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Abstract

In most mechanism design settings, optimal general-purpose
mechanisms are not known. Thus the automated design of
mechanisms tailored to specific instances of a decision sce-
nario is an important problem. Existing techniques for au-
tomated mechanism design (AMD) require the revelation of
full utility information from agents, which can be very diffi-
cult in practice. In this work, we study the automated design
of mechanisms that only require partial revelation of utilities.
Each agent’s type space is partitioned into a finite set of par-
tial types, and agents (should) report the partial type within
which their full type lies. We provide a set of optimization
routines that can be combined to address the trade-offs be-
tween the amount of communication, approximation of in-
centive properties, and objective value achieved by a mech-
anism. This allows for the automated design of partial rev-
elation mechanisms with worst-case guarantees on incentive
properties for any objective function (revenue, social welfare,
etc.).

Introduction

Intelligent agents acting on behalf of specific, self-interested
users are increasingly required to interact with each other in
applications ranging from auctions to automated negotiation
and bargaining. The design of interaction protocols that lead
to desirable outcomes is knownm@gchanism desigib].

A mechanisnis basically a game intended to implement
somesocial choice function (SCFya function that selects
an outcome as a function of the preferences of participating
agents—thus usually requiring agents to reveal something
of their preferences. There are, however, few SCFs that can
be implemented in general settings without exploiting prior
information about agent preferences. (Social welfare max-
imization is a rare positive example, implementable via the
well known class of of VCG mechanisms.) In practice, how-
ever, a designer often has prior information over agent types
and need only design a mechanism suitable for her particu-
lar context. Automated mechanism design (AMB) tech-
nigues consist of algorithms that, given prior utility informa-
tion, construct a mechanism tailored to the specific context
and social choice objective of the designer.
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A key result in mechanism design, tievelation prin-
ciple, states that mechanisms can be restricted to those in
which agentdully reveal theirtrue preferences (e.g., as in
VCG). Unfortunately, full preference revelation is often in-
tractable, since utility functions can be extremely difficult
for agents to compute effectively or communicate to the
mechanism. Thus the design of mechanisms where pref-
erences are only partially revealed has become an important
problem in computational mechanism design. AMD has to
date focused on full revelation (though see [10] for an ex-
ception).

In this work, we explore the automated designpeatr-
tial revelation mechanisnfer general objectives. Unfortu-
nately, negative results are known regarding the implemen-
tation of partial revelation mechanisms with exact incen-
tive properties [5; 9; 8]. We will therefore consider mecha-
nisms with approximate incentives, where the potential gain
an agent can achieve by revealing its type insincerely is
bounded. Given the potentially considerable costs required
to manipulate a mechanism, if this bound is low enough, ma-
nipulation will not be worthwhile; thus approximate incen-
tive compatibility in the formal sense will suffice to induce
truthful revelation in practice. This corresponds to the ap-
proach of [5], where we considered partial revelation mech-
anisms that attempt to minimize worst case loss in social
welfare. Theoretical results in that work hold only for wel-
fare maximization. Here, we extend the approach to account
for general design objectives, and show how to maintain ap-
propriate incentives without relying on those theoretical re-
sults.

After providing some background, we describe the gen-
eral problem ofpartial revelation mechanism design (PR-
AMD) in more detail. We then describe algorithmic tech-
nigues for bothBayesianPR-AMD andregret-basedPR-
AMD and present some preliminary empirical results.

Background

Mechanism Design We adopt a standard quasi-linear en-
vironment withn agents in which the aim is to choose an
outcomeor allocationx from the sefX of all possible allo-
cations. Each agent< n hastypet; drawn from sef’;, and
valuation functiorw; : X x T; — R, with v;(x;¢;) denot-
ing the value of allocatiow if 7 has type;. In many cases,
we can viewt; as encoding’s utility function overX. Let



T = [, T; be the set of full type vectors. Tisecial welfare
of x givent € T'is SW(x;t) = ), vi(x; ;).

A mechanisnM consists of a set of actioné = [ ], 4;,
an allocation functiomn : A — X andn payment functions
p; : A — R. Intuitively, the mechanism offers the action
setA; to ¢, and chooses an allocation based on the actions
taken by each agent. We assumeasi-linear utility, that
is, an agent’s utility for an allocationx and paymenp;
is u;(x, pist;) = vi(x;t;) — p;- Mechanismm induces a
(Bayesian) game assuming probabilistic beliefs over types:
each agent adopts a strategy; : T; — A; associating an
action with its type.

The goal of mechanism design is to deslghto imple-
ment some SCF : T — X. For instancef may be social
welfare maximization (i.e f(¢t) = arg max SW(x;t)). Im-
plementation then depends on the equilibrium concept used;
specifically, ifm induces strategies for each agentin equi-
librium, such thatn(r(t)) = f(t) forall t € T, we say that
M implementsf.

If each agent has @ominant strategyi.e., a strategy that
maximizes its utility no matter what others do) in the in-
duced game, then we have dominant strategy equilibrium
and implementation. In this work, we focus erdominant

one truthful report may be possible, and an agent can rea-
son strategically to choose among them while maintaining
truthfulness, something that is not possible if types do not
overlap. The incentive guarantees described below do not
require non-overlapping types. We will, however, assume in
what follows that partial types are exhaustive and wi{tg
for any partial type that contairis

Implementation of PRMs with exact incentive properties
is either impossible or “useless” in the general mechanism
design problem [5; 9; 8]. For this reason, we focuseen
dominant IC and-IR. Note that with this notion of approx-
imate IC, an agent can gain at mediy lying about its type,
compared to revealing its partial type truthfully. In most
settings, the computational cost of finding a good lie, es-
pecially given the considerable uncertainty in the value of
any lie (due to uncertainty about others’ types), will be sub-
stantial (see, e.g., [11]). Thus,dfis small enough, it will
not be worth the cost: thiformal, approximatencentive
compatibility is sufficient to ensurpractical, exactincen-
tive compatibility. A similar argument can be made regard-
ing approximate IR: determining whether you gain from not
participating will be very difficult. Thus g@otentialsmall
loss will be worthwhile for an agent given the savings our

strategies, namely, strategies which, no matter what others mechanism provides in revelation and computational costs

do, cannot be improved by more than A mechanism is
directif Vi, A; = T}, that is, if the agents’ actions are possi-
ble reports of their type. A direct mechanisnm{@minant-
strategy) incentive compatible (IGQf) reporting one’s type
truthfully is a dominant strategy. It is-IC if truth-telling

is e-dominant. A mechanism imdividually rational (IR)
(resp.e-IR) if, in equilibrium, no agent can lose (resp., more
thane) by participating in the mechanism. When consider-
ing dominant strategy implementation, thexvelation prin-
ciple allows one to focus attention on direct, incentive com-
patible mechanisms in which; = T; and each agent will,
in equilibrium, reveal itdull type truthfully.

Partial Revelation Mechanisms As mentioned, full type
revelation is often extremely costly. Following [4; 5], we
consider mechanisms where agents only partially reveal
their utility information. We define partial typed; C T; for
agenti to be any subset afs types. A partial type vectat
includes a partial type for each agent(direct) partial rev-
elation mechanisnfPRM) is any mechanism in which the
action setA; is a set of partial type®; (i.e., the agent is
asked to declare the partial type in which its true type lies).
We thus writeM = (0, m, p) wherem andp map partial
type vectors to allocations and payments respectively, and
© =[], ©;. Since agents only reveal partial types, the no-
tion of truth telling must be relaxed somewhat:

Definition 1. A PRM isincentive compatible (IC)f it in-
duces a dominant strategy; for each agent such that
t; € m; (tl)
In other words, an IC PRM will induce each agent to report
a partial type that contains its true type.

Partial types may or may not be overlapping or exhaus-
tive. If they are not exhaustive, incentive compatibility is
not generally possible. If they are overlapping, more than

(relative to the full revelation alternative). We will use the
termmanipulabilityto refer to the degree of both the incen-
tive and rationality violations.

Automated Mechanism Design For many social choice
functions, there is no known mechanism that implements it
in general. For example, revenue-maximizing mechanisms
are only known for very restricted settings such as one-item
auctions [7]. In practice, however, a designer often has prior
information over agents’ types and only needs to design a
mechanism suitable for her particular context. Automated
mechanism design (AMD) [3] assumes the designer has a
social choicebjectivequantifying social value of outcomes
as a function of agent preferences. A mechanism can thus be
designed to maximize the expected objective value given a
distribution over agent types. Under full revelation and with
a finite number of types, this optimization can be expressed
as a linear program (LP) where IC and IR are imposed as
linear constraints. If each agent Hakull types, the number

of variables of the LP i&™ - (|X]| + n).

Partial Revelation AMD

In this work, we extend the AMD framework tmartial rev-
elation automated mechanism design (PR-AM@gally,
given a social choice objective, one would optimize the en-
tire mechanism—allocation and payment functions as well
as the type partitioning—in a single optimization. But even
with a simple partial type space, this optimization typically
requires an intractable polynomial program. To reduce it to
a sequence of linear optimizations, we decompose the op-
timization into two steps: the first to optimize the mecha-
nism functions given a fixed partition; and the second to re-
fine the partition. Given a fixed patrtition, in order to extend
the AMD framework to partial revelation, one must define



a suitable objective function, and adapt the IC and IR con-
straints to their (approximate) partial revelation equivalent.
There are, therefore, three relevant criteria to “evaluate” a
mechanism: its objective value; its level of manipulabitity
and its revelation “cost” (e.g., communication complexity or
cost of computing partial types).

The bound on manipulability could be fixed a priori, but
in many settings it will be beneficial to optimize this as well.
One could also incorporateinto the designer’s objective
function, for example, by formalizing the various costs in-
volved in manipulating the mechanism. This is, however,
beyond the scope of this work, and we will here consider op-
timizing the mechanism’s objective and its incentive proper-

ties separately. We therefore have three basic tasks when au-

tomatically designing a PRM: optimize the objective value
for a fixede and partition; optimize for a fixed objective
level and partition; and optimize the partition for a fixed
mechanism. In this section we describe different objective

functions one might consider, and the basic constraints that

will be involved in the optimization. The following two sec-
tions describe the objective and manipulability optimization

steps in the Bayesian and regret case respectively. We then R(M, M)

describe the partition optimization step.

Objectives

An objective functionf (¢, M) reflects the designer’s value
for mechanisnM = (6, m,p) when the agents’ types are
t. It often makes sense to decompgsas

f(t, M) = fi(t,m,0) + f,(t,p,©) + c¢(M).
Here f,, represents standard allocation-level objectives; for
instance, if social welfare is being considered, we define:

fu(tm, ©) = S mi,) - SW (i 1)

wherem} = Pr(m(0) = x|0) is the probability that al-
locationx is chosen when agents repért f, corresponds
to payment-level objectives such as revenfigs, p, ©)
> pi(6(2)). Finally, c(M) represents costs associated with
the execution of the mechanism, for instance, a cost of
« per bit required for agents to report their partial types:
c(M) —alog,(|©]). In what follows we assumég,,,

fp andc are multi-linear maps oft, m, ©), (¢,p,0), and
(m,p, ©) respectively.

Given an objective functiorf (¢, M), we consider two
approaches to PR-AMD: maximize tlpected objective
value of the mechanism; and minimize thregret of the
mechanism with respect to the objective function.

Expected Objective Given a probabilistic prior over agent
typesPr(t), the expected objective value of a PRM (assum-
ing truthful revelation) is well-defined:

Pr(t)f(t,M)dt = > _ Pr(6)

0€O

Pr(t|t € 0) f(t, M)dt

teT teo

For a fixed partition and mechanism, we can compttg)
and [,_, Pr(t[t € 0)f(t,M)dt, forall§ € ©.

Minimax regret When the prior information over agent
types is not quantified probabilistically (e.g., we only have

bounds on utility parameters), minimax regret is an appro-
priate decision criterion. Even when probabilistic informa-
tion is available, minimax regret has been shown to be an
excellent guide for the elicitation of preferences relevant to
a particular decision problem [2; 4; 5]. Here the decision
that is made is the choice of a mechanism. ME©) be the
set of partial revelation mechanisms with partit®n The
pairwise regret of choosing mechanidhversusM’, given
that the type vector of the agents iss:

R(M,M’) maxmax f(t, M) - f(t, M)

The max regret oM and the minimax regret optimal mech-
anismM* are, respectively:

MRM) = max R(M,M)
M’ €eM(O)
M* = arg min MR(M)
MEM(O)

R(M, M) represents the worst-case loss in objective value,
over all possible realizationtsof types. It can be thought of
as the regret of choosiigl and notM’ when an adversary
gets to pick the types of the agenfg.R(M) is the level of
regret when the adversary also chods&s For example, if
the objective is to maximize social welfare, we have:

max SW(m/(t);t) — SW(m(t);t)

max max

0€O tco (Ma(ey — ma)) - SW(x;t)

Constraints
Given a mechanistvl = (6, m, p), the utility of agent of
typet; for reportingd;, when others repoft_; is

ui(0:]0—;ti) = 3 my - vi(x; i) — pi(6).
e-IR  can be obtained by ensuring that
uz(gz(tz)wfz(tfz),tz) > —e, VL,VtZ,Vt,Z For a fixed
partition, when optimizing the mechanism variables, this is
equivalent to the following linear constraints:

Zm’g‘ . tmelgl vi(x;t;) — pi(0) > —e, VO,Vi

To obtaine-dominant strategy IC we must haw&, V0, €
@Z‘,Vti c GZ,VH; c @i,w,i € 0_;:
If type space is continuous, this corresponds to an infinite

number of constraints (one for eaigh But these constraints
are equivalent t&/¢;, 0., 6_;:

min
t; €0,

> (mig —miy) - vix;ta) | +pi(0') = pi(0) > —¢

If the partition consists of upper and lower bounds on val-
uation parameters, since valuation functions are linegy; in

it is sufficient to post one constraint for each verte@of

For both IC and IR,, the number of constraints is thus pro-

portional to the size of the partitiof. If © is the Cartesian
product of independently constructed agent partitionsts

size is exponential in the number of agents. Our partition
optimization routine (described below), however, partitions
type vectorspace directly, so that the size ©fis equal to
the number of steps in the optimization. In addition, to avoid
posting one constraint for each partial type vector, one can
use constraint generation to iteratively post the most violated
constraint until none are violated. In practice, only a fraction
of the constraints will be posted.



Bayesian PR-AMD any IC constraints imposed on the adversary’s mechanism

In this section, we consider PR-AMD with Bayesian objec- Will be vacuous, and the meaning of the regret level achieved
tives. We can define two sub-routines: one focused on in- Will be compromised. We therefore separate the mechanism
creasing the expected objective of our mechanism, subject to OPtimization into two phases: one to reduce regret without

satisfyings-IR ande-IC; the other to minimize the manipu-  @ny consideration of incentives up to some desired point, the
lability, ¢, subject to achieving a specific expected objective Other to reduce manipulability subject to maintaining the de-

level. The two can be combined with our partition refining ~ Sired regret level.

algorithm in a number of ways, depending on the designer's Regret Minimization ~When the partition is fixed, the only
goal. variables inM (m andp) are functions that map partial type

For example, one could first initialize at some value vectors to allocations and payments. We therefore have:
and refine the type partition to increase expected objective

value, subject to maintaining until some stopping crite- min - maxmax f(t, M) — f(t, M)

rion is met. One could then hold this objective value to at —  minmax maxmax f(£, M) — f(t, M)
least its terminal value and refine the partition to reduce the M M 66 teh ’

value ofe. Stopping criteria could include a target objective = max min maxmax f(t, M) — f(t, M)
or ¢ level, or a specific number of bits (partial type limit) 0€© m(9),p(6) M’ t€d

per phase. One could also alternate the sub-routines: fix an The regret minimizing mechanism is thus a mechanism
initial £, optimize the objective subject to thisthenreduce  \yhjch, for each partial type vector picks the regret minimiz-
e subject to this objective level, etc. _ing allocation and payments. This significantly reduces the
Our aim s not to argue for one particular approach, butin- - sjze of the LPs involved. Althougl®| is exponential in the
stead to p_rowde the tools for a designer to achieve her goal, number of agents, enumeration can be avoided, in practice,
whatever it may be. using constraint generation. Note that when using our par-
Objective Maximization Given a fixed partition and a tition refining algorithm (see below), the minimax regret of
fixed ¢, finding thee-IR ande-IC mechanism with highest ~ the mechanism can be computed iteratively, with only the
expected objective can be formulated as the following LP:  regret values of two partial type vectors being computed at
each step. Since individual rationality constraints are “lo-
ml\a/}xz Pr() - go(6,M), s.t.Mise-ICande-IR cal”, i.e., each constraint applies to a unique partial type
= vector, adding them does not alter the formula above. Since

incentive compatibility involves comparing decisions made
wherego, (6, M) = [, Pr(t|t € 0)f(t,M)dt. When b Y paring

. My Jt . . for different reports, this would not be true if we added IC
using our partition refining algorithm (discussed below), the

o X constraints as well. If one wanted to impose IC constraints,
probabilities of the partial type vector’y(f), canbe com-  gegpite the fact that it makes the meaning of regret ambigu-
puted iteratively, two at each step.

ous, the optimization above can be computed as a sequence
Manipulability Minimization ~ Given a fixed partition and of (much larger) LPs using constraint generation. The result-
a fixed objective leveF’, we can construct the mechanism ing mechanism would be thelC, e-IR PRM with lowest

with least manipulability: possible regret.
min ¢ S.t.Mise-IC, e-IR, Manipulability Minimization  This phase is very similar
M,e to its Bayesian equivalent. Given a fixed partition and a fixed
andz Pr) - gop(6,M) > F regret leveld, finding the mechanism with lowestcan be

formulated as the following LP:
9co

As previously mentioneds-IR ande-IC constraints are mine stMise-IC, e-IR, andd > ME(M)

linear in the mechanism variables, and since the partition is . . .
fixed, the two optimizations above are LPs. They can be This can be solved as a sequence of LPs using constraint

solved directly, or as a sequence of smaller LPs using con- 9éneration.

straint generation. Partition Optimization
To refine the partition, we use the partition optimization al-
Regret-based PR-AMD gorithm of [5]. The algorithm is based on decision tree

In this section, we focus on PR-AMD where the designer construction techniques adapted to this setting for computa-
wishes to minimize her regret over the choice of mecha- tional tractability. It is an iterative, myopic algorithm which,
nism. The approach is similar to that of the previous sec- given a current partition, uses a heuristic function to select
tion, with one notable difference. Imposing IC constraints a partial type vector to split, and the dimension (agent and
on regret minimization optimization is inappropriate, since utility parameter) along which it will be split. In this fash-
the adversary gets to choose a mechanism, as well as the acion, communication complexity increases by only one par-
tual realization of agent types. Taken together, this means tial type vector per step. We have so far only considered
the adversary is simply choosing an allocation and a pay- very simple heuristic functions for the case of revenue op-
ment vector to maximize the regret df (since the mecha- timization. In the regret approach, the heuristic selects the
nism and the type vector directly dictate the outcome). Thus vector with highest regret (with respect to revenue), and the



agent and utility parameter with highest degree of uncer-
tainty, among all parameters involved in either our mech-
anism’s choice of allocation or the adversary’s choice. This
is a simple application of theurrent solutionheuristic (see

[2] for further elaboration of heuristics for preference elicita-
tion). In the Bayesian approach, the heuristic picks the par-
tial type vector with highest probability, and the agent and
utility parameter with highest uncertainty, among all param-
eters involved in the outcome with highest minimum social
welfare.

When using our partition optimization algorithm, the size
of © is equal to the number of partition-refining steps, and
is thus not exponential in the number of agents. The LPs de-
scribed in previous sections have, for each partial type vec-
tor, | X| allocation variables and payment variables. After
s steps, the total number of variables is therefo(€X|+n).
Although the number of steps necessary to achieve satisfac-
tory objective and manipulability levels can be high, our al-
gorithm avoids exponential complexity. Note that the com-
plexity of PR-AMD with this algorithm is no greater than
that of full revelation AMD, which only handles small finite
type spaces. In fact this algorithm could easily be adapted
to allow classical AMD to handle full revelation with much
larger type spaces.

In the next section, we compare these heuristics to a uni-
form partitioning of type space that simply splits each partial
type evenly across all parameters, one at a time.

Preliminary Empirical Results

As mentioned, the aim of this paper is to provide a mecha-
nism designer with the tools necessary to satisfy her goals.
Since we cannot explore the range of all possible goals a de-
signer may have, we focus on just a few ways of using these
tools to empirically test the efficacy of our various optimiza-
tion and constraint generation routines. We focus on revenue
maximization here as the underlying social choice objective,
with exact IR, first for generic mechanism design problems,
and then for the special case of one-item auctions.

General Mechanism Design
We first consider both PR-AMD approaches on generic
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nication, revenue increases by slightly more than 150% be-
cause, during the manipulability reducing phase, the elicited
information can be used to somewhat increase expected rev-
enue even given the new best Although manipulability
appears to be decreasing very early on, this a result of av-
eraging over several runs, with different starting points for
the second phase. Manipulability is reduced by almost 45%
with 12 bits using heuristic partitioning, even though only a
few of those bits correspond to theeducing phase.

In order to more accurately compare each phase, we can

mechanism design problems with two agents and three out- decide to switch phases at a fixed number of bits. Figure 2
comes with randomly generated initial bounds as priors. In plots expected revenue and manipulability as a function of
both the Bayesian and the regret approaches, we comparethe number of bits used, for both heuristic and uniform par-

the performance of PR-AMD with our splitting heuristics
with that of a uniform partitioning.

For Bayesian PR-AMD, we adopted the following frame-
work: initially fix € at 20% of the smallest (across agents and
outcomes) average valuation given the prior bounds; first re-
fine the partition to maximize expected revenue subject to
this initial £ until we have increased the expected revenue
achievable with no revelation by 150%; then minimize
subject to this target expected revenue.

Figure 1 plots expected revenue and manipulability as a
function of the number of bits used, for both heuristic and
uniform partitioning. Clearly, even our simple heuristic sig-
nificantly outperforms a uniform partitioning of type space.
Note that with heuristic partitioning, with 12 bits of commu-

titioning, when the revenue-maximizing phase is run for six
bits, and manipulability reduction is run for an additional six
bits. Again, the first phase increases revenue by about 150%
in 6 bits using our heuristic, with a large improvement over
uniform partitioning (only about 75% increase). The sec-
ond phase reduces manipulability by almost 55% (heuristic)
versus about 45% (uniform) with six bits of communica-
tion. Although the reduction is impressive, the advantage
of the heuristic approach is smaller in this phase. Thijis is
because IC, unlike revenue or IR, is not a local property, de-
fined for each partial type vector independently, but rather a
global one that links type vectors together. There are there-
fore more “relevant” nodes (i.e. partial type vectors), and the
uniform approachis at less of a disadvantage by not focusing



on a smaller number of nodes.

For regret PR-AMD, we perform the regret minimization
phase until initial regret has been reduced by 50%, and then
reduces subject to maintaining that regret level. We also
computed, for interest, the lowest achievablgiven the
current regret level during the first phase, and the lowest re-
gret level given the currentin the second. Figure 3 plots
revenue-regret and manipulability as a function of the num-
ber of bits used, for both heuristic and uniform partitioning.
Again, our simple heuristic significantly outperforms uni-
form partitioning. Interestingly, unlike in the Bayesian case,
the information elicited in the second phase to redudees ’ : T et
not allow further improvement in regret. Hence the begin- figyre 3: Regret wrt revenue and worst case manipulability as a
ning of the second phase can be identified by the point where fynction of the number of bits used. Heruistic vs. Uniform. Aver-
the regret curve flattens out. Sineés unconstrained in the aged over 20 runs.
first phase, its value can both increase and decrease as re-
gretis reduced. In the second phase, our heuristic approach
reducess by about 70% with only an additional 6 bits of
communication.

Depending on the setting and the costs involved in manip- | O e
ulating a mechanism, the final value=fter 12 bits could
be considered too high. This happens because, although our
manipulability reducing phase is very efficient, the initial
value ofe at the beginning of the phase is very high. If
needed, this can be resolved by constraining the regret re- [1mies: Meripuiabity |
duction phase with-IC constraints, for an appropriate value | 7T AN
of e. One possible approach could be to leave the initial " .
value ofs unconstrained, but ensure, through IC constraints, tumoereftis
that this value never increases during the regret reduction Figure 4:Regret wrt revenue and worst case manipulability as a
phase. In settings where the designer has a known Speciﬁcfunctlon_ of the number of bits used. Non-increasing vs. initially
tolerance for manipulability, another approach is simply to constrained IC. Averaged over 20 runs.
constraire to be less than that value, from the beginning. i ) . )

For the non-increasing approach é)we perform the re- when IC constraints are more er_X|bIe, itis possible to reduce
gret minimization phase, with the additional IC constraints, POth regretand manipulability simultaneously.
until initial regret has been reduced by 50%, and then further . .
reduces subject to maintaining that regret. In the second One-itém Auctions
approach (Ini), we initially fix ¢ at 20% of the smallest We also considered the special case of one-item auctions
(across agents and outcomes) average valuation given thewith two agents. In such single-parameter settings, imple-
prior bounds. Since this constraingt a much lower value mentation of PRMs with exact dominant incentive compat-
than the first approach, reducing regret by 50% would re- ibility is possible. In fact, Blumrosen and Nisan [1] have
guire more bits. In order to more accurately compare each proposed a class of PRMs for such auctions that is not
phase of both approaches, we would like the second phaseonly dominant-IC, but, with the appropriate partitioning of
to start roughly at the same number of bits. In the second type space, provides the optimal expected revenue among
approach, we therefore perform the regret-reducing phase all Bayes-Nash IC, ex-interim IR mechanisms with a fixed
while the number of bits used is less than 6, then switch to amount of communication per agent.
thee-reducing phase for another 6 bits. This ensures thatthe  While we do not advocate using PR-AMD (with ar= 0)
second phase starts roughly at the same number of bits inin this restricted setting where priority games are known to
both approaches. be exact and optimal, we use this comparison to test the

Figure 4 plots revenue-regret and manipulability as a quality of our myopic heuristic partitioning algorithm. Fig-
function of the number of bits used with a heuristic parti- ure 5 shows how expected revenue (given a uniform prior
tioning, for both of these approaches. Naturally, the more over[0, 100]) varies with communication for both revenue-
IC is constrained, the less quickly regret is reduced as there optimal priority games and PR-AMD with = 0. Inter-
is less freedom to choose allocations and payments. As the estingly, the myopic behavior of our partitioning algorithm
figure shows, even with a highly constrained IC bound, re- givesrise to a very small loss in revenue compared to the op-
gret can be reduced significantly (30% in 6 bits for dhit timal partitioning of priority games: with anything over 1.5
And in settings where the required bound on manipulabil- bits of communication per agent, PR-AMD is within about
ity is less precise, the non-increasing approach provides an 2.5% of the optimal revenue achievable with that many bits.
excellent trade-off between regret and manipulability reduc-  Although implementation with exact dominant IC is pos-
tion (45% and 75% respectively in 12 bits). Also note that sible in one-item auctions, it is interesting to explore how
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Figure 5:Expected revenue as a function of the number of bits, for
the optimal priority game, and for Bayesian PR-AMD witk= 0
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Figure 6: Expected revenue as a functionegffor varying num-
bers of partial types per agent

much additional expected revenue could be obtained by al-
lowing for varying amounts of manipulability. In order to
remove the influence of our myopic partitioning, we can use
the optimal priority game partition. Figure 6 plots revenue
as a function ot, where each curve represents a different
number of partial types per agent (from 2 to 20). With five
partial types per agent, allowing a manipulability level of
only 2 increases expected revenue by about 10%.

Conclusion and Future Work

In this work we have provided a general framework for auto-
matically designing partial revelation mechanisms with ap-
propriate incentive properties, for any social choice objec-
tive. The PR-AMD problem consists of optimizing three
relevant criteria: objective value, manipulability bound and
communication requirement. Naturally optimal optimiza-
tion of all three is intractable, but we show how it can be
approximated by sequentializing it into three (linear) sub-
optimizations. The framework is highly flexible so that the
various routines developed here can be combined in different
ways to allow a designer to make whichever trade-offs cor-
responds to her own preferences over mechanisms. Prelimi-
nary empirical results confirm the efficacy of our approach.

Apart from more extensive empirical evaluation of the
techniques presented here, we would like to further inves-
tigate the use of more efficient splitting (i.e., partial type
discovery) heuristics. The design of non-myopic incremen-
tal partial mechanisms is a natural future direction. Pre-
cisely determining the complexity of manipulation by for-
mally modeling the costs involved to further justify our em-
phasis on approximate IC and IR is of special interest.
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