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Abstract

Classic direct mechanisms require full utility revelation
from agents, which can be very difficult in practical
multi-attribute settings. In this work, we study par-
tial revelation within the framework of one-shot mecha-
nisms. Each agent's type space is partitioned into a finite
set of partial types and agents (should) report the partial
type within which their full type lies. A classic result
implies that implementation in dominant strategies is im-
possible in this model. We first show that a relaxation
to Bayes-Nash implementation does not circumvent the
problem. We then propose a class of partial revelation
mechanisms that achieapproximate dominant strategy
implementationand describe a computationally tractable
algorithm for myopically optimizing the partitioning of
each agent's type space to reduce manipulability and so-
cial welfare loss. This allows for the automated design of
one-shot partial revelation mechanisms with worst-case

are bot fully revealed (thus relieving agents of some of the
computational and communicational burden) has become an
important problem in computational mechanism design.

In this paper we consider the design of one-shot mech-
anisms that make decisions using partial type information.
In Section 2, we present a model of partial revelation and
survey those models and results that influence our approach,
with emphasis on the tension between partial revelation and
dominant strategy implementation. In Section 3, we show
that relaxing implementation to Bayes-Nash or ex-post does
not allow for the design of “useful” partial revelation mech-
anisms. We therefore considapproximate dominant incen-
tive compatibility in which the potential gain from misreport-
ing one’s partial type in bounded. We define a clasggfet-
minimizingmechanisms (Section 4) that chooses an outcome
that minimizes the worst-case loss (w.r.t. social welfare) over
all possible types in the declared partial types. We then de-

guarantees on both manipulability and efficiency. fine several payment schemes, describe the important proper-

ties of our mechanisms (specifically, approximate efficiency,
. rationality and incentive compatibility) and argue for their
1 Introduction suitability. While these results hold for any partial types, the
An important challenge facing Al is the design of protocolsquality of the approximation depends critically on the choice
through which self-interested agents might interact to achievef partial types. In Section 5 we define an algorithm to opti-
some desirable outcome (such as negotiating an outcome thatize the choice of partial types that allows one to tradeoff the
maximizes social welfare). As a consequenmechanism amount of elicitation with the degree of efficiency and incen-
design[17]—which studies precisely this problem from an tive compatibility loss. Taken together, regret-based mech-
economic and game-theoretic point of view—has become aanisms and the optimization algorithm provide a framework
important area of study within Al and computer science morefor the automated design gfartial revelation mechanisms
broadly. Roughly speaking, a mechanism is a game intendeid which one can explicitly address such tradeoffs. Prelim-
to implement some social choice function (SCF), i.e., a funcinary computational experiments confirm the efficacy of our
tion that selects some outcome as a function of the prefempproach. We defer all proofs to a longer version of the paper.
ences of the participating agents.

A key result in mechanism design, thevelation princi-
ple, states that mechanisms can be restrictéadentive com-
patible, direct mechanismi which agents fully reveal their
truetype(i.e., utility function over outcomes). For instance,
Vickrey-Clarke-Groves (VCG) is such a mechanism for so-We begin with some essential background. To motivate our
cial welfare maximization. definitions, we will use a simple running example of a buyer

Unfortunately, direct type revelation is problematic in prac-wishing to purchase a car from a seller. We wish to facilitate
tice, since utility functions can be extremely difficult for the negotiation: they must agree on the car (from the seller’s
agents to even compute effectively or communicate to thénventory) and the price to be paid; but buyer’s valuation for
mechanism, especially in settings with large, multiattributedifferent cars and the seller’s cost is not known to us. Ideally,
outcome spaces (a familiar example is combinatorial auctionse would identify the car that maximizes surplus (the differ-
[7]). Thus the design of mechanisms where utility functionsence between the buyer’s valuation and the seller’s cost).

2 Background and Definitions



2.1 Mechanism Design nant strategies: it is characterized by any efficient allocation

We adopt a standard quasi-linear environment withgents function, and the Groves paymens]:

in which the aim is to choose asutcomeor allocation x pi(t) = pi(t—i,x*) = hi(t—;) = SW_;(x"5t—) (1)
from the setX of all possible allocations. Each agen n for any functionsh; : T_; — R. In non-trivial settings, the
hastypet; drawn from setT;, and valuation function; : Groves scheme is thanly class of mechanisms that can im-

X xT; — R, with v;(x; t;) denoting the value of allocation ~ plementany SCF in dominant strategies. This follows from

if i has type;. In many cases, we can vigwas encoding’s  two famous results: Roberf22] showed that ifX contains
utility function overX. LetT = [], T; be the set of full type at least 3 outcomes and all valuations are possible, then an
vectors. Thesocial welfareof x givent € T'is SW(x;t) = SCF is implementable in dominant strategies iff it is an affine
>, vi(x;t;). Lett_; denote a type vector over all agents butwelfare maximizer (i.e., affine transformation of social wel-
i, and SW_;(x;t) = >, vi(x;t;). In our example, the fare); while Green and Lafforii0] proved that to implement
buyer’s typet, would determine its valuation, (x; t,) forany ~ an affine welfare maximizer one must use Groves payments.
transacted vehicle (and similarly for the seller, its cost). Thus, to implement social welfare maximization in dominant
The space of possible typ&s could be defined in a number strategies, one must not only elicit enough information to de-
of ways. For instance, ifX| = n, T, could be the set of termine the efficient allocation but generally also enciugh
n-vectors0 < v < c for some constant (with v; denoting  therinformation to determine the Groves paymehts.

the utility of theith vehicle). However, valuations can often 2.2 Partial Revelation Mechanisms

be represented more compactly. For instance, if a buyer’s i . )
utility is known to be linear with respect to a small set of car W& define gartial typed; C T; for agent: to be any subset

features, then &, may bek-dimensional (for somé < n), of i’s types. A partial type vectdt includes a partial type for
and any type captured by a setfoparameters each agent. Adirect) partial revelation mechanisiiPRM)

A mechanisntonsists of a set of action$ = ], A;, an is any mechanism in which the action sktis a set of partial
allocation functionO : A — X andn payment functions YPeS®: (i.e., the agent is asked to declare the partial type
pi : A — R. Intuitively, the mechanism offers the action in which its true type lies). Since agents only reveal partial

set A; to i, and chooses an allocation based on the actiony/P€S: the notion of truth telling must be relaxed somewnhat:
taken by each agent. We assumeasi-linear utility that  Definition 1. A PRM isincentive compatible (IG)-under
is, an agent’s utility for an allocationx and paymenp; the relevant equilibrium concept—if it induces equilibrium
is w;(x, pi,t;) = vi(x;t;) — p;. Mechanismm induces a  Strategiesr; for each agent such that; € 7;(¢;).
(Bayesian) game assuming probabilistic beliefs over types: In other words, an IC PRM will induce each agent to re-
each agent adopts a strategy; : 1T; — A, associating an port a partial type that contains its true type. In our ex-
action with its type ample, we might define the partial type space of the buyer
The goal of mechanism design is to designto imple- by defining a set of rough bounds on the valuation for each
ment some SCF : T' — X. For instancef may be social car, with some cars having a more precise range than others.
welfare maximization (i.e.f(t) = argmax SW(x;t)). In  For instance, one partial type might assert thatar,) €
this work, we focus on social welfare maximizationeffi-  [17,000, 20, 000], vy(cars) € [23,000,24,000], and so on.
cient allocation Implementation then depends on the equi-Limiting revelation to partial types of this form allows the
librium concept used; specifically, if. induces strategies; buyer to negotiate without having to precisely determine its
for each agent in equilibrium such th@(~(¢)) = f(¢) for  valuation for each car, but simply estimate it roughly.
all t € T, we say thatn implementsf. Standard equilibrium Partial types may or may not be overlapping or exhaustive.
concepts lead tdominant strategyex postandBayes-Nash If they are not exhaustive, incentive compatibility is not gen-
implementatiorf. The revelation principleallows one to fo-  erally possible. If they are overlapping, more than one truth-
cus attention on direct, incentive compatible mechanisms iifiul report may be possible, and an agent can reason strategi-
which A; = T; and each agent will reveal his type truthfully cally to choose among them while maintaining truthfulness,
in equilibrium. In our example, this would allow restrictionto something that is not possible if types do not overlap. Our
mechanisms in which we ask the car buyer and seller to repokey results, specifically incentive and efficiency guarantees,
their completevaluation and cost functions, respectively. do not require non-overlapping types. We will, however, as-
The Groves scheme is a famous class of mechanisms féume in what follows that partial types are exhaustive.
quasi-linear environments (of which VCG is an instance) in In general, given a partial type vect@yra mechanism will
which social welfare maximization is implemented in domi- not be able to determine an efficient allocation-the allo-
cationx*(t) that maximizes social welfare for typamay be
Without priors, the game is ipre-Bayesian forni12] or has  different for varioust € 0. A corollary of Roberts’ result
strict type uncertainty13]. is that a one-shot PRM cannot be used for dominant strategy
2If each agent has dominant strategy(i.e., a strategy that is implementation: unless the partitioning of each agent’s type
optimal no matter what others do) in the induced game, then wepace is such that each joint partial tgpaetermines a unique
have dominant strategy equilibrium and implementationeRpost  maximizingx* for all t € §, dominant strategy implementa-
equilibriumis a vector of strategies such thatr; is optimal fori  tjon will not be realized (in general).
even when the types of others are known assuming strategiesin —
m). A Bayes-Nash equilibriuris such thatr; maximizesi’s utility 3In auction-like settings, this result holds for any SCF satisfying
in expectation over others’ types. theindependence of irrelevant alternativids] .



2.3 Related Work allocations selected by the mechanism. For eadefine:

Recent research has examined methods involving limited orz% (x) = Pr(x|6;) = Z Pr(6_;6;) - Pr{O(0:6_;) = x|
incremental elicitation of types to circumvent the difficulties 9

of full type revelation (especi in si - - . . . "
ype revelation (especially in single-good and com In this section, we restrict ourselves to partitions of the type

binatorial auctions). Most work on incremental elicitation that “qrid-based™ h } fval
involves techniques that elicit “just enough” information to space that are "grid-based". each parameter's space of values

determine the VCG outcome fully, both allocatiand pay- |s_sp||t into a finite numper of mtervalls of the fo.r[ﬁ), ub),

ments fully, thus maintaining incentive properties (e.g., inWlth ib < ub. We can derlye the foII.owmg results.. _

CAs [5; 20)). Such mechanisms, being incremental, do notheorem 1. If all valuation functions are possible, in a

fit precisely into our framework, and generally allow only ex Bayes-Nash IC grid-based PRM, we have:

post implementation; issues pertaining to approximate effi- Vi V0.0 . 2% = 2% = @)

ciency are avoided altogether. Furthermore, the sequential ’ V’. Lo 3

approach is critical to avoiding full revelation. Unfortunately, SEE )

the amount of information required to fully determine the Property 2 states that, regardless of its report, agbat

VCG outcome may be consideraljted] (and enforcing IC  the same posteriot; over outcomes. Property 3 states that

over and above just implementing an SCF itself induces sigthis distribution is also the same for all agents. If the alloca-

nificant cos{8]). tion function is deterministic, then it selects the same alloca-
Alternatively one can elicit enough information to deter- tion for each report vector. We call such a mechartiswial .

mine ampproximate|pptima| outcome, acommon approach Triviality may be avoided if allocations are probabilistic, but

in single-agent elicitatiofi4], sacrificing decision quality to €ven then, these properties are very restrictive:

reduce elicitation effort. We adopt this perspective hereProposition 1. No Bayes-Nash IC grid-based PRM has

Recently, we used this approach in the desigrs@fuen- higher expected social welfare than the trivial mechanism

tial PRMs[14], leading to approximate ex-post implementa- that always picks the allocation with highest antesocial

tion. The one-shot mechanisms presented in this paper havgelfare.

stronger incentive properties (approximate dominant implep ., qsition 2. If ex-interim (or,a fortiori ex-post) individual

mentation), and allow for more interesting payment schemesaiionality (IR) is required. the expected f
Another class of approaches to PRMs is exemplified by prioran; Ba;llgs(—Nz;sl,h Ingrlid—l:;ased ;[F)ZI\; ies Zztrjg] of payments of

ity gamed3; 2]. In these models, partial types are elicited and . . .

exact (not approximate) dominant strategy implementation is !N @ sense, though partial revelation Bayes-Nash imple-
realized. However, these PRMs are designed only to de entation is not strictly trivial, itis useless since it achleyes
with agents having one-dimensional (or “single-parameter’f€ Same result as a mechanism with no revelation. Given
types, for example, agents in a single-item auction where valthat an ex-post equilibrium is a vector of strategies that are in
uation for an outcome can be specified by one parameter. I1paYeS-Nash equilibrium for all possible probabilistic priors,
deed, Roberts’ result is escaped only by restricting the spadd€ @bove results imply that any ex-post IC PRM is trivial.

of preferences in this severe fashion. Combinatorial auctions Note that the grid-based restriction is a sufficient condition
with single-minded agents are similarly restric{as]. Un- or the above results to hold. We are currently looking into

like our model, these mechanisms do not generalize to mordentifying necessary conditions. For example, we strongly
realistic valuation structurd4.5). suspect that any partitioning of type space into convex partial

Approximate IC has been considered before from severr:fVpes will lead to the same negative results. We do not have

perspectives. Nisan and Ronldrg] show thatcomputational Such results at present however.
approximation of VCG can destroy truth-telling, but manip-
ulation of approximate VCG can be made computationally4 Regret-based PRMs

difficult [23], thus inducing “practical” incentive compatibil- A partial revelation mechanism must choose an allocation
ity. 1C in expectation or with high probability can also be x(6) for each reported partial typ € ©, but cannot gen-
demanded1]. Finally, one can attempt to bound the gain anerally do so in a way that ensures efficiency. We propose the
agent can achieve by lying (e.g., as proposed for exchangesse ofminimax regre{4; 14] to choose the allocations asso-
in [21]). Itis this latter view of approximate IC that we adopt ciated with each partial type vector.

here. Our class of partial revelation mechanisms, along witlbefinition 2. Thepairwise regrebf decisionx with respect

our partitioning algorithm provide the first approach to auto-to decisionk over feasible type sétis

matedpartial revelationmechanism desigl®].

R(x,%,0) = max SW (%;t) — SW(x;t), (4)
3 Bayes-Nash and Ex-Post Implementation This is the most the mechanism could regret choosimg

stead of (e.g., if an adversary could impose any type vector
In the Bayes-Nash context, each agent has a probabilistif #)- Themaximum regreof decisionx and theminimax
prior over the types of the otherBr(t_;|t;). If truth-telling ~ '€gretof feasible type sétare respectively:
is a Bayes-Nash equilibrium in a PRM, this defines a distri- MR(x,0) = max R(x,%,0) (5)
bution over the reports (partial types) of other agents; hence o
for each of its report§;, agent; has a distributionr?’i, over MME(9) = e ME(x,9) ©



A minimax-optimaldecision ford, denotedx*(6), is any = Theorem 2. Letm be a regret-based partial revelation mech-
allocation that minimizes Eq. 6. Without distributional infor- anism with partial type spac® and partial Groves payment
mation over the set of possible utility functions, choosing (orfunctionsp;. If MR(x*(#),6) < e for eachd € O, thenm is
recommending) a minimax-optimal decisieri minimizes  e-efficient ands-dominant IC.
the worst case loss in efficiency with respect to possible real-

izations of the types € 0. We refer to the regret maximizing jiprjym (i.e., truth telling for any agent has utility withinof

% in Eq. (6) as thevitnessor x. oo optimal regardless of the reports of others).
Recent approach_es to minimax regret optlmlzan.on have We can specialize partial Groves payments piartial
shown it to be practical when utility models detoredinto  clarke payments

a convenient functional form such generalized additive in-
dependence (GA[p], and utility uncertainty is expressed in pi(0—i,x") = SW(x";(0-:); fi(0-:)) — SW_i(x"; fi(0-:))
the form of linear constraints on such factored mo@élsin

. . iy PO wherex* ; : ©_; — X is an arbitrary function that chooses
this setting, minimax regret optimization can be formulatedan allocation based only the reports of agesttser thani.

as a linear, mixed-integer program (MIP) with exponentially—, . o ! i
many constraints, but can be solved using an iterative conThIS restriction allows the following IR g%Jarantee..
straint generation procedure that, in practice, enumerates onlyheorem 3. Letm be a regret-based partial revelation mech-
a small number of (active) constrairity. anism with partial type spac® and partial Clarke payments

Definition 3. A regret-based partial revelation mechanism Pi- If MR(x"(0),0) < ¢ foreach¥ € ©, thenm is -efficient,
any mechanism in which the allocation function chooses afi"dominant IC and ex-postIR.
outcome that minimizes max regret given the revealed partial In other words, no agent has incentive greater thaat to
type vector; that isQ(0) = x*(0) for all § € ©. participate in the mechanism.

Assume we have a PRM: in which each agent declares ~ We have provided some intuitive justification above for the
a partial typed; € ©,, and thatm is regret-based, i.e(p  use of minimax regret to determine the allocation associated

choosesc* () with minimax regret w.r.t. social welfare for With any revealed partial type profile. We can also provide
any declared type vectér formal justification for the use of minimax regret with respect
to incentive properties of PRMs. Specifically, under the par-
. : X N tial Groves and Clarke payment schemes, worst-case manip-
][nechaﬂ:gsm gltphpartlal typ%_spa% Ifthf](f ”(.9)’ 0) < tE ulability (over possible type profiles) is exactly equal to the
oreachy € ©, thenm 1S e-eflicient or truth-tefling agents. greatest minimax regret-level (again, over possible type pro-
This simply formalizes the obvious fact that since max re-files). Thus one can show:
gret for any mechanism choice is boundeddhythen if all
agents reveal their partial types truthfully we are assured t
be withine of maximizing social welfare.
With PRMs we cannot generally guarantee efficiency: dif-

ferent type profiles within a partial type vectbmay require U2l Clarke scheme, will have worst-case manipulability, effi-
a different allocation choice to maximize social welfare. AsCi€NcY loss and rationality violation at least as great as that of

a consequence, the result of Roberts means we will be unabM' There exist non-regrei-based PRMs where this inequality

to implement our “approximate” choice function in dominant IS strict.

strategies. Instead, we relax the implementation concept in In other words, no non-regret based scheme can perform

a natural fashion and derive a payment scheme that ensurbstter than a regret-based scheme with respect to efficiency

approximate IR and IC in dominant strategies. loss (obviously), gain from misreporting one’s partial type,
Consider the following generalization of Groves paymentsand incentive for non-participation. The analog of this propo-

Given joint reportd = (0;,6_;) of all agents, and the corre- sition holds regarding manipulability and efficiency when us-

In other words, truth telling is asrdominant strategy equi-

Observation 1. Let m be a regret-based partial revelation

groposition 3. Let © be a fixed partial type space, ard
a regret-based PRM (w.r.©) using the partial Clarke pay-
ment scheme. Any other PRM’ (w.r.t. ©) using the par-

sponding choic&*, agenti’s payment is: ing the partial Groves payment scheme.
. N _ 1 (g k. p(n Even with the “Clarke-style” restriction above, our pay-
pi(0) = pi(0-i,x7) = hi(0-;) — SW_i(x"; fi(0-1)) ment scheme is quite generat: ; and f; are arbitrary func-

whereh; : ©_; — Ris an arbitrary functionand; : ©_;, —  tions. The choice of these will not affect the worst-case prop-
T; is any function that, given partial type vectbr;, selectsa erties above, but it can be used to: (a) reduce the likelihood
type vectort_, from that set (i.e.f;(0_;) € 6_;). (if any) of a rationality violation; and/or (b) maximize rev-
Recall that under full revelationf;(6_;) is thecomplete enue of the mechanism. If reducing or removing a rationality
type vectort_; reported by the other agents alndmust take  violation implies revenue loss, then a trade-off can be made
that particulart_; as an argument. Oupartial Groves pay- between the two criteria. An attractive feature of our PRMs
ment schemehowever, can select arbitrary type for each is the considerable scope for optimization of the payment
agent consistent with their declared partial types and applgcheme due to the nature of the partial type revelation.
standard Groves payments (Eq. 1) to these. The selected typesWhen dealing withapproximateincentive properties, one
can differ for each payment functigr, and the arbitrary,; must be aware that a small deviation from the truth by one
functions also depend only on the partial types revealed. Paggent can cause major changes in the mechanism’s alloca-
tial Groves payments can thus require significantly less revetion (leading, say, to large losses in efficiency). But with par-
lation. Together with regret-based allocation, they give: tial Groves payments, an agent can gain at masimpared



to revealing its partial type truthfully. In most settings, the (04,--0;,---0n)
computational cost of finding a good lie, especially given the

considerable uncertainty in the value of any lie (due to un- (©'1,.-0.-6,) (©0"1,.-00-61)
certainty about others’ types), will be substantial (see, e.g., node 2 node 3
[23]). Thus, ife is small enough, it will not be worth the cost:

our formal, approximaténcentive compatibility is sufficient

to ensurepractical, exacincentive compatibility.

To develop a sense of the difficulty associated with manip- node 4 node 5 node 6 node 7
ulating such a mechanism, consider that an agent must be able ) _ )
to compute an untruthful strategy (or lie) with greater utility Figure 1:Example of a mechanism tree.

than truth-telling in order to exploit our approximate incen-5 1 pgrtial Type Optimization Algorithm
tive guarantee. To do this one must first determine the true

value of a lie (incurring the valuation or cognitive costs sim- We describe anffling, iterative, myopic approach to the op-
ilar to revealing truthfully). However evaluating a lie also timization of agent type space partitions. It is myopic in the
requires considerable (and accurate) information about thEllowing two senses: (a) at each step, it focuses on reducing
types and strategies of the others; even with decent priorghe minimax regret of the joint partial type with greatest regret
the costliness of such computations (e.g., in time, cognitiveldy refining (or splitting) it, without considering the impact on
or computational resources) implies that manipulation is noPther partial types; and (b) it only considers the immediate
worthwhile unless the boundis quite loose, and incentive effects of this refinement, with no look-ahead to future splits.
compatibility will thus, in practice, be exact. To simplify the presentation, we first describe a naive, com-
A similar argument can be made regarding approximat@Utationally intensive method, formulated in terms of deci-
IR: determining whether you gain from not participating will Sion tree construction, and then show how it can be modified
be very difficult. Thus aotentialsmall loss will be worth- to be made much more tractable. The algorithm uses a heuris-

while for an agent given the savings our mechanism providel¢ function which, given a partial type vector, selects an agent

in revelation and computational costs (relative to the full rev-Whose partial type will be split. Itis important to realize that

elation alternative). Finally, given the complexity of many tN€se Splits are not "queries” to the agent—the mechanism is

mechanism design settings, when cognitive, computationd]°t seqtjhengalrtharth?r, Sﬁi“t}'?g a pfe:rt:ﬁlvt%ﬁehfurr:hervg]ltllrw— .
and communication costs are accounted for, the potential Io%}%%‘c’si eherle theemoec%aeln'imy%egctoall o (;categg%nceuzll
in efficiency will be an acceptable trade-off, given the high w ISm 1S actually executed.

level of revelation required by exactly efficient mechanisms. SPIItS t0 all agents are determined, the mechanism will ask
agents to select from the partial types induced by this refine-

ment process. In other words, offline we construct the par-
tial types used by thene-shotmechanism. We discuss the
heuristic function further below.
) Figure 5.1 illustrates the creation of partial types fora PRM
So far we have focused on the design of regret-based PRMg terms of decision tree construction. At the outset, the only
with a fixed collection of partial types. However, the se-information available to the mechanism is the set of possible
lection of partial types is critical to the performance guar-types for each agent given by our prior, defining the initial
antees above, since it is these types that determine the dSartiaI type vectofb,, ..., 0,) with 6, = T;. This labels the
gree of regret incurred by the mechanism. The key desigihitial (root) node of our tree (node 1). We call the heuris-
issue is the construction of a suitable set of partial types thajc function on this vector, which selects an agent, say agent
minimizes both revelation and the maximum minimax regret)  and a split of that agent's partial tyge into two more
(i.e., €) over that set. We describe a heuristic, but reasonrefined partial type#’ andé/. The reasons for choosing a
ably tractable, approach to the automated optimization of th@articular split are elaborated below, but intuitively, such a
type space partitioning. Although the class of mechanismspjit should have a positive impact with respect to max regret
is fixed and it is the partition that is being optimized by our reduction of the mechanism. This creates two child nodes
algorithm, together these constitutes a tractable approach ¥rresponding to partial type vectd¥, ..., 0, ...,0,) and
automategpartial revelationmechanism design. (97,...,6;,....6,) (see nodes 2 and 3 in Figure 5.1). These
In what follows, we assume an agent type is simply atwo new leaves in the tree correspond to the partial type vec-
boundedh-vector with valuations for each allocatiene X.  torsto be used by the mechanism should the splitting process
When dealing with a multi-attribute outcome space, we aldterminate at this point. Thus, we update the partial type space
low for an agent’s type/utility function to béactoredus-  ©; for agentl by removingd; and adding} and¢y. We then
ing a generalized additive independence representf@lpn compute the minimax regret level, optimal allocation and wit-
in which utility parameterized with local sub-utility functions ness (in a single optimization) for these two new leaf nodes
over small sets of attributes. In a flat (un-factored) model, thegiven their partial type vectors.
parameters are simply the valuations for allocatienswe With multiple leaves, the heuristic function must first select
assume in what follows that the type spéd¢eas given by up-  aleaf node for splitting before selecting a split. It does this by
per and lower bounds over the parameters of agemuitility selecting the partial type vector (leaf node) with greatest min-
model and focus on partial types specified similarly. imax regret. The algorithm iterates in this fashion, repeatedly

5 Construction of Partial Types



selecting the leaf node with greatest minimax regret and us- Find leaf nodeV with highest regret ,
ing the heuristic to decide which agent’s partial type (within I(f:ilklu he“r's.t"lf onN's p;”'al;éy?.e vector. Outputhzlzt ASlit:
that node) to split (and how to split it), until some termination Sp;;?\i);:(?\}g?;;z t)Sp plit on same parameter asplit:
criterion is met (e.g., the worst-case max regret is 'reduced 0gsesearch for’“good” ignored spligSplit
some threshold, or some maximum number of partial types— ¢ there exists one:
per agent or overall—is reached). splitNode(N, gSplit)

Unfortunately, unlike standard decision tree construction, ElseTesthSplit

a split at one leaf has implications for all other leaves as If hSplit is “good’:

well. For example, after the initial split above, a split may splitNode(N, hSplit)
be recommended at node 2 in the tree, corresponding to  Else-if ASplit is "OK: _ .
(0),...,6;,...,0,). Suppose a split of ageris partial type Search for “OK” ignored splivk Split

If there exists one:
splitNode(N, okSplit)
Else splitNode(N, hSplit)

6; into 0, and @ is suggested for some# 1. Sinced; is
included in the partial type vectors bbth nodes 2 and 3,
this split affects both child nodes, since agemtll have to
distinguish (at the very leasfj from ¢/. We there must re- Table 1: Split selection algorithm
place nodes 2 and 3 with four new leaf nodes (nodes 4-7)
corresponding to the combinations&if 67 andé;, 6. . splitNode(N, split)
This naive approach has two obvious problems. First, there ¢ = partial type vector ofV; i = agent involved irsplit
is an exponential blow-up in the number of leaves of the split; into §; andd;" according tosplit
“mechanism tree” since any reasonable heuristic (including updatei’s partition
the one described below) will often (roughly) alternate splits compute new MMR for botff¢;, ;) and (6, 6—;)
between the agents whose type uncertainty is still relevant, create corresponding new nodssandN"” ,
The algorithm is therefore computationally demanding. Sec- SeparateV’s ignored splitlist into those foN” and v
ond, consider the example above. The splii,ait the second 'r:eplaﬁel 'e?w 'd“ tree "é‘th 'eﬁf .”Odeg.vl andN
iteration of the algorithm was recommended by the heuristic c;rd?js ?a nodes Wittt in their partial type vector
- S plit to list of ignored splits
based on the partial type vector at node 2 (which inclédgs . .
because of its ability to reduce the minimax regret level of that Table 2: splitNode function
specific partial type vector. However, this split may have lit-
tle or no effect on minimax regret when applied to node 3 (inplexity of the partition. The precise way in which we select
which agent 1's partial typé/' is different). This split may  splits is described in Tables 1 and 2. A split is called “good”
indeed be “useless” when considered at node 3. These prolj-hoth resulting nodes have lower regret than the node that
lems can be avoided by modifying the algorithm as follows. was split, and “OK” if only one of them does. With this im-
When a splitis made at some nokleeven though the par- proved algorithm, new mechanism nodes are only added if
tition has been updated in a way that might affect a partiathey are helpful. Since the naive approach results in useless
type at another node’, we can choose to ignore the effect splits, computational requirements can be greatly reduced by
onk’. Thus nodé:’ corresponds to a partial type vector that adopting this more sophisticated approach.
is no longer in our partition but includes a collection of par- o )
tial type vectors that are. We call a joint node, and for 5.2 Heuristic Function
each such node, we record the splits that have been ignoretihe role of the heuristic function is to split a partial tyyec-
In our example, the split of node 2 &) may be ignored at tor in two, creating one additional node in the mechanism.
node 3, leaving node 3 to be a joint node. In the tree, node Zhis must be done by splitting the partial type of one of the
would generate two descendants (nodes 4 and 5), while nodgyents. However, in the case of a joint node, the partial type
3 would remain a leaf node (nodes 6 and 7 would not be genof an agent passed to the heuristic function may correspond
erated). While the split of's type intod; andd;’ will even-  to several “actual” partial types in the partition. For exam-
tually need to be considered at node 3 (or its descendantsple, the input partial type may ignore the fact that it has been
we defer this decision (as discussed below), and can considgplit along parametet; at the value .5. If the heuristic rec-
making additional splits of node 3 first should this splitpf  ommends splitting that partial type along parameigrthis
be of little value. This saves having to consider the splits ofcorresponds to splittintyvo actual partial types (with values
multiple descendants of node 3 independently. greater or less than .5 for,). But the partial type vector is
Note that multiple ignored splits may be “nested”. For ex-only split in two, each successor node inheriting the ignored
ample, perhaps the first split cuts the partial type into ongplits of its parent.
where some utility parametex is greater than5 (call this In a flat utility model, each utility parameter is simply the
6%-5) and one where it is lowerd{-’-%); the second splits valuation for an allocatior. In this case, our heuristic can
695 onp, at.7; the third splits);~"-5 along parameter, at  be described as follows. At each node, given its partial type
.4, and so on. When such joint node is the leaf with greatestector, we have the corresponding minimax regret solution
regret level (i.e., the one to be considered for expansion), we* and witness. Intuitively, regret can be reduced by rais-
first check if there is a useful ignored split before consideringng the lower bound ok* or lowering the upper bound ca
the split recommended by the heuristic. If so, we “un-ignore”"However, since the optimization is offline, the split “Is utility
it, thus creating another leaf but without increasing the comfor x greater than .5?” must account for both possibilities,




yes and no. When splitting, say;, the partial type corre- partial type evenly across all parametérs.

sponding to the no answer (i.e., lowering the upper bound) Figure 6 shows the worst case minimax regret level of our
is unlikely to have lower regret unless’ also turns out to  regret-based PRMs (averaged over thirty runs using different
be the witness of the second best regret minimizing allocapriors) when partial types are constructed using our myopic
tion. In that case, lowering its upper bound will help reducealgorithm and when uniform splitting is used. We also show
the second lowest regret and raising the lower bound will helgxpected minimax regret level (assuming a uniform distribu-
with the lowest. We therefore also compute the second lowesion over types). Results are reported as a function of the
max regret solutiox*? and its witness?. If both x = x*? number of bits of communication necessary for an agent to
andx* = x* are true, or neither is true, we split the one with report some partial type in the proposed partition. Bounds on
the largest gap (the difference between its upper and lowemanipulability, efficiency loss, and rationality violation are
bounds). If only one is true, we split that parameter, unlessill dictated by this worst-case regret (depending on whether
its gap is below some threshold, and the other gap is not.  partial Groves or Clarke payments are used).

This seemingly trivial strategy has interesting properties It is clear that using regret-reduction to decide how to “re-
when utility models are factored using GAI. In this setting, fine” partial type space offers a significant improvement over
our heuristic is an adaptation of tieerrent solutionelicita-  a uniform partitioning. Our regret-based approach provides
tion strategy of4] to an offline one-shot elicitation scenario. good anytime behavior while uniform partitioning reduees
We defer details to a longer version of this paper. as a step function (averaging smooths the results in the graph).

Naturally, average manipulability is lower than worst-case
. manipulability, thus further justifying the use of approximate
6 Empirical Results incentives. We note that the initial regret level (assuming only
. ) . . _ one partial type, i.eT;, for each agent) corresponds to an
We report on experiments in a multl—attrlbu_te negotiation d(?'error between 50% and 146% of the optimal social welfare,
main. A buyer and a seller are bargaining over a multi-gepending on the actual agent types, and is reduced using 11
attribute good to trade. The set of 16 possible goods i$jts of communication (to communicate one’s partial type) to
specified by four boolean variableX,, X, X3, X4, denot-  20_5604 error by our regret-based approach versus only 30—
ing the presence or absence of four specific item featureggoy, by the uniform approach. With only 11 bits, the regret-
The buyer's valuation and the seller's cost are representeglaseqd approach reduces efficiency loss and manipulability by
using GAl structure. Each agent's utility function is de- ahoyt 60% while a uniform partition reduces it by about 38%.
composed into two factors, each factor with two differento reach an average manipulability level of around 70, a uni-
variables: ’Ub(>2<) = vy (21, 22) + v, (23, 74) @ndwvs(x) = form approach requires 11 bits compared to 6.5 for regret-
vg (1, x3) +v3 (22, 74). Each subutility function is specified paged splitting, which constitutes a 40% savings in commu-
using four parameters, indicating the local value of the foutication. To reach manipulability level of roughly 90, the
possible combinations of featur.e's. Thus.eight utility parameregret-based approach provides a 50% savings in communi-
ters fully define each agent's utility function. cation (5.5 bits vs. 11 bits). Note that this savings will be

Initial prior bounds on utility parameters (i.e., the ini- realized repeatedly if the mechanism is used to support, say,
tial type space) are drawn uniformly between O and 100multiple bargaining instances. Finally, it is worth remarking
(seller cost) or 100 and 200 (buyer value), ensuring a posithat 11 bits corresponds to about 1.4 bits per parameter and
tive transaction exists. Though 16 goods may seem small, 8.7 bits per allocation, which is quite small in an example of
is much larger than problems solved by existing automate¢his size.
approaches to (one-shot) mechanism design (all of which are preliminary tests using a (computationally demanding)
restricted to a small, finite type space). The social welfargnyopically optimal heuristic (that considers each parameter
mgX|m|2|ng allocation is that gOOd that maximizes SUfp'USand chooses the highest regret drop) show On|y modest im-
(difference between buyer value and seller cost). provement over regret-based splitting, thus motivating the in-

We assess the performance of our mechanisms by showinggstigation of non-myopic splitting techniques.
how theworst caseminimax regret level (over all possible
agent types) reduces with the number of partial types cre- .
ated by our approach (expressed in number of bits). Sincz Conclusion

PRMs are designed to work for agents with any true typeswe have proposed a general model for partial revelation
there is nosingletrue type or optimal allocation to compare mechanisms in which social welfare maximization is the de-
to. We could simulatspecificagents, but our worst-case re- sjred objective and explored their incentive properties. As a
gret bounds any such “true loss” results, and these bounds a¢gsult of our negative results on Bayes-Nash and ex-post im-
tight in the sense that at least one set of agent type profilggiementation (along with classical results on dominant strate-
will incur this worst case regret. Of course, regretany Spelel(‘gies), we have relaxed the requirement of exact incentive
collection of agents (or type profile) will generally be lower,

so we also shovexpectedregret in our results, assuming a  47hjs is simulated so that at each step only one partial type is
uniform distribution over type parameters. We compare OUEpiit in order to allow a more accurate comparison to our approach.
myopic approach to type construction (i.e., where regret re- Spor agents with apecifictype, we can usually derive much
duction is used to determine splits of partial types) to a simple&ighter bounds on gain from manipulation than the worst cgse
approach for partial type construction that simply splits eacthence expected manipulability is less.
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Figure 2: Worst case and expectedas a function of the number
of bits used per agent. Averaged over 30 runs.

compatibility and focused on approximating both the eﬁi—[lo]
ciency and incentive properties of PRMs, allowing one to
exploit the trade-off between the computational, communi-
cation and cogpnitive costs of type revelation with the degreey q]
of approximation. Regret-based PRMs, in particular, allow
one to bound efficiency loss, gain from manipulation and[;7]
non-participation, and admit promising optimization meth-
ods for the automated design of PRMs. Critically, when the
gain from non-truthful revelation is sufficiently small, our re- [13]
sults on formal, approximate incentive compatibility ensures
“practical” true incentive compatibility.
14]

Apart from more extensive empirical evaluation, there are[ :
several directions in which this work should be extended. The; s
first is the integration of techniques for approximating regret
computations into our algorithm to tackle realistic problems
[4]. The second is the investigation of more efficient splitting[16]
heuristics that improve both the communication requirements
of our mechanisms and the computational costs of designing
them. The design of non-myopic incremental partial mechaf17]
nisms is of special interest. Precisely determining the com-
plexity of manipulation by formally modeling the costs in- [1§]
volved is also an important task in further justifying our em-
phasis on approximate IC and IR. We are exploring furthef19]
benefits offered by partial revelation and (bounded) approxi-
mate IC w.r.t. to circumventing some other classic drawbacks
and “impossibility” results for direct mechanisms. Finally, [20]
we are very interested in the exploiting prior distributional in-
formation about types in the construction of partial type spacé21]
to reduceexpecteckfficiency loss and manipulability, while
retaining our worst-case guarantees, similar to the approadi?|
taken in (full revelation) automated mechanism de$gjn
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