distance between this
price threshold and its closest neighbor, a fixed positive constant.
The actual expected loss is less than this upper bound (e.g., un-
der the uniform distribution, it is nondecreasing in the number of
players and equal to about half of this interval.)

Suppose we were to implement STASIA withDivide(k) price
update rule.

Defn 4 Let m be an increasing price mechanism. We saym uses
the Divide(k)price update rule, if for somek > 1: at iteration 0,
it announces pricep0 = 1

k
; and at any other iterationt > 0, it

announcespt = pt−1 +
1−pt−1

k
.
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Figure 5: ASIA vs. STASIA under the same price policies (a) Required bits per player as costs vary; (b) Average welfare loss as costs
vary; (c) Average welfare loss vs. bits per player.

One important feature of this update rule is the fact that it does
not depend on the number of participating players (i.e., the mech-
anism structure is “fixed”). A second attractive property is that the
distance between consecutive prices decreases with each iteration.
Finally, the update rule also has another interesting property:

Proposition 5 Suppose that all player valuations are drawn from
a uniform density. The expected total number of bits sent by each
player participating in STASIA, with an unrestricted number of iter-
ations, isless thank when theDivide(k) price update rule is used.14

Intuitively, implementing STASIA withDivide(k), for any fixedk,
and allowing it to run to termination (by finding the unique highest
bidder or announcing a price above all valuations) would require
each player to submit less thank bits in expectation, independent
of the number of participants.

With this price update rule, if STASIA terminates at iterationt,
then the loss in welfare is bounded bypt − pt−1. From the def-
inition of Divide(k), we have thatpt − pt−1 < pt−1 − pt−2 and
limt→∞(pt − pt−1) = 0. This means that, as the number of play-
ers increases, the expected loss in welfare will fall. This follows
from the fact that the expected value of the highest valuation in-
creases with the number of players, and therefore the ties, if any,
are expected to occur at later rounds. Note, that this occurs despite
the fact that the expected number of bits submitted by each player
remains unaffected.

As noted above, the loss in social welfare of any “fixed-structure”
limited-precision, single-shot auction has a fixed, non-zero lower
bound, independent of the number of players. Therefore, as the
number of players is increased the expected loss of welfare of a
fixed structure single-shot threshold-based mechanism will become
greater than the expected loss of welfare of STASIA, while the to-
tal expected communication of STASIA is no greater than the total
communication of the single-shot mechanism. This demonstrates
that, even without price optimization, the types of mechanisms pre-
sented here offer advantages over one-shot mechanisms, even the
asymptotically optimal mechanisms of [2].

5.3 Evaluating the Performance of STASIA
In this section we empirically evaluate the performance of STA-

SIA. We begin by comparing the performance of STASIA to ASIA,

14While Divide(k) is “designed” for uniformly distributed valua-
tions, it can be modified to work with any density, by selecting
prices so that the distance between the each price “removes”1

k
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the remaining probability mass.
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Figure 6: Comparison of loss in welfare in STASIA under opti-
mized policy vs. STASIA underDivide(k) price update rule

with both auctions operating under the same price policies, specif-
ically, the policies optimized for ASIA (the ones used in the pre-
vious section). We ran each mechanism using ten different price
policies, with each policy generated by optimizing social welfare
using a different “cost per bit” value. Each mechanism-policy pair
was run 100000 times on randomly drawn player valuations.

Figure 5(a) demonstrates that the average number of bits sent by
each player is approximately the same for both mechanisms. Since
both mechanisms are using the same policies this is expected. Fig-
ure 5(b) shows that STASIA achieves a much lower loss in social
welfare than ASIA. Figure 5(c) demonstrates the same result by
presenting the loss in social welfare as a function of the average
number of bits per player. These results stems from the fact that
STASIA always allocates the good, and therefore the maximum
loss in welfare it can incur ispt − pt−1 (when terminating at itera-
tion t).

We use the same approach as in the previous section to produce
new price policies optimized for STASIA. Figure 6 compares the
performance of such optimized policies to the performance of STA-
SIA underDivide(k)update rule. We see that while the optimized
policy performs better, the difference is not as pronounced as with
ASIA. This is primarily because being myopic under STASIA is
not as bad as under ASIA, since the penalty of making an “incor-
rect” choice under ASIA is not allocating the good.

Finally, we compare the performance of STASIA under the price
update policies optimized for ASIA to STASIA with price update
policies optimized for STASIA. Figure 7(a) demonstrates that the
policies are indeed different, with policies optimized for STASIA
tending to use fewer bits of communication for any fixed cost per
bit. Figure 7(b) shows that the policies optimized for STASIA do
perform better than the policies optimized for ASIA.
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6. CONCLUDING REMARKS
We have proposed a class of incremental, limited-precision auc-

tions that extends earlier work on costly preference elicitation and
communication. The main motivation behind this work was to pro-
pose a set of properties and then derive conditions that all mech-
anisms in possession of these properties must satisfy. By deriv-
ing these conditions we were able to demonstrate that all mech-
anisms belonging to this class have a similar structure. The pro-
posed mechanisms have simple dominant-strategy equilibria, and
use price thresholds that can be optimized to maximize social wel-
fare, revenue or some other objective given a bound on commu-
nication, and can also be optimized to directly account for com-
munication cost (and indirectly computational cost or related mea-
sures). Empirical results suggest that such mechanisms can find
near-optimal allocations with very little communication (confirm-
ing the theoretical results of [1], though with a somewhat different
mechanism); we also show that incremental mechanisms offer ad-
vantages over one-shot auctions.

We hope to extend the study of limited and incremental revela-
tion mechanisms to more complex settings, such as multi-attribute
and combinatorial auctions, and multi-attribute bargaining prob-
lems. Indeed, it is in these complex settings where limited, incre-
mental revelation will be critical.15 We further plan to study more
deeply the design of mechanisms that incorporate cost of commu-
nication and computation in their design objectives.
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