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Abstract

Belief revision and belief update have been pro-
posed as two types of belief change serving differ-
ent purposes. Belief revision is intended to capture
changes of an agent’s belief state reflecting new in-
formation about a static world. Belief update is
intended to capture changes of belief in response
to a changing world. We argue that both belief
revision and belief update are too restrictive; rou-
tine belief change involves elements of both. We
present a model for generalized update that allows
updates in response to external changes to inform
the agent about its prior beliefs. This model of
update combines aspects of revision and update,
providing a more realistic characterization of belief
change. We show that, under certain assumptions,
the original update postulates are satisfied. We also
demonstrate that plain revision and plain update
are special cases of our model, in a way that for-
mally verifies the intuition that revision is suitable
for “static” belief change.

1 Introduction
An underlying premise in much work addressing the design
of intelligent agents or programs is that such agents should
hold beliefs about the true state of the world. Typically, these
beliefs are incomplete, for there is much an agent will not
know about its environment. In realistic settings one must
also expect an agent’s beliefs to be incorrect from time to
time. If an agent is in a position to make observations and
detect such errors, a mechanism is required whereby the agent
can change its beliefs to incorporate new information.

Theories of belief change have received considerable at-
tention in recent years in the AI community. One crucial
distinction that has come to light in this work is that between
belief revision and belief update. The distinction can be best
understood as one pertaining to the source of incorrect beliefs.
On the one hand, an agent’s beliefs about the world may sim-
ply be mistaken or incomplete, for instance, in the case where
it adopts some default belief. If an agent observes that this
belief is mistaken, it must take steps to correct the miscon-
ception. Such a process is know as belief revision, of which
the theory of Alchourrón, Gärdenfors and Makinson (1985;
1988) is the best-known characterization. On the other hand,

an agent’s beliefs, while correct at one time, may have become
inaccurate due to changes in the world. As events occur and
other agents act, certain facts become true and others false.
An agent observing such processes or their results must take
steps to ensure its state of belief reflects these changes. This
process is known as belief update, as proposed by Winslett
(1988) and Katsuno and Mendelzon (1991).

In this paper, we describe a semantic model for belief
change that generalizes belief update to incorporate aspects
of belief revision. The aim of this model is twofold: (a) to
provide a unifying semantics for both revision and update that
highlights the orthogonal roles both have to play in routine
belief change; and (b) to provide a more compelling account
of belief update to deal with observations of changes in the
world that provide information about the prior world state.

There have been attempts to provide general semantics for
belief change operators (e.g., (Friedman and Halpern 1994));
but often these models are such that under certain assumptions
the change is a revision and under others it is an update. We
argue that routine belief change should involve both update
and revision, and develop a model that incorporates aspects
of both; but we show that revision and update, as currently
conceived, are special cases of our general operator.

The result of this union is a more robust and realistic notion
of update in which observations of change can inform and
agent’s prior beliefs and expectations. Such observations are
pervasive; consider the followingexample. A warehouse con-
trol agent believes it is snowing on Route 1 after yesterday’s
weather forecast, and expects the arrival of a number of trucks
to be delayed. Now suppose a certain truck arrives, causing
the agent to update its beliefs; furthermore, contrary to its
expectations, the truck arrives on time. There are two possi-
ble explanations: either the truck was able to speed through
the snow or it did not snow after all. If the latter explana-
tion is more plausible, current update theories cannot arrive
at the desired update in a natural way. The observation of the
change in the world’s state (arrival of the truck) indicates that
the agent’s prior beliefs (e.g., that it is snowing) were wrong.
The update should not simply involve changes that reflect the
evolution of the world, but should place these changes in the
context of the corrected or revised prior beliefs. The agent
should revise its beliefs to capture the fact that it is did not
snow and adjust its expectations regarding the arrival of other
trucks accordingly. Routine belief changes often involve as-
pects of revision (correcting or augmenting one’s beliefs) and
update (allowing beliefs about the world to “evolve”).
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The general model we present to capture such considera-
tions takes as a startingpoint the notionof ranked or structured
belief sets. By ranking situations according to their degree of
plausibility, we obtain a natural way of assessing degrees of
belief and a very natural semantics for belief revision. Such
models have been used extensively for revision (Grove 1988;
Gärdenfors 1988; Boutilier 1994c). To this we add the notion
of a transition or evolution from one world state to another.
As proposed by Katsuno and Mendelzon (KM), updates re-
flect changes in the world, and transitions can be used to
model such changes. However, in contrast to the KM model
and following our earlier work (Boutilier 1994a), we assume
that the relative plausibility of transitions (and hence possible
updates) is not something that is judged directly; rather we
assume that events or actions provide the impetus for change.
The plausibility of a transition is a function of: (a) the plau-
sibility of possible causing events; and (b) the likelihood of
that event having the specified outcome. In this way, we can
model events or actions that have defeasible effects (which
can be judged as more or less likely).

Finally, in response to an observation, an agent attempts to
explain the observation by postulatingconditionsunder which
that observation is expected. An explanation consists of three
components: an initial condition, an event (or action), and an
outcome of that event. The key aspect of our model is the
ranking of such explanations — an explanation is more or less
plausible depending on the plausibilityof the initial condition,
the plausibility of the event given that starting point, and the
plausibility of the event’s outcome. The belief change that
results provides the essence of the generalized update (GU)
operator: an agent believes the consequences of the most
plausible explanations of the observation.

Unlike other theories of update, our model allows an agent
to trade off the likelihood of possible events, outcomes and
prior beliefs in coming up with plausible explanations of
an observation. Of course, by allowing prior beliefs to be
“changed” during update, we are essentially folding belief re-
vision into the update process (as we elaborate below). We
thus generalize the KM update model to work on structured
(rather than flat) belief sets. Furthermore, the information
required to generate such explanations is very natural.

In Section 2 we present the AGM theory of revision and the
KM theory of update, emphasizing the semantic models that
have been proposed and adopting the qualitative probabilistic
model of (1987; 1992). In Section 3 we present our model
of generalized update, with an emphasis on semantics, and
contrast it with the “flat” KM model. We describe two exam-
ples to illustrate the key features of the model. In Section 4
we describe the formal relationship between revision, update
and GU. We show that under certain assumptions GU satisfies
the KM postulates. In addition we show that both “flat” KM
update and AGM revision are special cases of GU. In partic-
ular, the connection formally verifies the intuition that AGM
revision is due to changes in belief about a static world, while
update reflects belief change about an evolving world.

2 Classical Belief Revision and Belief Update
Throughout, we assume that an agent has a deductively closed
belief set K, a set of sentences drawn from some logical lan-
guage reflecting the agent’s beliefs about the current state
of the world. For ease of presentation, we assume a logi-

cally finite, classical propositional language, denoted LCPL,
and consequence operation Cn. The belief set K will of-
ten be generated by some finite knowledge base KB (i.e.,K = Cn(KB)). The identically true and false propositions
are denoted > and ?, respectively. Given a set of possible
worlds (or valuations overLCPL)W andA 2 LCPL, we denote
by kAk the set of A-worlds, the elements of W satisfyingA.
The worlds satisfying all sentences in a setK is denoted kKk.

2.1 Belief Revision
Given a belief set K, an agent will often obtain informationA not present in K. In this case, K must be revised to
incorporate A. If A is consistent with K, one expects A
to simply be added to K: we call K+A = Cn(K [ fAg)
the expansion ofK byA. More problematic is the case whenK ` :A; certain beliefs must be given up beforeA is adopted.
The AGM theory provides a set of guidelines, in the form of
the following postulates, governing this process. We use K�A
to denote the revision of K by A.

(R1) K�A is a belief set (i.e. deductively closed).
(R2) A 2 K�A.

(R3) K�A � K+A .

(R4) If :A 62 K then K+A � K�A.
(R5) K�A = Cn(?) iff j= :A.
(R6) If j= A � B thenK�A = K�B .

(R7) K�A^B � (K�A)+B.

(R8) If :B 62 K�A then (K�A)+B � K�A^B .

Unfortunately, while the postulates constrain possible revi-
sions, they do not dictate the precise beliefs that should be re-
tracted whenA is observed. An alternative model of revision,
based on the notion of epistemic entrenchment (Gärdenfors
1988), has a more constructive nature. Given a belief setK, we can characterize the revision of K by ordering beliefs
according to our willingness to give them up. If one of two
beliefs must be retracted in order to accommodate some new
fact, the less entrenched belief will be relinquished, while the
more entrenched persists.

Semantically, an entrenchment relation (hence a revision
function) can be modeled using an ordering on possible worlds
reflecting their relative plausibility (Grove 1988; Boutilier
1994c). However, rather than use a qualitative ranking re-
lation, we adopt the presentation of (Spohn 1987; Gold-
szmidt and Pearl 1992) and rank all possible worlds using
a �-ranking. Such a ranking � : W ! N assigns to each
world a natural number reflecting its plausibility or degree of
believability. If �(w) < �(v) then w is more plausible thanv or “more consistent” with the agent’s beliefs. We insist that��1(0) 6= ;, so that maximally plausible worlds are assigned
rank 0. These maximally plausible worlds are exactly those
consistent with the agent’s beliefs; that is, the epistemically
possible worlds according toK are those deemed most plausi-
ble in � (see (Spohn 1987) for further details). We sometimes
assume � is a partial function, and loosely write �(w) = 1
to mean �(w) is not defined (i.e., w is not in the domain of �,
or is impossible).

Rather than modeling an agent’s epistemic state with a
“flat” unstructured belief setK, we use a �-ranking to capture
objective beliefs K as well as entrenchment information that
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determines how an agent will revise K. An epistemic state �
induces the (objective) belief setK = fA 2 LCPL : ��1(0) � kAkg
The ranking� also induces a revision function: to revise byA
an agent adopts the most plausibleA-worlds as epistemically
possible. Thus, using min(A; �) to denote this set, we haveK�A = fB 2 LCPL : min(A; �) � kBkg
If kAk\W = ;, we set min(A; �) = ; and K�A = LCPL (the
inconsistent belief set). It is normally assumed that kAk \W 6= ; for every satisfiable A — thus every proposition is
accorded some degree of plausibility. It is well-known that
this type of model induces the class of revision functions
sanctioned by the AGM postulates (Grove 1988; Boutilier
1994c; Goldszmidt and Pearl 1992).1

The ranking function� can naturally be interpreted as char-
acterizing the degree to which an agent is willing to accept
certain alternative states of affairs as epistemically possible.
As such it seems to be appropriate for modeling changes in be-
lief about an unchanging world. The most plausibleA-worlds
in our assessment of the current state of affairs are adopted
when A is observed.

As an example, consider the ranking shown in Figure 1(a),
which reflects the epistemic state of someone who believes
her book and glasses are on the patio. If she were to learn that
in fact her book is inside, she would also believe her glasses
are inside, for the most plausible Inside(B)-world (� = 1)
also satisfies Inside(G): she strongly believes she left her
book and glasses in the same place.

2.2 Belief Update
Katsuno and Mendelzon (1991) have proposed a general char-
acterization of belief update that seems appropriate when an
agent wishes to change its beliefs to reflect changes in, or
evolution of, the world. The KM theory is also captured by
a set of postulates and an equivalent semantic model. We
describe update in terms of a knowledge base KB rather than
a deductively closed belief set K.

If some new fact A is observed in response to some (un-
specified) change in the world (i.e., some action or event
occurrence), then the formula KB � A denotes the new belief
set incorporating this change. The KM postulates governing
admissible update operators are:

(U1) KB �A j= A
(U2) If KB j= A then KB �A is equivalent to KB
(U3) If KB and A are satisfiable, then KB �A is satisfiable
(U4) If j= A � B, KB1 � KB2 then KB1 �A � KB2 �B
(U5) (KB �A) ^B j= KB � (A ^B)
(U6) If KB�A j= B and KB�B j= A then KB�A � KB�B
(U7) If KB is complete then (KB � A) ^ (KB � B) j= KB �(A _B)
(U8) (KB1 _ KB2) �A � (KB1 �A) _ (KB2 �A)

The equivalent semantic model of KM sheds more light
on the intuitions underlying update. kKBk represents the

1We refer to (Boutilier 1994c; Friedman and Halpern 1994) for
a discussion of languages with which one can express properties of
belief sets and revision functions.

set of possibilities we are prepared to accept as the actual
state of affairs. Since observation A is the result of some
change in the actual world, we ought to consider, for each
possibility w 2 kKBk, the most plausible way (or ways)
in which w might have changed in order to make A true.
To capture this intuition, Katsuno and Mendelzon propose
a family of preorders f�w: w 2 Wg, where each �w is a
reflexive, transitive relation over W . We interpret each such
relation as follows: if u �w v then u is at least as plausible a
change relative to w as is v. Finally, a faithfulness condition
is imposed: for every world w, the preorder �w has w as a
minimum element; that is, w <w v for all v 6= w. Naturally,
the most plausible candidate changes in w that result inA are
those worlds v satisfying A that are minimal in the relation�w. The set of such minimal A-worlds for each relation�w ,
and each w 2 kKBk, intuitively capture the situations we
ought to accept as possible when updating KB with A. In
other words,kKB �Ak = [w2kKBkfmin(A;�w)g
where min(A;�w) is the set of minimal elements in kAk
(w.r.t. �w).

If the orderings �w are total preorders (so that all ele-
ments are comparable), then update operators are charac-
terized by (U1)–(U9) (see (Katsuno and Mendelzon 1991;
Boutilier 1994a)):

(U9) If KB is complete, (KB �A) 6j= :B and (KB �A) j= C
then (KB � (A ^B)) j= C

We assume for the most part that we are dealing with such total
update operators (but we discuss this further in Section 4). It
should be clear how this (total) model can be recast in terms
of �-rankings: we simply associate a ranking �w with each
world w (such that ��1w (0) = fwg) and use min(A; �w) to
update byA.

As a concrete example, suppose that someone observes that
the grass in front of her house is wet. Prior to the observation
she believed that she left her book outside on the patio and that
the grass and book were dry (see KB in Figure 1(b)). As shown
in the figure, the most plausible evolution of the epistemically
possible worldw, given the wet grass, is v; hence she believes
her book got wet too. This may be due to the fact that the
most likely cause of wet grass is rain, which dampens things
on the patio as well. A less plausible transition (world u) is
caused by the sprinkler being activated. However, had she
observed dryB in addition to wetG, she would have accepted
this explanation (and its consequences, such as her glasses
being dry if they are with her book).

3 Generalized Update
One difficulty with the KM theory of update is that it does not
allow an observation to force revision of an agent’s beliefs
about the state of the world prior to the observation. This is
a crucial drawback, for even though one may not care about
outdated beliefs directly, information gained about one’s prior
state of belief can influence updated beliefs. Even simple tasks
such as modeling information gathering actions are beyond
the scope of KM update. Consider, for example, Moore’s
(1985) litmus test: the contents of a beaker are unknown and
one dips litmus paper into it to determine if it is an acid or a
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Figure 1: (a) A Revision Model and (b) An Update Model

base. The prior state of belief consists of two possible worlds
(acid and base) and the color of the paper after the test action
should rule out one of the possibilities. Unfortunately, the
KM theory does not allow this to take place; the semantics
of update requires that both prior possibilities be updated to
reflect the observed color (e.g., blue). One is forced to accept
that, if the contents were acidic (in which case it should turn
red), some extraordinary change occurred (the test failed, the
contents of the beaker were switched, etc.).2

We can relax the KM update model to allow certain KB-
worlds to be ruled out if the observation is not reachable
through any reasonable transition from that world. But we
must go further. It may be that an observation “conflicts”
with all KB-worlds. To continue the example, imagine the
contents of the beaker are not unknown, but are believed to
be acidic. If the test result is blue the agent should revise its
beliefs about the contents of the beaker. In order to do this,
we must extend the model of update to deal with structured
or ranked belief sets so that we have some guidance for the
revision of our beliefs. In general, belief change will involve
certain aspects of both revision and update.

Rather than generalizing the KM update semantics directly,
we adopt the approach of (Boutilier 1994a), where we argued
that evolutions or changes in the world should not be ranked
directly. We suppose that events or actions provide the im-
petus for change, and the plausibility of a given evolution is
determined by the plausibility of the event that caused the
change. The motivation for this approach is that users can
often more readily assess the relative plausibility of an event
(in a given context) and the effects of that event, as opposed to
directly assessing the plausibility of an evolution. We extend
this idea further by supposing that events are nondeterminis-
tic and that their possible outcomes can also be ranked. For
example, an attempt to pick up a block will likely result in
a world where the block is held, but occasionally will fail,
leaving the agent empty-handed.

We assume a set of events E. An event maps each world
into a partial �-ranking over worlds, e : W ! (W ! N).
We use �w;e to denote the ranking e(w). Intuitively, �w;e(v)
describes the plausibility that world v results when event e
occurs at world w. We say v is a possible outcome of e atw iff �w;e(v) is defined; thus �w;e only ranks the possible
outcomes of e. We call this evolution of w into v a transition,

2Note that one cannot escape the dilemma by supposing there is
no such transition, for postulate (U3) ensures that updating acid by
blue is consistent (Boutilier 1994a).

which we writew e! v. We occasionally assume the existence
of the null event n, such that �w;n(w) = 0 and �w;n(v) =1
if w 6= v. The null event ensures (with certainty) that the
world does not change.

Since an agent making an observation will often not know
a priori what event caused an observation, we assume that
each world has associated with it an event ordering �(w) that
describes the plausibility of various event occurrences at that
world. Formally, � : W ! (E !N); we write �w to denote
the ranking �(w). Intuitively, �w(e) captures the plausibility
of the occurrence of event e at world w. Again, we assume�w is a partial function over E, with �w(e) = 1 taken to
mean that e cannot occur at w.

We now describe generalized update.

Def. A generalized update model has the form M =hW;�;E; �i, whereW is a set of worlds,� is a�-ranking
overW (the agent’s epistemic state), E is a set of events
(mappings �w;e over W ), and � is an event ordering (a
set of mappings �w over E). We assume that K is the
belief set induced by �.

In summary, an agent must have information about the nature
of the world (�), what is likely to happen or not (�), and the
effects of those occurrences (E). Such models contain the in-
formationnecessary to updateK in response to an observationA; we denote the resulting belief set K�A.

To begin, we suppose that one “tick of the clock” has passed
and that the agent must update its ranking � to reflect the
possible occurrence of certain events, without the benefit of
observation. Intuitively, the posterior plausibilityof a world v
depends on the plausibility of the transitions that lead to v. The
plausibility of a transitionw e! v depends on the plausibility
of w, the likelihood that e occurred, and the likelihood of
outcome v given w; e. In other words:3�(w e! v) = �w;e(v) + �w(e) + �(w)
With this in hand, an updated ranking �� can be given by��(v) = minw2W;e2Ef�w;e(v) + �w(e) + �(w)g
This epistemic state essentially captures the notion that the
world has evolved one “step” but that the agent has no in-
formation about the nature of this transition (other than that

3We note that this formula is the qualitative analog of the prob-
abilistic equation Pr(w e! v) = Pr(vjw;e) � Pr(ejw) � Pr(w). We
refer to (Spohn 1987; Goldszmidt and Pearl 1992) for details on the
relationship between qualitative and quantitative probabilities.
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contained in the model M ). We note that the agent’s actual
beliefs are determined by the minimal worlds in �� (i.e., thosev such that ��(v) = 0).

As with KM update, updates usually occur in response to
some observation, with the assumption that something oc-
curred to cause this observation. After observing A an agent
should adjust its beliefs by considering that only the most
plausible transitions leading to A actually occurred. The set
of possibleA-transitions is:

Tr(A) = fw e! v : v j= A and �(w e! v) 6=1g
The most plausible A-transitions, denoted min(Tr(A)), are
those possible A-transitions with the minimal �-ranking.
Given that A has actually been observed, an agent should as-
sume that one of these transitions describes the actual course
of events. The worlds judged to be epistemically possible are
those that result from these most plausible transition:

result(A) = fv : w e! v 2 min(Tr(A))g
Def. Let K be the belief set determined by update model M .

The generalized update of K by A (w.r.t M ) isK�A = fB : result(A) � kBkg
In other words, an agent updating by observation A believes
what is true at the states that result from the most plausibleA-transitions. We also have the following:

Prop. 1 result(A) = min(A; ��); or (equiv.) K�A = fB :
min(A; ��) � kBkg
This conforms to our intuitions about the updating process:
the direct update of K by A, K�A, determines the same belief
set as the process of first updating one’s entire epistemic state� to get ��, and then performing belief revision of �� by the
observationA. Loosely, we might say (K�)�A = K�A.

This notion of update naturally gives rise to the notion of
an explanation for observation A. We can view updating byA as a process of postulating the most likely explanations
for A and adopting the consequences of these explanations
as our new beliefs. Unlike update of unstructured belief sets,
explanations must consider (and trade-off) plausible initial
conditions, events and event outcomes that lead to A. An
explanation for A (given model M ) is any triple hw; e; vi
such that w e! v 2 Tr(A) (which implies �(w e! v) <1). Thus it is possible that e occurred at w, leading tov and resulting in A. The most plausible explanations forA are those explanations with minimal �-ranking. If A is
explainable (i.e., if the set of explanations is not empty),
then the most plausible explanations correspond to the most
plausible A-transitions: thus GU can be interpreted as an
abductive process. Note, however, that Proposition 1 means
we not generate explanations explicitly.

Before considering the formal properties of this model, we
illustrate its nature with two examples. To keep the treatment
simple, in the first example we use only deterministic events,
while in the second we assume only one possible event.

Figure 2(a) illustrates the prior belief state of an agent who
believes her book is on the patio (P ) and that both the grass
and her book are dry. However, if her book is not on the
patio, she believes she has left it inside (�(In) = 1). We omit
other less plausible worlds. We assume three events: it might
rain, the sprinkler might be turned on, or nothing happens

(the null event). She judges �w(null) = 0, �w(rain) =
1 and �w(sprinkler) = 2, so rain is more plausible than
sprinkler (we assume a “global” ordering, suitable for allw). The outcomes of these events are deterministic — in
particular, both rain and the sprinkler will make the grass
wet, but the book will only get wet if it rains and it is on
the patio. Now, if wet grass is observed, our agent will
update her beliefs to accept wetG. A consequence of this is
that she will now believe her book is wet: the most likely
explanation is simply that it rained. If wetG ^ dryB are both
observed (for instance, if she is told the book is safe), there are
two most plausible posterior worlds satisfying the observation
(i.e., �(wetG^dryB) = 2). This corresponds to the existence
of two plausible explanations: either the book is on the patio
(� = 0) and the sprinkler turned on (� = 2); or the book is
inside (� = 1) and it rained (� = 1). The result is that the
agent is no longer sure where the book is. If we had instead
set �(sprinkler) = 3, observing wetG ^ dryB would have
caused the agent to believe that the book had been inside all
along. The sprinkler explanation for the dry book becomes
less plausible than having left the book inside. We see then
that observing certain changes in the world can cause an agent
to revise its beliefs about previous states of affairs. These
revisions can impact on subsequent predictions and behavior
(e.g., if the book is inside then so are her glasses).4

A second example is shown in Figure 2(b). We assume
only one possible event (or action), that of dipping litmus
paper in a beaker. The beaker is believed to contain either
an acid or a base (� = 0); little plausibility (� = r) is ac-
corded the possibility that it contains some other substance
(say, kryptonite). The expected outcome of the test is a color
change of the litmus paper: it changes from yellow to red if
the substance is an acid, to blue if it is a base, and to green
if it is kryptonite. However, the litmus test can fail some
small percentage of the time, in which case the paper also
turns green. This outcome is also accorded little plausibility
(� = g). If the paper is dipped, and red is observed, the
agent will adopt the new belief acid. Unlike KM update,
generalized update permits observations to rule out possible
transitions, or previously epistemically possible worlds. As
such, it is an appropriate model for revision and expansion
of beliefs due to information-gathering actions. If an out-
come of green presents two competing explanations: either
the test failed (the substance is an acid or a base) or the beaker
contains kryptonite. The most plausible explanation and the
updated belief state depend on the relative magnitudes of g
and r. The figure suggests that g < r, so the a test failure is
most plausible and the belief acid _ base is retained. If test
failures are more rare (r < g), then this outcome would cause
the agent to believe the beaker held kryptonite.

4 Relationship to Revision and Update
The analysis of the update postulates is similar to that pre-
sented in (Boutilier 1994a). There we described a model of
update that used plausible events to explain the occurrence of
observations, giving rise to an update operator. Only under

4The world In-DryB-WetG at � = 3 is shown for illustration.
Technically, that world has rank 1 since it occurs below, and the
explanation“sprinkler and book inside” will never be adopted, unless
further propositions and observations can distinguish the two worlds.
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Figure 2: Generalized Update with Multiple (a) Events and (b) Outcomes

certain assumptions does this operator satisfy the KM postu-
lates, and we argued that these assumptions are not always
appropriate. The key difference here is that the abductive
approach has been generalized to allow ranked outcomes of
events, and more importantly, ranked belief structures. Sur-
prisingly, this has little bearing on the update postulates: the
same assumptions are required. We describe these briefly, and
refer to (Boutilier 1994a) for further discussion. We first note
that our model satisfies a number of the KM postulates.

Prop. 2 If � is the GU operator induced by some GU model
then � satisfies postulates (U1), (U4), (U6), (U7) and (U9).

One key difference between the GU model and the KM
model is reflected in (U2), which asserts that KB�A is equiv-
alent to KB whenever KB entails A. This cannot be the case
in general, for even if KB j= A, the most plausible event oc-
currence may be something that changes another proposition
while leaving A true. Observing A may simply mean that
the change proceeded as expected. (U2) is appropriate only
if we are willing to assume persistence of propositions, that
changes (are believed to) occur only if evidence for them is
observed. While appropriate in some settings, this is not a
universal principle suitable for belief change. Nevertheless,
we can model it by assuming centered update models:

Def. A GU modelM = hW;�;E; �i is centered ifE contains
the null event n and ��1w (0) = fng for all w 2W .

Prop. 3 If � is induced by a centered GU model then � satisfies
(U2).

The second key difference is reflected in the failure of (U3)
(both (U5) and (U8) fail for related reasons), which asserts
that KB�A is satisfiable ifA is. In our model, this corresponds
to every A being explainable no matter what beliefs are held.
GU models need not satisfy (U3). Consider the case where no
event can result in an A-world (i.e., where Tr(A) = ;): the
observation of A is then unexplainable, and K�A = LCPL, the
inconsistent belief set. To prevent this, we can simply insist
that every satisfiable sentence A is explainable.

Def. A GU model hW;�;E; �i is complete iff for any satis-
fiable A 2 LCPL, there are w; v 2 W , e 2 E such that�(w) <1, �w(e) <1, �w;e(v) <1 and v j= A.

Prop. 4 If � is induced by a complete GU model then � satis-
fies (U3), (U5) and (U8).

In (Boutilier 1994a) we criticized (U3) as inappropriate for
the update of flat belief sets. For example, if our beliefs corre-
sponded to a single world where acid is believed, (U3) forces
the observation of blue to behave quite poorly (as described
above). However, such a maxim is much more reasonable in
generalized update. It does not force one to propose wildly im-
plausible transitions from prior epistemically possible states;
instead one can revise one’s beliefs to account for the obser-
vation. In this case, we simply give up the belief acid.

There are a number of systematic ways in which one can
enforce the condition of completeness such as requiring the
existence of “miraculous” events that can cause anything
(Boutilier 1994a). In our setting, one quite reasonable condi-
tion we might impose is that all worlds have some plausibility
(i.e., � is a total function on W ) and that the null event is
possible (not necessarily plausible) at each of those. The first
requirement is usually assumed of epistemic states, and the
second simply ensures that all worlds persist with some de-
gree of plausibility. Thus while explanations of A may be
implausible they will not be impossible.

Finally, putting Propositions 3 and 4 together we have:

Thm. 5 If � is induced by a complete, centered GU model
then � satisfies (U1)–(U9).

We note that the converse of this theorem and the preceding
propositions is easy to verify, though not especially interest-
ing. Primarily, we are interested in determining the nature
of belief change given information about beliefs, events and
event orderings, rather than the construction of models that
corroborate arbitrary operators satisfying the postulates. We
also note that our characterization theorem includes (U9) be-
cause of our use of �-rankings, which totally order events
and worlds. One of the main reasons for using such rank-
ings is that they allow the scales of plausibility used to rank
worlds, events and outcomes to be compared and added. In
general, the use of qualitative ranking relations does not admit
this flexibility unless one is willing to postulate a “metric” by
which a combination of preorders can be compared. This is
not a difficult task, but is somewhat more cumbersome than
the approach provided here. Equivalent results should be
obtainable in the more general setting however.

There are two special cases of GU that are worth men-
tioning in passing. First, we note that “plain” KM update
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of unstructured belief sets is easily captured in our model by
the simple restriction of � to rank worlds only as plausible
(� = 0) or impossible (� = 1). Second, reasoning about
agent-controlled action (and observations) is also possible, as
indicated in the litmus example. To do so, we simply view
an agent’s actions as events: we associate with each actiona a �-ranking �w;a that ranks outcomes of action a at worldw. We take the key difference between actions and events (at
least, as far as belief change is concerned) to be that actions
are within the agent’s control so that it has direct knowledge
of their occurrence. As such, actions need not be ranked ac-
cording to their plausibility of occurrence, nor do they need
to be postulated as part of an explanation. Observations can
only be explained by supposing the action had a particular
(perhaps unexpected) outcome, or by revising beliefs about
the initial conditions, or both.5

We wrap up by considering how AGM belief revision can
be modeled in our framework. The common folklore states
that belief revision is a form of belief change suitable when
the world is static or unchanging. To verify this intuition, we
propose static update models.

Def. An update modelM = hW;�;E; �i is static ifE = fng
where n is the null event n.6

Thm. 6 If � is induced by a static GU model then � satisfies
(R1)–(R8).

Static event models have as the only possible transitions those
of the formw n! wwith plausibility�(w). Thus, the informal
intuition about belief revision (and the AGM model) can be
verified formally: AGM revision is a particular form of GU
suitable for a “static” system. (The converse of Theorem 6 is
easily verified.)

5 Concluding Remarks
We have provided a model for generalized belief update that
extends both the classical update and revision models, com-
bining the crucial aspects of both, and retainingboth as special
cases. The main feature of GU is its insistence one be allowed
to both revise and update one’s beliefs about the world in re-
sponse to an observation.

In this paper, we have focussed exclusively on the semantics
of generalized update. Appropriate representation languages
for the concise expression of events (with defeasible effects),
defeasible beliefs and other aspects of the model must still
be developed. However, the many components of such lan-
guages are already in place, based primarily on conditional
and dynamic logics, and other action languages.

One issue that has remained unexplored to a large extent
is that of revising beliefs about system dynamics (event and
outcome plausibilities). The GU model supposes that events
and outcomes are specified independently of an agent’s beliefs
and are static. In general, however, one might expect an
agent to have beliefs about these entities which are subject
to revision. While not inconsistent with our model, a more
elaborate treatment requires a language in which (defeasible)
beliefs about events, outcomes, and so on can be expressed.

5Concurrent events and actions require special attention, how-
ever, and are beyond the scope of this paper.

6As above we assume � is a total function on W .

Another crucial issue is that iterated updates that arise
with sequences of events and observations; this introduces
several complications. One is how to revise an epistemic
state � (rather than a belief set K) in response to an obser-
vation; several proposals exist for iterated revision (Spohn
1987; Boutilier 1994b; Williams 1994) but their applicability
to this problem remains to be verified. A related problem is
that the plausibility of a sequence of transitions need not be a
function of the individual transitions; as discussed in (Fried-
man and Halpern 1994), more sophisticated update criteria
are required, including judging the plausibility of sequences
of transitions as a whole. If such a general semantic picture
is fitted with a language with which to reason about events,
we should be able to recast the GU model as a form of be-
lief revision about such “histories.” Thus, the general view
of explanation as a form of belief revision (Gärdenfors 1988;
Boutilier and Becher 1994) can be extended to the explanation
of observations in dynamic systems.
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