
Cooperative Negotiation in Autonomic Systems using Incremental Utility
Elicitation

Craig Boutilier
Department of Computer Science

University of Toronto
Toronto, ON, M5S 3H5, Canada

cebly@cs.toronto.edu

Rajarshi Das Jeffrey O. Kephart
Gerald Tesauro William E. Walsh

IBM T.J. Watson Research Center
19 Skyline Dr.

Hawthorne, NY 10532, USA
{rajarshi, kephart, gtesauro, wwalsh1}@us.ibm.com

Abstract

Decentralized resource allocation is a key prob-
lem for large-scale autonomic (or self-managing)
computing systems. Motivated by a data center
scenario, we explore efficient techniques for re-
solving resource conflicts via cooperative nego-
tiation. Rather than computing in advance the
functional dependence of each element’s utility
upon the amount of resource it receives, which
could be prohibitively expensive, each element’s
utility is elicited incrementally. Such incremen-
tal utility elicitation strategies require the evalu-
ation of only a small set of sampled utility func-
tion points, yet they find near-optimal allocations
with respect to a minimax regret criterion. We
describe preliminary computational experiments
that illustrate the benefit of our approach.

1 Introduction

The long-term goal of autonomic computing is to develop
systems that can manage themselves with little or no human
intervention [7]. Such systems must possess the ability to
configure themselves, monitor performance and adapt to
changing circumstances, self-optimize, and diagnose and
repair problems. In large, distributed computing systems,
such autonomy will generally require the continuous allo-
cation and re-allocation of resources (e.g., compute cycles
or storage) to distinct computing elements. As we elaborate
below, the reasoning required to support optimal resource
allocation is necessarily distributed, thus requiring some
form of cooperative negotiation among the computing el-
ements that have conflicting needs for critical resources.

To motivate our approach, we consider the task of an au-
tomated resource manager, orprovisioner, allocating re-
sources to variousworkload managers (WMs). Each WM,
given a specific allocation of resources, must decide how
best to use those resources to service various client con-
tracts. As a result, the utility of a specific allocation level

to a WM often depends on the solution of a complex op-
timization problem. The provisioner’s task is to allocate
resources to the WMs in a way that total (organizational)
utility is maximized. However, since the individual WM
utility functions are complex and have no closed form—
generally, even the computation of a single utility point in
the WM function is complex and very expensive—it is in-
feasible to communicate entire utility functions directly to
the provisioner.

We develop a model for distributed, cooperative negotia-
tion in which the provisioner interacts with WMs through
a form of incrementalutility elicitation. In our model, the
provisioner asks WMs for samples of their utility function
at certain critical allocation levels. We describe techniques
by which the provisioner can allocate resources based on
this partial utility information. Because distributional in-
formation over utility functions is hard to obtain, we use
a distribution-free model,maximum regret, to measure the
quality of such an allocation. We describe computational
methods for computing max regret, as well as methods for
computing (and approximating) allocations with minimal
max (minimax) regret. We also describe several elicitation
methods that are guaranteed to offer improvement in deci-
sion quality in the worst case, and that, in practice, improve
worst-case decision quality very quickly.

The remainder of the paper is organized as follows. In
Section 2 we describe the resource allocation problem for
a data center with multiple WMs, using this to motivate
the more general model that follows. We argue that this
problem should viewed as a form of cooperative negoti-
ation, and solved using incremental utility elicitation, in
Section 3. In Section 4, we formalize our model, and
present exact and approximate algorithms to compute allo-
cations with minimax regret given a set of partially known
WM utility functions. In Section 5, we describe incremen-
tal elicitation strategies designed to reduce minimax regret,
and present results demonstrating the effectiveness of these
strategies in Section 6 using the data center model. We
conclude in Section 7 with a discussion of future research
directions.

2 Resource Allocation in an Autonomic
System

We begin by describing the class of tasks that motivates this
research, namely, the problem of resource allocation in au-
tonomic systems. In this section, we provide a description
of the basic task, while in Section 3 we argue that using in-
cremental utility elicitation provides an appropriate means
to facilitate the negotiation for resources among coopera-
tive elements in an autonomic system. The formal details
of our model will be introduced in Section 4.

An autonomic computing system is designed to drasti-
cally reduce the role of human administrators by automat-
ing most of the managerial decision making required in
the operation of a complex computing environment [7].
Automated resource allocation, in particular, is necessary
for an autonomic system to optimize its performance and
adapt to failures that reduce resource availability. In large,
distributed autonomic systems, resource allocation occurs
at multiple scopes. Local allocation decisions will be
made within individual elements (servers, databases, stor-
age units, etc.) and small clusters of elements. Local clus-
ters will contend for pools of resources in the larger do-
main, or across administrative domains. Although elements
in an autonomic system of a single corporation will gen-
erally be cooperative (sharing the goal of optimizing total
business value), the complexity of local information often
precludes centralized allocation across the entire system.
Cooperative negotiation, using preference elicitation tech-
niques, can serve as an effective approach to decentralizing
the problem.

To motivate the problem, consider resource allocation
within a data center.1 The center provides information tech-
nology resources to multiple organizations, separating do-
mains for different groups of clients. Within a domain,
resources are managed by aworkload manager, such as
IBM’s enterprise Workload Manager (eWLM) [8]. Each
WM decides how to allocate resources in its domain to
maintainquality of service (QoS)for each of its transac-
tion classes. The QoS specification for a transaction class
is specified by a contract with customers, indicating mon-
etary payments or penalties as a function of the QoS pro-
vided to transactions in the class. While a real WM may
require multiple resource types, we assume for simplicity,
in this paper, that the WM uses only a single, scalar type
of resource. Given a distribution of its client demand, a
model that maps the demand and the resource level to QoS,
and the contract (which maps QoS to revenue), WMi can
computeui(ai), the maximum expected revenue it could
obtain with the allocation of resource levelai.

Because the distribution of client demand changes over
1Our algorithms do not depend on the specific data center sce-

nario we study. Indeed, the algorithms are applicable to a broad
class of cooperative distributed allocation problems.

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30 35 40 45 50

M
ax

. U
til

.

mu_A

Maximum utility vs. mu1

Provider A
Provider B

Total: mu = 20

Figure 1: Maximum system utility as a function of allo-
cation, with total resourcesa = 20. Curve “Provider A”
indicates maximum utility toA as a function ofaA. Curve
“Provider B” indicates maximum utility toB as a function
of aB. Curve “Total” indicates total utility as a function of
aA provided toA (with a − aA provided toB).

time, the data center provisioner will periodically reallocate
resources between the WMs. Lettingi range over WMs,
the resource allocation problem for the provisioner is to
compute (whereA is the set of feasible allocations, e.g.,
vectors of the form〈a1, . . . , an〉):

arg max
a∈A

∑

i

ui(ai) (1)

The provisioner can compute Eq. 1 centrally if it has a good
model of the internal operation of each WM and can ob-
tain all relevant state information, including client demand
distributions. In a real system, however, the model and
data tend to be large and complex (this is certainly true in
eWLM). Moreover, in a system with transient, heteroge-
neous components (e.g., differently configured WMs), the
internal models of the components may simply be unavail-
able to the provisioner.

A very natural way to approach the problem of decentral-
ized resource allocation is to have each WM determine its
utility curveui, and communicate this function to the pro-
visioner. With these functions in hand, the provisioner can
determine an optimal allocation using a suitable optimiza-
tion technique to solve Eq. 1. Since most of the information
required to computeui (e.g., queue arrival rates, dynamic
QoS guarantees and pricing, etc.) is not directly available
to the provisioner, communication ofui curves offers the
most expeditious way of decomposing both computation
and communication of relevant information between the
WMs and the provisioner. Figure 1 shows an example of
the utility curves of two WMs, each with two transaction

classes.2 The provisioner wishes to find the maximum of
the aggregate (total utility) curve, also shown.

3 Modeling Cooperative Negotiation as
Utility Elicitation

If a WM’s contracts have a simple form and we have a sim-
ple QoS model (e.g., M/M/1 queue), thenui may have a
tractable closed form (e.g., piecewise linear or quadratic).
However, in typical systems the dependency of service at-
tributes on resources and demand is sufficiently complex
as to require a combination of optimization and simula-
tion to computeui at a single allocation point. More-
over, WMs will often have substitutable and complemen-
tary preferences over ofmultiplegoods, giving rise to large,
expensive-to-compute, multidimensionalui curves. Such
complexities would make it infeasible for a WM to even
compute its fullui curve, let alone communicate this to the
provisioner.

Instead, we propose to model the resource allocation prob-
lem as cooperative negotiation. In the context of auto-
nomic computing, cooperative negotiation is not simply
non-cooperative negotiation with the simplifying assump-
tion that agents are non-strategic. Rather, the objective is
to achieve the right balance between global optimization
effort, local computational expense, negotiation time, and
decision quality. To this end, we treat the communication
between the provisioner and the WMs as a form ofutility
elicitation. Specifically, our model allows the provisioner
to ask each WM for its utility value for a small set ofsam-
pled allocations chosen by the provisioner to contain the
most useful information with respect to determining an ap-
proximately optimal global allocation. In this sense, our
work can be viewed in the same spirit as work on incre-
mental utility elicitation [2, 4, 6, 10], where the aim is to
obtain utility information that is most useful in improving
decision quality. However, our model is very distinct.

Partial elicitation will generally be sufficient in negotiation
among WMs. Given only a small number of samples of the
utility functionsui(ai), by making simple monotonicity as-
sumptions, the provisioner can often determine the region
of allocation space in which the optimal allocation lies.3

For instance, having samples of the two (lower)ui curves
in Figure 1 at pointsai = {10, 15, 20} for i = A, B, is suf-
ficient to determine that the optimal allocation lies some-

2The QoS metric is response time. We computed the utility
curves assuming a simple M/M/1 queue model.

3Monotonicity of ui is a natural assumption in this domain,
corresponding to a “free disposal” assumption. One might be
tempted to posit that, in certain scenarios, having additional re-
sources can lead to lower expected utility (e.g., Braess’s para-
dox comes to mind). However, assuming that a WM is simply
interested in optimizing its own utility by the optimal use (or
lack thereof) of allocated resources, the monotonicity assumption
seems more than reasonable.

where in the regionaA ∈ [10, 15].

Knowing the region in which an optimal allocation lies
is not enough. Given partial information in the form of
sampled utility points, the provisioner must still decide
on a specific allocation. Generally, no allocation can be
guaranteed optimal since, for any allocation, there exists
some utility function consistent with the sampled points for
which that a better allocation exists. For this reason, we
use theminimax regretdecision criterion to compute allo-
cations under utility function uncertainty [5]. This model
bounds the error associated with the provisioner’s alloca-
tion assuming an adversary picks a utility function, con-
sistent with the current sampled points, in order to make
the allocation as unattractive as possible. We develop this
model in Section 4, and describe algorithms for computing
(and approximately computing) allocations with minimax
regret.

Minimax regret is a commonly used decision criterion in
situations characterized bystrict uncertainty[1, 5], that
is, when uncertainty cannot be quantified probabilistically.
Since distributional information over utility functions is
hard to assess in the applications that currently motivate
our model, we focus on the minimax regret criterion for
optimization. If priors are available in a specific scenario,
Bayesian techniques for optimization with imprecise util-
ity information and utility elicitation [4, 2] could be used
as well. We defer such a treatment to future work.

Given a specific set of sampled utility points from each
WM, the regret associated with the minimax-optimal allo-
cation may be too high. In this case, the provisioner has the
opportunity to ask the WMs for additional sampled util-
ity points. In Section 5, we describe elicitation strategies
whose aim is to reduce minimax regret as quickly as pos-
sible. We describe several strategies, including a theoret-
ically motivated method that provides worst-case guaran-
tees on regret improvement, and heuristic methods that are
more promising from a practical perspective (i.e., tend to
get good results with far fewer queries). The reduction of
minimax regret through incremental utility elicitation has
been addressed previously [3, 9], though it does not appear
to have been tackled in the context of complex cooperative
negotiation.

The elicitation process is incremental: the provisioner ob-
tains partial utility information from the WMs; it uses that
information to determine a minimax-optimal allocation;
and if this allocation has unacceptable error, the current
utility samples are used to direct further queries. This pro-
cess can be viewed as a form of cooperative negotiation,
overseen by the provisioner, in which each WM reveals rel-
evant information about its demands and expected revenue.
Unlike typical economic mechanisms, the amount of rev-
elation is limited, and focused on those areas of allocation
space that are relevant to determining an optimal allocation.

4 Minimax Regret

In this section we make the model more precise, and dis-
cuss the problem of allocating resources with partial utility
information (specifically, sampled utility curves).

4.1 Sampled Utility Curves

We assume a provisioner charged with the task of allocat-
ing resources to a collection ofn WMs. To keep the pre-
sentation simple, we assume that the provisioner has some
fixed amount of a single resource type to allocate. Anal-
location is a vectora = 〈a1, . . . , an〉 such thatai ≥ 0 and∑

i ai ≤ 1. Hereai refers to thefraction of the resources
obtained by WMi. We denote byA the set of feasible allo-
cations. WMi’s utility functionui : [0, 1] → R associates
a utility with any allocation of resources to it; specifically,
ui(ai) denotes the expected utility that WMi will realize
if it is given fractionai of the resources under the control
of the provisioner.4 A utility vectoru = 〈u1, . . . , un〉 is a
collection of such utility functions, one per WM.

We define thevalueof an allocationa under utility vector
u to be the sum of the WM utilities:

V (a,u) =
∑

i≤n

ui(ai)

Notice that we make an implicit commensurability assump-
tion, allowing the addition of WM utilities. In cooperative
settings such as ours, this is generally acceptable (since,
say, individual WM utility might measure its contribution
to organizational value). We use the sum of individual util-
ities to reduce notational clutter; but arbitrary nondecreas-
ing functions (transformations) can also be applied to the
ui, and these sums taken as well, without any substantive
impact on our techniques.

Given a collection of utility functionsu, the provisioner
is charged with the task of determining anoptimal alloca-
tion w.r.t. u: maxa∈A V (a,u). In general, this is a com-
plex nonlinear optimization problem, since we make few
assumptions about the structure of the individualui. A
much more difficult problem emerges however: the con-
struction of an optimal allocation requires full knowledge
of the individual utility functions. But as mentioned above,
even the calculation of asingleutility point ui(ai) by WM
i can be extremely difficult. Sinceui will generally have
no simple closed form, assuming full access toui is prob-
lematic.

This difficulty can be circumvented if the provisioner is
permitted to construct an approximately optimal alloca-
tion based on partial utility information. We assume: (1)
Each WM can evaluate its utility function at specific points

4WM i will not have utility for such “fractions” explicitly, but
rather for the amount corresponding to this share.

1u

0u

1b

U
til

ity

τ0 τ1 τ2 τ3 τ4

4u

3u

2u2b

3b

4b

Allocation Level

Figure 2: Bounds on the set of feasible utility functions.

ai, but cannot provide a closed form representation ofui.
(2) ui is monotonic non-decreasing (i.e., ifai ≥ a′

i, then
ui(ai) ≥ ui(a′

i)), and that each WM can easily determine
an upper bound on the fraction of resourcesa>

i it can prof-
itably use (i.e., it can find a pointa>

i s.t.ui(ai) = ui(a>
i)

for all ai ≥ a>
i). (3) The provisioner can query each

WM by providing an allocation levelai and receiving in
responseui(ai), the evaluation ofui at the query point.5

4.2 Minimax Regret

We defer the question of elicitation to the next section. For
now, we assume the provisioner has a collection of samples
of each WM’s utility function. Specifically, let

0 = τ0
i < τ1

i < . . . < τk
i = a>

i

be a collection ofk+1 thresholds at which samplesui(τ
j
i)

have been provided. We assume that the extreme utility
valuesui(0) andui(a>

i) have been determined.6 Notice
that this collection of samples defines a set ofk bins into
which an allocation of resources to WMi can be placed.
Allocationai is said to lie within binbj

i if τ j−1
i < ai < τ j

i ,
in which case it has a lower bound on its utility ofui(τ

j−1
i)

and an upper bound ofui(τ
j
i). We use the notation[ai] to

denote the indexj of the bin in whichai lies (if ai = τ j
i

lies at a threshold, we let[ai] = j). Hence,b[ai]
i is the bin

in whichai lies.

A utility function ui for WM i is feasible(w.r.t. to the
sample evaluations) iff it is nondecreasing and is consis-
tent with the sampled points. A utility vectoru is feasible
iff each componentui is feasible. We denote byU the set
of feasible utility vectors given a set of utility samplesS
(S will generally be clear from context), and byUi the set

5We assume w.l.o.g. that
P

i a>
i ≥ 1. If this is false, the

provisioner has more resources that the WMs can use jointly and
the optimization problem faced by the provisioner is trivial.

6For notational convenience, we assume thatk+1, the number
of sampled points, is the same for all WMsi—this is simply to
keep subscripting to a minimum (nothing depends on this).

of feasible utility functionsui for WM i. Figure 2 shows
bounds on a WM utility function given a set of samples.
The vertical lines indicate bin boundaries, and the horizon-
tal lines upper and lower bounds on utility.

Given incomplete knowledge of WM utility functions in
the form of samples, the provisioner can measure the qual-
ity of a specific allocation in terms of itsmaximum regret.
This gives a bound on the worst-case error associated with
an allocation, assuming an adversary can pick the true util-
ity vector from the feasible setU .

Definition Themaximum regret of allocationa w.r.t. allo-
cationa′ is

MR(a,a′) = max
u∈U

V (a′,u) − V (a,u)

The max regret of allocationa is then

MR(a) = max
a′∈A

MR(a,a′)

An allocationa∗ ∈ arg mina∈A MR(a) is said to
have minimax regret. The minimax regret level
MMR(U) of feasible utility setU is MR(a∗).

Minimax regret offers a reasonable method for resource al-
location in the face of utility function uncertainty. It mini-
mizes the amount of utility one could sacrifice by acting in
the face of such uncertainty. We refer to an allocation with
minimax regret asminimax optimal.

4.3 Computing Max Regret

There is a single feasible utility functionui (for each WM)
that givesMR(a,a′) (w.r.t. any competing allocationa′).
We set the utility over the interval[τ [ai]−1

i , ai] to the lower

boundui(τ
[ai]−1
i), and the interval(ai, τ

[ai]
i] to the upper

bound. All other binsbj
i are set to their maximum values.

(If ai = τ j
i for somej, then all utilities are set to their

upper bounds). The utility vectoru obtained by apply-
ing this to eachui givesa its least possible feasible utility.
It also gives every other allocation maximum utility, with
the exception of those allocationsa′

i ≤ ai that lie within
the same bin asai. But for any such allocation, we have
ui(a′

i) − ui(ai) ≤ 0 by monotonicity, and this vector en-
sures this quantity is 0. Thus,u maximizes the regret ofa.
w.r.t. any other allocationa′.

Determining max regretMR(a) thus requires searching for
an allocationaw that maximizesV (aw ,u) − V (a,u). We
call this allocation awitnessfor a. This witness can be
computed using a mixed integer program (sinceu is no
longer a “variable”). Specifically, assume two sets of vari-
ables: Ai (i ≤ n) is a real-valued variable denoting the
allocation to WMi; andBj

i (i ≤ n, j ≤ k) is a 0-1 vari-
able denoting that the allocation toi lies in binbj

i . We then

solve the MIP:

Maximize:
P

i≤n,j≤k Bj
i uj

i

subj. to: 0 ≤ Ai ≤ a>
i ;
P

i Ai ≤ 1

1 ≤ ∀j ≤ k,
P

i Bj
i = 1,

∀j > 1, Ai/(τ
j−1
i) − Bj

i ≥ 0 (2)

∀j < k, Bj
i − a>

i −Ai

a>
i
−τ

j
i

≤ 0 (3)

Constraints (2) and (3) constrain the lower bound ofai’s
bin to beτ

[ai]−1
i and the upper bound ofai’s bin to beτ

[ai]
i ,

respectively. Theτ j
i thresholds are the usual with the ex-

ception thatτ [ai]−1
i (i.e., the lower bound ofb[ai]

i) is re-
placed withai. The utilitiesuj

i are defined to be the upper
or lower bounds associated with these bins, as defined in
the construction above.

Once a regret-maximizing witnessaw has been deter-
mined, the max regret ofa is just the difference in utility of
aw anda given the worst-case utility function fora.

4.4 Computing Minimax Regret

Several exact and heuristic strategies can be used to find
an allocation with minimax regret. We describe several
such techniques here. Key to our methods is the notion
of a pointwise allocation. Assume a set of sampled points
Si = {τ j

i } for each WMi. A pointwise allocationp is any
allocation such thatpi ∈ Si, for all i ≤ n. In other words,
WM i is given a fraction of resources at which it has pro-
vided a utility sample. Anexhaustive pointwise allocation
(EPA) is any feasible pointwise allocation that cannot be
extended by allocating more resources to any WM in a way
that feasibly attains a new pointwise allocation. More pre-
cisely,p is an EPA if it is pointwise,

∑
i pi ≤ 1, and for all

i′, τ
[pi′]+1
i′ +

∑
i6=i′ pi > 1.

Thesupporting pointwise allocationfor a, SPA(a), is the
pointwise allocationap whose threshold values are those at
or just below the allocation values ofa. In other words, if
τ j
i ≤ ai < τ j+1

i , thenap
i = τ j

i . For any EPAp, denote
by E(p) the set ofextensionsof p, that is, the set of ex-
haustive allocations whose SPA isp. Pointwise allocations
have a fixed utility (i.e., there is no uncertainty about their
utility). It is not hard to see thatMR(a) ≤ MR(SPA(a)).
In addition, any allocationa can be written asSPA(a)+δ,
whereδi ≥ 0. We callδ(a) =

∑
i δi thesurplusassociated

with a. The worst case utility ofa is equal to the (fixed)
utility of SPA(a).

We can restrict our attention to exhaustive allocations (i.e.,
where

∑
i ai = 1) in the search for minimax optimal

allocations—this is a simple consequence of monotonicity.
Furthermore, it isn’t hard to see that minimax optimal al-
locations must lie among the set of exhaustive allocations

whose SPA is an EPA. We will show that

MMR(E(p)) ≡ min
a∈E(p)

MR(a)

can be computed effectively in an iterative fashion, for any
EPA p. As a result, since EPAs are enumerable, we can
search through this set to find the allocation that achieves
MMR(E(p)) for each EPAp, and be assured that the min-
imax optimal allocation is that with minimum max regret
among this finite set of allocations. We now describe the
computation ofMMR(E(p)).

Let p be an EPA. First assume that
∑

pi = 1− δ for some
δ > 0. If not, thenE(p) = {p} andMMR(E(p)) =
MR(p). We call δ the surplusof p. Any exhaustive al-
location inE(p) has the forma = p + δ, whereδi ≥ 0
is the portion of the surplus allocated to WMi by a, and∑

i δi = δ.

Let a be any allocation inE(p), and letaw be a witness
(that is, an allocation that maximizes regret fora, obtained
by solving the MIP described above). Ifaw has the prop-
erty thataw

i is not in the interval(pi, ai] for any i, then
MR(a) = MR(p). Intuitively, this holds becauseaw must
also be a witness forp. Thus by computing minimax regret
for a using the MIP described above, we obtain an upper
bound onMMR(E(p)); and if the solution of this MIP
provides an allocation that has the property above, we are
assured thatMMR(E(p)) = MR(p).

If this property does not hold, we can tighten this upper
bound onMMR(E(p)) as follows. Again, letaw be the
witness fora, and letγ = δ(aw) be its surplus. Leta′ =
p + δ′ be any allocation inE(p). The maximum pairwise
regretMR(a′,aw) is exactly

MR(p, aw)−
X

{ui(τ
[aw

i]+1

i) − ui(τ
[aw

i]

i) : b
[aw

i]

i = b
[a′

i]

i , γi ≤ δ′i}

Thus, the regret of anya′ w.r.t. to the witnessaw for a is
equal to the max regret ofp w.r.t. aw less the regret con-
tributed by allocations ofaw to thosei where the new allo-
cationa′ exceeds that ofaw, but both lie in the same bin.

Note that the regret ofa′ is maximized byanyallocationaw

that allots all of its surplus (less some infinitesimal amount)
to the those WMsi where bothaw

i anda′
i lie in the same

bin. This means that ifγ (the surplus ofaw) is (strictly)
greater thanδ (the surplus ofa′), no matter howδ is dis-
tributed among the bins ofa′, we can allocate the surplus
γ of aw among the same bins so thatγi > δi. This ensures
that the max regret ofa′ is exactly that ofa. If δ ≥ γ, this
is not possible. Specifically, letm be the largest integer
such thatδ ≥ mγ. Then the allocationa′ ∈ E(ap) that
minimizes regret w.r.t. someaw of the form above is ob-
tained by allocatingγ (of the totalδ) of the surplus to the
m bins ofa′ that have the largest utility gaps (i.e., differ-
ence between their upper and lower bounds). This alloca-
tion ensures thataw

i cannot exceeda′
i in any of these bins.

Hence the surplusγ associated witha′ must be allocated to
the remainingn − m lowest gapped bins. Thus we get a
(generally tighter) upper bound onMMR(E(ap)):

MR(p,aw)−
∑

{ui(τ
[ai]+1
i) − ui(τ

[ai]
i) : bi is among

them bins with largest such gaps in utility}

This process finds thea′ ∈ E(SPA(a)) that has minimal
max regret w.r.t.anyaw′ ∈ E(SPA(aw)). Note thataw′

may not be a true witness fora′—it simply maximizes the
regret ofa′ among those allocations that have the same SPA
as the witnessaw for a. However, this process can be re-
peated with the new allocationa′: we find its witness, and
re-allocate its surplus in the same fashion.

This process is guaranteed to converge on an allocation that
realizesMMR(E(p)). The process terminates when ei-
ther: the witness at the current iteration has the same SPA
as a prior witness; the surplus associated with the current
witness exceeds the surplus of current allocation; or the
witness and the allocation share no bins. In each such case,
the current allocation is minimax optimal inE(p). The
process only continues ifa anda′ share at least one bin,
and the surplus fora′ is less than that ofa. It can be shown
that the max regret of the new allocation is no greater than
that of the prior allocation. Since this procedure can con-
sider only a finite number of distinct witness points (at most
one per EPA), it is guaranteed to converge.

Note that upper and lower bounds onMMR(E(ap)) for
eachap can be produced rather easily. Thus any intelligent
search scheme can be used to search through the space of
pointwise allocations without enumerating them explicitly
(e.g., using a branch-and-bound procedure). Furthermore,
with such upper and lower bounds, one can determine an
approximately minimax-optimal allocation as well.

We note that several other heuristic methods for generating
minimax allocations can be used. For example, an optimal
optimisticallocationao can be computed using an IP: one
simply sets the WM utility functions to their upper bounds
and finds the best allocation. Letεmax be the largestutility
gapassociated with sample setS:

εmax = max
i

max
j

ui(τ
j+1
i) − ui(τ

j
i)

ThenMR(ao) ≤ 2εmax for any optimisticao.

Rather than relying on an IP, greedy search methods can
be used as well. One simple technique generates an EPA
incrementally by increasing allocation of exactly one WM
to its next threshold value. Initially, we let each WM be as-
signed zero resources. A move can be made in this search
space by increasing one of the WM’s allocation from its
current levelτ j

i to τ j+1
i as long as the total allocation re-

mains feasible. A simple heuristic for evaluating moves is
ui(τ

j+1
i)−ui(τ

j
i)

τ j+1
i −τ j

i

(i.e., increase in marginal utility per unit of

resource). Again, sincetrue max regret of any allocation
can be computed readily, even when we approximate, we
have guaranteed regret bounds.

5 Elicitation Strategies

We turn our attention to the question of elicitation. We as-
sume the provisioner has a collectionS of sampled utility
points from the WMs, and has computed a minimax opti-
mal allocationa(S) (or some approximation thereof). If
the provisioner is unhappy with the regretMR(a(S), S),
it can ask utility queries of any of the WMs to obtained
additional sampled utility points.

We describe two strategies, one theoretically motivated
to perform well in the worst-case (i.e., when an adver-
sary chooses WM utility functions, hence responses to our
queries), and one based on more practical intuitions that we
expect to work well in practice.

We start with an analysis of worst-case behavior. For sim-
plicity, assume thata>

i = 1 for each WMi (i.e., each WM
can profitably use all available resources). Letui(1) = εi.
After a single query to each WM, we have a single bin for
each WM with lower bound0 and upper boundsεi, hence
a utility gap of sizeεi. Each query of WMi can be seen
as dividing this original bin into smaller bins with smaller
utility gaps. However, an adversary can choose a utility
function that ensures regret never goes to zero.

Proposition 1 There exists a set of WM utility functions
ui such that with no finite number of queries can minimax
regret be reduced belowmax εi

2 .

Intuitively, such a set requires that each WM utility func-
tion be arbitrarily close to a step function, that jumps from
utility level 0 to εi at some critical resource level. With
certain restrictions on either the discrete allocation of re-
sources, or the first derivative of the individualui, this
problem can be circumvented.

Despite the fact that regret may never reach zero, this lower
bound on minimax regret can be achieved in a polynomial
number of queries using a simple “halving” procedure. The
halving procedure asks a sequence of queries of each WM
such that each bin is divided in half. Specifically, letk =
2m − 1 for somem; afterk queries, the utility samples for
a specificui will consist ofk + 1 bins of size 1

k+1 . After
O(n2) such queries of each WM, we are assured that regret
can be no more than the lower bound above.

Proposition 2 The halving procedure, after no more than
2n(n − 1) queries of each WM, results in a collection of
utility function samples whose minimax regret is no more
than max εi

2 (whereεi is the original utility gap of WMi).

It is important to emphasize that an adversary must pick a
very specific utility function for each WM to ensure this
worst-case bound. In practice, the halving strategy focuses
effort on parts of utility space that are not relevant to deter-
mining minimax optimal allocations.7

An intuitively simple strategy that works much better in
practice is based on the intuition that to reduce regret, we
want to improve the information we have about the alloca-
tion currently estimated to be optimal. Specifically, we’d
either like to show that its regret is less than currently esti-
mated (in which case we’ve improved our ability to make
an good decision, by reducing minimax regret), or gain in-
formation that will help us make a better decision. Given
a andaw, the provisioner asks each WMi for its utility
value at points inpi ∈ b

[ai]
i or pw

i ∈ b
[aw

i]
i . If pi ≤ ai

and the responseui(pi) is greater than its lower bound, the
max regret ofa must be reduced; similarly, ifpw

i ≥ aw
i

and the responseui(pw
i) is less than its upper bound. In

either case, minimax regret will be reduced. If each WM
responds with its upper bound in the case ofui(pw

i) and its
lower bound forui(pi), then the max regret of the current
best allocation has not, unfortunately, been reduced. How-
ever, we note that a great deal of uncertainty in the each of
the WM’s utility functions has been removed. Specifically,
if a WM ever responds to a query with the upper (resp.,
lower) bound on its value, then all uncertainty is removed
from the range of utility values between the query point and
the upper (resp., lower) threshold of the bin in which it lies.

Because it is expensive to query bothpi and pw
i , in our

experiments we chose to query eitherpi or pw
i according to

the following heuristic. The heuristic value of a binbj
i is

the sum of the scaled height and width of the bin, defined
as∆u + ∆τ , where∆u ≡ (ui(τ

j
i) − ui(τ

j−1
i))/ui(a>

i)
and∆τ ≡ (τ j

i − τ j−1
i)/a>

i . We queried the bin (allocation
or witness) with the highest heuristic value. We also tried
querying just the allocation bin and just the witness bin.
We found that the former did not reduce regret quickly and
the latter reduced regret comparably to the heuristic, except
when the number of query points grew larger, in which case
the heuristic performed better.

Although an obvious choice forpw
i is exactlyaw

i , we found
it did not work well in practice becauseaw

i was often very

close to the low end of the binτ [aw
i]−1

i . We found that
uncertainty is reduced more quickly when we chosepw

i at
the midpoint of the bin (and similarly forpi).

To reduce computation time in our experiments, we com-
puted approximately optimal allocations. For each exhaus-
tive pointwise allocation we compute the max regret of a
small number (1-3) of random extensions, and choose the

7Indeed, we believe that a conditional variant of the halving
strategy, where only specific bins are halved depending on the cur-
rent samples, can attain our worst-case bound with a logarithmic
number of queries. We do not yet have a proof of this however.

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30 35 40 45 50

M
in

im
ax

 R
eg

re
t

Number of queries per WM

3 WMs: Minimax Regret vs. queries per WMs

Heuristic Split
Random Queries

Halve All Bins

Figure 3: Minimax regret for 3 WMs as a function of num-
ber of queries per WM for our strategy “Heuristic Split”
and two alternative query strategies, “Random Queries”
and “Halve All Bins.”

extension with the minimum max regret over all EPAs. The
basic procedure we used in our experiments then consists
of the following steps: (a) query each WMi for its utility at
ai = 0 andai = 1, as well as two more randomly chosen
points; (b) determine an approximate minimax optimal al-
locationa as well as its witnessaw using the current utility
samples, terminating ifMR(a) is below some acceptable
threshold; (c) otherwise, ask one query of each WMi at
the midpoint of binb

[aw
i]

i of bin b
[ai]
i ; and repeat with the

increased sample set.

6 Empirical Results

This section describes results of our elicitation strategy
for our data center model. We studied configurations
with three and four WMs, each with two transaction
classes. Client contracts specified payments as a function
of response time. The functions were (roughly) slightly
smoothed out step functions, with high payments for re-
sponse time below a threshold, and zero payments above
the threshold. Given a fixed level of resource, a WM con-
trols the response time of each class through the fraction of
available resource assigned to that class. We used a simple
M/M/1 queue to model response time in each class.

Our numerical implementation of the MIP computation
of max regret utilizes the GNU Linear Programming Kit
(GLPK) version 3.2.4. While GLPK solves for a regret-
maximizing witness as a continuous variable, we constrain
all queries to lie on a discretized grid of 10000 points in the
unit interval. This discretization makes it easier to compute
an individual WM’s maximal utility for a given resource
level, and also eliminates floating-point roundoff errors in
identifying the bin containing a given allocation.

 0

 4

 8

 12

 16

 20

 24

 0 5 10 15 20 25 30 35 40 45 50

M
in

im
ax

 R
eg

re
t

Number of queries per WM

4 WMs: Minimax Regret vs. queries per WMs

Heuristic Split
Random Queries

Halve All Bins

Figure 4: Minimax regret for 4 WMs as a function of num-
ber of queries per WM for our strategy “Heuristic Split”
and two alternative query strategies, “Random Queries”
and “Halve All Bins”.

Our implementation also uses a bounding procedure to
greatly reduce the number of MIPs computed. During the
loop over the EPAs, we keep track of the current best wit-
ness seen so far. We can quickly compute the regret of any
other allocation with respect to the current best witness,
giving us a lower bound on the max regret for the alloca-
tion. If this lower bound is greater than the lowest max
regret found so far, we know that the allocation cannot be
the minimax regret allocation. We found that most EPAs
can be eliminated as minimax-optimal on this basis, with-
out actually invoking the MIP computation of max regret,
resulting in a reduction in CPU time by nearly a factor of
100.

Figures 3 and 4 plot sample runs illustrating typical behav-
ior of our elicitation strategy (denoted “Heuristic Split”)
for three and four WMs, respectively. For comparison pur-
poses, we also plot the (approximate) minimax regret val-
ues obtained using two less intelligent querying strategies:
“Random Queries” generates random queries drawn from
a uniform distribution in the unit interval, while “Halve
All Bins” is the halving procedure discussed previously
in Proposition 2. In both figures, the minimax regret of
our strategy decreases rapidly with the number of queries,
demonstrating the effectiveness of our approach. Further-
more, our strategy achieves significantly lower minimax re-
gret values than the other strategies, for a given number of
query points per WM.

Plots of the data in Figures 3 and 4, using a log scale for the
vertical axis, show a reasonably linear decrease for our al-
gorithm. This suggests that our procedure is able to reduce
minimax regret exponentially with the number of queries.
While the alternative algorithms will generally reach zero
regret with a sufficient number of queries, the rate of de-

crease is much slower than exponential.

The minimax regret of our strategy reduced more slowly
with four WMs than with three. This is not surprising, since
the space of joint utility functions, and hence the total un-
certainty, grows with the number of WMs.

Our tentative results for two, three and four WMs suggest a
scaling of GLPK CPU time of roughlyN q, whereN is the
number of WMs andq is the number of queries per WM.
As a consequence, we found it to be computationally pro-
hibitive to compute the minimax regret for larger (q > 15)
number of queries with more than four WMs. With respect
to computation time, we must emphasize, however, that our
goal is to minimize the amount of utility information that
each WM must provide, since determining a single utility
point requires intensive computation on the part of a WM.
In addition, these values will generally change over time,
requiring re-elicitation and re-allocation (which is one of
the main motivations for the autonomic model). Thus we
generally see the number of queries per WM being rather
small. Furthermore, preliminary tests suggest we can ob-
tain more than an order of magnitude speedup with state-
of-the-art MIP solvers such as CPLEX. Finally, we expect
that the more computationally feasible heuristic strategies
suggested in Section 4.4 will prove to be extremely valu-
able as a means of generating queries.

7 Concluding Remarks

We have argued that cooperative negotiation using incre-
mental utility elicitation is required to perform resource
allocation in a distributed autonomic system. To address
this need, we presented algorithms for computing minimax
regret, and two elicitation strategies: a blind bin halving
strategy and a strategy that halves the bins of the minimax-
optimal allocation and its regret-maximizing witness. We
empirically demonstrated, in a data center provisioning
scenario, that the more directed strategy quickly reduces
minimax regret. Furthermore, although we could demon-
strate a theoretical guarantee of max regret convergence for
the blind strategy, the heuristic strategy performs much bet-
ter in practice.

In future work we will develop faster (and possibly more
approximate) minimax regret algorithms to enable the
study of larger problems. We suggested a greedy strategy
that may not compute the minimax optimum allocation but
saves computation because it requires that max regret be
computed only once. However, it is not acceptable to ap-
proximate the max regret computation, as then we would
lose any known guarantee on the quality of the allocation.
Ultimately though in the context of autonomic computing
our focus is on the cost ofelicitation, hence we need to
better understand the tradeoff between acceptable levels of
minimax regret and the cost of elicitation.

We intend to expand our model to include multidimen-
sional utility for multiple resources. The concomitant in-
crease in utility space will generally result in greater utility
uncertainty. Further algorithm developments will likely be
necessary to achieve acceptable regret levels without an ex-
plosion in the requisite number of preference queries.

We also plan to study elicitation strategies for Bayesian op-
timization criteria. Bayesian approaches may reduce the
number of needed queries by providing value of informa-
tion guidance as well as tighter bounds on the value of an
allocation (i.e., expected value of an allocation, rather than
worst-case bounds). To use Bayesian techniques, a provi-
sioner must form a prior distribution over the WMs’ util-
ity functions, which may require the provisioner to employ
learning techniques along with models of the internal oper-
ation of WMs, as well as WM and client demand dynamics.
Such models must be fairly minimal though because of the
constraints imposed by decentralization.

Acknowledgments: Craig Boutilier gratefully acknowl-
edges the support of an IBM Faculty Partnership Award.

References

[1] Allan Borodin and Ran El-Yaniv.Online Computation and
Competitive Analysis. Cambridge University Press, Cam-
bridge, 1998.

[2] Craig Boutilier. A POMDP formulation of preference elici-
tation problems. InProceedings of the Eighteenth National
Conference on Artificial Intelligence, pages 239–246, Ed-
monton, 2002.

[3] Craig Boutilier, Fahiem Bacchus, and Ronen I. Brafman.
UCP-Networks: A directed graphical representation of con-
ditional utilities. InProceedings of the Seventeenth Confer-
ence on Uncertainty in Artificial Intelligence, pages 56–64,
Seattle, 2001.

[4] Urszula Chajewska, Daphne Koller, and Ronald Parr. Mak-
ing rational decisions using adaptive utility elicitation. In
Proceedings of the Seventeenth National Conference on Ar-
tificial Intelligence, pages 363–369, Austin, TX, 2000.

[5] Simon French.Decision Theory. Halsted Press, New York,
1986.

[6] Vu Ha and Peter Haddawy. Problem-focused incremental
elicitation of multi-attribute utility models. InProceedings
of the Thirteenth Conference on Uncertainty in Artificial In-
telligence, pages 215–222, Providence, RI, 1997.

[7] Jeffrey O. Kephart and David M. Chess. The vision of auto-
nomic computing.Computer, 36(1):41–52, 2003.

[8] David Pescovitz. Autonomic computing: Helping comput-
ers help themselves.IEEE Spectrum, 39(9):49–53, 2002.

[9] Tianhan Wang and Craig Boutilier. Incremental utility elic-
itation with the minimax regret decision criterion. InPro-
ceedings of the Eighteenth International Joint Conference
on Artificial Intelligence, Acapulco, 2003.

[10] Chelsea C. White, III, Andrew P. Sage, and Shigeru Do-
zono. A model of multiattribute decisionmaking and trade-
off weight determination under uncertainty.IEEE Trans-
actions on Systems, Man and Cybernetics, 14(2):223–229,
1984.

