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Abstract

Combinatorial auctions provide a valuable mecha-
nism for the allocation of goods in settings where
buyer valuations exhibit complex structure with re-
spect to substitutabilityand complementarity. Most
algorithms are designed to work with explicit “flat”
bids for concrete bundles of goods. However, logi-
cal bidding languages allow the expression of com-
plex utility functions in a natural and concise way,
and have recently attracted considerable attention.
Despite the power of logical languages, no current
winner determination algorithms exploit the spe-
cific structure of logically specified bids to solve
problems more effectively. In this paper, we de-
scribe techniques to do just this. Specifically, we
propose a direct integer program (IP) formulation
of the winner determination problem for bids in the
�

GB logical language. This formulation is linear in
the size of the problem and can be solved effectively
using standard optimization packages. We compare
this formulation and its solution time to those of the
corresponding set of flat bids, demonstrating the im-
mense utility of exploiting the structure of logically
expressed bids. We also consider an extension of
�

GB and show that these can also be solved using
linear constraints.

1 Introduction
Combinatorial auctions (CAs) generalize traditional market
mechanisms to allow the direct specification of bids over bun-
dles of items [10; 11; 16]. When a bidder’s preferences exhibit
complex structure with respect to complementarity and substi-
tutability, such combinatorial (or bundle)bids allow bidders to
avoid the risk of obtaining incomplete bundles. Given a set of
combinatorial bids, the seller then decides how best to allocate
individual goods to those bundles for which bids were placed,
with the aim of maximizing revenue. Because bundles gen-
erally overlap, this is—conceptually—a straightforward opti-
mization problem, equivalent to weighted set packing. As a
result, winner determination for CAs is NP-complete [11].

By expressing her preferences, or prices, directly over bun-
dles, a potential buyer can, in principle, very accurately re-

flect her utility function, regardless of its structure. In prac-
tice, however, specifying explicit “flat” bids over all relevant
bundles may be difficult: many utility functions will require
the specification of a number of bundle bids that is exponential
in the number of goods of interest to the bidder. This is espe-
cially true for utility functions involving the complementari-
ties and substitutability for which CAs are best-suited. To cir-
cumvent this, several researchers have proposed logical bid-
ding languages that allow might allow complex utility func-
tions to be expressed relatively concisely in a suitable lan-
guage [12; 13; 5; 8; 2]. The recent

�
GB language of Boutilier

and Hoos [2], for example, allows goods to be “joined” us-
ing logical connectives, and prices to be attached to arbitrary
subformulae. Despite their attractiveness, the computational
aspects of logical bidding languages have received little at-
tention. Indeed, no studies of which we are aware exploit the
structure of logically specified bids in winner determination.
Instead, a set of logical bids is usually converted to an equiva-
lent set of flat bids and solved using methods designed for flat
bids.

In this paper, we solve the winner determination problem
for

�
GB problems without conversion to flat bids. Rather we

directly formulate the optimization problem in a way that ex-
ploits the structure of underlying bids. More precisely, we de-
scribe a very concise integer program (IP) formulation of the
winner determination problem for

�
GB that makes the logical

structure explicit. The well-documented fact that the number
of flat bids required to capture a particular problem may be ex-
ponentially larger than the set of logical bids suggests that this
strategy could be useful. However, it could be that standard
optimization techniques can discover the “lost” structure in a
set of flat bids (and hence solve the flat problem effectively) or
that the structure cannot be exploited (and hence the structured
problem cannot be solved effectively). Our results show that
neither is the case: the direct solution of structured problems
offers immense computational savings in winner determina-
tion. Since logical languages generally, and

�
GB specifically,

offer advantages both in terms of the expression of bids and in
winner determination, we expect that this approach will prove
vital for handling large CAs.

The paper is organized as follows. We describe relevant
background on CAs, winner determination, and bidding lan-
guages in Section 2. We focus on the

�
GB language since it is

fullyexpressive, and strictlymore compact than any other lan-



guage in the literature. In Section 3 we describe the IP formu-
lation of the winner determination problem for

�
GB. Through

the introduction of several auxiliary variables, this formula-
tion can be made very compact, linear in the size of the set of
logical bids. We describe an extension of

�
GB and how it also

can be modeled using a concise set of constraints. We also
show how an equivalent set of flat bids can be constructed and
solved using the “standard” IP formulation. We present em-
pirical results in Section 4 showing that conversion to flat bids
cannot be competitive for problems of even moderate size.

2 CAs and Bidding Languages

In this section, we briefly review CAs and logical bidding lan-
guages.

2.1 Combinatorial Auctions

We suppose a seller has a set of goods ���������
	��
���	������ to be
auctioned. Potential buyers value different subsets or bundles
of goods, ����� , and offer bids of the form ����	���� where � is
the amount the buyer is willing to pay for bundle � . We often
use the term “flat bid” for such a bundle bid, to distinguish it
from the structured bids we consider below. Given a collec-
tion of bids ����� �!�#"$	���"%�'&)(+*-,.� , the seller must find an
allocation of goods to bids that maximizes revenue. We define
an allocation to be any /0�1� �!� " 	%� " �$���2� such that the bun-
dles �#" making up / are disjoint. The value of an allocation3�4 /65 is given by 7��8�9"6&:�!�#"8	���"%�<;./=� . An optimal allocation
is any allocation / with maximal value (taken over the space
of allocations). The winner determination problem is that of
finding an optimal allocation given a bid set � . We sometimes
consider assignments >?&�A@B� of goods to bids. Assign-
ment > induces allocation /6C whose bids are those that have
been assigned all required goods (i.e., � " �2>�D � 4 ��� " 	%� " �E5 ).

The winner determination problem is a straightforward
combinatorial optimization problem, and can be formulated
quite directly as an IP. Let F " be a boolean variable indicating
whether bid �#" is satisfied. Then we wish to solve the IP:

Maximize: G " ��"�F�" (1)

Subject to: G �HF " &
��I';.� " �+*�J�	�KMLN*PO (2)

This formulation has , variables (one per bid) and O con-
straints (one per good), with constraints having Q terms on av-
erage, where Q is the average number of bids in which a good
occurs. Winner determination is equivalent to the weighted
set packing problem [11] and as such is NP-complete. Despite
this, generic combinatorial optimization techniques seem to
work quite well in practice. For example, results reported in
[1; 15] suggest that using generic CPLEX IP solution tech-
niques is reasonably competitive with recent algorithms de-
signed specifically for CAs. Recent search algorithms—both
complete methods [4; 12; 14] as well as stochastic techniques
[5]—have been proposed in the AI literature and have also
proven quite successful solving problems of reasonable size,
often running faster than CPLEX.

2.2 Logical Bidding Languages
Most work on combinatorial auctions assumes that a bid is
expressed using a simple bundle of goods associated with a
price for that bundle. However, a buyer with a complex util-
ity function will generally need to express multiple flat bids
in order to accurately reflect her utility function. Logical bid-
ding languages overcome this by allowing a bidder to express
a single bid in which the logical structure of the utility func-
tion is captured. A number of different types of bidding lan-
guages have been proposed in the literature, among these lan-
guages that allow flat bids to be combined logically [12; 13;
8], and that allow goods to be combined logically [5].

The recent
�

GB language of Boutilier and Hoos [2] gener-
alizes these languages by allowing goods to be “joined” using
logical connectives, and prices to be attached to arbitrary sub-
formulae.

�
GB is fully expressive (i.e., can express any utility

function over goods) and is strictly more compact than exist-
ing languages (i.e., any bid expressible in these languages can
be expressed at least as concisely in

�
GB). Indeed, for certain

natural classes of utility functions,
�

GB can express bids ex-
ponentially more compactly than any proposed languages [2].
For this reason, we focus on

�
GB.

Let � denote the set of goods, forming the atomic elements
of the language. The syntax of

�
GB is defined as follows:R �S�M	����=; �

GB, for any good �T;0� and any non-negative
price �U;WVTXY .R If �H��	$��Z[; �

GB, then ���
�]\^�_Z�	%�� , �!�
�a`b��Z 	%�� ,
and �!� ��c � Z 	%�� are all in

�
GB for any non-negative price� .

Bids so-defined correspond to arbitrary propositional formu-
lae over the goods, using connectives \ (conjunction), ` (dis-
junction) and c (XOR), where each subformula is annotated
with a price. We often don’t mention the price for a subfor-
mula if �N�1d , and loosely say that no price is associated with
such a subformula. Examples of sentences include4%e &�J6\b�f&�g 5=&�h and 4%e `b��5=&�g c2i &:j .

A sentence �U; �
GB is a generalized logical bid (GLB). The

formula associated with � , denoted k 4 ��5 , is the logical for-
mula obtained by removing all prices from subformulae.

The semantics of GLBs defines the price to be paid by a
bidder given a particular assignment of goods to her GLB.
Roughly, the underlying idea is that the value of a GLB � is
given by summing the prices associated with all satisfied sub-
formulae (with one exception). We first define what it means
for an assignment to satisfy a (priceless) formula.

Let > be an assignment > &A� @ � of goods to
GLBs. Let k 4 ��5 be the formula associated with � . We writel]4 k 4 ��5_	E>+5m�nJ to denote that > satisfies � , and l]4 ��	o>p5=��d
to denote that > does not satisfy � . The relation is defined as
follows:R If k 4 ��5]�2� for some �T;W� thenl]4 k 4 ��5_	E>+5]�qJ iff > 4 �r56�1� .R If k 4 ��5]��kp�s`bk[Z or k 4 �_5s�1kt� c k[Z thenl]4 k 4 ��5_	E>+5]�Pubv�w 4%l]4 kt�H	o>p5_	 l]4 k[Z�	o>p5o5R If k 4 ��5]��kp�s\bk[Z thenl]4 k 4 ��5_	E>+5]�PuUxzy 4%l]4 kt�H	o>p5_	 l]4 k[Z�	E>+5E5



Given a bid � and assignment > of goods to bids, we define
the value of � under > , denoted � 4 ��	E>+5 , recursively. If � is a
good, � � 	$� Z are bids, and � is a price:

� 4 � �)	%���	o>p56� ��� l]4 �M	o>p5
� 4 �!� � \b� Z 	����_	E>+5s�

� 4 �
��	E>+5���� 4 ��Z 	E>+5��W��� l]4 k 4 �
��5)\bk 4 ��Z
5�	o>p5
� 4 �!�
�6`b��Z�	����_	E>+5s�

� 4 �
��	E>+5���� 4 ��Z 	E>+5��W��� l]4 k 4 �
��5)`bk 4 ��Z
5�	o>p5
� 4 �!� �6c � Z 	����_	E>+5a�

u^v w���� 4 � � 	o>p5�	�� 4 � Z 	E>+5$��� ��� l]4 k 4 � � 5 `bk 4 � Z 5_	E>+5
Intuitively, the value of a bid is the value of its components,
together with the additional price � if certain logical condi-
tions are met. ���H�p\2��Z�	���� pays price � if the formulae as-
sociated with both � � and � Z are both satisfied; �!� � ` � Z 	%��
and �!�H� c ��Z�	���� both pay price � if either (or both) of � � or �_Z
are satisfied. The semantics of ` and c differ in how subfor-
mula value is used. Specifically, the value of a disjunctive bid
given an assignment is the sum of the values of the subformu-
lae: in this sense, both subformulae are of value to the bidder.
In contrast, a “valuative XOR” bid allows only the maximum
value of its subformulae to be paid: thus the subformulae are
viewed as substitutes.1 It is important to realize that the valu-
ative XOR connective does not have a logical XOR interpre-
tation; rather it refers to the valuation of the formula, stating
that the bidder is willing to pay for the satisfaction of at most
one subformula. Notice that an assumption of free disposal is
built in to the semantics.

We refer to [2] for further details of the language and exam-
ples of its expressive power. We give three examples here to
illustrate the intuitions. Consider the bid

�E� e 	�J
�)\W����	
J��\W� i 	$j��)\ �
		$h���	$h�d � .
This might reflect that e , � , i , and 	 are complementary goods
with joint value 50, and that the individual goods have some
intrinsic (e.g., salvage) value over and above that of their role
within the group. As a second example, consider

�E� e 	�J
�)`W����	
J��`W��j�	 i �)` �
		$h���	$h�d � .
Here the individual goods are substitutes: they provide a ba-
sic functionality of value 50, but perhaps do so with differing
quality (or each has different intrinsic value) reflected in the
“bonus” associated with each good.

As a final example, consider a scenario in which we have
a number of goods ��� � 	������	�� I � whose utilities/prices ��" are
conditionally dependent on the presence of another good ,
but are (conditionally) additive independent of each other [2].
For instance, think of the �
" as resources or raw materials, and
of , as a machine used for processing those resources. This
situation can be captured using a single GLB of the form:

��,q\�� ��	%� �8�)` �!, \��
Z�	���Z��)`������` ��,q\���I�	���I��
To express the same utility function using other languages
would require a number of bids exponential in L (essentially

1This semantics of XOR is just one of several natural interpreta-
tions. The practical use of XOR may determine other semantics.

requiring the enumeration of all subsets of resources). For ex-
ample, with one machine , and four resources � �H	���Z
	���� 	����
(worth 1, 2, 3, and 4, respectively), we’d need the following
bid:

��,�� � 	
J��` �!,�� Z 	8g �)`W��,�� � 	$j��)` �!,�� � 	��:�
` ��,�� � � Z 	$j��` �!,�� � � � 	��:�)`W��,�� � � � 	$h��)` �!,�� Z � � 	8h �

` �!,��
Z�����	����` �!,��������:	����`W��,�� ���
Z���� 	����` �!,�������Z�����	�� �
` �!,������������:	�� ��` ��,��
Z������ 	����` �!,�� ����Z���������	
J�d �

We note that each of the connectives is commutative and
associative, so we can safely treat them as having more than
two operands (e.g., it is legitimate to refer to the conjunction
of L� g bids).

The notion of a L -of bid, explored in the context of logical
bids without priced subformulae [5], can be extended to

�
GB

quite readily. Let
� k-of

GB denote the extension of
�

GB with theL -of operator. Intuitively, � k-of 4 ����	$��Z�	
���
�	8��!_5�	���� is satisfied
if any L of the 	 bids �H��	��
���9	8��! is satisfied (and a price of �
is associated with its satisfaction). As in the semantics above,
the value of a L -of bid is determined by the price � as well as
the values of any satisfied subformulae.2

Since combinatorial auctions are still relatively rare in prac-
tice, it is difficult to say whether

�
GB can naturally and con-

cisely express utility functions that are likely to arise in prac-
tice. However, the examples above suggest that it does cap-
ture a lot of the natural structure in utility functions. In addi-
tion, since it can directly “emulate” any existing bidding lan-
guage, it should be considered state of the art at this point.

3 Winner Determination for LGB
The expressive advantages of logical bidding languages are
readily apparent. One might also hope that such languages
permit CAs to be solved more effectively as well. If one can
express bids concisely, there must be structure in the underly-
ing utility function. If this is so, we should be able to exploit
this structure computationally in winner determination. Un-
fortunately, to date there has been no serious investigation of
this possibility.

There are several ways to exploit logical structure compu-
tationally. First, one might convert the logical bids to a set of
flat bids and hope that existing algorithms discover the “hid-
den” structure. Evidence that this might work was described
in [5], but we will show that for realistic sized problems this
approach is doomed. Second, one might devise special pur-
pose procedures for winner determination that exploit the log-
ical structure, such as the stochastic local search procedure
suggested in [2].

Finally, one could simply formulate the optimization prob-
lem directly in terms of

�
GB bids and use generic IP solvers to

solve the problem. It is this final approach that we now con-
sider. Expressing logical relationships among goods directly
in an IP is reminiscent of the use of optimization techniques to
solve problems in logical inference, as proposed by Chandru
and Hooker [3].

2This extends the treatment of " -of bids in [5], which allowed
choosing any " of # goods rather than bids.



3.1 A Direct IP Formulation for LGB
Our aim is to formulate an IP that directly expresses the win-
ner determination problem for a set of

�
GB bids. We first con-

sider the objective function and then the constraints. We as-
sume a set of O goods ��� "[&:( *�O � and , bids �H�#"=& ( *�,b�
expressed in

�
GB. We use the following variables:R F "�� ; �Hd9	�J � for each good � " that occurs in bid � � : true

( J ) if ��" is assigned to ��� .R���� ;0��d�	
J�� for each subformula � of any bid: true ( J ) if
� is satisfied by the optimal assignment.R 3 � for each subformula � of any bid: this denotes the
value of � under the optimal assignment.3R	��� ; ��d�	
J�� for each subformula � of any bid that is
an immediate subformula of an XOR: true ( J ) if � is the
(unique) formula that contributes value to the encom-
passing XOR.

As a trivial example, consider two bids:

� � �1�o�E� e 	
J��)` �!� 	8g ��	$j�� c � i 	$j���	���� (3)

��Z[���E�E� e 	�J
�)\W����	$g��\W� 		�J
��	$j��`W� i 	 � ��	���� (4)

There are seven variables F�"�� corresponding to the assignment
of (relevant) goods to each bid. ��� has five � -variables, one
per subformula ( e , � , e `b� , i , 4�e `b��5 c2i ), while � Z also has
five � -variables (note that we view \ as a ternary connective
in this example). There is also a corresponding 3 -variable for
each subformula of each bid. Finally, � � has two � -variables,
one for subformula e `2� and one for i , since these are the
immediate subformulae of an XOR. The number of variables
in linear in the size of the logical formulation of the bids.

The objective function is straightforward:

Maximize: G � 3
� &�� corresponds to a top-level bid �
In our example, the objective function is 3 �� � 3 ��� , where 3 ��
is the 3 -variable for ��� ’s formula, 4%e ` �_5 c1i , and similarly
for � Z . There is one term in the objective for each bid.

A set of constraints is imposed for each subformula of each
bid. The constraints will vary with the main connective. The
constraints place upper bounds on the values of all variables,
since the objective value can only increase with increasing
variable values. For each atomic subformula � of the form� � " 	���� in bid � � , we impose two constraints:

� � *PF "���� 3 � * ��� � �
Thus the formula is satisfied only if � " is assigned to � � (and
value is determined correspondingly).

For each subformula � � ���a� ` ����z`�� !:	���� , we impose two
constraints:

��� *PG"�� !
���� � 3
� * ��� ��� �2G"�� !

3
��

This ensures � is considered satisfied if any subformula is, and
assigns value as dictated by our semantics.

3For simplicity, we treat this as an integer, which is valid if all
prices are integral. Allowing a mixed formulation is not problematic.

For each subformula �W�����a� \ ���� \�� !�	���� , we impose two
constraints:

	 � ��� * G "�� !
����� � 3
� *0��� ��� � G "�� !

3
���

This ensures � is considered satisfied if all subformula are.
Finally, for each subformula ��� ��� �[c ����� c � ! 	���� , we

impose four constraints:

��� * G "�� !
����� � 3
� *0��� ��� � G "�� !

3
���

G "�� !
���� *�J � 3
�� * maxval � ���� 	 KM(]* 	

The penultimate constraint ensures that only one subformula
of the XOR is selected for contribution of value to the XOR
as a whole, while the final constraint ensures that only the se-
lected subformula has positive value. maxval is a large con-
stant assured to be larger than the value of any formula.4

The number of constraints is linear in the number of subfor-
mulae (hence in the size of the bid specification), and the size
of each constraint is bounded by the “actual” arity of the con-
nective involved. Thus, the IP formulation is very compact.

The IP formulation also extends naturally to
� k-of

GB . Let � be
a subformula of the form � k-of 4 �a�H	���Z 	��
�
��	�� !�5�	���� . We intro-
duce a new variable O � for each k-of bid denoting the number
of satisfied subformulae. We then impose the following three
linear constraints:

O � * G "�� !
����� � ��� ��L *PO �

3
� *0��� ��� � G "�� !
3
���

The first constraint ensures that number O � of subbids counted
as satisfied is legitimate, while the second ensures the k-of bid
is satisfied only if at least L of the subbids are satisfied.

3.2 Converting LGB to Flat Bids
The utility function represented by a GLB � can be captured
using an equivalent set of flat bids. Let � 4 ��5 denote the set of
goods occurring in � . The required set of flat bids � 4 ��5 can be
generated using a very simple strategy: since each good men-
tioned in � may contribute to value, every subset � � � 4 �_5
can be viewed as a potential flat bid having some utility to the
customer, and this utility can be determined by calculating the
value of the assignment � to � . Of course, only one such subset
is of interest, so we insert a single dummy good into each flat
bid (subset) to ensure that only one such bid can be satisfied.
More precisely:

� 4 ��56����� ��� ��	��� 	�� 4 ��	 � 5E�[& � � � 4 ��5$�
where 	 � is a dummy good associated with GLB � . The win-
ner determination problem for

�
GB can be solved by convert-

ing each GLB � into a set of flat bids, and solving the corre-
sponding “flat” problem using these.

4This constraint can be formulated without such a constant
through the introduction of additional variables.
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Figure 1: Flat vs. structured solution times with varying number of goods

A number of flat bids generated in this way may be “redun-
dant,” in the sense that some smaller subset could generate
equivalent value. In our experiments below, we in fact use a
more sophisticated, bottom-up strategy for generating equiv-
alent flat bid sets from a GLB to ensure that the set of flat bids
is in fact a minimal representation of the utility function.

4 Empirical Results

In this section we report on experiments run to compare the
relative effectiveness of solving the direct IP formulation of
an

�
GB problem with the IP formulation for the corresponding

set of flat bids. In all experiments, the CPLEX optimization
package (Version 7.1.0) was used to solve the IP. CPLEX has
a number of strategies for solving IPs, and algorithm choice
was left to the software. Running times reported include pre-
solve times, but do not include read times (which would put
the large flat bid formulations at a disadvantage). All experi-
ments were run under Linux with a 933MHz, PIII, 512Mb PC.

A number of researchers have proposed candidate prob-
lem distributions for CAs in order to facilitate the compari-
son of different evaluation techniques. Many of these prob-
lems are very abstract and it is unclear how these might arise
in practice. In an effort to alleviate this problem, a suite of
test problems—or more precisely a suite of schemes for gen-
erating random test problems—has been proposed that draws
on somewhat more realistic intuitions [7]. This collection of
problems, CATS, arguably reflects structure that is more likely
to arise in practical problems. Unfortunately, the problems in
this suite are largely designed to generate structured “subsets”
of goods, and hence reflect little of the natural structure suited
to a logical language such as

�
GB. For this reason, we consider

the generation of logical bids directly. We first consider some
abstract problems, and then consider a class of problems that
exhibit the same type of “natural” structure that motivated the
development of CATS. The development of a suite of realistic
“logical” test problems is an important future goal.

Our first set of experiments focus on randomly generated

GLBs with conjunction and disjunction.5 Bids are gener-
ated using randomly constructed parse trees of a given depth
and branching factor. One parameterized distributionwe con-
sider is RandAO-d-b-m-n-p: these problems have , bids overO goods, with each bid having a parse tree of depth 	 and
branching factor � . At each interior node a connective \ or` is inserted (with equal probability), while at each leaf a ran-
dom good is inserted (drawn uniformly). At each node (in-
terior or leaf), a price is included, drawn uniformly from the
range

� d9	%�� . For example, the bid

�E�E� e 	8g �)\W����	$j���	$d��\ �E� e 	$g��)\.� i 	$d��_	�J
��	$g�d �
is a bid with depth 	 � g and branching factor �W� g . We
also consider variants AltAO-d-b-m-n-p and AltOA-d-b-m-
n-p, where the connectives \ and ` strictly alternate at each
level of the tree (starting with \ at the root of AO-trees, and` at the root of OA-trees).

We start with the RandAO distributionswith , ��Ob�1j�d .6

On very small GLBs, with �t�qg and 	N�qg (thus inducing a
tree with four leaves, and at most 15 flat bids), the IP solu-
tion of the flat bids dominates that of the structured bids, with
mean times of 0.02s and 0.06s, respectively. However, if we
increase the branching factor to 3 (thus each GLB corresponds
to as many as 511 flat bids), structured solutions dominate flat
solutions, with mean times of 0.15s and 0.99s, respectively.
The scatterplot of solution times shown in Figure 1(a) shows
that the the structured solution time is less than the flat time on
each problem instance. Figures 1(b) and (c) show the relative
solution times with larger numbers of goods: with O1� � d ,
the average solution times are 0.24s and 1.47s, respectively,
while with O�� J�d d , average times are 0.19s and 1.24s, re-
spectively.

The advantages of solving structured CAs directly is
even more apparent with only slightly larger problems.

5We report on XOR and k-of bids in the longer version of the pa-
per. Results are similar.

6In all experiments, ����� � . All results are averages over 100
random instances except where noted.
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Figure 2: Cumulative runtime distributions for different num-
bers of goods. RandAO distributions, with 	T��j9	8�t� � and
30 bids. Number of goods: 30, 60, 100. Each distribution
generated from 100 problem instances.

The following table shows the solution times (in sec-
onds) for five random instances with 	-� g9	8�P� � (each
GLB corresponds to 65535 flat bids), 20 goods and 40 bids:

Instance I1 I2 I3 I4 I5 Mean
Structured 0.14 0.10 0.12 0.22 0.14 0.14

Flat 364.9 172.2 218.3 184.8 169.4 221.9

Even though these structured bids are of fairly small size
(with only 16 leaves in the parse tree), solving the flat version
of the problem takes at least three orders of magnitude longer.

The next results illustrate run times on larger problems,
for which solving flat versions of the problem proved infea-
sible. Figure 2 shows the change in runtime distributions as
the good:bid ratio varies. In these problems 	P� j , � � �
(each GLB thus corresponds to as many as g�� � flat bids). In
each instance, 30 bids are present. Each line shows the cu-
mulative runtime distribution for a different number of goods
(hence the F -axis shows the run time, while the � -axis shows
the probability that an instance will be solved by that time).
Note that as the number of goods increases, random problems
become less constrained and hence somewhat easier to solve.
Figure 3 shows the runtime distribution for similar problems
but with a much larger number of bids (200) and goods (1000).
The mean solution time of 35.21s is very encouraging for such
large problems, where the corresponding flat bids sets could
scarcely be enumerated.

Finally, Figure 4 shows the runtime distribution for 10
problem instances for GLBs with 	0� � and �N� � : the set
of flat bids for each such GLB could be as large as g Z�� � (if we
have at least 256 goods from which to draw). Each problem
has 30 GLBs over 100 goods. The mean solution time is 472.9
seconds. It scarcely needs to be mentioned that using flat bids
can’t even be contemplated for problems of this magnitude.
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Figure 3: Cumulative runtime distribution for large problems
( 	 ��j9	8�N� ��	$O � J
d�d d�	$, � g d�d ). Generated from 100
problem instances.

Further empirical study is needed of different structured bid
distributions. While for problems involving GLBs of more
than depth 2 and branching factor 3, flat solution methods will
unlikely be feasible for any distribution, for “small” GLBs,
the specific problem distributions may prove more or less ad-
vantageous for flat formulations. Studies of AltAO and Al-
tOA distributions, for instance, with 	U�ng and ���nj (these
bids are the same “size” as those evaluated in Figure 1), reveal
that the flat IP is competitive with the structured IP for AltOA:
over 100 instances, the flat mean solution time is 1.08s, while
the structured mean is 1.07s; furthermore the flat solution time
has much lower variance. In contrast, the advantage of the
structured over the flat IP is even greater in AltAO problems
than for RandAO: the structured technique takes on average
0.15s, while flat takes 1.07s.

We have not reported on XOR or k-of bids. The structured
IP retains its extreme advantage over the flat IP, naturally;
but it is worth pointing out that different semantics for XOR
have fairly dramatic impact on the structured solution times,
while seeming to have less impact on the flat technique. We
have done only preliminary experimentation with k-of bids,
but these suggest that the structured IP can handle problems
of the same order of magnitude reported above.

Other variants of these problem distributions need to be
considered as well. The abstract distributions above assign
prices randomly to subformulae, without regard to the num-
ber of items required to satisfy them. We plan to study more
biased (and realistic) price distributions in the future.

The second set of problems we consider are motivated by
more realistic considerations. The parameterized distribu-
tion Mach-n-m-r-b-p captures the resource allocation prob-
lems discussed in Section 2.2. This distribution assumes a set
of , machines and � resources available for auction. Each of
the � bidders wants one (specific) machine from this collec-
tion and O of the � resources. The form of the bid is exactly as
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Figure 5: Flat vs. structured solution times for small Mach
problems ( OT� J�g9	8,n� ��	��[��j d�	$�6��g d ).

specified in Section 2.2: a bidder is willing to pay some price� " for the conjunction ,T\ � " for each of its requested resources
�_" . The price �9" is drawn uniformly from the range

� d�	�� � . The
machine and resources needed by each bidder are also drawn
uniformly from the set of machines and resources.

We first compare the structured and flat solution methods
on the Mach distribution with ,A� � , �f�1j�d , each bidder re-
questing Ob� J�g distinct resources, and �=��g d bidders.7 The
scatterplot of solution times shown in Figure 5 shows that the
structured solution time is considerably less than the flat time
on each of 20 problem instances, even for such small prob-
lems.8 The mean solution times are 4.2s and 27.2s for the
structured and flat methods, respectively.

For even slightly larger problems, solving the set of flat in-

7In all Mach-distribution experiments, ��� � � .
8One outlying point is removed: for this problem, the structured

solution time was 10.9s, while the flat solution time was 325.4s.
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Figure 6: Cumulative runtime distribution for medium sized
Mach problems ( O0�Ag d�	$,���J�d9	��'�nh�d9	8�+�Ag d ). Gener-
ated from 100 problem instances.

stances becomes infeasible. A systematic test of the Mach-
15-8-50-20-50 distribution on flat bids is impractical. For
one typical instance, the solution time was 1933.14s (approx-
imately half an hour). By contrast, the runtime distribution
based on 100 random problem instances for the harder prob-
lem distribution Mach-20-10-50-20-50 is shown in Figure 6.
The mean solution time over these instances is 7.55s. Note
that in each instance, 20 bidders are competing for 10 ma-
chines. Furthermore, since each bidder requests 20 resources
from the set of 50, each of the 20 GLBs in these instances
would correspond to g Z Y flat bids.

Finally, the following table shows the structured
solution times (in seconds) for five random in-
stances with drawn from Mach-30-10-200-100-50:

Instance I1 I2 I3 I4 I5 Mean
Time 114.0 25.3 85.9 148.6 157.2 106.2

Again we see that the structured formulation offers consid-
erable advantages, allowing very large resource allocation
problems to be solved effectively.

5 Concluding Remarks
We have described a technique for producing a compact IP re-
flecting the winner determination problem for CAs involving
the generalized logical bidding language

�
GB and its extension

� k-of
GB . Apart from the expressive advantages of

�
GB, our empir-

ical results demonstrate the unequivocal superiority of com-
putational methods that directly exploit the logical structure
of these bids in winner determination. We have provided evi-
dence for several representative problem distributions, though
the combinatorics alone imply that these advantages will ob-
tain for any distribution over GLBs of moderate size.

A number of extensions of this work are being pursued.
One is the extension of

�
GB and the IP formulation to multi-



unit CAs. This extension is straightforward; we expect the
same computational advantages to persist. We are also cur-
rently exploring the use of stochastic local search techniques
for solving CAs expressed using

�
GB. Specifically, the pro-

cedure proposed in [2] seems to provide a useful anytime
method for solving bids expressed in

�
GB in a way that ex-

ploits their logical structure.
The development of realistic problem distributions for log-

ically structured utility functions remains an important task.
The Mach distributions proposed here seem to reflect natural
intuitionsabout certain types of resource allocation problems,
but additional problem classes are needed to fully verify the
usefulness of our technique. A test suite for logically speci-
fied CAs, similar to CATS [7], would be a great step in this
direction.

Finally, the problem of sharing partial solutions across re-
lated CAs might be one that can readily exploit logical struc-
ture. Related CAs arise, for instance, in the implementa-
tion of generalized Vickrey-Clarke-Groves mechanisms [9;
6], where multiple CAs are solved with different bidders re-
moved. Logical structure in utility functions could be used to
facilitate the “transfer” of partial solutions.
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