
APRICODD: Approximate Policy Construction
using Decision Diagrams

Robert St-Aubin
Dept. of Computer Science

University of British Columbia
Vancouver, BC V6T 1Z4

staubin@cs.ubc.ca

Jesse Hoey
Dept. of Computer Science

University of British Columbia
Vancouver, BC V6T 1Z4

jhoey@cs.ubc.ca

Craig Boutilier
Dept. of Computer Science

University of Toronto
Toronto, ON M5S 3H5
cebly@cs.toronto.edu

Abstract

We propose a method of approximate dynamic programming for Markov
decision processes (MDPs) using algebraic decision diagrams (ADDs).
We produce near-optimal value functions and policies with much lower
time and space requirements than exact dynamic programming. Our
method reduces the sizes of the intermediate value functions generated
during value iteration by replacing the values at the terminals of the ADD
with ranges of values. Our method is demonstrated on a class of large
MDPs (with up to 34 billion states), and we compare the results with the
optimal value functions.

1 Introduction

The last decade has seen much interest in structured approaches to solving planning prob-
lems under uncertainty formulated as Markov decision processes (MDPs). Structured algo-
rithms allow problems to be solved without explicit state-space enumeration by aggregating
states of identical value. Structured approaches using decision trees have been applied to
classical dynamic programming (DP) algorithms such as value iteration and policy itera-
tion [7, 3]. Recently, Hoeyet.al.[8] have shown that significant computational advantages
can be obtained by using anAlgebraic Decision Diagram(ADD) representation [1, 4, 5].
Notwithstanding such advances, large MDPs must often be solved approximately. This can
be accomplished by reducing the “level of detail” in the representation and aggregating
states withsimilar (rather than identical) value. Approximations of this kindhave been
examined in the context of tree structured approaches [2]; this paper extends this research
by applying them to ADDs. Specifically, the terminal of an ADDwill be labeled with the
range of values taken by the corresponding set of states. As we will see, ADDs have a
number of advantages over trees.

We develop two approximation methods for ADD-structured value functions, and apply
them to the value diagrams generated during dynamic programming. The result is a near-
optimal value function and policy. We examine the tradeoff between computation time and
decision quality, and consider several variable reordering strategies that facilitate approxi-
mate aggregation.

2 Solving MDPs using Algebraic Decision Diagrams

We assume a fully-observable MDP [10] with finite sets of statesS and actionsA, tran-
sition functionPr(s; a; t), reward functionR, and a discounted infinite-horizon optimality
criterion with discount factor�. Value iterationcan be used to compute an optimal station-
ary policy� : S ! A by constructing a series ofn-stage-to-go value functions, where:V n+1(s) = R(s) + maxa2A (�Xt2S Pr(s; a; t) � V n(t)) (1)

The sequence of value functionsV n produced by value iteration converges linearly to the
optimal value functionV �. For some finiten, the actions that maximize Equation 1 form
an optimal policy, andV n approximates its value.

ADDs [1, 4, 5] are a compact, efficiently manipulable data structure for representing real-
valued functions over boolean variablesBn ! R. They generalize a tree-structured rep-
resentation by allowing nodes to have multiple parents, leading to the recombination of
isomorphic subgraphs and hence to a possible reduction in the representation size. A more
precise definition of the semantics of ADDs can be found in [9].

Recently, we applied ADDs to the solution of large MDPs [8], yielding significant
space/time savings over related tree-structured approaches. We assume the state of an
MDP is characterized by a set of variablesX = fX1; � � � ; Xng. Values of variableXi will
be denoted in lowercase (e.g.,xi). We assume eachXi is boolean.1 Actions are described
using dynamic Bayesian networks (DBNs) [6, 3] with ADDs representing their conditional
probability tables. Specifically, a DBN for actiona requires two sets of variables, one setX = fX1; � � � ; Xng referring to the state of the system before actiona has been executed,
andX0 = fX 01; � � � ; X 0ng denoting the state aftera has been executed. Directed arcs from
variables inX to variables inX0 indicate direct causal influence. The conditional proba-
bility table (CPT) for each post-action variableX 0i defines a conditional distributionP aX0i
overX 0i—i.e., a’s effect onXi—for each instantiation of its parents. This can be viewed
as a functionP aX0i (X1 : : : Xn), but where the function value (distribution) depends only on

thoseXj that are parents ofX 0i. We represent this function using an ADD. Reward func-
tions can also be represented using ADDs. Figure 1(a) shows asimple example of a single
action represented as a DBN as well as a reward function.

We use the method of Hoeyet. al [8] to perform value iteration using ADDs. We refer to
that paper for full details on the algorithm, and present only a brief outline here. The ADD
representation of the CPTs for each action,P aX0i (X), are referred to asaction diagrams,

as shown in Figure 1(b), whereX represents the set of pre-action variables,fX1; : : : Xng.
These action diagrams can be combined into acomplete action diagram(Figure 1(c)):P a(X0;X) = nYi=1X 0i � P aX0i(X) +X 0i � (1� P aX0i (X)): (2)

The complete action diagramrepresents all the effects of pre-action variables on post-
action variables for a given action. The immediate reward functionR(X0) is also repre-
sented as an ADD, as are then-stage-to-go value functionsV n(X). Given thecomplete
action diagramsfor each action, and the immediate reward function, value iteration can be
performed by settingV 0 = R, and applying Eq. 1,V n+1(X) = R(X) + maxa2A (�XX0 P a(X0;X) � V n(X0)) ; (3)1An extension to multi-valued variables would be straightforward.

REWARD
X

T

F 0.2

Representation

ADD

Representation
Matrix

Y

Y

Y’

X’X

X

Y Y’

X’
T

T

T

FF

F

0.8 Y

X

X

T

F

reward

0

10

X

010

0.8 0.2

Complete

Action Diagram

0.2
0.8

0.2

0.2

0.8

(b) (c)(a)

XX XX

YYY Y

0.16 0.64 0.04

Y’ Y’

X’

true false
KEY

Y

0.2TF

Figure 1: ADD representation of an MDP: (a) action network for a single action (top)
and the immediate reward network (bottom) (b) Matrix and ADDrepresentation of CPTs
(action diagrams) (c) Complete action diagram.

X

1.1 5.4 5.6 9.3 5.2 9.7 5.1 9.8

Y Y

ZZZZ

X X

Y

Z

1.1

Z

[9.3,9.8][5.1,5.6]

(c) 0.5

Y

ZZ

1.1 5.4 9.3

Z

5.6 [5.1,5.2]

(b) 0.1(a)

[9.7,9.8]

Figure 2: Approximation of original value diagram (a) with errors of 0.1 (b) and 0.5 (c).

followed by swapping all unprimed variables with primed ones. All operations in Equa-
tion 3 are well defined in terms of ADDs [8, 12]. The value iteration loop is continued until
some stopping criterion is met. Various optimizations are applied to make this calculation
as efficient as possible in both space and time.

3 Approximating Value Functions

While structured solution techniques offer many advantages, the exact solution of MDPs
in this way can only work if there are “few” distinct values ina value function. Even if a
DBN representation shows little dependence among variables from one stage to another,
the influence of variables tends to “bleed” through a DBN overtime, and many variables
become relevant to predicting value. Thus, even using structured methods, we must often
relax the optimality constraint and generate only approximate value functions, from which
near-optimal policies will hopefully arise. It is generally the case that many of the values
distinguished by DP are similar. Replacing such values witha single approximate values
leads to size reduction, while not significantly affecting the precision of the value diagrams.

3.1 Decision Diagrams and Approximation

Consider the value diagram shown in Figure 2(a), which has eight distinct values as shown.
The value of each states is represented as a pair[l; u℄, where the lower,l, and upper,u,
bounds on the values are both represented. Thespanof a state,s, is given byspan(s)=u�l.
Point values are represented by settingu=l, and have zerospan. Now suppose that the

diagram in Figure 2(a) exceeds resource limits, and a reduction in size is necessary to
continue the value iteration process. If we choose to no longer distinguish values which
are within 0.1 or 0.5 of each other, the diagrams in Figure 2(b) or (c) result, respec-
tively. The states which had proximal values have been merged, where merging a set of
statess1; s2; : : : ; sn with values[l1; u1℄; : : : ; [ln; un℄, results in an aggregate state,t, with
a rangedvalue[min(l1; : : : ; ln);max(u1; : : : ; un)℄. The midpoint of the range estimates
the true value of the states with minimal error, namely,span(t)=2 . The span ofV is the
maximum of all spans in the value diagram, and therefore the maximum error inV is sim-
ply span(V)=2 [2]. Thecombined spanof a set of states is the span of the pair that would
result from merging them all. Theextentof a value diagramV is thecombined spanof the
portion of the state space which it represents. The span of the diagram in Figure 2(c) is 0.5,
but its extent is 8.7.

ADD-structured value functions can be leveraged by approximation techniques because
approximations can always be performed directly without pre-processing techniques such
as variable reordering. Of course, variable reordering canstill play an important computa-
tional role in ADD-structured methods, but are not needed for discoveringapproximations.

3.2 Value Iteration with Approximate Value Functions

Approximate value iteration simply means applying an approximation technique to then-
stage to govalue function generated at each iteration of Eq. 3. Available resources might
dictate that ADDs be kept below some fixed size. In contrast, decision quality might require
errors below some fixed value, referred to as thepruning strength, Æ. The remainder of this
paper will focus on the latter, although we have examined theformer as well [9].

Thus, the objective of a single approximation step is a reduction in the size of a ranged
value ADD by replacing all leaves which have combined spans less than the specified
error bound by a single leaf. Given a leaf[l; u℄ in V , the set of all leaves[li; ui℄ such
that the combined span of[li; ui℄ with [l; u℄ is less than the specified error are merged.
Repeating this process until no more merges are possible gives the desired result. We have
also examined a quicker, but less exact, method for approximation, which exploits the fact
that simply reducing the precision of the values at the leaves of an ADD merges the similar
values. We defer explanations to the longer version of this paper [9].

The sequence of ranged value functions,~V n, converges aftern0 iterations to an approximate
(non-ranged) value function,~V , by taking the mid-points of each ranged terminal node in~V n0

. The pruning strength,Æ, then gives the percentage difference between~V and the
optimaln0-stage-to-go value functionV n0

. The value function~V induces a policy,~�, the
value of which isV~� . In general, however,V~� 6= ~V [11] 2.
3.3 Variable Reordering

As previously mentioned, variable reordering can have a significant effect on the size of an
ADD, but finding the variable ordering which gives rise to thesmallest ADD for a boolean
function is co-NP-complete [4]. We examine three reordering methods. The first two are
standard for reordering variables in BDDs: Rudell’s sifting algorithm and random reorder-
ing [12]. The last reordering method we consider arises in the decision tree induction
literature, and is related to theinformation gain criterion. Given a value diagramV with
extentÆ, each variablex is considered in turn. The value diagram is restricted first withx = true, and the extentÆt and the number of leavesnt are calculated for the restricted
ADD. Similar valuesÆf andnf are found for thex = false restriction. If we collapsed the
entire ADD into a single node, assuming a uniform distribution over values in the resulting2In fact, the equality arises if and only if~V = V �, whereV � is the optimal value function.

range gives us the entropy for the entire ADD:E = Z p(v)log(p(v))dv = log(Æ); (4)

and represents our degree of uncertainty about the values inthe diagram. Splitting the
values with the variablex results in two new value diagrams, for each of which the entropy
is calculated. The gain in information (decrease in entropy) values are used to rank the
variables, and the resulting order is applied to the diagram. This method will be referred to
as theminimum span method.

4 Results

The procedures described above were implemented using a modified version of theCUDD
package [12] , a library ofC routines which provides support for manipulation of ADDs.

Experimental results from this section were all obtained using one processor on a dual-
processorPentium IIPC running at 400Mhz with 0.5Gb of RAM. Our approximation meth-
ods were tested on various adaptations of a process planningproblem taken from [7, 8].3
4.1 Approximation

All experiments in this section were performed on problem domains where the variable
ordering was the one selected implicitly by the constructors of the domains.4

Value Æ time iter nodes leaves jV � � V~�j
Function (%) (s) (int) (%)
Optimal 0 270.91 44 22170 527 0.0

1 562.35 44 17108 117 0.13
2 547.00 44 15960 77 0.14
3 112.7 15 15230 58 5.45

Approximate 4 68.53 12 14510 48 1.20
5 38.06 10 11208 38 2.48
10 6.24 6 3739 15 11.33
15 0.70 4 580 9 14.11
20 0.57 4 299 6 16.66
30 0.05 2 50 3 25.98
40 0.07 2 10 2 30.28
50 0.04 1 0 1 31.25

Table 1: Comparing optimal with approximate value iteration on a domain with 28 boolean
variables.

In Table 1 we compare optimal value iteration using ADDs (SPUDDas presented in [8])
with approximate value iteration using different pruning strengthsÆ. In order to avoid
overly aggressive pruning in the early stage of the value iterations, we need to take into
account the size of the value function at every iteration. Therefore, we use a sliding pruning
strength specified asÆPni=0 �iextent(R) whereR is the initial reward diagram,� is the
discount factor introduced earlier andn is the iteration number.

We illustrate running time, value function size (internal nodes and leaf nodes), number of
iterations, and the average sum of squared difference between the optimal value function,V �, and the value of the approximate policy,V~� .

It is important to note that the pruning strength is an upper bound on the approximation
error. That is, the optimal values are guaranteed to lie within the ranges of the approximate3See [9] for details.4Experiments showed that conclusions in this section are independent of variable order.

ranged value function. However, as noted earlier, this bound does not hold for the value of
an induced policy, as can be seen at3% pruning in the last column of Table 1.

The effects of approximation on the performance of the valueiteration algorithm are three-
fold. First, the approximation itself introduces an overhead which depends on the size of
the value function being approximated. This effect can be seen in Table 1 at low pruning
strengths (1 � 2%), where the running time is increased from that taken by optimal value
iteration. Second, the ranges in the value function reduce the number of iterations needed
to attain convergence, as can be seen in Table 1 for pruning strengths greater than2%.
However, for the lower pruning strengths, this effect is notobserved. This can be explained
by the fact that a small number of states with values much greater (or much lower) than
that of the rest of the state space may never be approximated.Therefore, to converge, this
portion of the state space requires the same number of iterations as in the optimal case5.
The third effect of approximation is to reduce the size of thevalue functions, thus reducing
the per iteration computation time during value iteration.This effect is clearly seen at prun-
ing strengths greater than2%, where it overtakes the cost of approximation, and generates
significant time and space savings. Speed ups of 2 and 4 fold are obtained for pruning
strengths of3% and4% respectively. Furthermore, fewer than 60 leaf nodes represent the
entire state space, while value errors in the policy do not exceed6%. This confirms our
initial hypothesis that many values within a given domain are very similar and thus, replac-
ing such values with ranges drastically reduces the size of the resulting diagram without
significantly affecting the quality of the resulting policy. Pruning above5% has a larger er-
ror, and takes a very short time to converge. Pruning strengths of more than40% generate
policies which are close to trivial, where a single action isalways taken.

4.2 Variable reordering

15 20 25 30 35
10

2

10
3

10
4

10
5

10
6

boolean variables

va
lu

e
di

ag
ra

m
 in

te
rn

al
 n

od
es

shuffled − no reorder
intuitive (unshuffled) − no reorder
shuffled − reorder minspan
shuffled − reorder random
shuffled − reorder sift

Figure 3: Sizes of final value diagrams plotted as a function of the problem domain size.

Results in the previous section were all generated using the“intuitive” variable ordering for
the problem at hand. It is probable that such an ordering is close to optimal, but such order-
ings may not always be obvious, and the effects of a poor ordering on the resources required
for policy generation can be extreme. Therefore, to characterize the reordering methods
discussed in Section 3.3, we start with initially randomly shuffled orders and compare the
sizes of the final value diagrams with those found using the intuitive order.5We are currently looking into alleviating this effect in order to increase convergence speed for
low pruning strengths

In Figure 3 we present results obtained from approximate value iteration with a pruning
strength of3% applied to a range of problem domain sizes.

In the absence of any reordering, diagrams produced with randomly shuffled variable orders
are up to 3 times larger than those produced with the intuitive (unshuffled) order. The
minimum span reordering method, starting from a randomly shuffled order, finds orders
which are equivalent to the intuitive one, producing value diagrams with nearly identical
size. The sifting and random reordering methods find orders which reduce the sizes further
by up to a factor of 7.

Reordering attempts take time, but on the other hand, DP is faster with smaller diagrams.
Value iteration with the sifting reordering method (starting with shuffled orders) was found
to run in time similar to that of value iteration with the intuitive ordering, while the other
reordering methods took slightly longer. All reordering methods, however, reduced running
times and diagram sizes from that using no reordering, by factors of 3 to 5.

5 Concluding Remarks

We examined a method for approximate dynamic programming for MDPs using ADDs.
ADDs are found to be ideally suited to this task. The results we present have clearly shown
their applicability on a range of MDPs with up to 34 billion states. Investigations into the
use of variable reordering during value iteration have alsoproved fruitful, and yield large
improvements in the sizes of value diagrams. Results show that our policy generator is
robust to the variable order, and so this is no longer a constraint for problem specification.

References

[1] R. Iris Bahar, Erica A. Frohm, Charles M. Gaona, Gary D. Hachtel, Enrico Macii, Abelardo
Pardo, and Fabio Somenzi. Algebraic decision diagrams and their applications. InInternational
Conference on Computer-Aided Design, pages 188–191. IEEE, 1993.

[2] Craig Boutilier and Richard Dearden. Approximating value trees in structured dynamic pro-
gramming. InProceedings ICML-96, Bari, Italy, 1996.

[3] Craig Boutilier, Richard Dearden, and Moisés Goldszmidt. Exploiting structure in policy con-
struction. InProceedings Fourteenth Inter. Conf on AI (IJCAI-95), 1995.

[4] Randal E. Bryant. Graph-based algorithms for boolean function manipulation.IEEE Transac-
tions on Computers, C-35(8):677–691, 1986.

[5] E. M. Clarke, K. L. McMillan, X. Zhao, M. Fujita, and J. Yang. Spectral transforms for large
boolean functions with applications to technology mapping. In DAC, 54–60. ACM/IEEE, 1993.

[6] Thomas Dean and Keiji Kanazawa. A model for reasoning about persistence and causation.
Computational Intelligence, 5(3):142–150, 1989.

[7] Richard Dearden and Craig Boutilier. Abstraction and approximate decision theoretic planning.
Artificial Intelligence, 89:219–283, 1997.

[8] Jesse Hoey, Robert St-Aubin, Alan Hu, and Craig Boutilier. SPUDD: Stochastic planning using
decision diagrams. InProceedings of UAI99, Stockholm, 1999.

[9] Jesse Hoey, Robert St-Aubin, Alan Hu, and Craig Boutilier. Optimal and approximate planning
using decision diagrams. Technical Report TR-00-05, UBC, June 2000.

[10] Martin L. Puterman.Markov Decision Processes: Discrete Stochastic Dynamic Programming.
Wiley, New York, NY., 1994.

[11] Satinder P. Singh and Richard C. Yee. An upper bound on the loss from approximate optimal-
value function.Machine Learning, 16:227–233, 1994.

[12] Fabio Somenzi. CUDD: CU decision diagram package. Available from
ftp://vlsi.colorado.edu/pub/, 1998.

