
Partial Revelation Automated Mechanism Design

Nathanaël Hyafil
Department of Computer Science

University of Toronto
Toronto, ON, M5S3H5, CANADA

{nhyafil}@cs.toronto.edu

Craig Boutilier
Department of Computer Science

University of Toronto
Toronto, ON, M5S3H5, CANADA

{cebly}@cs.toronto.edu

Abstract

In most mechanism design settings, optimal general-purpose
mechanisms are not known. Thus the automated design of
mechanisms tailored to specific instances of a decision sce-
nario is an important problem. Existing techniques for au-
tomated mechanism design (AMD) require the revelation of
full utility information from agents, which can be very diffi-
cult in practice. In this work, we study the automated design
of mechanisms that only require partial revelation of utilities.
Each agent’s type space is partitioned into a finite set of par-
tial types, and agents (should) report the partial type within
which their full type lies. We provide a set of optimization
routines that can be combined to address the trade-offs be-
tween the amount of communication, approximation of in-
centive properties, and objective value achieved by a mech-
anism. This allows for the automated design of partial rev-
elation mechanisms with worst-case guarantees on incentive
properties for any objective function (revenue, social welfare,
etc.).

Introduction
Intelligent agents acting on behalf of specific, self-interested
users are increasingly required to interact with each other in
applications ranging from auctions to automated negotiation
and bargaining. The design of interaction protocols that lead
to desirable outcomes is known asmechanism design[6].

A mechanismis basically a game intended to implement
somesocial choice function (SCF)—a function that selects
an outcome as a function of the preferences of participating
agents—thus usually requiring agents to reveal something
of their preferences. There are, however, few SCFs that can
be implemented in general settings without exploiting prior
information about agent preferences. (Social welfare max-
imization is a rare positive example, implementable via the
well known class of of VCG mechanisms.) In practice, how-
ever, a designer often has prior information over agent types
and need only design a mechanism suitable for her particu-
lar context.Automated mechanism design (AMD)[3] tech-
niques consist of algorithms that, given prior utility informa-
tion, construct a mechanism tailored to the specific context
and social choice objective of the designer.

Copyright c© 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

A key result in mechanism design, therevelation prin-
ciple, states that mechanisms can be restricted to those in
which agentsfully reveal theirtrue preferences (e.g., as in
VCG). Unfortunately, full preference revelation is often in-
tractable, since utility functions can be extremely difficult
for agents to compute effectively or communicate to the
mechanism. Thus the design of mechanisms where pref-
erences are only partially revealed has become an important
problem in computational mechanism design. AMD has to
date focused on full revelation (though see [10] for an ex-
ception).

In this work, we explore the automated design ofpar-
tial revelation mechanismsfor general objectives. Unfortu-
nately, negative results are known regarding the implemen-
tation of partial revelation mechanisms with exact incen-
tive properties [5; 9; 8]. We will therefore consider mecha-
nisms with approximate incentives, where the potential gain
an agent can achieve by revealing its type insincerely is
bounded. Given the potentially considerable costs required
to manipulate a mechanism, if this bound is low enough, ma-
nipulation will not be worthwhile; thus approximate incen-
tive compatibility in the formal sense will suffice to induce
truthful revelation in practice. This corresponds to the ap-
proach of [5], where we considered partial revelation mech-
anisms that attempt to minimize worst case loss in social
welfare. Theoretical results in that work hold only for wel-
fare maximization. Here, we extend the approach to account
for general design objectives, and show how to maintain ap-
propriate incentives without relying on those theoretical re-
sults.

After providing some background, we describe the gen-
eral problem ofpartial revelation mechanism design (PR-
AMD) in more detail. We then describe algorithmic tech-
niques for bothBayesianPR-AMD and regret-basedPR-
AMD and present some preliminary empirical results.

Background
Mechanism Design We adopt a standard quasi-linear en-
vironment withn agents in which the aim is to choose an
outcomeor allocationx from the setX of all possible allo-
cations. Each agenti ≤ n hastypeti drawn from setTi, and
valuation functionvi : X × Ti → R, with vi(x; ti) denot-
ing the value of allocationx if i has typeti. In many cases,
we can viewti as encodingi’s utility function overX. Let

T =
∏

i Ti be the set of full type vectors. Thesocial welfare
of x givent ∈ T is SW (x; t) =

∑
i vi(x; ti).

A mechanismM consists of a set of actionsA =
∏

i Ai,
an allocation functionm : A → X andn payment functions
pi : A → R. Intuitively, the mechanism offers the action
setAi to i, and chooses an allocation based on the actions
taken by each agent. We assumequasi-linear utility; that
is, an agenti’s utility for an allocationx and paymentρi

is ui(x, ρi, ti) = vi(x; ti) − ρi. Mechanismm induces a
(Bayesian) game assuming probabilistic beliefs over types:
each agenti adopts a strategyπi : Ti → Ai associating an
action with its type.

The goal of mechanism design is to designM to imple-
ment some SCFf : T → X. For instance,f may be social
welfare maximization (i.e.,f(t) = arg maxSW (x; t)). Im-
plementation then depends on the equilibrium concept used;
specifically, ifm induces strategiesπi for each agent in equi-
librium, such thatm(π(t)) = f(t) for all t ∈ T , we say that
M implementsf .

If each agent has adominant strategy(i.e., a strategy that
maximizes its utility no matter what others do) in the in-
duced game, then we have dominant strategy equilibrium
and implementation. In this work, we focus onε-dominant
strategies, namely, strategies which, no matter what others
do, cannot be improved by more thanε. A mechanism is
direct if ∀i, Ai = Ti, that is, if the agents’ actions are possi-
ble reports of their type. A direct mechanism is(dominant-
strategy) incentive compatible (IC)if reporting one’s type
truthfully is a dominant strategy. It isε-IC if truth-telling
is ε-dominant. A mechanism isindividually rational (IR)
(resp.,ε-IR) if, in equilibrium, no agent can lose (resp., more
thanε) by participating in the mechanism. When consider-
ing dominant strategy implementation, therevelation prin-
cipleallows one to focus attention on direct, incentive com-
patible mechanisms in whichAi = Ti and each agent will,
in equilibrium, reveal itsfull type truthfully.

Partial Revelation Mechanisms As mentioned, full type
revelation is often extremely costly. Following [4; 5], we
consider mechanisms where agents only partially reveal
their utility information. We define apartial typeθi ⊆ Ti for
agenti to be any subset ofi’s types. A partial type vectorθ
includes a partial type for each agent. A(direct) partial rev-
elation mechanism(PRM) is any mechanism in which the
action setAi is a set of partial typesΘi (i.e., the agent is
asked to declare the partial type in which its true type lies).
We thus writeM = (Θ, m, p) wherem andp map partial
type vectors to allocations and payments respectively, and
Θ =

∏
i Θi. Since agents only reveal partial types, the no-

tion of truth telling must be relaxed somewhat:

Definition 1. A PRM is incentive compatible (IC)if it in-
duces a dominant strategyπi for each agenti such that
ti ∈ πi(ti).

In other words, an IC PRM will induce each agent to report
a partial type that contains its true type.

Partial types may or may not be overlapping or exhaus-
tive. If they are not exhaustive, incentive compatibility is
not generally possible. If they are overlapping, more than

one truthful report may be possible, and an agent can rea-
son strategically to choose among them while maintaining
truthfulness, something that is not possible if types do not
overlap. The incentive guarantees described below do not
require non-overlapping types. We will, however, assume in
what follows that partial types are exhaustive and writeθ(t)
for any partial type that containst.

Implementation of PRMs with exact incentive properties
is either impossible or “useless” in the general mechanism
design problem [5; 9; 8]. For this reason, we focus onε-
dominant IC andε-IR. Note that with this notion of approx-
imate IC, an agent can gain at mostε by lying about its type,
compared to revealing its partial type truthfully. In most
settings, the computational cost of finding a good lie, es-
pecially given the considerable uncertainty in the value of
any lie (due to uncertainty about others’ types), will be sub-
stantial (see, e.g., [11]). Thus, ifε is small enough, it will
not be worth the cost: thisformal, approximateincentive
compatibility is sufficient to ensurepractical, exactincen-
tive compatibility. A similar argument can be made regard-
ing approximate IR: determining whether you gain from not
participating will be very difficult. Thus apotentialsmall
loss will be worthwhile for an agent given the savings our
mechanism provides in revelation and computational costs
(relative to the full revelation alternative). We will use the
termmanipulabilityto refer to the degree of both the incen-
tive and rationality violations.

Automated Mechanism Design For many social choice
functions, there is no known mechanism that implements it
in general. For example, revenue-maximizing mechanisms
are only known for very restricted settings such as one-item
auctions [7]. In practice, however, a designer often has prior
information over agents’ types and only needs to design a
mechanism suitable for her particular context. Automated
mechanism design (AMD) [3] assumes the designer has a
social choiceobjectivequantifying social value of outcomes
as a function of agent preferences. A mechanism can thus be
designed to maximize the expected objective value given a
distribution over agent types. Under full revelation and with
a finite number of types, this optimization can be expressed
as a linear program (LP) where IC and IR are imposed as
linear constraints. If each agent hask full types, the number
of variables of the LP iskn · (|X| + n).

Partial Revelation AMD
In this work, we extend the AMD framework topartial rev-
elation automated mechanism design (PR-AMD). Ideally,
given a social choice objective, one would optimize the en-
tire mechanism—allocation and payment functions as well
as the type partitioning—in a single optimization. But even
with a simple partial type space, this optimization typically
requires an intractable polynomial program. To reduce it to
a sequence of linear optimizations, we decompose the op-
timization into two steps: the first to optimize the mecha-
nism functions given a fixed partition; and the second to re-
fine the partition. Given a fixed partition, in order to extend
the AMD framework to partial revelation, one must define

a suitable objective function, and adapt the IC and IR con-
straints to their (approximate) partial revelation equivalent.
There are, therefore, three relevant criteria to “evaluate” a
mechanism: its objective value; its level of manipulabilityε;
and its revelation “cost” (e.g., communication complexity or
cost of computing partial types).

The bound on manipulability could be fixed a priori, but
in many settings it will be beneficial to optimize this as well.
One could also incorporateε into the designer’s objective
function, for example, by formalizing the various costs in-
volved in manipulating the mechanism. This is, however,
beyond the scope of this work, and we will here consider op-
timizing the mechanism’s objective and its incentive proper-
ties separately. We therefore have three basic tasks when au-
tomatically designing a PRM: optimize the objective value
for a fixedε and partition; optimizeε for a fixed objective
level and partition; and optimize the partition for a fixed
mechanism. In this section we describe different objective
functions one might consider, and the basic constraints that
will be involved in the optimization. The following two sec-
tions describe the objective and manipulability optimization
steps in the Bayesian and regret case respectively. We then
describe the partition optimization step.

Objectives
An objective functionf(t,M) reflects the designer’s value
for mechanismM = (Θ, m, p) when the agents’ types are
t. It often makes sense to decomposef as

f(t,M) = fm(t, m, Θ) + fp(t, p, Θ) + c(M).
Herefm represents standard allocation-level objectives; for
instance, if social welfare is being considered, we define:

fm(t, m, Θ) =
∑

x mx
θ(t) · SW (x; t)

wheremx
θ = Pr(m(θ) = x|θ) is the probability that al-

locationx is chosen when agents reportθ. fp corresponds
to payment-level objectives such as revenue:fp(t, p, Θ) =∑

i pi(θ(t)). Finally, c(M) represents costs associated with
the execution of the mechanism, for instance, a cost of
α per bit required for agents to report their partial types:
c(M) = −α log2(|Θ|). In what follows we assumefm,
fp and c are multi-linear maps of(t, m, Θ), (t, p, Θ), and
(m, p, Θ) respectively.

Given an objective functionf(t,M), we consider two
approaches to PR-AMD: maximize theexpected objective
value of the mechanism; and minimize theregret of the
mechanism with respect to the objective function.

Expected Objective Given a probabilistic prior over agent
typesPr(t), the expected objective value of a PRM (assum-
ing truthful revelation) is well-defined:Z

t∈T

Pr(t)f(t,M)dt =
X
θ∈Θ

Pr(θ)

Z
t∈θ

Pr(t|t ∈ θ)f(t,M)dt

For a fixed partition and mechanism, we can computePr(θ)
and

∫
t∈θ

Pr(t|t ∈ θ)f(t,M)dt, for all θ ∈ Θ.

Minimax regret When the prior information over agent
types is not quantified probabilistically (e.g., we only have

bounds on utility parameters), minimax regret is an appro-
priate decision criterion. Even when probabilistic informa-
tion is available, minimax regret has been shown to be an
excellent guide for the elicitation of preferences relevant to
a particular decision problem [2; 4; 5]. Here the decision
that is made is the choice of a mechanism. LetM(Θ) be the
set of partial revelation mechanisms with partitionΘ. The
pairwise regret of choosing mechanismM versusM′, given
that the type vector of the agents ist is:

R(M,M′) = max
θ∈Θ

max
t∈T

f(t,M′) − f(t,M)

The max regret ofM and the minimax regret optimal mech-
anismM∗ are, respectively:

MR(M) = max
M′∈M(Θ)

R(M,M′)

M∗ = arg min
M∈M(Θ)

MR(M)

R(M,M′) represents the worst-case loss in objective value,
over all possible realizationst of types. It can be thought of
as the regret of choosingM and notM′ when an adversary
gets to pick the types of the agents.MR(M) is the level of
regret when the adversary also choosesM′. For example, if
the objective is to maximize social welfare, we have:

R(M,M′) = max
t∈T

SW (m′(t); t) − SW (m(t); t)

= max
θ∈Θ

max
t∈θ

X
x

(m
′x
θ(t) − mx

θ(t)) · SW (x; t)

Constraints
Given a mechanismM = (Θ, m, p), the utility of agenti of
typeti for reportingθi, when others reportθ−i is

ui(θi|θ−i; ti) =
∑

x mx
θ · vi(x; ti) − pi(θ).

ε-IR can be obtained by ensuring that
ui(θi(ti)|θ−i(t−i); ti) ≥ −ε, ∀i, ∀ti, ∀t−i. For a fixed
partition, when optimizing the mechanism variables, this is
equivalent to the following linear constraints:X

x

mx
θ · min

ti∈θi

vi(x; ti) − pi(θ) ≥ −ε, ∀θ,∀i

To obtainε-dominant strategy IC we must have,∀i, ∀θi ∈
Θi, ∀ti ∈ θi, ∀θ′i ∈ Θi, ∀θ−i ∈ Θ−i:

ui(θi(ti)|θ−i; ti) ≥ ui(θ′i|θ−i; ti) − ε.
If type space is continuous, this corresponds to an infinite
number of constraints (one for eachti). But these constraints
are equivalent to∀θi, θ

′
i, θ−i:

min
ti∈θi

"X
x

(mx
θ − mx

θ′) · vi(x; ti)

#
+ pi(θ

′) − pi(θ) ≥ −ε

If the partition consists of upper and lower bounds on val-
uation parameters, since valuation functions are linear inti,
it is sufficient to post one constraint for each vertex ofθi.

For both IC and IR,, the number of constraints is thus pro-
portional to the size of the partitionΘ. If Θ is the Cartesian
product of independently constructed agent partitionsΘi, its
size is exponential in the number of agents. Our partition
optimization routine (described below), however, partitions
typevectorspace directly, so that the size ofΘ is equal to
the number of steps in the optimization. In addition, to avoid
posting one constraint for each partial type vector, one can
use constraint generation to iteratively post the most violated
constraint until none are violated. In practice, only a fraction
of the constraints will be posted.

Bayesian PR-AMD
In this section, we consider PR-AMD with Bayesian objec-
tives. We can define two sub-routines: one focused on in-
creasing the expected objective of our mechanism, subject to
satisfyingε-IR andε-IC; the other to minimize the manipu-
lability, ε, subject to achieving a specific expected objective
level. The two can be combined with our partition refining
algorithm in a number of ways, depending on the designer’s
goal.

For example, one could first initializeε at some value
and refine the type partition to increase expected objective
value, subject to maintainingε, until some stopping crite-
rion is met. One could then hold this objective value to at
least its terminal value and refine the partition to reduce the
value ofε. Stopping criteria could include a target objective
or ε level, or a specific number of bits (partial type limit)
per phase. One could also alternate the sub-routines: fix an
initial ε, optimize the objective subject to thisε, then reduce
ε subject to this objective level, etc.

Our aim is not to argue for one particular approach, but in-
stead to provide the tools for a designer to achieve her goal,
whatever it may be.

Objective Maximization Given a fixed partition and a
fixed ε, finding theε-IR andε-IC mechanism with highest
expected objective can be formulated as the following LP:

max
M

∑

θ∈Θ

Pr(θ) · gob(θ,M), s.t.M is ε-IC andε-IR

wheregob(θ,M) =
∫

t∈θ Pr(t|t ∈ θ)f(t,M)dt. When
using our partition refining algorithm (discussed below), the
probabilities of the partial type vectors ,Pr(θ), can be com-
puted iteratively, two at each step.

Manipulability Minimization Given a fixed partition and
a fixed objective levelF , we can construct the mechanism
with least manipulability:

min
M,ε

ε s.t.M is ε-IC, ε-IR,

and
∑

θ∈Θ

Pr(θ) · gob(θ,M) ≥ F

As previously mentioned,ε-IR andε-IC constraints are
linear in the mechanism variables, and since the partition is
fixed, the two optimizations above are LPs. They can be
solved directly, or as a sequence of smaller LPs using con-
straint generation.

Regret-based PR-AMD
In this section, we focus on PR-AMD where the designer
wishes to minimize her regret over the choice of mecha-
nism. The approach is similar to that of the previous sec-
tion, with one notable difference. Imposing IC constraints
on regret minimization optimization is inappropriate, since
the adversary gets to choose a mechanism, as well as the ac-
tual realization of agent types. Taken together, this means
the adversary is simply choosing an allocation and a pay-
ment vector to maximize the regret ofM (since the mecha-
nism and the type vector directly dictate the outcome). Thus

any IC constraints imposed on the adversary’s mechanism
will be vacuous, and the meaning of the regret level achieved
will be compromised. We therefore separate the mechanism
optimization into two phases: one to reduce regret without
any consideration of incentives up to some desired point, the
other to reduce manipulability subject to maintaining the de-
sired regret level.

Regret Minimization When the partition is fixed, the only
variables inM (m andp) are functions that map partial type
vectors to allocations and payments. We therefore have:

min
M

max
M′ max

t∈T
f(t,M′) − f(t,M)

= min
M

max
M′ max

θ∈Θ
max
t∈θ

f(t,M′) − f(t,M)

= max
θ∈Θ

min
m(θ),p(θ)

max
M′ max

t∈θ
f(t,M′) − f(t,M)

The regret minimizing mechanism is thus a mechanism
which, for each partial type vector picks the regret minimiz-
ing allocation and payments. This significantly reduces the
size of the LPs involved. Although|Θ| is exponential in the
number of agents, enumeration can be avoided, in practice,
using constraint generation. Note that when using our par-
tition refining algorithm (see below), the minimax regret of
the mechanism can be computed iteratively, with only the
regret values of two partial type vectors being computed at
each step. Since individual rationality constraints are “lo-
cal”, i.e., each constraint applies to a unique partial type
vector, adding them does not alter the formula above. Since
incentive compatibility involves comparing decisions made
for different reports, this would not be true if we added IC
constraints as well. If one wanted to impose IC constraints,
despite the fact that it makes the meaning of regret ambigu-
ous, the optimization above can be computed as a sequence
of (much larger) LPs using constraint generation. The result-
ing mechanism would be theε-IC, ε-IR PRM with lowest
possible regret.

Manipulability Minimization This phase is very similar
to its Bayesian equivalent. Given a fixed partition and a fixed
regret levelδ, finding the mechanism with lowestε can be
formulated as the following LP:

min
M,ε

ε s.t.M is ε-IC, ε-IR, andδ ≥ MR(M)

This can be solved as a sequence of LPs using constraint
generation.

Partition Optimization
To refine the partition, we use the partition optimization al-
gorithm of [5]. The algorithm is based on decision tree
construction techniques adapted to this setting for computa-
tional tractability. It is an iterative, myopic algorithm which,
given a current partition, uses a heuristic function to select
a partial type vector to split, and the dimension (agent and
utility parameter) along which it will be split. In this fash-
ion, communication complexity increases by only one par-
tial type vector per step. We have so far only considered
very simple heuristic functions for the case of revenue op-
timization. In the regret approach, the heuristic selects the
vector with highest regret (with respect to revenue), and the

agent and utility parameter with highest degree of uncer-
tainty, among all parameters involved in either our mech-
anism’s choice of allocation or the adversary’s choice. This
is a simple application of thecurrent solutionheuristic (see
[2] for further elaboration of heuristics for preference elicita-
tion). In the Bayesian approach, the heuristic picks the par-
tial type vector with highest probability, and the agent and
utility parameter with highest uncertainty, among all param-
eters involved in the outcome with highest minimum social
welfare.

When using our partition optimization algorithm, the size
of Θ is equal to the number of partition-refining steps, and
is thus not exponential in the number of agents. The LPs de-
scribed in previous sections have, for each partial type vec-
tor, |X| allocation variables andn payment variables. After
s steps, the total number of variables is therefores·(|X|+n).
Although the number of steps necessary to achieve satisfac-
tory objective and manipulability levels can be high, our al-
gorithm avoids exponential complexity. Note that the com-
plexity of PR-AMD with this algorithm is no greater than
that of full revelation AMD, which only handles small finite
type spaces. In fact this algorithm could easily be adapted
to allow classical AMD to handle full revelation with much
larger type spaces.

In the next section, we compare these heuristics to a uni-
form partitioning of type space that simply splits each partial
type evenly across all parameters, one at a time.

Preliminary Empirical Results
As mentioned, the aim of this paper is to provide a mecha-
nism designer with the tools necessary to satisfy her goals.
Since we cannot explore the range of all possible goals a de-
signer may have, we focus on just a few ways of using these
tools to empirically test the efficacy of our various optimiza-
tion and constraint generation routines. We focus on revenue
maximization here as the underlying social choice objective,
with exact IR, first for generic mechanism design problems,
and then for the special case of one-item auctions.

General Mechanism Design
We first consider both PR-AMD approaches on generic
mechanism design problems with two agents and three out-
comes with randomly generated initial bounds as priors. In
both the Bayesian and the regret approaches, we compare
the performance of PR-AMD with our splitting heuristics
with that of a uniform partitioning.

For Bayesian PR-AMD, we adopted the following frame-
work: initially fix ε at 20% of the smallest (across agents and
outcomes) average valuation given the prior bounds; first re-
fine the partition to maximize expected revenue subject to
this initial ε until we have increased the expected revenue
achievable with no revelation by 150%; then minimizeε
subject to this target expected revenue.

Figure 1 plots expected revenue and manipulability as a
function of the number of bits used, for both heuristic and
uniform partitioning. Clearly, even our simple heuristic sig-
nificantly outperforms a uniform partitioning of type space.
Note that with heuristic partitioning, with 12 bits of commu-

0 2 4 6 8 10 12

30

40

50

60

Number of Bits

E
xp

ec
te

d
R

ev
en

ue

0 2 4 6 8 10 12
4.5

5

5.5

6

6.5

7

7.5

8

8.5

0 2 4 6 8 10 12
4.5

5

5.5

6

6.5

7

7.5

8

8.5

M
an

ip
ul

ab
ili

ty

Revenue: Uniform

Revenue: Heuristic

Manipulablity: Heuristic

Manipulability: Uniform

Figure 1: Expected revenue and worst case manipulability as a
function of the number of bits used. Variable phase switch. Aver-
aged over 20 runs.

0 2 4 6 8 10 12
25

45

65

Number of Bits

E
xp

ec
te

d
R

ev
en

ue

0 2 4 6 8 10 12

4

5

6

7

8

0 2 4 6 8 10 12
3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

M
an

ip
ul

ab
ili

ty

Revenue: Uniform

Revenue: Heuristic

Manipulability: Heuristic

Manipulability: Uniform

Figure 2: Expected revenue and worst case manipulability as a
function of the number of bits used. Fixed phase switch. Averaged
over 20 runs.

nication, revenue increases by slightly more than 150% be-
cause, during the manipulability reducing phase, the elicited
information can be used to somewhat increase expected rev-
enue even given the new bestε. Although manipulability
appears to be decreasing very early on, this a result of av-
eraging over several runs, with different starting points for
the second phase. Manipulability is reduced by almost 45%
with 12 bits using heuristic partitioning, even though only a
few of those bits correspond to theε reducing phase.

In order to more accurately compare each phase, we can
decide to switch phases at a fixed number of bits. Figure 2
plots expected revenue and manipulability as a function of
the number of bits used, for both heuristic and uniform par-
titioning, when the revenue-maximizing phase is run for six
bits, and manipulability reduction is run for an additional six
bits. Again, the first phase increases revenue by about 150%
in 6 bits using our heuristic, with a large improvement over
uniform partitioning (only about 75% increase). The sec-
ond phase reduces manipulability by almost 55% (heuristic)
versus about 45% (uniform) with six bits of communica-
tion. Although the reduction is impressive, the advantage
of the heuristic approach is smaller in this phase. Thjis is
because IC, unlike revenue or IR, is not a local property, de-
fined for each partial type vector independently, but rather a
global one that links type vectors together. There are there-
fore more “relevant” nodes (i.e. partial type vectors), and the
uniform approach is at less of a disadvantage by not focusing

on a smaller number of nodes.
For regret PR-AMD, we perform the regret minimization

phase until initial regret has been reduced by 50%, and then
reduceε subject to maintaining that regret level. We also
computed, for interest, the lowest achievableε given the
current regret level during the first phase, and the lowest re-
gret level given the currentε in the second. Figure 3 plots
revenue-regret and manipulability as a function of the num-
ber of bits used, for both heuristic and uniform partitioning.
Again, our simple heuristic significantly outperforms uni-
form partitioning. Interestingly, unlike in the Bayesian case,
the information elicited in the second phase to reduceε does
not allow further improvement in regret. Hence the begin-
ning of the second phase can be identified by the point where
the regret curve flattens out. Sinceε is unconstrained in the
first phase, its value can both increase and decrease as re-
gret is reduced. In the second phase, our heuristic approach
reducesε by about 70% with only an additional 6 bits of
communication.

Depending on the setting and the costs involved in manip-
ulating a mechanism, the final value ofε after 12 bits could
be considered too high. This happens because, although our
manipulability reducing phase is very efficient, the initial
value of ε at the beginning of the phase is very high. If
needed, this can be resolved by constraining the regret re-
duction phase withε-IC constraints, for an appropriate value
of ε. One possible approach could be to leave the initial
value ofε unconstrained, but ensure, through IC constraints,
that this value never increases during the regret reduction
phase. In settings where the designer has a known specific
tolerance for manipulability, another approach is simply to
constrainε to be less than that value, from the beginning.

For the non-increasing approach (NIε), we perform the re-
gret minimization phase, with the additional IC constraints,
until initial regret has been reduced by 50%, and then further
reduceε subject to maintaining that regret. In the second
approach (Initε), we initially fix ε at 20% of the smallest
(across agents and outcomes) average valuation given the
prior bounds. Since this constrainsε at a much lower value
than the first approach, reducing regret by 50% would re-
quire more bits. In order to more accurately compare each
phase of both approaches, we would like the second phase
to start roughly at the same number of bits. In the second
approach, we therefore perform the regret-reducing phase
while the number of bits used is less than 6, then switch to
theε-reducing phase for another 6 bits. This ensures that the
second phase starts roughly at the same number of bits in
both approaches.

Figure 4 plots revenue-regret and manipulability as a
function of the number of bits used with a heuristic parti-
tioning, for both of these approaches. Naturally, the more
IC is constrained, the less quickly regret is reduced as there
is less freedom to choose allocations and payments. As the
figure shows, even with a highly constrained IC bound, re-
gret can be reduced significantly (30% in 6 bits for Initε).
And in settings where the required bound on manipulabil-
ity is less precise, the non-increasing approach provides an
excellent trade-off between regret and manipulability reduc-
tion (45% and 75% respectively in 12 bits). Also note that

0 2 4 6 8 10 12

20

40

60

80

100

120

140

160

180

200

220

Number of bits

R
eg

 a
nd

 E
ps

ilo
n

Heuristic: Manipulability

Heuristic: Regret

Uniform: Regret

Uniform: Manipulability

Figure 3:Regret wrt revenue and worst case manipulability as a
function of the number of bits used. Heruistic vs. Uniform. Aver-
aged over 20 runs.

0 2 4 6 8 10 12
0

50

100

150

200

250

Number of bits

R
ev

en
ue

−R
eg

re
t

0 2 4 6 8 10 12
0

10

20

30

40

50

M
an

ip
ul

ab
ili

ty

0 2 4 6 8 10 12

10

20

30

40

50

NI−Eps: Regret

NI−Eps: Manipulability

InitEps: Manipulability

InitEps: Regret

Figure 4:Regret wrt revenue and worst case manipulability as a
function of the number of bits used. Non-increasing vs. initially
constrained IC. Averaged over 20 runs.

when IC constraints are more flexible, it is possible to reduce
both regret and manipulability simultaneously.

One-item Auctions
We also considered the special case of one-item auctions
with two agents. In such single-parameter settings, imple-
mentation of PRMs with exact dominant incentive compat-
ibility is possible. In fact, Blumrosen and Nisan [1] have
proposed a class of PRMs for such auctions that is not
only dominant-IC, but, with the appropriate partitioning of
type space, provides the optimal expected revenue among
all Bayes-Nash IC, ex-interim IR mechanisms with a fixed
amount of communication per agent.

While we do not advocate using PR-AMD (with anε = 0)
in this restricted setting where priority games are known to
be exact and optimal, we use this comparison to test the
quality of our myopic heuristic partitioning algorithm. Fig-
ure 5 shows how expected revenue (given a uniform prior
over [0, 100]) varies with communication for both revenue-
optimal priority games and PR-AMD withε = 0. Inter-
estingly, the myopic behavior of our partitioning algorithm
gives rise to a very small loss in revenue compared to the op-
timal partitioning of priority games: with anything over 1.5
bits of communication per agent, PR-AMD is within about
2.5% of the optimal revenue achievable with that many bits.

Although implementation with exact dominant IC is pos-
sible in one-item auctions, it is interesting to explore how

1 2 3 4 5 6 7 8 9 10
24

26

28

30

32

34

36

38

40

42

Number of Bits

E
xp

ec
te

d
R

ev
en

ue

PR−AMD(eps=0) vs. Priority Games

PR−AMD Objective

PG Objective

Figure 5:Expected revenue as a function of the number of bits, for
the optimal priority game, and for Bayesian PR-AMD withε = 0

0 1 2 3 4 5 6 7 8 9 10

40

42

44

46

48

50

Epsilon IC

E
xp

ec
te

d
R

ev
en

ue

Expected Revenue (Epsilon)

2 Partial Types per Agent

20 Partial Types per Agent

Figure 6:Expected revenue as a function ofε, for varying num-
bers of partial types per agent

much additional expected revenue could be obtained by al-
lowing for varying amounts of manipulability. In order to
remove the influence of our myopic partitioning, we can use
the optimal priority game partition. Figure 6 plots revenue
as a function ofε, where each curve represents a different
number of partial types per agent (from 2 to 20). With five
partial types per agent, allowing a manipulability level of
only 2 increases expected revenue by about 10%.

Conclusion and Future Work
In this work we have provided a general framework for auto-
matically designing partial revelation mechanisms with ap-
propriate incentive properties, for any social choice objec-
tive. The PR-AMD problem consists of optimizing three
relevant criteria: objective value, manipulability bound and
communication requirement. Naturally optimal optimiza-
tion of all three is intractable, but we show how it can be
approximated by sequentializing it into three (linear) sub-
optimizations. The framework is highly flexible so that the
various routines developed here can be combined in different
ways to allow a designer to make whichever trade-offs cor-
responds to her own preferences over mechanisms. Prelimi-
nary empirical results confirm the efficacy of our approach.

Apart from more extensive empirical evaluation of the
techniques presented here, we would like to further inves-
tigate the use of more efficient splitting (i.e., partial type
discovery) heuristics. The design of non-myopic incremen-
tal partial mechanisms is a natural future direction. Pre-
cisely determining the complexity of manipulation by for-
mally modeling the costs involved to further justify our em-
phasis on approximate IC and IR is of special interest.

References
[1] L. Blumrosen, N. Nisan, and I. Segal. Auctions with

severely bounded communication.J. Artificial Intelli-
gence Research, 28:233–266, 2007.

[2] C. Boutilier, R. Patrascu, P. Poupart, and D. Schuur-
mans. Constraint-based optimization and utility elici-
tation using the minimax decision criterion.Artificial
Intelligence, 170:686–713, 2006.

[3] V. Conitzer and T. Sandholm. Complexity of mech-
anism design. InUAI-02, pp. 103–110, Edmonton,
2002.

[4] N. Hyafil and C. Boutilier. Regret-based incremental
partial revelation mechanisms. InAAAI-06, pp. 672–
678, Boston, USA, 2006.

[5] N. Hyafil and C. Boutilier. One-shot mechanism de-
sign with partial revelation. InIJCAI-07, pp. 1333–
1340, Hyderabad, India, 2007.

[6] A. Mas-Colell, M. Whinston, and J. Green.Microeco-
nomic Theory. Oxford University Press, NY, 1995.

[7] R. Myerson. Optimal auction design.Math. of Opera-
tions Research, 6:58–73, 1981.

[8] N. Nisan and I. Segal. The communication require-
ments of efficient allocations and supporting prices.J.
Economic Theory, 129:192–224, 2006.

[9] K. Roberts. The characterization of implementable
choice rules. In J.J. Laffont, ed.,Aggregation and
Revelation of Preferences, pp. 321–349. Amsterdam,
1979.

[10] T. Sandholm, V. Conitzer, and C. Boutilier. Automated
design of multistage mechanisms. InIJCAI-07, pp.
1500–1506, Hyderabad, India, 2007.

[11] S. Sanghvi and D. Parkes. Hard-to-manipulate combi-
natorial auctions. Tech. report, Harvard Univ., Boston,
MA, 2004.

