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Abstract

A number of proposals have been put forth in recent years
for the solution of Markov decision processes (MDPs)
whose state (and sometimes action) spaceaatered

One recent class of methods involves linear value func-
tion approximation, where the optimal value function is
assumed to be a linear combination of some set of basis
functions, with the aim of finding suitable weights. While
sophisticated techniques have been developed for finding
the best approximation within this constrained space, few
methods have been proposed for choosing a suitable ba-
sis set, or modifying it if solution quality is found want-
ing. We propose a general framework, and specific pro-
posals, that address both of these questions. In particu-
lar, we examineveakly coupled MDP&here a number of
subtasks can be viewed independently modulo resource
constraints. We then describe methods for constructing a
piecewise linear combination of the subtask value func-
tions, using greedy decision tree techniques. We argue
that this architecture is suitable for many types of MDPs
whose combinatorics are determined largely by the exis-
tence multiple conflicting objectives.

Introduction

Relu Patrascu and Dale Schuurmans
Department of Computer Science
University of Waterloo
Waterloo, ON, N2L 3G1
rpatrasc,dale@cs.uwaterloo.ca

3]. Additive reward functions can also be used to great ef-
fect[2; 12]. Methods exist for exploiting these forms of struc-
ture when solving an MDP, obviating the need for state space
enumeration, and producing compact representations of value
functions (VFs) and policies. These include exact and approx-
imate methods for piecewise constant representafiong;

10; § and feature-based approacheslg.

Among feature-based modelmear approximationhave
proven popular. In linear approximations, a small set of basis
functions (over state space) is assumed, and the VF is taken
to be a linear combination of these functions. Recently, sev-
eral clever proposals have shown how to find the best linear
approximation, given a fixed basis set, in a way that exploits
the factored nature of an MD[B; 16; 9. These models use
basis functions over a small set of variables and DBN action
representations to ensure computation is effective. These ap-
proaches have the potential to scale well for certain classes of
problems.

The main drawback of linear models is the need for a good
basis set. While these approaches may scale, the quality of
the approximation depends critically on the underlying basis.
If no decent approximate VF lies in the subspace spanned by
the basis, it is impossible to obtain good solutions using such
techniques. Unfortunately, in the recent work on linear ap-
proximations for factored MDPs, no proposals exist for either:
(a) the choice of a good basis; or (b) the modification of an ex-

Markov decision processes (MDPs) form the foundations ofSting basis to improve decision quality. Studies to date have
most recent work in decision-theoretic planning and rein-used S|mplt_a characteristic functions over (very small) subsets
forcement learning. Classical solution techniques for MDPsOf state variables.

however, generally rely on explicit state and action space enu- We address both of these problems in this paper. We first
meration, and thus suffer from the “curse of dimensionality.”describe one technique for the generation of a suitable basis
Specifically, since realistic domains are offantored—that
is, the state space consists of assignments of values to a wturally isweakly coupled MDPs (WCMDPE)2], a general
of variables—they have states spaces that grow exponentialfass of large, factored MDPs. A WCMDP is one in which
with the number of relevant variables.

set, based on the notion sifibtask value functionghese arise

a process can be decomposed into a number of subprocesses

Fortunately, the factored nature of an MDP often admitscorresponding to distinct objectives, with each of these sub-

compact representatidi; 3]. For example, dynamic Bayes Processes coupled in a_weak sense. The weakly cogpled na-
nets (DBNs) can be used to represent the dynamics of thigire of an MDP can be discovered through analysis of its DBN
MDP, taking advantage of the fact that actions tend to havéepresentation. Our first technique for basis function gener-
independent effects on state variables, and that these effe@yon exploits weak coupling and can be thought of as rely-
depend only on the status of a small set of other varidibles
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ing on domain-specific properties. We then describe a general
framework for the incremental construction of a suitable ba-
sis for linear approximation of a factored MDP. This approach
relies on no special domain properties, and can be instantiated



in a number of concrete way$4]. We focus in this paper on many classes of MDPs, exact solution using LP methods is not
a particular instantiation of our framework that allows for the as effective as using dynamic programming algorithi.
construction of giecewise linear (PWLyombination of ba- The value of the LP formulation, however, becomes apparent
sis functions. We argue that this model is especially suited tavhen we consider linear approximatitis; 9.
the solution of WCMDPs, a fact supported by our empirical
results. 2.2 Factored and Weakly Coupled MDPs

We begin in Section 2 with a brief overview of factored One weakness of the classical MDP formulation s its reliance
and weakly coupled MDPs and existing methods for linear apen explicit transition and reward functions. When the state
proximation for factored MDPs. In Section 3, we describe ourspace of the MDP ifactored—i.e., when states correspond
general framework for incremental basis function construcito the instantiation of state variables—an MDP can often be
tion, and discuss a decision-tree approach for the construgpecified more compactly by exploiting regularities in the re-
tion of PWL combinations of basis functions in Section 4. Weward function and the dynamid8]. We assume a set of

offer some preliminary experimental results in Section 5 andfor simplicity, boolean) state variabléé = { X,... , X, }.

conclude in Section 6. Each state is thus a vectoassigning a value to each variable.
Reward often depends only on the status of a few state vari-

2 Linear Approximations of MDPs ables, or additively on “local” reward functions. We assume

We begin with an overview of MDPs, a discussion of factored m

and weakly-coupled MDPs, and recent techniques for linear R(x,a) = Z R;(x},a)

function approximation. j=1

2.1 Markov Decision Processes where eachi; is a function that depends on a small subset
X7 C X, andx’ denotes the restriction of to the variables

in X7. Similarly, dynamics can often be specified compactly.
We assume the effect of each actiocan be decomposed into
independent effects on each varialdlg and that its effect on
X; depends on a small subs¢f C X of variables. A local
functionPr(X;|a, X¢) denotes the distribution ovéf’ given
any assignment tX¢. We then have

We assume a fully-observable MDP with finite sets of states
and actions4, transition functiorPr(s, a, t), reward function
R(s,a), and a discounted infinite-horizon optimality criterion
with discountfactof. Pr(s, a, t) denotes the probability with
which the system transitions to statghen actioru is taken at
states, while R(s, a) denotes the immediate utility of taking
actiona at states. A stationary policyr : S — A determines

a particular course of action. Thalueof a policyr at states, Pr(x,a,x') = H Pr(z)|a, x).
V7™ (s), is the expected sum of future discounted rewards over ; R

an infinite horizon: ) .
We refer to the local functioBr (X, |a, X¢) as the conditional

(o]
tpt| Q0 _ probability table otablefor X; underactiom. Thisformsthe
Ex [Z;W BlS - basis of DBN action representations.
) i This representation allows MDPs to be encoded concisely,
The functionV’™ can be computed as the solution to the fol- requiring space linear in the number of variables if each table
lowing linear system: R; or Pr(X;) refers to a bounded number of variables. The
- ” size of the representation can be reduced even further by us-
V7(s) = R(s,m(s)) + ﬁz Pr(s,m(s),t) - V"(t) (1) ing specialized representations for these tables, such as deci-
tes sion treeg3] or ADDs[10]. Furthermore, several techniques
The operator on the r.h.s. of Eq. 1 is referred to addekup  can take advantage of this structure to avoid state space enu-
operator for policyr, denotedB™; V™ is thus a fixed pointof meration when solving the MDP. If a candidate VF depends
B™. We denote byB“ the backup operator for the policy that on only a few variables, the fact that each variable depends on
applies actior at each state. only a small number of parents ensures that applying a Bell-
Our aim is to find a policyr* that maximizes value at each man backup results in a new VF that depends only on a few
state. Theoptimal VF, denoted/*, is unique and is the fixed variableq3].
point of the followingBellman backup operatddi]: Finally, this type of representation allows us to identify
weakly coupled MDPs (WCMDRs)A WCMDP is one in
V*(s) = max R(s,a) + 8 > Pr(s,a,t)-V*(t)  (2)  which'the reward function is decomposable as above, and the
tes set of variableselevantto the eactR; is small. The variables
A number of algorithms exist to construct the optimal VF, in- relevant to eactR; are determined as followg]: the vari-
cluding dynamic programming algorithms such as value an@blesX’ are relevant td?;; and if X; is relevant tofz;, then
policy iteration. We focus here on a simple linear programsg are the variableX¢ for all a.! WCMDPs arise in many
(LP), whose solution i$’*: guises, but most often when the combinatorics of a given
.- . a problem are largely due to the existence of many competing
Min: ;V(S) Subj. 10:V(s) 2 (BTV)(s),Va,s - (3) subobjective$2; 121. When determining the variables rele-

_ . _ vant to one objective, other objective variables do not play a
Here eachl/(s) is a variable, and the valugB*V)(s) is

a linear function of these variables, as seen in Eg. 1. For *Note the recursive nature of this definition.



role; thus, the objectives are coupled only through the exis- Anapproach that offers even greater computational savings
tence of a common core of relevant variables. Problems thas the incremental constraint generation technique proposedin
exhibit such structure include resource allocation problems16]. The LP above can be rewritten as minimizing Eq. 4, s.t.
and scheduling of tasks in multi-user domains. We elaborate
on WCMDPs in Section 3.1. Z w;C5(x,a) > R(x,a),Vx,a (6)

J

2.3 Linear Approximations
A common way to approximate VFs is with linear approxi- whereC (-, a) is a function refers only to variabl@éf and

mators[18; 8; 16. Given a small set dbasis functions? = X4 for eachX; € Xf. More precisely, we have
{f1, -, fm} Over state space, lmear value functionV is

defined ad/(s) = >, w; fi(s), or V = Fw, for some set of ‘ oo fy SF1of of
coefficients (oweighfsw = (w1,... ,wn). HereF denotes Ci(x,a) = £;(x5) *8Z;Pr(xj 15,00 0) f3(%5)
a matrix whose columns are the functiofyjs UnlessF spans xj

a subspace that includ®s, any linear VF will be, at best, an s ) o _

approximation ofi’*. The aim is then to find the best linear wherex; , refers to the set instantiation of variabl&s’

approximation of the true VF, using a suitable error metric. for each X; € X{. This LP is solved without con-
Animportant challenge, the construction of good linear apstraints, then using the cost network technique to compute

proximators for factored MDPs, has recently been tackled innin, min, Ej w;C;(x,a), the state-action pair that maxi-

[8; 18], resulting in techniques that can find approximately op-mally violates the constraints in Eq. 3 is determined. This con-

timal linear approximators in way that exploits the structurestraint is added to the LP, which is then resolved.

of the MDP without enumerating state space. We assume that |, matrix form, we can rewrite this LP as

each basis functiorf; is compact, referring only to a small

set of variable§(§c. Linear value and policy iteration are de- min y ' w subjecttoCw > r (7)
scribed in[8], while a factored LP solution technique is pre- ) )
sented if16; 9. We discuss the method proposed16]. whereC is a matrix whosen columns correspond to the func-

The LP formulation of a factored MDP above can be en-tionsCj(x, a). ThusC has|X||A| rows. The advantage of
coded compactly when an MDP is factored. First, notice thagonstraint generation is that the rows@fare added incre-
the objective function Eq. 3 can be encoded compactly: mentally, and the LPs being solved are dramatically smaller

than those described above: the number of constraints ulti-
DVE) =D wifi(x) =) wy (4)  mately added i©)(m) (i.e., the number of basis functions),
x x 7 7 considerably smaller than the number of constraints required
; by the LP generated by the cost network. Once all constraints
wherey; = gn—|x;| S fj(Xf)- Intuitively, eachy; is the  are generated, the LP constraints @ew > r*, whereC*

sum of the values assigned by functipn multiplied by the andr* are restricted t_o th®(m) active constralnts.

number of states at which they apply, and can be precomputed. Ve observe that this LP attempts to minimizg-error, not
Observe that the variables are the weightsvhich determine ~ Sellman orLo-error, as is usual when solving MDPs. Fur-
the valued/ (x). Second, the set of constraints in Eq. 3 can beermore, this LP model imposes a one-sided constraint on

encoded compactly by observing that this set is equival@nt tol17€TOr, SO it cannot strictly be viewed as minimizidg-
error. L..-error can be tackled directly using algorithms like

max V(x) — (B*V)(x) > 0,Va (5) policy and value iteratiod8], but at higher computational
* cost. The difficulties associated with minimizing different er-
SinceV is compactly representable as the sum of compactor metrics in the LP context are discussedlid].
functions,(B*V') is similarly representable. Specifically, the
;:onstrucfcion of(B“ f;) for basis functionf; can ex'ploit the 3 Basis Function Selection
act that it refers only a small subset of variables;dgres-
sionof f; througha produces a function that includes only While linear approximations scale well, determiniagpri-

those variableX¢ for eachX; e Xf, and variables ifX}, ori the solution quality one can obtain using a given basis

[3]. The maximization ovex is nonlinear, but can encoded S€t iS difficult. Ideally,V’* would be an element of the sub-
using the clever trick of8]. For a fixed set of weights,gost ~ SPace spanned by, in which case an exact solution could be

networkcan be solved using variable elimination to determingfound. If this is not the case, the quality of the best approxi-

this max without state space enumeration. While this techMation could be gauged by considering the projectiol bf

nique scales exponentially with the maximum number of vari-O" this subspace. However, since we do not have access to

ables in any function (i.e, the functiorfs, (B f;), or inter- v, choosing a SU|tabIe_baS|s set is p_rob_lematlc. Indeed, no
mediate factors constructed during variable elimination), thiS€/10us proposals for this problem exist in the recent litera-
“local exponential” blow up can often be avoided if more so- lUré on factored linear approximations. Since solution gual-
phisticated representations like ADDs are UEEd. ity depends critically on the choice of basis, we must consider
methods that allow selection of a good initial basis set, or in-
2When approximation is used, this LP can be viewed as approxtelligent revision of a basis if solution quality is unacceptable.
imately minimizing L1 -error. We consider both of these problems.



mally. Of course, the optimal solutions for the different sub-
task MDPs may not be compatible. The policies for different
subtasks are coupled by the resources—in particular, by con-
straints on the feasible actions one can apply to jointly to each
task. Notice that the action spaces are also considerably re-
duced in the subtask MDPs.
WCMDPs have been examined recently and several tech-
niques proposed to take advantage of their strudiyd 2;
17]. Given a factored MDP with an additive reward function
reflecting subtask structure, constructing a (factored) subtask
MDP for each objective is straightforward (see the discussion
of relevantvariablesin Section 2[2]. Inthe example above,
backchaining through the DBN allows us to construct the sub-
Figure 1: DBN for a generic resource allocation problem. task MDPs for each task, starting only with the varialies
(which are the only “reward variables”).
. If a subtask MDP is of manageable size, it can be solved to
3.1 Subtask Value Functions produce the optimaubtask value functigulefined on the set
In a variety of MDPs, the combinatorial explosion in state of variables relevantto that MDP. All the techniques described
space (and often action space) size is caused by the presenied2; 12; 17 use subtask VFs to great effect to approximate
of multiple, conflicting objectives. For instance, in a man-the solution of the full WCMDP. For instance, using heuris-
ufacturing setting we might need to allocate resources (e.gtic techniques to piece together a global policy using subtask
machines) to different orders placed by clients. If the proces¥Fs, problems involving several thousand boolean variables
plan for a specific order is more or less fixed, then the problenfand similarly sized action spaces) can be solded].
is one of resource allocation. In an office environment, arobot Subtask VFs are ideal candidates for a basis set. If, for
might be charged with performing tasks of differing priorities example, we havé subtasks of widely differing priorities
for many users. (or having different deadlines) the optimal policy might have
In problems like these, the underlying MDP is ofteeakly ~ the form: complete the highest priority subtask (using all re-
coupled given a choice of action (e.g., an assignment of re-sources); then complete the next subtask; and so on. In this
sources to each order) each subtask (e.g., order) has a certa#se, the optimal VF isV (x) = V!(x') + g V?(x?) +
small set of state variables that are relevant to determining "*2V2 (X2)+-,- ., wherel’* is the VF for subtask, defined
how best to achieve it, and this subset has little or no overover variableX*, andt; is the expected time to completion
lap with that of other objectives. Thus, each subtask can bef taski under the optimal policy. Thus a linear combination
viewed as an independent MDP, defined over a much small@f subtask VFs may provide a good approximation.
set of variables, that can be meaningfully solved. The sub- Unfortunately, a linear combination of subtask VFs may
task MDPs are weakly coupled because their state and agot always be suitable. For instance, if subtasks become ac-
tion spaces (e.g., feasible resource assignments) are linketive stochastically, the allocation of resources will often de-
performing a specific action in one subtask MDP influencegend on the status of each task. One should then focus on a
which actions can be concurrently executed in another (e.ghigh priority task: (and get valud’*) only if that task is ac-
because it consumes resources). tive and suitable resources are available; otherwise one might
Toillustrate, consider a resource allocation problem with focus on a lower priority task. Thus the optimal VF might
potential tasks]1, ... ,T,, each of which may be active or best be approximated by @ecewise lineacombination of
inactive, and can change status stochastically (e.g., this migltibtask VFs, where different linear approximators are “used”
reflect the placement or retraction of orders). We have-  in different regions of state space. For example, a VF might
sources, each of which can be applied at any point in time téake the form:If ¢, V(x) = V'(x!) + " V*(x?); if T,
the achievement of any active task. Tétatusof resource V(x) = V3(x®) + 3%V*(x*). Here tasks 1 and 2 should
4, denoted by variablé; determines how effective that re- be tackled when conditioa holds (say these two high prior-
source is in the completion of its assigned task. The status ofi#y tasks are active), and tasks 3 and 4 handled otherwise. We
resource evolves stochastically, depending on its use at eaéftaborate on such PWL approximators in Section 4.
time step (e.g., consider machines requiring maintenance or . . .
workers needing breaks). Multiple resources can be applied-2 Basis Function Addition
to a task, thus the size of the action spad@(s"*!). ADBN The use of subtask VFs requires that the underlying MDP ex-
illustrating the dependencies for such a problem is illustratedhibit a certain structure. As such, it can be viewed as a domain
in Figure 1. Finally, we assume that a rewayds associated dependent method for boosting the performance of linear ap-
with the successful completion of an active tdsk proximators. If domain dependent structure, or other heuristic
This MDP can be decomposed readily into distinct subtasknformation, is unavailable, domain independent methods are
MDPs for eachl;. Since variabled’; (j # i) have no influ- needed to constructa suitable basis set. For this reason, amore
ence oril; or the reward associated wiihy, the subtask MDP  general framework is needed for constructing and revising ba-
for T; has as its only variable$,, ... , S andT;. For small  sis sets. We present such a framework now. This approach is
numbers of resources, this subtask MDP can be solved optitescribed in much more detaillibd]; but we overview the ap-

@000 @) @)ooo@)
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proach here, since it is relevant to our development of piecestate spacdd 3], and their use in constructing piecewise con-
wise linear approximators in Section 4. stant value function representation for MD[Bk

We assume some set of candidate basis funct®asd ) ]
an initial basis seff,. At each iteratiork, we compute the 4.1 Evaluating Local Splits
best linear approximation w.rf;,, and estimate its error. If \We assume a small set of basis functionsF has been pro-
the error is unacceptable, and sufficient computation time igigeda priori, with eachy; defined over a small subsxg -
available, we then use sorseoring metrido estimate the im- - x ot or state variables. These might be, say, the optimal sub-
provementoffered by each elementfv.r.t. 7, and add the ooy vFs for a WCMDP, or a basis constructed using some

bes:]f €Bto .Obftainfkﬂ'k bei ated | domain-independent method. The model we adopt is one in
This generic framework can be instantiated in many waysy hich the linear approximation can vary in different parts of

First, we must define the s&tsuitably. We might assume a ga10 space. These regions are determined by building a deci-
fixed dictionary of candidate basis functions, and score eachyi,, tree that splits on the variablXs

explicitly. We will adopt this approach below. However, one  getore providing details, we illustrate the intuitions by con-

might allso defin& 'mp"g'“% and use methods theonstruct  gjqering a single split of the VF on a fixed variable. Rather

a suitable candidafe4].” . . than determining the best linear approximator, suppose we al-
We also require a scoring metric. An obvious, and comy,,, the \weight vector to take on different values? andw?,

putationally demanding, approach would involve adding eachy e yariablex is true and false, respectively. So we have:
candidate functiorf to 7, and resolving, in turn, each result-

ing LP. This gives an exact measure of the value of adding Vi(x) = Z w® fi(x) forany x € [z]
Other less demanding approaches are possible. One we con- ; !
sider here is theual constraint violatiorheuristic. _

When we solve the LP Eq. 7, we obtain the corresponding V(x) =Y wlfi(x) forany x € [z].
values of thelual variables\ ;, one per contraint: because we i

use constraint generation, all constraints generally will be act etting M= be a “mask” matrix that selects those states where
tive, and all\; > 0. If we add to our current basis set (with  x s true—i.e., a diagonal matrix with 1 at eactstate and 0
corresponding columeiin the LP, and sumof valugg, thisis ¢ eaciz-state—and definin®I7 similarly, our approxima-
imposes a new constraintin the dual DP:c < y. Ifthiscon-  tion is
straint is satisfied given the current valueXgfwe will make —
no progress (since the current solution remains optimal). The V =MFw* + M*Fw” (8)
degree to which this dual constraintislated—i.e., the mag-
nitude of A "¢ — y, provided it is greater than 0—is a good
heuristic measure of the value of addifig Note again that Min: min Z Z fi () w? (x) + Z Z fi(x)wj (x)
the set of dual variables@(m) due to incremental constraint W el <€z J

eneration. The dual constraint violation heuristic scoreseacl). , . La e, « T T @ T, T
gasis function in the dictionary using this measure and addrs]s't" BYMIFw” + MIFw?) — (MTFw” + MPFw") < 0, Va

Our goal is to find the optimadair of weight vectors:

that function to the basis with maximal score. Note that unless the MDP completely decouples along vari-
This framework is inherently greedy: it considers time able X, we must optimize the weights®, w? jointly.
mediateémpact of adding a candidateto the current basis. This optimization can be performed in exactly the same
manner as described in Section 2.3. We observe that for each
4 Piecewise Linear Value Functions function f;, the “masked” version of this depends on the same

As suggested above, subtask VFs can often best approximafgfiables as originally, with the possible additionf Fur-

the optimal VF when combined in a piecewise linear fashiontneérmore, the dependence &fis trivial: in the positive case,

We now describe an algorithm for constructing PWL approx-he function takes the constant value (ifis false, and takes

imations using subtask VFs as the underlying basis set. OdR€ value indicated by the original X is true. An ADD rep-

model uses greedy decision tree construction to determine afgSentation of the masked function thus has only one more

propriate regions of state space in which to use different compode than the original (i.e., it doewt double the size of

binations of basis functions. This framework can be seen as &€ function representation). Since these functions are them-

way of incorpating both a domain dependent technique for ba3€!ves “small,” the same cost network and constraint genera-

sis function selection, and a domain independenttechnique fg{on methods can be applied directly. _

basis function addition. Indeed, nothing in this approach re- 1h€ approximation above is piecewise linear function

quires that the underlying basis set comprise the subtask VFEVer the original basis set, but can also be viewduhaar ap-

but we expect WCMDPs to benefit greatly from this model. Proximatorover aewbasis set. We have replaced the original
The use of decision trees in value function approximationPasis set with the masked copies: the new basis set is

both in solving MDPs and in reinforcement learning, is rather Ty, Tp.

common. Examples include generalization techniques in re- M*f - feFyUM [ | € 7}

inforcement learing4], dynamic discretization of continuous 4 2 Decision Tree Construction

3We explore a variety of such domain independent basis functiorf he intuitions above suggest an obvious greedy technique for
construction techniques, and scoring metricg;Lifl. constructing a PWL approximator. We build a decision tree,



where each interior node splits the state space on some varitight use the weights computed during evaluation to label the
able X, and each leaf is labeled with a suitable weight vec-split leaves, but not reassess other weights.

tor denoting the linear approximation to be used in that part The dual constraint violation method is by far the cheapest.
of state spacé.The algorithm is initialized by computing the Each candidate split can be evaluated using with just a handful
optimal linear weight vector. The initial tree consists of a sin-of inner product computations. No optimization is required.
gle leaf (the root). At each iteration, we extend the currenttree Finally, with each of these scoring metrics, one heuristi-
as follows: (a) we evaluate the improvement offered by split-cally choose a split by not re-evaluating the scores of previ-
ting each leaf using each variable, using some scoring metusly unsplit nodes. That is, when the leaves of a tree have
ric; (b) the best split is applied, and the optimal PWL VF (or been scored at one iteration, they are not rescored at a subse-
some approximation) for the new tree is computed. The algoguent tree unless they are split. This method is heuristic since
rithm terminates when no split offers decentimprovement, othe score of a split at a leaf is not local: it depends on the cur-

the tree reaches some size limit. rent basis set (viewing the union of basis functions at each leaf
A key component of the algorithm is the choice of scoringas the basis). However, the true score of a leaf can only go
metric. We consider three metrics in this paper: down when other leaves are split; its contribution to an ex-

Full LP: The full LP (FLP) metric evaluates a split of the de- tended basis set can be no greater than its contribution to a
cision tree by computing the optimal PLW approximator Smaller set. Thus thixed scoremethod always associates
for the extended tree. For a tree witleaves, evaluating With each leaf an upper bound on the true score.

a split requires solving an LP involving(t + 1) weight There is a “hidden” cost associated with decision tree con-
variables: we have — 1 weight vectors for the unsplit Struction, since the masked basis functidis f; at leafy re-
leaves, and two new weight vectors for the split leaves.fer to all variables along that branch. As the trees get deeper,

Fixed Weight LP: The fixed weight LP (FWLP) metric eval- table-based representations of the functions become much
uates a split of the decision tree by computing the optimal&/9€r- However, as noted above, the AyDD representation of
weight vector for the two new regions created, but holdsth€Se functions (nor their regressidssM? f;) needn’tgrow
the weights for each other region fixed (to their values inexponentially with the number of variables (i.e., the depth of

the preceding solution). Evaluating a split thus requiresthe tree). Furthermore, the anticipated expense of cost net-
solving an LP involvin2m variables. work evaluation can be computed and combined with the scor-

ing metric when considering a split, in an effort to induce a

Max Dual Constraint Violation: This metric uses the LP ari)reference for shallower trees.

solution for the current tree to evaluate the degree of du

constraint violation associated with the new basis func- .

tions. A split onX at the end of a branch labeledis 5 Empirical Results

equivalentto adding the basis functidvis”™ f; (foreach  \yg gescribe in this section some very preliminary empiri-

fj € F)tothe currentbasis. Each ofthese new functiong | resuits. We demonstrate the decision quality of the tree

is scored using the dual constraint violation heuristic, a”dgrowing technigue as a function of the number of splits, us-

the maximum of these scores (over egpis takenasthe g the three scoring metrics described above. We compare

score of the split. this to the optimal linear approximator obtained using subtask

These evaluation techniques are listed from most to leastalue functions, and to that obtained using bases comprising

expensive. The full LP method finds the myopically optimal only indicator functions over one or two variables (the only
split. It requires solving an LP (using the usual cost networkmethod used in the literature). Naturally, since the best lin-
method for constraint generation) for each candidate splitear approximators are special cases of PWL approximators,
These LPs are larger than those for the linear approximatodecision quality can only improve as we split. What we aim
since we have a larger weight set, we generally need to adi@d demonstrate is that quality improves significantly, and that
more constraints, each requiring a cost network evaluatiorthis technique offers asefulway to improve a linear approx-
The fixed weight LP method is similar, but since we hold allimation. We use the value of the LP objective as a surrogate
nonsplit weights fixed, there are fewer variables, fewer confor quality of the resulting policy in most cases, but report on
straints, and fewer cost networks evaluated (at most twice thBellman error in one example for illustration.
number as with the original linear method). The fixed weight We consider a generic weakly coupled resource allocation
technique does not necessarily find the optimal split: sinceproblem of the type described in Section 3.1, witperiodic
values in other parts of state space are fixed, they are uninflgasks and: indistinguishable resources. Whgwof the k re-
enced by the change in value at the split states. We can viesources are applied to an active t&k there is probability
this as analogous to asynchronous (block) dynamic program-— (¢;)? of successfullcompletinghat task ¢; is the prob-
ming [1]. Once a split is chosen, we can then reoptimize allability that one unit of resource wouldil to complete the
weights; or if we believe the MDP is strongly decoupled, wetask, a standard noisy-or model). A completed task becomes
— inactive. An inactive task becomes active with probability

. . ) \ h p9c¢ and an active task becomes inactive (if not completed)
multiway splits of multivalued variables are straightforward. L Sy . . . .

°Other ways (e.g., conic combinations) can be used to comWIth probability p; ',A rewardr; is obtained if t_ash IS com-

bine the scores of these basis functions. We note that we onifp/€t€d. A resourcg can beusableor depletedindicated by

have to consider the scores of one masked set (§.giye), since  Status variables;. If usable resourcg is applied to a task, it
M™ f;, MY f; jointly spanM™ f;. depletes with probabilityog, and at each stage a depleted re-

“We proceed as if all variables are binary. Binary (aggregate) an
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Figure 2: Resource allocation task with no dominant tasks. Figure 4: Bellman error for 2 resources, 5 tasks.
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also include the linear approximator over the basis with PAIR
] indicators and the: subtasks VFs. Adding the subtasks VFs
o y induces substantial improvement over PAIR, indicating their
suitability as basis functions. Note that subtask VFs alone do
not do as well as pairs, simply because the size of the pairs
] basis set is substantially larger and spans a larger subspace.
e We show the same results in Figure 3 for a variant of the
PAR ] problem in which two of the four tasks have much higher pri-
] ority than the others. In this case, the values of the low pri-
= ority tasks have little influence on the optimal value function,
A T R SR A A B since resources are often held in reserve in case a high prior-
ity task should pop up. Again we see that the same relative
. ) . . order emerge among the PWL approximators, and that deci-
Figure 3: Resource allocation task with two dominant tasks gjgp, quality is better than that of the linear approximators.
We also note that the PWL model can be used to produce

source has probability; of becoming usable again. assigned piecewise constant VFs using a single constant b_a3|s function.
resources. Since this problem is weakly coupled, we use th@ general, if the VF of an MDP has a small decision tree rep-
subtask value functions for ea@has an initial basis set. resentation, this method will find it quickly.

To illustrate the benefits of PWL approximators, we first We also consider some slightly larger problems. Figure 4
consider two small versions of this problem, with = 4 shows similar results for a 2-resource, 5-task problem; but
tasks, and: = 2 resources. In the first, all tasks have roughlyBellman error is plotted rather than LP-objective value. No-
the same level of priority (i.e., similar rewards and probabili-tice that in this example, subtask VFs provide a better basis
ties). Figure 2 illustrates the value of the LP objective (whichthan either SING or PAIR even before splitting. Computa-
roughly minimizesL, error) as a function of the number of tiontimes for each iteration of the decision tree algorithm vary
regions (i.e. number of decision tree leaves) used in the PWWwith the scoring metric. Averaged over the first 6 splits (7
approximator constructed using each of the scoring metricleaves), we have (in CPU seconds) the following times: FLP
described above. As we see, in all cases, decision quality im= 691s; FWLP — 388s; Dual — 935sWe note that the dual
proves with additional splits, which is hardly surprising. We times are based on an unoptimized implementation and can-
also see that the more expensive scoring metrics are produgot be meaningfully compared to the others (but we include it
ing much better splits. FLP, since it produces optimal my-for completeness).
opic splits, clearly dominates the other methods. FWLP, while Figure 5 shows LP-objective value for a 1-resource, 20-task
much cheaper computationally, also finds improving splitsproblem for both DUAL and PAIR. The error for SING is not
identical to FLP except in one instance. The dual metric, unplotted asitis about 5 times as high as for PAIR. Finally, a sim-
fortunately, does not fare as well. Note that each curve starts #ar plotis shown in Figure 6 for a 2-resource, 10-task problem
the same spot: the value of the best linear approximator oveagain SING is not shown). In the former, the dual metric of-
the subtask VFs. For comparison, we include the objectivéers animproved solution after only two splits, while in the lat-
value obtained by the best linear approximator over indicatoter, the subtask VFs themselves provide a better solution than
functions on all single variables (SING) and all pairs of vari-the pairs. In the latter case, an improved solution is found af-
ables (PAIR). Note that after very few splits, the PWL approx-—
imators provide better VFs than these linear functibrwe "The implementation is in Matlab; calls to optimized C++ rou-
- tines are used for FLP and FWLP, but not for dual. We project the

®The results for FLP are shown only up to five leaves in this andsame optimization applied to dual would yield 10-fold speed up. Ex-
the subsequent graph. periments were run on a 700MHz PCs running Linux.
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