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Abstract

Intelligent agents often need to assess user utility
functions in order to make decisions on their be-
half, or predict their behavior. When uncertainty
exists over the precise nature of this utility function,
one can model this uncertainty using a distribution
over utility functions. This view lies at the core of
games with incomplete information and, more re-
cently, several proposals for incremental preference
elicitation. In such cases, decisions (or predicted
behavior) are based on computing thepectedex-
pected utility (EEU) of decisions with respect to the
distribution over utility functions. Unfortunately,
decisions made under EEU are sensitive to the pre-
cise representation of the utility function. We ex-
amine the conditions under which EEU provides
for sensible decisions by appeal to the foundational
axioms of decision theory. We also discuss the im-
pact these conditions have on the enterprise of pref-
erence elicitation more broadly.

Introduction

usually maintained (often by imposing constraints on trade-
off weights). A decision can be made based on this set of
feasible utility functions. For example, Pareto optimal deci-
sions can be identifief21; 1§, or models based on mini-
max regret can be used to choose a specific decfdibn2;
20]. In each of these models, the uncertainty regarding the
utility function is characterized by the feasible utility set.
Somewhat less common is work in which the system’s un-
certainty about a user’s utility function is quantified proba-
bilistically. Some recent examples inclufg 6; 1. In this
work, a distribution over utility functions is assumed. The
expected utility of a decision is determined not just by taking
expectation over the outcomes of that decision, but also ex-
pectation over the space of possible utility functions. We use
the termexpected expected utility (EEtY denote the value
of a decision computed in this way. Elicitation strategies can
be informed using the current distribution over utility func-
tions. For example, value of information can be used to de-
termine whether the improvement in decision quality given
by a piece of information outweighs the cost of obtaining
that information. Thus, characterizing one’s uncertainty over
possible utility functions in a probabilistic fashion, and using
EEU to determine decision quality, has much to recommend
it from the point of view of elicitation.

Most work on the foundations of decision theory— o . ; L . .
specifically on the justification of expected utility—has fo- Decision making using distributions over utility functions

cused orpersonal decision makinghat is, settings where a has been consider_ed in other contexts. For examp_le, Cyert
decision is being made by the “holder” of the utility func- and de Groot consider problems in sequential decision mak-

tion. Of course the decision maker may not be fully awarel"d in which uncertainty in the underlying utility function is
of (or have fully articulated) her utility function. The pro- '€presented probabilisticall; 9. Fishburn[10] also ad-

cess of articulation is complex, and much work in decisiondr€Sses this problem (as we discuss below). Harsanyi's for-
analysis deals with preference elicitation and decision frammulation O_f games with incomplete information as Bayesian
ing to help the decision maker formulate her decision problengame_s[lz' 19 relies critically on distributions over payoff
[11]. However, this work is primarily concerned with elicit- functions, and virtually the entire literature on in this area
. f H H . 1

ing enough information about preference tradeoffs to allowAdOPts this perspective; 19. , _

an (approximately) optimal decision to be made. While an_ In all of this work, the EEU concept is used to determine
analyst can never be sure about the true nature of the dedf?€ value of decisions in the context of an uncertain utility
sion maker’s utility function, this uncertainty is not generally function. Unfortunately, while EEU has an intuitive appeal,
characterized explicitly, though its impact is often minimizedthis scheme is sensitive to positive affine transformations of

though sensitivity &.malyS'S and related techniques. In some sense, much work in collaborative filter[8g 16 and

Recent empha'S|s has been placed on Fhe (_jevelppment |%flated model$4] can be viewed as incorporating distributions over
automated decision tools, where a decision is being madgijity functions. However, these are used for purposes of classi-
on behalf of a user whose utility function is imprecisely fication (i.e., determining a unique utility function for a particular
known. As in goal programming or other forms of inter- user) and generally uncertainty in utility is not accounted for when
active optimization, a space of possible utility functions ismaking decisions.



the utility functions in question. Implicit in such a scheme It is well known that utility functions are invariant under
is acommensurability assumptidhat allows the quantities positive affine transformations. That is, the relative expected
present in the different utility functions to be meaningfully utility of any pair of decisions (in any decision scenario) will
compared and combined. This is not always the case. Thiee unaltered by such a transformation of a utility function.
aim of this paper is to describe certain conditions under whiciT his implies that the optimal decision in any decision sce-
this commensurability assumption can be justified by appeatario is unaffected by such a transformation.
to the foundational axioms for decision theory as proposed by More precisely, von Neumann and Morgenstern equate
von Neumann and Morgenstdr@] and Savagél7). [19] (classes of) utility functions with preferences olater-

The setting we consider is one in which an agent for a deies Let(pi, s1;p2, 52; . .. pn, sn), Whered . p; = 1, denote a
cision maker or user is uncertain about the user’s preferencesimple lotteryover outcomes, with each outcomeobtained
but wishes to recommend (or take) decisions on the user’s beavith probabilityp;. As a shorthand, we sometimes omit out-
half. Fishburn10] has considered the problems of the foun-comes whose probability is zero. Note that an outcegmie
dations of expected expected utility from a somewhat differ-tself a (trivial) simple lottery, and that each decisiénn-
ent perspective. He considers the problem in which a decisioduces a simple lotter}(d) over outcomes. Aompound lot-
maker is uncertain about the set of consequences she migtary is a lottery whose elements may be further lotteries. Let
face and considers combining utility functions over different>- a preference function over lotteries, with- [, meaning
consequence sets. Unfortunately, his results cannot be afiratis is strictly preferred td,. The relations-, <, <, and
plied (except in a trivial way) to the situation abce. ~ are defined in the usual way. Assuming certain (relatively

We begin by defining the problem of decision making uncontroversial) axioms restricting the form of the preference
given uncertainty over utility functions and the EEU con- function >, von Neumann and Morgenstern show that there
cept. We then examine the sensitivity of EEU to the preciseexists a utility functionu, that exactly represents in the
representation of the underlying utility functions, and pro-following sense:EU(d, u,. ) > EU(d', u,.) iff I(d) > I(d').
pose an interpretation of utility uncertainty that allows one toFurthermore, the utility functiom,_ is unique up to positive
prescribe “canonical” utility function representations underaffine transformation. Because of this, we can partition the
specific circumstances. We conclude with a brief discussiospace of utility functions into equivalence classes, each cor-
of the implications these considerations have for “practical’responding to a unique preference orderingMe denote this
elicitation. class by[>~].

Several of the axioms used to equate utility functions with
preferences over lotteries are listed here. These are based on

2 ExpectedExpected Utility
We begin by establishing notation and basic background Wif_?g;e work of von Neumann and Morgenst¢:s] and Savage

a quick overview of expected utility and then define the notiorf £ /)» though the particular form used here is drawn filda.
of expected expected utility formally. e usesT to denote some most preferred outcom#iti.e.,

st = s,¥s € 5), ands, to denote some least preferred
2.1 Expected Utility outcome (these are guaranteed to exist due to other axioms).

Assume alecision scenariconsisting of a finite set of pos- Monotonicity (p,st;1—p,s1) = (¢,s7;1 —¢,s1) iff p > ¢.
sibledecisionsD, a finite set of possible outcomes (or states)Continuity For eachs;, there is some such that

S, and a distribution functio®ry € A(S), for eachd € D. s;~(p,sT;1—p,s1).

Thel_ternjfrﬁ(s) denoteskthe prqbgb|l|ty of outconsdgelng Reduction of Compound Lotteries Let | be the lottery
realized if the system takes decisidnPr,(s) can be viewed (p1,11: .. s 1) where each is a lottery of the form

as a vectop, whoseith component i®r,(s;) (given a suit- P oo ~
able enumeration of outcomes ). z (41,115 5 4 (1), 1, (1)) Letly, k < K denote thek

A utility functionu : S — R associates utilityu(s)
with each outcome. We will generally viewu as a|S|-
dimensional vecton whoseith components; is u(s;).2 The

(unique) lotteries within the s€t’ : i < n,j < m(i)}.
Letr be the (reduced) lottery over the (unique) compo-
nent lotteried, with probabilitypr = Y {piq¢} : I} =

expected utilityf decisiond w.r.t. u is:

EU(d,u) = pgu =Y _ Pra(si)u;. 2.2 Uncertainty over Utility Functions
i€S An agent will often not know the user’s utility function

The optimal decisionl* w.r.t. v is that with maximum ex- with certainty. We model this uncertainty using a dengity
pected utility (MEU) over the set of utility function&/ C RIS! (or a distribution

2While our results are general, it is unclear how profitable it is toOVera finite support set con;alnedﬁﬁ). Ifa system makes a
model a decision maker's uncertainty aboutenutility function. ~ decisiond under such conditions of uncertainty, the expected
It can be argued that such uncertainty should be viewed as “tradutility of d must reflect this. We consider the following defi-
tional” uncertainty about future outcomes, context, etc. Rather thafition for the expected utility of given densityP overU:
take a stand on this issue, we simply emphasize that an agent can

EU(d, P) = /pduP(u)du.

be genuinely uncertain about a user’s utility function, and that our
model and results apply (in a practical way) to such a setting.

We refer to this as thexpected expected utility (EEJ) de-
cisiond, since it is the expectation &U(d, u) w.r.t. P(U).

I} associated with ead. Thenr ~ [

3If u is represented using some more concise magdil simply
the vector of parameters required for that model.



This definition is precisely that used[i§; 6; 1] in the con-  a utility function—to serve as a concise representation of a
text of utility elicitation, and also that used in much other preference function over lotteries.
work involving uncertainty over utilitf12; 8; 4. In such This gives rise to the question of how to choose a repre-
a state of uncertainty—dselief state—the optimal decision sentative utility function from each equivalence classthat
is thatd* with maximum EEUEU(d*, P). We denote by allows formal justification of the MEEU decision rule, and
EU(P) the value of being in belief statB, assuming one is under what circumstances such representatives exist.

forced to make a decision: .
3.2 A Lottery Interpretation of MEU

EU(P) = max EU(d, P). We give a formal justification for the MEEU rule under a spe-
cific condition:we assume the existence of a known best and
We call this generic decision rutee MEEU decisionruleby  worst outcome That is, each utility function with positive
analogy with the classical MEU decision rule. support has the same best outcormeand worst outcome, .
EEU seems to be a fairly natural concept given probawe also insist that the user is not indifferent to these alterna-
bilistically quantified uncertainty over utilities. The fact that tives, that is, that+ must be strictly preferred to, .> We call
it occurs in many different contexts certainly attests to thissuch utility functionsextremum equivalenin many settings,
fact. Unfortunately, the proposed definition can induce cersuch as those involving active preference elicitation, restrict-

tain anomalies, as we examine below. ing attention to a set of extremum equivalent utility functions
is not problematic. One simply needs to ask the user to iden-
3 Justifying MEEU tify her most and least preferred outcomes (these need not be
) unique, but only one such representative need be identified).
3.1 Loss of Invariance Once we know outcomes- ands, , we insist that our be-

The results of von Neumann and Morgenstern suggest thdief state” assign nonzero measure only to normalized utility
the decisions one makes with respect to belief sfamver  functionsu in whichu(st) = ¢t andu(s,) = ¢, for some
U should be invariant to legitimate transformations of the el-constants+ > ¢, . For convenience, we will assume = 1
ements ofl/. Certainly, this would be a desirable feature of andc; = 0, but nothing crucial depends on these choices.
the MEEU decision rule. One might even claim that the de-Under these conditions, every preference ordesirfgr lot-
cision rule can only be considered useful if it satisfies thisteries has a unique utility function representation satisfying
condition. In general, unfortunately, this is not the case. the normalization constraints.

As a simple illustration, suppose we have a domain with We note that each preference ordering corresponds to a
two outcomess; ands,, and a distributionP that assigns unique set of indifference conditions between outcomes and

probability 0.5 to u; = (1,3) and probability0.5 to uy = standard lotteries. Astandard lotteryis one of the form
(2,1). Suppose we use the MEEU decision rule in this con<(p, sT;1 — p,s.). By the Continuity Axiom, we have, for
text, by computing each outcome; and each preference ordering
S; ~ <pi>78T; 1 _pi}asJ_%
EU(d, P) = Dwi(sj)P(u;). . .
(d, P) ; ;pd(sy)u (55) P (usi) for some unique;”. We denote by(-, s;) this standard lot-

tery. This implies that.. (s;) = p;” in the normalized utility
and choosing the decisiefi with maximum expected utility ~functionu, corresponding te-.%
EU(d*, P). Then a decision that accords higher probability Now given a belief state?, how does one compare the
to so will be preferred to one that gives lower probability to value of different decisiong? This can be reduced to a ques-
s2. However, if we transformus into w4 = (20,10), the  tion of how one compares the value of guaranteed outcomes
relative utilities of these decisions will be reversed. Thus, the;;, since decisions are just lotteries over outcomes. Given
MEEU decision rule is not insensitive to transformations ofa particular preference ordering, we haves; ~ I(>,s;).
individual utility functions with positive support. Note that However, the choice facing the agent for the decision maker
we are not suggesting that agent's will arbitrarily transforminvolves uncertainty over the true preference ordering. Thus,
some utility functions and not othetsRather, the question we can view the outcome as a compound lottery, where first
is: which representation of a specific utility function (e, a preference ordering is chosen according to distribufipn
in the example) should be adopted in the first place? and then the standard gamble involvings played. This will

One possible way to deal with this problem is to recognizeinduce a new preference orderirg over outcomes (and de-
that a utility function is simply a convenient (and nonunique)cisions). We illustrate this for the case of a discrete distribu-
way of expressing preferences over lotteries. Rather thation over two preference orderingsand ', with probabil-
working with utility functions, we could work explicitly with ities ¢ and1 — ¢ respectively. In this case, the outcomeds
a density over preference functions (in fact, we will do thisequated with the compound lottery
implicitly below). Unfortunately, the set of lotteries over . N1 r
wh?ch ayprefere?ﬂce ordering is c)i/efined is uncountable; there— % (0,10, 80)i 1 = ¢, 10", 84))-
fore, some compact representation (of theividual prefer- SIf s+ ~ s, then the decision problem is trivial since each

ence functions) is needed. But this is precisely the role oflecision is equally preferred. Indeed, in some axiomatizations, non-
- triviality is imposed on legitimate preferencisd].

“If the same transformation is applied to all functions with posi-  °If the normalizing constants differ from 0/1, then utility is some
tive support, the MEEU decision is unchanged. linear function ofp;”. This has no impact on our argument.



By reduction of compound lotteries, this means that Theaggregate standard gambfer s € S induced by{>,}
. o . o andP is defined:
si~p (qpi +(1=q)-p;i ,sTiq-(1=p; )+(1=q)-(1—pi ), s1).

Similarly, for any other outcome;, we have </ P P(-i),57;1 —/ P?’“P(>i)78L>-
=i i
- - . - -’
sj ~p Aap; +(1=q)py s sTi0-(1=p;)+(1-¢)(1=p] );51)- et be any lottery w.r.tS. Theaggregate reduction dfis
By the Monotonicity Axiom, we have; = p s; iff the standard gamble
g P +(10—q) p7 >qp;+1—q)p; . Rp(l) = (pp, 5751 — ppys1)

Sincep,” = us (s;) (and similarly for the other terms), we obtained by replacing every outcoraen [ by its aggregate

haves; ~p s; iff EU(s;, P) > EU(s;, P) (Wwhere we em- standard gamble and reducing it to a standard gamble in the

phasize that here we are treating outcomes as deterministtsual fashion. Thaggregate preference relation (w.r.t. 5)

decisions that guarantee the corresponding outcofrfesym  Induced by{-;} and P’ is given by

this one can easily show that for any two decisiehs?’

(that induce distributions over outcome&Y]) -p I(d') iff

EU(d, P) > EU(d', P).

This argument applies to arbitrary discrete distributions,Theorem 1 Let {>;} and P be defined as above. Lét,;}

and can be generalized to continuous densities as follows: be a set of utility functions (one for eagh, consistent with

=) such thatu;(st) = ¢t andu;(s,) = ¢, for all u; and

Iy > lg iff pllé >p11§.

i =P 5j two fixed constantetr > ¢; > 0. Then the utility function
: = i(s)P(>=;) is consistent with the aggregate pref-
i / (mus) ) = p / (s 55) u(s) = J, uwi(s)P(=i) ggregate p
U U erence relatiort- induced by{-;} and P.
iff </ Py Pu),sT;1 — / P P(u), sL> -p Extremum equivalence is thus sufficient to ensure commen-
U U surability, as it puts all utility functions on a common scale. It
= p 1 —up is important to realize that the scale dictated by the best and
Upj (w), 5751 = Upj (u), 51 worst outcomegannot vary since these are truly best and
worst outcomes; we return to this point below. It appears to
iff / P Pu) > / p;“P(u) be much more difficult to apply this type of argument to den-
U U sities over utility functions that are not extremum equivalent.
i [ P > [ us)Pw Sion maker s uncertin about the rature of he conseaence
U
iff EU(s;, P) > EU(s;, P) sets she will face. He proposes foundational axioms that jus-

tify the use EEU to compare decisions. However, the setting
Here the first step refers to a compound lottery over an conis rather different: specifically, Fishburn requires that any
tinuous set of component (simple) lotteries, while we assumeonsequences that two utility functions have in common be
in second step that a such a compound lottery can be reduceanked identically. In our context, where each utility function
to a simple lottery in an analogous way to the reduction of dies over the same consequence set, the Fishburn axioms im-
finite compounded lottery. pose overly stringent requirements. It is interesting to note
Thus under the assumption that one can identify a best anghat Fishburn requires something akin to extremum equiva-
worst outcome, the MEEU decision rule can be justified forlence, namely, that there exist two consequences common to
use with normalized (extremum equivalent) utility functionsthe domains of each utility function such that one of the con-
by appeal to the foundational axioms of decision theory, andequences is preferred to the other in each function.
an interpretation of uncertainty over utility as a lottery over
the lotteries defined by the component utility functions. ; ;
We now formalize the legitimacy of EEU and MEE. 4 Dealing with Small Worlds
It is important to realize that the best and worst outcomes
Definition 1 Let {>;} be a set of extremum equivalent pref- with which one calibrates must either be truly best and worst
erence relations with respect to finite outcome%atith best ~ outcomes from the decision maker’s standpoint, or they them-
and worst outcomesr ands | , respectively. Lef” be aden-  selves must be calibrated. Using Savag#d terminology,
sity over{~;}. For any~;, letp7 i denote the tradeoff prob- We must be careful to distinguish “small worlds” reasoning

ability for states in its standard gamble w.r.t;; that is, from “grand worlds.” Consider the case where the set of out-
. . comes is restricted to the subset of outcomes that are possible
s~ (pgt sTil—potis.). given the set of actions in a specific decision scenario. But

"Note that if we chose other normalizing constants for our bes@SSUme there exist outcomes outside the domain of the re-
and worst outcomes, then we would have thats;) is some linear ~ Stricted scenario for which the user has concrete preferences.
function of p]"; but this linear function is identical for each term in Let's refer to the set of restricted outcomesasl, while the
the equation, so the conclusion holds. space of all outcomes gdobal.



We might imagine determining the best and wduostal Hence,s; > s; iff
outcomess’ ands', , respectively, and engaging in the elic- Lo a a1 2 2
itation process using standard gambles with respect to these ~ PT71Pi + PTq2P; +rig(l—p;) +pig(l —p;)
extreme local outcomes. Unfortunately, this is not sufficient >yl g, pt + p2gop? + pt g1 (1 — p}) + 2 g2 (1 — p?).
to justify the MEEU decision rule. The difficulty is that the ! ST 7 !
user’s degrees of preference fér ands!, may themselves Unfortunately, this condition is not equivalent to the MEEU
be characterized by uncertainty. Specificall can be rule in the original small worlds domain. Specifically, this

equated with a standard gamiglé-, s+; 1 — pl-. s, ) (where condition cannot generally be assessed without having some

. _assessment of the global tradeoff probabilitiés etc. In
sT,s, denote the globally best and worst outcomes). Sim- :
ilarly, s, ~ (o} 5731 —p),s.). But the relevant gamble other words, to accurately compare two small world out

P ; . . o . comes given uncertainty about tleeal utility functions, we
probabilities—p7 andp’, —mayvarywith the utility function  5ye 19 explicitly assess our uncertainty aboutrtrege of
and will not be known if attention is restricted to temall

lds d X distribution d values the local extrema can take with respect togllodal
worldsdomain. As a consequence, our distribution d@er jity function. Thus while one can generally use small world
cal utility functions is insufficient to justify MEEU.

: / S reasoning in the classic decision-theoretic setting, its use is
To illustrate, suppose that we believe the user’s utility func-

R - . . R4 problematic in the EEU framework.
tion is eitheru, (with probability ¢1) or u (with probability Fortunately, the MEEU principle can be recovered if we
g2 = 1 —q1). Furthermore, suppose that we consider only th

o Y N&nhake one simple assumption: that the global tradeoffs asso-
projection of these onto the set of local outcomes, calibratzizied with the best and worst local outcomes do not vary

ing two outcomes; ands; with respect to “local” standard ith the utility function (at least, with those utility functions
gambles. Suppose that we have the following tradeoffs with,5ying positive support). For example, to continue with the

respect to the local extremain:
l

S ~1 <pzla SZT7 (1 _pzl)7sj_>

S5 ~1 <P}75l‘r; (1 _le‘)a Slﬂ
and similarly inus:

S; ~2 <p1?a sl'l'; (1 _p?)751>
Using EEU, we have

illustration above, suppose that the tradeoff probabilities as-
sociated with the two utilities; andu, are identical; that

is, p- = p% andp! = p?. (Whether the probabilities are
known is irrelevant, all that matters is that they are known to
be identical.) If this is so we havg > s; iff

pr(ap} + @2pi) + v (1 (1 = p}) + 2 (1 = p?))
>pr(qpj + ¢2p3) + 01 (@ (1 = pj) + g2(1 — p3))

el 2 L. L 2y Since the inner terms in each expression sum to one, and
Si <q1pz + q2pP;, ST5 Q1(1 pz) + qQ(l b; )’ SJ.) plr > pi (SinceslT . SlJ_), we must ha.V@i — s; iff
sj ~apy + qep, s a1 (1= pj) + a2 (1 = p3), s4). L L
Now, were we to place thismall worldin thegrand world Q1p; +q2p; > q1p; + q2p;
context, we might say that the local best and worst outcomesghis, of course, is the expression for MEEU.

st- ands', , have specific lottery probabilities with respect to  |ndeed, we don't have to assume that the global tradeoff

the global utility functions. Let's assume that we have probabilities are fixed. It is sufficient to assume that the un-
st~y (st (1= pY),s1) known range of (global) utility spanned bl ands!, is prob-
. 1 1 abilistically independent of the unknown local utility function
s~ (Pl sTi(L=p1)isL) u. This too is sufficient to allow MEEU to be used justifiably.
st ~e (%, 575 (1= p5),51) We omit the argument, which is straightforward.

l 2 2
~ : ]_ —_ . . . .

s1 2 pLsmi(l—pl), s 5 Consequences for Preference Elicitation

In other words, in (the normalized, global counterpart of) util- ) ] R .

ity function u;, we haveu;(s}) = pt andu;(s)) = p!; The considerations above have implications for practical pref-

while inus we haveus(st-) = p2 andus(sl ) = p2 . Apply- ?_renc;a ?‘III'(t:'ItatlorlL t_Fro'In Efoundbath[nalgersp(-ictlvte, cahbr_a-

ing EEU and reduction of compound lotteries, we see that 10N OF UlIILES refative to known best and worst outcomes 1S
required if decisions are to be based on EEU. In the case of

Si incremental elicitation, where EEU is used to determine value
(praipt + p2qep? + Pt i (1 — pl) + p2 q2(1 — p2),s;  of information, we must first obtain a prior over a set of ex-

1 1 9 2 tremum equivalent utility functions before engaging in such
(1 =pT)ap; + (1 —pT)e2p; berati :
T/ /428 deliberations. Fortunately, it often seems to make sense to
+ (1 =p a1 —pH) + (1 —p?)g(l —p?),s1) determine best and worst outcomes beforehand, and engage
and in “serious” elicitation after this initial calibration.

Another important question: how does one determine pri-
ors over utility functions? Utility function databadé$ could
<pqu1p} + p%qwf +piq(l— p}) +plg2(l — p?), sT; be used. This poses some problems regarding interpersonal

(1= pD)gup! + (1 — p2)gap? utility comparison for which there are no especially com-
PT)1P; PT)92P; pelling solutions. When using EEU, things are a bit worse:
+1-pHa(1 —pjl) +(1-p%)g(1— p?), s1). we need to construct priors conditioned on the observed or

S5~



elicited best and worst outcomes. Given a prior over arbitrary4] U. Chajewska, L. Getoor, J. Norman, and Y. Shahar. Util-
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crease in EEU with the effort associated with the elicitation Dordrecht, 1979.
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ncluding Remark
6 Conclud g Remarks [101 Peter C. Fishburn.The Foundations of Expected UtilityD.

Decision making when the underlying utility function is un- Reidel, Dordrecht, 1982.
known is an important problem in game theory, interactive[11] Simon French. Decision Theory Halsted Press, New York,
optimization, and preference elicitation. Quantifying this un- 1986.

certainty using distributions over utility functions has a num-[12] John C. Harsanyi. Games with incomplete information played
ber of appealing qualities, and quite naturally leads to the no- by Bayesian players. part I: The basic mod&llanagement
tion of expectedxpected utility, a concept that has been used  Science14:159-182, 1967.

in several different lines of research. [13] John C. Harsanyi. Games with incomplete information played
The aim of this paper is to point out that expectations taken by Bayesian players. part Il: Bayesian equilibrium points.
with respect to utility function distributions require some Management Sciencé4:320-334, 1968.

care. More precisely, the operation of expected expected util14 R.D. Luce and H. RaiffaGames and DecisiongViley, New
ity only makes sense (from a foundational standpoint) when  York, 1957. _ _
the distribution is over extremal equivalent utility functions. [15 Roger B. Myerson.Game Theory: Analysis of ConflicHar-

While this has certain implications for practical utility elic- vard University Press, Cambridge, 1991.

itation, we have argued that this requirement is not 0verl)£15] David M. P(_ennc_)ck an(_j Eric Ho_rvitz. Collaborative filtering

stringent from a practical perspective. by personality diagnosis: A hybrid memory- and model-based
approach. InProc. Sixteenth Conference on Uncertainty in
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