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Abstract

The Katsuno and Mendelzon (KM) theory of belief update has been proposed as a reasonable

model for revising beliefs about a changing world. However, the semantics of update relies on

information which is not readily available. We describe an alternative semantical view of update

in which observations are incorporated into a belief set by: a) explaining the observation in terms

of a set of plausible events that might have caused that observation; and b) predicting further

consequences of those explanations. We also allow the possibility of conditional explanations.

We show that this picture naturally induces an update operator conforming to the KM postulates

under certain assumptions. However, we argue that these assumptions are not always reasonable,

and they restrict our ability to integrate update with other forms of revision when reasoning about

action.�Some parts of this report appeared in preliminary form as “An Event-Based Abductive Model of Update,” Proc. of
Tenth Canadian Conf. on in AI, Banff, Alta., (1994).
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1 Introduction

Reasoning about action and change has been a central focus of research in AI for many years, dating

at least to the origins of the situation calculus [20]. For example, a planning agent must be able to

predict the effects of its actions on the world in order to verify whether a potential plan achieves a

desired goal. Actions effect changes in the world, and agents must be able to modify their beliefs

about the world to reflect such considerations. Furthermore, an agent situated in a dynamic world

must be able to reason about changes in the world not simply due to its own actions, but due to the

occurrence of exogenous events as well.

One of the most influential theories of belief change has been the AGM theory proposed by

Alchourrón, Gärdenfors and Makinson [1]. Imagine an agent possesses a belief set or knowledge base

KB. The AGM theory provides a set of postulates constraining the possible ways in which the agent

can change KB in order to accommodate a new belief A. Notice that this revision of KB need not be

straightforward, for the new belief A may conflict with beliefs in KB. It was pointed out by Winslett

[27] that the AGM theory is inappropriate for reasoning about changes in belief due to the evolution

of a changing world. A new form of belief change dubbed update was proposed in full generality by

Katsuno and Mendelzon [16], who provided a set of postulates, distinct from the AGM postulates,

that characterize this type of belief change.

Semantically, Katsuno and Mendelzon have shown that belief update can be characterized by

positing a family of orderings over possible worlds, with each ordering being indexed by some world.

The ordering associated with a specific world can be viewed intuitively as describing the most plausible

ways in which that world can change. To update a knowledge base KB with some propositionA, the

worlds admitted by KB are each updated by finding the most plausible change associated with that

world satisfying A (we describe this formally below). As a concrete example, suppose that someone

observes that the grass in front of her house is wet. She is not sure whether she left her book outside

on the patio, but concludes that if the book is outside it is wet too. There are two possible worlds

admitted by her knowledge, O and O (the book is outside or it is not). When the first possibility is

updated with the observation of wet grass, a wet book is the result. When the second possibility is

updated, the book remains dry. The conditional beliefO � W (the book is wet only if it was outside)

is part of our agent’s updated belief set.

In this paper, we present an abductive model of belief change suitable for updating beliefs in

response to a changing world. While our semantics induces a class of belief change operators that is

somewhat more general than Katsuno-Mendelzon (KM) update operators, the most compelling aspect
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of our model is the fact that it breaks the KM semantics into smaller, more primitive parts. We argue

that such a model provides a more natural perspective on belief update in response to changes in the

world, and exploits information that is more readily available or easily obtainable from users of a

system. In the following, we use the term update to describe any process of belief change used to

capture changes in belief due to change in the world (not simply those models conforming to the KM

postulates).

In general, we take update to be a two stage process of explanation followed by prediction:

first, an agent explains an observation by postulating some plausible event or events that could have

caused that observation to hold, relative to its initial state of knowledge; second, an agent predicts the

(further) consequences of these events, relative to this initial state. In our example, there are several

possible causes of wet grass, among them the sprinkler turning on automatically, or rain. If rain is

the most plausible of these causing events, our agent concludes that everything on the patio is wet,

including the book if it is out there. Had sprinkler been the most plausible explanation, a different

conclusion would have been reached: the book would be dry regardless of its location. It is these

considerations that allow an agent to determine just what changes in the world are most plausible.

Intuitively, information about the effects of events, as well as their relative plausibility, will be more

readily available or easier to assess than a direct ordering of plausibility over possible “evolutions”

of the world.

We formalize this notion in an abstract manner obtaining a class of explanation-change operators

that are similar in spirit and intent to KM update operators, but somewhat more general. We note that

explanation has often been closely linked with belief revision [12]. Indeed, Boutilier and Becher [5]

present a model of abduction where explanations are determined by explicit belief revision. Given

this connection and the fact that update can be viewed as an essentially abductive process, we may

also take update to be a certain kind of belief revision. This stands in stark contrast with the accepted

wisdom that update and revision are orthogonal forms of belief change. While we could cast our

model as a form of belief revision, this would detract from the main point of the paper. However, we

do elaborate on this connection in the concluding section.

In Section 2 we review the KM postulates for belief update and the KM semantics. In Section 3

we analyze this semantics more closely, and break it into more basic elements. We describe our

abductive view of update and show its relationship to the KM model. In particular, we show that

certain semantic assumptions naturally give rise to the KM theory; however, we argue that these

assumptions are inappropriate as general update principles. We also briefly describe and characterize

a special class of update operators. In Section 4, we analyze our model more deeply and discuss the
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connections to belief revision. We also argue that proper modification of belief states in response to

observations in dynamic settings involves a combination of belief revision and belief update. Finally,

we compare our construction to the model of update proposed by del Val and Shoham [8]. Proofs of

the main results can be found in the appendix.

2 The Semantics of Update

Katsuno and Mendelzon [16] have proposed a general characterization of belief update. Update

is distinguished from belief revision conceptually by viewing update as reflecting belief change in

response to changes in the world, whereas revision is thought to be more appropriate for changing

(possibly erroneous) beliefs about a static world. Update is described by Katsuno and Mendelzon

with a set of postulates constraining acceptable update operators and a possible worlds semantics,

both of which we review here.

We assume the existence of some knowledge base KB, the set of beliefs held by an agent about

the current state of the world. We take our underlying logic to be propositional, based on a finitely

generated language LCPL. We useW to denote the set of possible worlds (or models) suitable for this

language.

If some new fact A is observed in response to some (unspecified) change in the world (i.e., some

action or event occurrence), then the formula KB � A denotes the new belief set incorporating this

change. The KM postulates [16] governing admissible update operators are

(U1) KB �A j= A
(U2) If KB j= A then KB �A is equivalent to KB

(U3) If KB and A are satisfiable, then KB �A is satisfiable

(U4) If j= A � B then KB �A � KB �B
(U5) (KB �A) ^ B j= KB � (A ^ B)
(U6) If KB �A j= B and KB �B j= A then KB �A � KB �B
(U7) If KB is complete then (KB �A) ^ (KB �B) j= KB � (A _ B)
(U8) (KB1 _ KB2) �A � (KB1 �A) _ (KB2 �A)
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A better understanding of the mechanism underlying update can be achieved by considering the

possible worlds semantics described by Katsuno and Mendelzon, which they show to be equivalent

to the postulates. For any proposition A, let kAk denote the set of worlds satisfying A. Clearly,kKBk represents the set of possibilities we are prepared to accept as the actual state of affairs. Since

observation O is the result of some change in the actual world, we ought to consider, for each

possibility w 2 kKBk, the most plausible way (or ways) in which w might have changed in order to

make O true. We will call such a change in any world an “evolution” of that world. To capture this

intuition, Katsuno and Mendelzon postulate a family of preordersf�w: w 2 Wg
where each �w is a reflexive, transitive relation over W . We interpret each such relation as follows:

if u �w v then u is at least as plausible a change relative to w (or an evolution of w) as is v. Finally, a

faithfulness condition is imposed: for every world w, the preorder �w has w as a minimum element;

that is, w <w v for all v 6= w. Intuitively, this ensures that w is itself more plausible than any other

evolution of w.1

Naturally, the most plausible candidate changes in w that result in O are those worlds v satisfyingO that are minimal in the relation �w. The set of such minimal O-worlds for each relation �w , and

each w 2 kKBk, intuitively capture the situations we ought to accept as possible when updating KB

with O. In other words, kKB �Ok = [w2kKBkfmin�w fv : v j= Ogg
where min�w X is the set of minimal elements (w.r.t. �w) within X . Katsuno and Mendelzon show

that such a formulation of update captures exactly the same class of change operators as the postulates;

thus, we can treat this as an appropriate semantics for the KM update theory.

As an example, consider the following scenario illustrating the application of the KM update

semantics to database update. We know certain facts about an employee Fred: his salary is $40,000,

his job classification is level N , and so on. But, we are unsure whether he works for the Purchasing

department or the Finance department. Thus, our KB admits two possibilities, w and v, reflecting

this uncertainty (see Figure 1). If the orderings �w and �v are as indicated in the figure, then

KB updated with the fact that Fred’s salary is $50,000 contains, among other things, the facts

Dept(P) _ Dept(F), Dept(P) � Level(N) and Dept(F) � Level(N+1) . This is due to

1Katsuno and Mendelzon use the term persistent to describe such orderings.
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Figure 1: An Update Model

the fact that the closest world to w with the new salary is w0, while the closest to v is v00; hence, KB is

determined by the set of worlds fw0; v00g. This may reflect the fact that such a raise comes only with

a promotion in Finance, whereas promotions are rare and raises more frequent in Purchasing.

The KM semantics shows very clearly one of the main distinctions between update and belief

revision. In belief revision (e.g., using the AGM theory), if an observation O is consistent with KB,

then the revised KB �O must be equivalent to KB [ fOg. This needn’t be the case for update. Given

KB as above, we may receive an update transactionO � (Dept(P) � Sal(40)) ^ (Dept(F) � Sal(50))
While KB[ fOg entails Dept(P), and is captured semantically by the set fwg, KB �O corresponds

to the set fw; v00g and does not commit Fred to a particular department. The crucial distinction is

update’s willingness to consider the evolution of each possible world individually. Belief revision

only considers the belief set KB as a whole.

3 Update as Explanation

3.1 Plausible Causes of Observations

The orderings upon which update semantics are based are interpreted as describing the most plausible

manner in which a world might change. Given the role of update, this interpretation seems correct:
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worlds closer to w in the ordering �w are somehow more plausible states into which w might evolve.

It seems reasonable then to update a KB by considering those most plausible changes. In our example

above, if Fred is in Purchasing (world w), then a change of salary of this type is more likely to come

without a change in rank (w0) than with a change in rank (w00).
While reasonable, it begs the question: why would one change be judged more plausible than

another? Intuitively, it seems that there are certain events or actions that would cause a change inw, and that those leading to w0 are more plausible than those leading to w00. For example, the event

RAISE might be more probable than the event PROMOTION (at least, in Purchasing).

Given an observation Sal(50000) — in this case an update transaction — an agent might

come to believe Dept(P) � Level(N) (as we have in our example) as follows: assuming

Dept(P), the most plausible event that might cause such a change in salary is RAISE (rather than

PROMOTION). Thus RAISE is the best explanation for the observation. Adopting this explanation

has, as a further consequence, that job rank (and department) stays the same; thus, belief inLevel(N)

remains. In contrast, RAISE (to $50,000) is less likely than PROMOTION in the Finance department.2

Thus, PROMOTION is the most plausible explanation for the observation, which has the additional

consequence Level(N+1) . Thus, the two beliefs Dept(P) � Level(N) and Dept(F) �
Level(N+1) hold in the updated belief state.

This leads to a very different view of update. When confronted with an observation or update O,

an agent seeks an explanation of O, in terms of some external event that would have caused O had it

occurred.3 While many events might explain O in this way, some will be more plausible than others,

and it will be those the agent adopts. Given such an explanation, one may then proceed to predict

further consequences of these events, and produce the set of beliefs arising from the observation.

With this point of view, the essence of update is captured by a two-step process: a) explanation of

the observation in terms of some event(s); and b) prediction of the (additional) consequences of that

event. We do not presume that the agent has direct knowledge of the event occurrence. If such

direct knowledge is available the problem becomes much simpler, for the agent can simply predict the

effects of this event using some theory of action. This is a very specific update problem, restricting

an agent to updating by observations of the form “Event E occurred.” No explanation is required.4

2In our example, we assume that a raise to $45,000 is most likely (world v0), but that a higher raise is unlikely without a
promotion.

3In this paper we will usually think of (external) events as the impetus for change, rather than actions over which the
agent has direct control (or of which the agent has direct knowledge).

4This assumption is embodied to a certain extent in the update models of del Val and Shoham [8, 9] and Goldszmidt and
Pearl [13], as we discuss in Section 4.
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Before formalizing this idea, it is important to realize that this perspective is very natural. It is

reasonable to suppose that an agent (or builder of a KB) has ready access to some description of the

preconditions and effects of the possible events in a given domain. This assumption underlies all work

in classical planning and reasoning about action, ranging from STRIPS [10] to the situation calculus

[20, 24] to more sophisticated probabilistic representations [18, 7]. With such information, the

predictions associated with explanations (event occurrences) can be easily determined. Furthermore,

an ordering over the relative likelihood of possible events also seems something which an agent or

system designer or user might easily postulate. This should certainly be easier to construct than a

direct ordering over worlds according to their likelihood of “occurring.” Indeed, we will show that

such an ordering over worlds is derivable from this more readily available information.

This provides a possible interpretation of the update process, and in our view, a very natural one.5

Furthermore, as we describe in the concluding section (and in detail in [2]), by breaking update into

two components, we will be able to extend the type of reasoning about action one can perform in this

setting.

Using explanation for reasoning about action has been proposed by a number of people, especially

within the framework of the situation calculus. Work on temporal projection and prediction failures

often exploits the notion of explanation. For instance, Morgenstern and Stein [21] propose a model

where an observation that conflicts with the predicted effects of an agent’s actions causes the agent to

infer the existence of some external event occurrence. Shanahan [26] proposes a model with a similar

motivation, but adopts a truly abductive model (where candidate events are hypothesized rather than

deduced from an observation). Our model will be rather different in several ways. First, explanations

will be conditional (i.e., explaining events are conditioned on certain propositions). Second, the

criteria used for adopting explaining events will be based on the relative plausibility of events. Third,

we will not limit attention to any particular model of action (such as the situation calculus). Finally,

our goal is to show how explanation can account for the update of a knowledge base. We should point

out that Reiter [25, and personal communication] has informally suggested that update can be viewed

as explanation to events causing an observation. We will proceed to show that this is, in fact, the case.

5This should not be taken as a criticism of update for requiring that a reasoning agent have an explicitly specified family
of preorders at its disposal. One can reason about update with syntactic constraints or by any other means. The point is that,
from a semantic point of view, the preorders and syntactic constraints seem to be induced by considerations about action
effects and plausible event occurrences.
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3.2 A Formalization

To capture update in terms of explanation, we require two ingredients missing from the Katsuno-

Mendelzon account: a set of events that cause changes, and an event ordering that reflects the relative

plausibility of different event occurrences.

We assume a finitely generated propositional language with an associated set of worlds W . LetE be a finite event set, the elements of which are primitive events. In general, e 2 E is a mappinge : W ! 2W . For w 2 W and e 2 E, we use e(w) to denote the result of event e occurring in worldw. This is a set of worlds, each of which is a possible outcome of e occurring at w. An event with

more than one possible outcome is nondeterministic. A deterministic event is any e 2 E such thate(w) is a singleton set for each w 2 W . A deterministic event set is an event set all of whose events

are deterministic. We assume that events are total functions on the domain W , so that every event

can be applied to each world. In addition, we insist that e(w) 6= ; for each e; w.6 We emphasize that

not only are all possible outcomes of an event captured by the set e(w), but also that each world ine(w) is a legitimate, plausible outcome.

Typically, events are not specified as mappings of this type. Rather, for each event (or action), a

list of conditions are provided that influence the outcome of the event. For each such condition, a set

of effects is specified. An example of this is the classical situation calculus representation of actions

(in the deterministic case). Another is the modified STRIPS representation presented in [18, 6]. The

key feature of these, and other representations, is that each action/event induces a function between

worlds (or worlds and sets of worlds).7 Thus, most action representations will fit within this abstract

model. While we do not delve into the representation of actions, our examples will suggest ways in

which traditional representations can be augmented with the features of our model.

As a further generalization, if events are nondeterministic, we might suppose that the possible

outcomes are ranked by probability or plausibility. We set aside this complication (but see [2]).

In order to explain certain observations by appeal to plausible event occurrences, we need some

metric for ranking explanations. We assume that the events in the set E are ranked by plausibility;

6It is best to think of events as analogous to “action attempts.” If the preconditions for the “successful” occurrence
of the event are not true at a given world, then the effects can be null, or unpredictable or something like that. Allowing
preconditions is a trivial and uninteresting addition for our purposes here.

7In the case of the situation calculus, dynamic logic or other temporal formalisms, one would require some solution to
the frame problem. For example, the solution of Reiter [24] induces just such a mapping.
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hence, we postulate an indexed family of event orderingsf�w: w 2 Wg
over E. We take e �w f to mean that event e is at least as plausible (or likely to occur) as event f in

world w.8

We require that �w be a preorder for each w, and will occasionally assume that �w is a total

preorder. Once again, we do not expect that this family of orderings will be presented explicitly.

Compact representation schemes are possible. For example, in our database example we might

suppose that a user can specify the constraint that aRAISE event is more plausible than aPROMOTION

event for employees of the Purchasing department. The relative plausibility need not be asserted

explicitly for each world satisfying Dept(P).

We note that there are few restrictions on the relative plausibility of events in any given ordering�w . The only structural basis for the logical comparison of events is through outcome sets, but

these provide no logical constraints on relative plausibility. If we have two events e and f such thate(w) � f(w), we impose no constraints on the relative ordering of e and f in �w . In particular, we

cannot insist that an event e with fewer possible outcomes be judged more likely than an event f .

For instance, imagine two events, flipping a coin and placing a coin, such that flipping results in two

possible outcomes (heads, tails) and placing has three outcomes (heads, tails, edge). This provides no

a priori reason to consider flipping or placing more likely than the other.

Putting these ingredients together, we have the following definitions:

Definition An event model is a triple hW;E;�i, where W is a set of worlds, E is a set of events

(mappings e : W ! 2W ) and� is an indexed family of events orderings f�w : w 2 Wg (where

each �w is a preorder over E).

Definition A deterministic event model is an event model where every e 2 E is deterministic (i.e.,

for all w 2 W , e(w) = fvg for some v 2 W ). A total order event model is an event model

where each event ordering �w is a total preorder over E.

Given an event model, an agent is able to incorporate a new piece of information through a process

of explanation and prediction as discussed above. An explanation of an observation is some event e
8Other models of event orderings are possible, including using a fixed ordering for all worlds, or associating event

plausibility with belief sets (or sets of worlds) rather than individual worlds. However, these seem less compelling.
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that, when applied to the world under investigation, possibly causes O. However, the agent should

be interested only in the most plausible such events.

Definition Let O be some proposition and w 2 W . The set of weak explanations of O relative to w
is Expl(O;w) = min�w fe 2 E : e(w) \ kOk 6= ;g
An event e is a weak explanation of O relative to w iff e 2 Expl(O;w). If Expl(O;w) = ;,

we say that O is unexplainable relative to w.

In other words, e explains O in a world w just when there is some possible outcome of e that satisfiesO, and no more plausible event e0 has this feature. Such explanations are called weak explanations

because, before the observation O is made, an agent would not, in general, be able to predict that O
would result from e. The agent merely knows that O is true of some possible outcome. This is often

the most we can expect in a domain with nondeterministic events. For example, someone tossing a

coin onto a chess board is a quite reasonable explanation for the fact that the coin is on a black square;

but knowing the event occurred is not enough to predict that outcome, for it might well have landed

on a white square.

A predictive explanation is similar, but we insist that each outcome of e satisfies O.

Definition The set of predictive explanations of O relative to w isExplP (O;w) = min�w fe 2 E : e(w) � kOkg
An event e is a predictive explanation ofO relative tow iff e 2 ExplP(O;w). IfExplP (O;w) =;, we say that O is not predictively explainable relative to w.

The distinction between weak and predictive explanations is very similar to that made between

consistency-based diagnosis [23] and predictive (or abductive) diagnosis [22]. This distinction is

illustrated in Figure 2. Both e and f are nondeterministic events. Event e predictively explains O,

while f weakly explains O but does not predictively explain O. We are interested here in weak

explanations, for these seem most appropriate when dealing with nondeterministic events. However,

we note the following:

Proposition 1 If e is a deterministic event, then e weakly explains O iff e predictively explains O.

Corollary 2 If EM is a deterministic event model, O is weakly explainable iff O is predictively

explainable.
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Figure 2: Weak and Predictive Explanations

For a particular world w, Expl(O;w) denotes those most plausible events that could cause O to

be true. The possibilities admitted by such a set of explanations are the possible results of each of

these events. To determine these we simply evolve or progress w in accordance with these possible

event occurrences; that is:

Definition The progression of world w given observation O is the set of worldsProg(wjO) =[fe(w) \ kOk : e 2 Expl(O;w)g
Note that ifO is unexplainable relative to w, then Prog(wjO) = ;. This means that there is no event

(among those specified in the model) that could have caused w to evolve into a world that satisfies O.

The occurrence of O relative to w is impossible. We also note that if we are restrict our attention to

predictive explanations, or to deterministic event models, we can rewrite this definition asProg(wjO) =[fe(w) : e 2 ExplP (O;w)g
Taking a cue from the Katsuno-Mendelzon update semantics, the progression of a knowledge base

KB given a particular observationO is obtained by considering all plausible evolutions of each worldw 2 kKBk. However, if O is unexplainable for some w 2 kKBk, we take O to be unexplainable

relative to KB as a whole.

Definition The progression of KB given observation O is the set of worldsProg(KBjO) =[fProg(wjO) : w 2 kKBkg
If Prog(wjO) = ; for somew 2 kKBk, we let Prog(KBjO) = ;.

The motivation for this last condition, that O must be explainable relative to every w 2 kKBk,
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comes from the KM update semantics itself. In the KM theory of update, the updated KB is constructed

by considering the possible evolution of every possibility admitted by KB. We duplicate this intuition

by considering the progression function of every world in kKBk. If no such evolution is possible for

one of these worlds, we trivialize the result of updating KB. We might have allowed the progression of

KB to be nontrivial even if some worlds could not evolve so as to satisfy O, and define Prog(KBjO)
without this last condition. In other words, we might have considered Prog(KBjO) to be as in the

definition, but simply accept, when Prog(wjO) = ;, thatw contributes nothing to the construction ofProg(KBjO). However, we adopt the current approach for two reasons. First, our goal is to pursue the

analogy with the KM update semantics. Our definition is a direct adaptation. Second, dropping this

restriction has implications for the relationship between belief revision and update. Simply excluding

worlds whose progression is empty is, in effect, performing revision in addition to update. While this

is generally a good idea, the correct way to bring together revision and update requires more drastic

changes in the way update is performed. We elaborate on this in Section 4.

We take progression of KB to be the semantic counterpart of the update of the theory KB. With

such a progression function, we can now define the explanation-change operator relative to a given

event model, which determines the consequences of adopting an observation.

Definition The explanation-change operator induced by an event model EM is �EM :

KB �EM O = fA 2 LCPL : Prog(KBjO) j= Ag
In our example, we have two event types, Promotion and Raise. A PROMOTION event (promotion

of one level) ensures an employee’s rank is increased and his salary is raised $10,000. Events

RAISE(5) andRAISE(10) raise salary $5000 and $10,000, respectively. We assume the following

event orderings for each department:

Purchasing: RAISE(10) � PROMOTION � RAISE(5)

Finance: RAISE(5) � PROMOTION � RAISE(10)

This is illustrated in Figure 3, where shorter event arcs depict more plausible occurrences. The

explanation relative to purchasing is a raise, while for finance it is a promotion. The updated KB0 is

determined by w0 and v00 and induces the beliefs described earlier.

As another example, imagine that a warehouse control agent expects a series of trucks to pickup

and deliver certain shipments, but at time t1 an expected truck A has not arrived. Assume that this

might be explained by snow on Route 1 or a breakdown. If snow is the most plausible of the two

13
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Figure 3: An Event Ordering

events, the agent might reach further conclusions by predicting the consequences of that event; for

example, trucks B and D will also be delayed since they use the same route. The proper explanation

and subsequent predictions are crucial, for they will impact on the agent’s decision regarding staffing,

scheduling and so on. Notice also that such explanations are defeasible, which is reflected in the

defeasibility of update: if A is late but B is on time, then snow is no longer plausible (therefore, e.g.,D will not be delayed).

Finally, we can formalize our initial example. We first adopt a conditional STRIPS-like represen-

tation of events, using variables to schematically capture a set of propositions, and take each event

specification to induce the obvious transformation on possible worlds (see, e.g., [18, 6]). We have

two possible events, RAIN and SPRINKLER, with effects as follows:

Event Condition Effect

RAIN On(grass,x) Wet(x), Wet(grass), Wet(patio)

On(patio,x) Wet(x), Wet(grass), Wet(patio)

else Wet(grass), Wet(patio)

SPRINKLER On(grass,x) Wet(x), Wet(grass)

else Wet(grass)

We also have the proposition O asserting that it is overcast, and influencing the plausibility of these
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two events. A plausibility ordering might be given as follows:

If O then RAIN � SPRINKLER

If :O then SPRINKLER � RAIN

Our agent’s knowledge base consists of the beliefsfO;:Wet(book);On(patio,book) � :Inside(book)g
Given the fact O (overcast), the most plausible explanation for the observation Wet(grass) is

RAIN. The effect is then Wet(book) if On(patio,x) and :Wet(book) if Inside(book) .

Note that had it not been overcast, SPRINKLER would have been the most plausible explanation and

our agent would rest assured that her book is dry.

We should remark at this point that the intent of this model is to provide an abductive semantic

model for update, not a computational model. Just as we do not expect actions or events to be

represented as abstract functions between worlds, explanations will not typically be generated on

a world by world basis. Usually, the same event will explain an observation for a large subset of

the worlds within kKBk. In particular, we expect that kKBk to be partitioned according to some

small number of propositions (or conditions) for which a certain event is deemed to be a reasonable

explanation. Indeed, these can naturally be viewed as conditional explanations, for example, “If

Fred is in Finance, a PROMOTION must have occurred; but otherwise a RAISE must have occurred.”

How such conditional explanations should be generated will be intimately tied to the action or event

representation chosen, and is beyond the scope of this paper.

3.3 Relationship to The Katsuno-Mendelzon Theory

We are interested in the question of whether the explanation-change operator satisfies the KM update

postulates. This is not the case given the formulation above.

Proposition 3 Let �EM be the explanation-change operator induced by some event model. Then�EM satisfies postulates (U1), (U4), (U6) and (U7).

There are two reasons why the remainder of the postulates are not satisfied in general, hence two

assumptions that can be made to ensure that �EM is an update operator.

The first difference in the explanation-change operator is reflected in the failure of (U2), which

asserts that KB �A is equivalent to KB whenever KB entailsA. A simple example illustrates why this
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cannot be the case is general. Consider a KB satisfied by a single world w where w j= A. Postulate

(U2) requires that the observation of A induce no change in KB. However, it may be that the most

plausible event in the ordering �w is e, where e(w) = fvg for some distinct world v. But assumingv j= A, then KB �EM A is captured by v and is thus distinct from w. In order to conform to postulate

(U2), we must make the assumption that no change in w is more plausible than change induced by

some event. Formally, we postulate null events and make these most plausible.

Definition The null event is an event n, where n(w) = fwg for all w 2 W .

Definition Let EM = hW;E;�i be an event model. EM is centered iff the null event n 2 E and,

for each w 2 W and e 2 E (e 6= n) we have n �w e.
Thus, a centered event model is one in which the null event is the most plausible event that could

occur at any world. This seems to be the crucial assumption underlying postulate (U2).

Proposition 4 Let �EM be the explanation-change operator induced by some centered event model.

Then �EM satisfies postulates (U1), (U2), (U4), (U6) and (U7).

This assumption of persistence of the truth of KB seems to be reasonable in many domains, but should

probably be called into question as a general principle. It may be the case in a domain where change

is the norm that, despite the fact that an observation is already believed, some change in KB should

be forthcoming. As an example, consider an agent monitoring a control system producing some

product. It observes a display that indicates whether the system is proceeding normally. If it believes

that a normal condition is displayed before the next observation, observing that the display (still)

indicates normal should not require that its other beliefs not change: it may, for instance, update the

number of units produced in response to this observation. In this sense, the more general nature of

the explanation-change operator may be desirable.

Postulate (U3) is also violated by our model, and for a similar reason, so too are (U5) and (U8).

For a given KB, we may have that Prog(wjO) = ; for each w 2 kKBk. In other words, there are no

possible events that would cause an observationO to become true. The potential for such unexplainable

observations clearly contradicts (U3), which asserts that KB �O must be consistent for any consistentO. The assumption underlying (U3) in update semantics seems to be the following: every consistent

proposition is explainable, no matter how unlikely. In order to capture this assumption, we propose a

class of event models called complete.

Definition Let EM = hW;E;�i be an event model. EM is complete iff for each consistent

proposition O and w 2 W , O is explainable relative to w.

16



To appear, Artificial Intelligence, 1995

Proposition 5 If EM is a complete event model then Prog(KBjO) 6= ; for any consistent O and

KB.

This condition is sufficient to ensure (U5) and (U8) are satisfied as well.

Proposition 6 Let �EM be the explanation-change operator induced by some complete event model.

Then �EM satisfies postulates (U1), (U3), (U4), (U5), (U6), (U7) and (U8).

The completeness of an event model refers, in fact, to the completeness of its event set E. If

this set is rich enough to ensure that, for every world and observation, some event can make that

observation hold, then the event model will be complete. Typically, domains will not be so well-

behaved. However, the simple addition of a miracle event to an event set will ensure completeness.

Intuitively, a miracle is some event which is less plausible than all others and whose consequences

are entirely unknown.

Definition Let EM = hW;E;�i be an event model. A miracle is an event m such that m(w) = W
for all w 2 W , and e �w m for all w 2 W and e 2 E (e 6= m).

Proposition 7 Let EM = hW;E;�i be an event model. If E contains a miracle event, then EM is

complete.

If all observations must be explainable, and no observation is permitted to force an agent into

inconsistency, then miracles are one embodiment of the required assumptions. The reasonableness

of such a requirement can be called into question, however. Having unexplainable observations is,

in general, a natural state of affairs. Rather than relying on miraculous explanations, the threat of an

inconsistency can force an agent to reconsider the observation, its theory of the world, or both. As

we will see in the concluding section, it is just this type of inconsistency that can force an agent to

revise its beliefs about the world prior to the observation. Update postulate (U3) makes it difficult to

combine update with revision in this way.

If we put together Propositions 4 and 6, we obtain the main representation result for explanation-

change.

Theorem 8 Let �EM be the explanation-change operator induced by some complete, centered event

model. Then �EM satisfies update postulates (U1) through (U8).

A useful perspective on the relationship between explanation change and update comes to light

when one considers that the plausibility ordering on events quite naturally induces an indexed family

of preorders of the type required in the Katsuno-Mendelzon update semantics.
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Definition Let EM = hW;E;�i be an event model. The plausibility ordering induced by EM , for

each w 2 W , is defined as follows: v �w u iff for any event eu such that u 2 eu(w), there is

some event ev (where v 2 ev(w)) such that ev �w eu.

Intuitively, the more plausible some causing event ev for world v is (relative to w), the more plausible

evolution v of world w is deemed to be (according to �w).

Theorem 9 Let f�w : w 2 Wg be the family plausibility orderings induced by some complete,

centered event model EM . Then

(a) Each relation �w is a faithful preorder over W .

(b) The change operation determined by f�w: w 2 Wg is a KM update operator.

(c) The update operator determined by f�w: w 2 Wg is equivalent to the explanation-

change operator �EM .

We note that if the event model is not centered then the generated preorder is not necessarily faithful.

If the model is not complete, then we have only a restricted form of faithfulness. It will be the case

that w <w v for any world v that is a possible evolution of w (i.e., if v 2 e(w) for some e 2 E).

However, those worlds that cannot result from the application of some event to w will be unrelated

to w. In this case, we can say that �w is faithful relative to the connected component of �w that

includes w. Intuitively, we want to ignore those worlds that are not “reachable” from w. To do this

we can simply define an update operator using the relation �w restricted to such worlds:fv : v 2 e(w) for some e 2 Eg
This ensures that unrelated worlds are not trivially minimal in the ordering relation �w .

If we have an event model where each event ordering is a total preorder, then the induced

plausibility orderings over worlds are also total preorders.

Proposition 10 Let EM = hW;E;�i be a complete event model such that �w is a total preorder

for each w 2 W . Then each plausibility ordering �w induced by EM is a total preorder.

The circumstance where a set of events is totally preordered by plausibilitymay arise rather frequently;

for instance, events may be ranked according to some integer scale, or assigned some qualitative

probability ranking. Therefore, the properties of such total update operators are of interest. We can
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extend the Katsuno-Mendelzon representation theorem to deal with update operators of this type.

The required postulate embodies a variant of the principle of rational monotonicity, cited widely in

connection with nonmonotonic systems of inference and conditional logics (see, e.g., [3, 19]).

(U9) If KB is complete, (KB �A) 6j= :B and (KB �A) j= C then (KB � (A ^B)) j= C
Theorem 11 An update operator � satisfies postulates (U1) through (U9) iff there exists an appro-

priate family of faithful total preorders f�w: w 2 Wg that induces � (in the usual way).

Corollary 12 Let �EM be the explanation-change operator induced by some total order event model.

Then �EM satisfies postulate (U9).

Indeed, Katsuno and Mendelzon [16] also discuss the possibility of totally ordered plausibility rankings

and provide a postulate (U9) related to the one above, and the proof of equivalence is similar to that

suggested by them (see also their work on total orders for belief revision [17]).

As a final remark, we note that the converses of Theorems 8 and 9 are trivially and uninterestingly

true. For any update operator �, one can construct an appropriate set of events (and orderings) that

will induce that operator. This not of interest, since the point of explanation-change is to provide a

natural view of update, characterizable in terms of the events of an existing domain. The ability to

construct such events to capture a particular update operator provides little insight into update. The

appropriate perspective is to reject any update operator (in a given domain) that cannot be induced by

the existing set of events (or event model).

4 Concluding Remarks

We have provided an abductive model for incorporating into an existing belief set observations that

arise through the evolution of the world. While our model allows more general forms of change than

KM update, we can impose restrictions on our model to recover precisely the KM theory. However,

these restrictions are inappropriate in many cases, calling into question the suitability of some of the

update postulates.

4.1 Relationship to Belief Revision

It has frequently been suggested that abduction can be modeled by appeal to belief revision [12].

Boutilier and Becher [5] present a model of abduction along these lines, whereby an explanation for
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an observation O, with respect to some KB, is a sentence E such that KB � E entails O. In other

words, had an agent believed the explanation E it would have believed the observation O.

The abductive view of update suggests that update may also be viewed as a form of belief revision.

Since explanations take the form of event occurrences, an interpretation using belief revision takes

update to be the process of an agent revising its beliefs about whether an event occurred and just what

that event was. For instance, in our main example the observation Sal(50000) can be viewed as

causing an agent to give up its belief that no event has occurred (i.e., the world has not changed) and

accept the fact that something has happened — in particular, it accepts the belief

Dept(P) � Occurred(RAISE(10)) ^ Dept(F) � Occurred(PROMOTION)
Of course, we have not provided an explicit logical language for the representation of actions or

events, and in particular, have not provided a method for revising beliefs about such occurrences.

However, there are a number of ways to model this type of belief revision, including using histories

or runs of a system as our basic semantic objects. A run is essentially a sequence of world states

capturing a particular evolution of a system. Using these as semantic primitives one can capture

beliefs about the actual state of the world in addition to event occurrences. While not directly suited

to our task, the revision model of Friedman and Halpern [11], in which runs are ranked in manner

suitable for belief revision, is precisely the type of system upon which a more elaborate model of

update, revision and explanation can be built.

When viewed in this way, certain problems with the update model, as formulated by Katsuno and

Mendelzon and recast here, become apparent. The types of explanations one is willing to consider

are restricted to event occurrences. In other words, an agent is bound to revise its beliefs only about

possible event occurrences and their consequences. Thus, an agent making an observation is not

allowed to entertain the possibility that its knowledge base KB was incomplete or incorrect. It can

only change its beliefs about the post-event world state. Semantically, this restriction is apparent in

our definition of update (as well as Katsuno and Mendelzon’s). We require that every w 2 kKBk be

progressed according to likely explaining events.

It is just this restriction that calls into question the suitability of update as a “stand-alone” belief

change operator. Of particular concern, as emphasized earlier, is postulate (U3). This embodies the

assumption that all observations are explainable in terms of some event. This is not always reasonable.

For instance, in our database example we might have a transaction to update Fred’s salary to $90,000

when there is a salary cap of $80,000 in Finance. Thus, no event could have caused this salary change
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if Fred is indeed in Finance. Far from being a miraculous occurrence, it suggests that Fred in actually

in Purchasing. Thus the observation not only forces KB to be updated (reflecting a change in the

world), but also revised (reflecting additional knowledge about the world).

Note that this is not an artifact of out definition of update, One might argue that we should

simply update those worlds for which explanations exist and ignore the others. This minor adjustment

seems reasonable, but it is no longer simply update. Rather it is a combination of update and revision.

Furthermore observations may often be unexplainable for every world in kKBk. For instance, suppose

a solution is believed to be an acid, when a litmus strip is dipped into it and promptly turns blue. This

is not explainable for any KB-world (it should turn red) in terms of event effects. As such, the minor

adjustment of our definition of update is not sufficient. We may want to update KB consistently in

circumstances where no possible event could give rise to the observation given our current state of

belief. Instead, the intuitive explanation in this example consists of two parts: the first postulates that

the event of dipping the paper in the solution occurred; the second suggests that the solution is in fact

a base. This requires revision of KB — we must change our beliefs about the pre-event state of the

world in order to modify KB correctly.

Finally notice that an observation need not be strictly unexplainable to force revision. Often

an implausible explanation will suffice. For instance, a raise to $90,000 might not be impossible in

Finance, but just so implausible that the database is willing to accept the fact that Fred is in Purchasing.

To adequately reflect such considerations, we must have the ability to compare the plausibility of event

occurrences with the plausibility of beliefs about the world state. This provides further support for

more expressive models and languages in which event occurrences can be reasoned with explicitly.

Issues of this sort make postulate (U3) (and certain aspects of (U5) and (U8)) somewhat ques-

tionable, and provides motivation for adopting an abductive view of update. This perspective is

especially fruitful when combining the process of update (changing knowledge) with belief revision

(gaining knowledge). A model that puts both components together in a broader abductive framework

is described in [2]. Roughly, the logic for belief revision set forth in [4] is used to capture the revision

process, but is combined with elements of dynamic logic [14] to capture the evolution of the world

due to action occurrences.

4.2 Related Work

Other have presented models of update that, like ours and unlike the KM-model, have their basis

in reasoning about action. del Val and Shoham [8, 9], using the situation calculus, show how one
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can determine an update operator by reasoning about the changes induced by a given action. Very

roughly, when some KB is to be updated by an observation O, they postulate the existence of some

action AKBO whose predicted effects, when applied to the “situation” embodied by KB, determine the

form of the update operator. Most critically, the effect axiom for such an action states that O holds

when AKBO is applied to KB, and other effects are inferred via persistence mechanisms.

This model differs from ours in a number of rather important ways. First, del Val and Shoham

assume that the update formula O describes the occurrence of some action or event. This severely

restricts the scope of update, which in general can accept arbitrary propositions. They provide no

mechanism for explaining an observation using the specification of existing actions. In order to deal

with arbitrary observations an action is “invented” for the purpose of causing any observation in any

situation. Naturally, the effects of such new actions are not specified a priori in the domain theory.

So they propose that the effect of invented actions is to induce minimal change in the knowledge

base according to some persistence mechanism. However, the plausible cause of an observation O
may carry with it, in general, other drastic (rather than minimal) changes in KB. This can only be

accounted for by explaining an observation in terms of existing actions. A persistence mechanism is

required primarily because existing action or event specifications are not employed.

Another drawback of this model is its failure to account for the possibility that any of a number

of actions might have caused O, and that update should reflect the most plausible of these causes.

Finally, there is an assumption that the update of KB is due to the occurrence of a (known) single

action. As we have described above, this will usually not be the case. Conditional explanations,

explanations that use different actions for different “segments” of KB, will be very common.

A related mechanism is proposed by Goldszmidt and Pearl [13], who use qualitative causal net-

works to represent an action theory. Again, update formula are implicitly assumed to be propositions

asserting the occurrence of some action or event. An observation O is incorporated by assuming

some proposition do(O) has become true, and using a forced-action semantics to propagate its effects.

Explanations are not given in terms of existing actions.

We should point out that both proposals adopt a theory of action that provides a representation

mechanism for actions and effects, as well as incorporating a solution to the frame problem (implicitly

in the case of Goldszmidt and Pearl). We have side-stepped such issues by focusing on the semantics

of update. We are currently investigating various action representations, such as STRIPS and the

situation calculus, and the means they provide for generating conditional explanations. This is partially

developed in [2], where we provide a representation for actions using a conditional default logic to

capture the defeasibility and nondeterminism of action effects, and use elements of dynamic logic to
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capture the evolution of the world. Action theories such as those exploited in [8, 13] might also be

used to greater advantage.
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A Proofs of Main Results

Proposition 3 Let �EM be the explanation-change operator induced by some event model. Then�EM satisfies postulates (U1), (U4), (U6) and (U7).
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Proof Assume an event model M = hW;E;�i and associated update operator � (for simplicity we

drop the subscript). We show in turn that each of these postulates is satisfied.

(U1) By definition Res(A;w) � kAk for all w (hence for all w 2 kKBk). Immediately we

have KB �A j= A.

(U4) Suppose j= A � B. Then e explains A w.r.t KB iff e explains B, for any event e. Thus,

KB �A � KB �B.

(U6) Suppose KB � A j= B and KB � B j= A. Then we have Res(A;KB) � kBk andRes(B;KB) � kAk. If v 2 Res(A;KB), then for some w 2 kKBk we have a most plausible

explaining event e for A such that v 2 e(w). However, since v 2 kBk, e must also be a most

plausible explaining event for B as well; otherwise there must exist some more plausible eventf � e that explainsB, contradicting the fact that e is most plausible forA (sinceRes(B;KB) �kAk). Therefore, v 2 Res(B;KB), so Res(A;KB) � Res(B;KB). By symmetry the reverse

containment holds, so Res(A;KB) = Res(B;KB) and we have KB �A � KB �B.

(U7) Let KB be complete so that kKBk = fwg for some world w. Suppose v 2 Res(A;w) \Res(B;w). (If there is no such v then (KB � A) ^ (KB � B) is inconsistent and (U7) holds

trivially.) Then there is some e such that v 2 e(w) and e is a most plausible explaining event

for both A and B. This ensures that e explains A _ B and that v 2 Res(A _ B;w). Hence,Res(A;w)\Res(B;w) � Res(A_B;w). Therefore, (KB �A)^ (KB �B) j= KB � (A_B).�
Proposition 4 Let �EM be the explanation-change operator induced by some centered event model.

Then �EM satisfies postulates (U1), (U2), (U4), (U6) and (U7).

Proof Given Proposition 3, we need only show that (U2) is satisfied by centered event models.

Assume that M = hW;E;�i is such a model, inducing update operator � (for simplicity we

drop the subscript). Suppose KB j= A. Then for each w 2 kKBk, we havew j= A; and the null

event is the most plausible explaining event for each such world. Thus Res(A;KB) = kKBk
and KB �A is equivalent to KB. �

Proposition 6 Let �EM be the explanation-change operator induced by some complete event model.

Then �EM satisfies postulates (U1), (U3), (U4), (U5), (U6), (U7) and (U8).

Proof Given Proposition 3, we need only show that (U3), (U5) and (U8) are satisfied by complete

models. Assume that M = hW;E;�i is such a model, inducing update operator � (for

simplicity we drop the subscript).
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(U3) Since M is complete, any satisfiable A is explainable for every w. So if KB is satisfiable,Res(A;KB) 6= ; and KB �A is satisfiable.

(U5) Let v 2 Res(A;KB) \ kBk (if there is no such v, then (U5) holds trivially). Then for

some w 2 kKBk there is a most plausible explanation e for A (w.r.t. w) such that v 2 e(w).
This event e must also be a most plausible explanation forA^B w.r.t. w (otherwise some more

plausible event would explain A^B, hence A). Thus v 2 Res(A ^B;KB). Notice that sinceA ^ B must be explainable for every world, we cannot have that Res(A ^B;KB) is set to the

empty set. Thus, Res(A;KB) \ kBk � Res(A^B;KB) and (KB �A) ^B j= KB � (A^B).
(U8) Assume that KB1 _KB2 is satisfiable. We have w 2 Res(A;KB1 _KB2) iff there is somev 2 kKB1 _KB2k such that w 2 Res(A; v). Such a v is either in kKB1k or kKB2k, so this holds

iff w 2 Res(A;KB1) [Res(A;KB2). Therefore, (KB1 _ KB2) �A � (KB1 �A) _ (KB2 �A).�
Theorem 9 Let f�w : w 2 Wg be the family plausibility orderings induced by some complete,

centered event model EM . Then

(a) Each relation �w is a faithful preorder over W .

(b) The change operation determined by f�w: w 2 Wg is an update operator.

(c) The update operator determined by f�w: w 2 Wg is equivalent to the explanation-

change operator �EM .

Proof Let w be some world in a complete, centered event model EM = hW;E;�i, and let �w be

an induced ordering.

(a) That �w is reflexive and transitive follows immediately from the definition �w in

terms of the event ordering �w and the fact that �w is itself reflexive and transitive.

Hence�w is a preorder. Since null actionn �w e for all e 6= n and n(w) = fwg, we

have w �w v for all v 6= w (if v 2 ev(w) for some event ev). Thus �w is faithful.

Finally, sinceEM is complete, for any v there is some ev such that v 2 ev(w). Thus�w is persistent.

(b) The representation theorem of Kastuno and Mendelzon ensures that the family of

orderings f�w: w 2 Wg generates an update operator satisfying (U1) through (U8).
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(c) Denote by � the update operator generated by f�w: w 2 Wg. We will show that

KB � A � KB �EM A for any consistent KB and A. Assume v 2 kAk. We havev 2 kKB �Ak iff v 2 [w2kKBkfmin�wfv : v j= Agg
iff for somew 2 kKBk, if u �w v, then u 6j= A
iff for somew 2 kKBk and event e, v 2 e(w) and

for all e0 �w e, we have e0(w) \ kAk = ;
iff for somew 2 kKBk, v 2 Res(A;w)
iff v 2 Res(A;KB)
iff v 2 kKB �Ak�

Proposition 10 Let EM = hW;E;�i be a complete event model such that �w is a total preorder

for each w 2 W . Then each plausibility ordering �w induced by EM is a total preorder.

Proof Theorem 9 ensures that �w is a preorder. For any world u, let eu denote any event that has

outcome u relative to w; i.e., u 2 eu(w) (such an event must exist since EM is complete).

Consider two worlds u and v. Suppose v 6�w u. Then there must be some eu such that for allev , ev 6�w eu. Since �w is a total preorder, eu 6�w ev for all such ev; and u �w v. Thus, �w is

a total preorder. �
Theorem 11 An update operator � satisfies postulates (U1) through (U9) iff there exists an appro-

priate family of faithful total preorders f�w: w 2 Wg that induces � (in the usual way).

Proof We first assume a suitable family of preorders. The representation result of Katsuno and

Mendelzon ensures that the induced update operator � satisfies (U1) through (U8). We now

show that it also satisfies (U9). LetKB be complete with kKBk = fwg. Suppose KB �A 6j= :B
and KB�A j= C. Let min(A) denote the set min�wfv : v j= Ag. Then we have min(A) � kCk
and min(A) \ kBk 6= ;. Since �w is a total preorder,

min(A ^ B) � min(A) \ kBk � kCk
so KB � (A ^ B) j= C. Therefore (U9) is satisfied.

Now we suppose � satisfies postulates (U1) through (U9). To prove that a suitable family of

orderings exist, we adopt the basic technique of Katsuno and Mendelzon [15]. However, the

28



To appear, Artificial Intelligence, 1995

orderings are constructed in a rather different fashion to ensure that the preorders are total. As

preliminary notation, for any set of worlds X , we write �X to denote some sentence such thatk�Xk = X . To emphasize that this will be the object of revision, we write KBfwg instead of�fwg. We note that (U1) and (U3) ensure that KBfwg ��X � �X 0 for someX 0 � X . We will

also make use of the fact that �X 0 j= �X for any X 0 � X . We can now define a family of

ordering relations based on � as follows:v �w u iff v 2 kKBfwg � �fv;ugk
We first show that �w is a faithful persistent preorder. Clearly, �w is reflexive, since (U1) and

(U3) ensure that v 2 kKBfwg � �fvgk. Similarly, at least one of v or u is in kKBfwg � �fv;ugk,

so either v �w u or u �w v. It is easy to verify that �w is faithful and persistent due to (U2)

and (U3). It simply remains to verify that �w is transitive. So suppose v �w u and u �w t.
This ensures that v 2 kKBfwg � �fv;ugk and u 2 kKBfwg � �fu;tgk.

(a) Suppose KBfwg � �fv;u;tg � �ftg.
Then KBfwg � �fv;u;tg 6j= :�fu;tg and KBfwg ��fv;u;tg j= �ftg.
By (U9), KBfwg � (�fv;u;tg ^ �fu;tg) j= �ftg,
or equivalently KBfwg � �fu;tg j= �ftg.
But this contradicts the fact that u 2 kKBfwg � �fu;tgk.

(b) Suppose KBfwg � �fv;u;tg 6j= :�fug and KBfwg � �fv;u;tg j= :�fvg.

Then KBfwg � �fv;u;tg 6j= :�fv;ug and KBfwg � �fv;u;tg j= �fu;tg.
By (U9), KBfwg � (�fv;u;tg ^ �fv;ug) j= �fu;tg,

or equivalently KBfwg � �fv;ug j= �fu;tg.
But this contradicts the fact that v 2 kKBfwg � �fv;ugk and v 62 k�fu;tgk.

Thus, if u 2 kKBfwg � �fv;u;tgk then v 2 kKBfwg � �fv;u;tgk.

By (a) and (b), we know that KBfwg � �fv;u;tg is not equivalent to �ftg, �fug or �fu;tg.
Thus, v 2 kKBfwg � �fv;u;tgk.

Now by (U5) we have (KBfwg � �fv;u;tg) ^ �fv;tg j= KBfwg � �fv;tg.
Since v 2 kKBfwg � �fv;u;tgk, this conjunction is consistent, thus v 2 kKBfwg � �fv;tgk.

Therefore v �w t and �w is transitive.
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Finally, we demonstrate thatkKB �Ak = [w2kKBkfmin�w fv : v j= Agg
The remainder of the proof follows closely that of Katsuno and Mendelzon, but we include it for

completeness. We assume KB and A are consistent, for the relations holds trivially otherwise.

We first show that this relation holds for any complete KB. Assume kKBk = fwg. We use

min(A) to denote the set of minimal A-worlds in �w.

Suppose v j= KB �A but v 62 min(A). Then there is some u <w v such that u j= A. By (U5),(KB � A) ^ �fv;ug j= KB � �fv;ug; and by definition of �w , KB � �fv;ug � �fug. But thenv 6j= KB �A. So v must be in min(A). Thus, kKB �Ak � min(A).
Now suppose v 2 min(A). Let kAk = fu1; � � � ; ung. We have thatA � �fv;u1g _ � � � _ �fv;ung
And since v � ui for each i � n (since v 2 min(A)), we have v 2 kKB � �fv;uigk for eachi � n. That is, v satisfies (KB � �fv;u1g) ^ � � � ^ (KB � �fv;ung)
By (U7), v therefore satisfies

KB � (�fv;u1g _ � � � _ �fv;ung)
That is, v 2 kKB �Ak. Therefore, min(A) � kKB �Ak.

The result holds for any complete KB. However, any KB is equivalent to the disjunction of

some finite set of complete KBs. Thus, by (U8) we havekKB �Ak = [w2kKBkfmin�w fv : v j= Agg�
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