
Reasoning With Conditional Ceteris Paribus Preference Statements

Craig Boutilier
Dept. of Computer Science

University of British Columbia
Vancouver, BC V6T 1Z4

cebly@cs.ubc.ca

Ronen I. Brafman
Department of Math and CS

Ben-Gurion University
Beer Sheva, Israel 84105

brafman@cs.bgu.ac.il

Holger H. Hoos and David Poole
Dept. of Computer Science

University of British Columbia
Vancouver, BC V6T 1Z4fhoos,pooleg@cs.ubc.ca

Abstract

In many domains it is desirable to assess the pref-
erences of users in a qualitative rather than quan-
titative way. Such representations of qualitative
preference orderings form an important compo-
nent of automated decision tools. We propose
a graphical representation of preferences that re-
flects conditional dependence and independence
of preference statements under a ceteris paribus
(all else being equal) interpretation. Such a rep-
resentation is often compact and arguably natural.
We describe several search algorithms for domi-
nance testing based on this representation; these
algorithms are quite effective, especially in spe-
cific network topologies, such as chain- and tree-
structured networks, as well as polytrees.

1 Introduction

Preference elicitation is an important aspect of automated
decision making. In many applicationdomains, the space of
possible actions or decisions available to someone is fixed,
with well-understood dynamics; the only variable compo-
nent in the decision making process are the preferences of
the user on whose behalf a decision is being made. This is
often the case in domains such as product configuration or
medical diagnosis (to name but two).

Extracting preference information from users is generally
arduous, and human decision analysts have developed so-
phisticated techniques to help elicit this information from
decision makers [11]. A key goal in the study of computer-
based decision support is the construction of tools that allow
the preference elicitation process to be automated, either
partially or fully. In particular, methods for extracting, rep-
resenting and reasoning about the preferences of naive users
is especially important in AI applications, where users can-
not be expected to have the patience (or sometimes the abil-
ity) to provide detailed preference relations or utility func-
tions. In applications ranging from collaborative filtering
[14] and recommender systems [15] to product configura-
tion [6] to medical decision making [4], typical users may

not be able to provide much more than qualitative rankings
of fairly circumscribed outcomes.

Ideally, a preference representation for such applications
would capture statements that are natural for users to as-
sess, are reasonably compact, and support effective infer-
ence (particularly when deciding whether one outcome is
preferred to, or dominates, another). In this paper, we ex-
plore a network representation of conditional preference
statements under a ceteris paribus (all else equal) assump-
tion. The semantics of our local preference statements cap-
ture the classical notion of (conditional) preferential inde-
pendence [13], while our CP-network (conditional prefer-
ence network) representation allows these statements to be
organized in a precise way. We also describe several infer-
ence algorithms for dominance queries, and show that these
are very efficient for certain classes of networks, and seem
to work well on general network structures.

Our conditional ceteris paribus semantics requires that the
user specify, for any specific feature F of interest, which
other features can impact her preferences for values of F .
For each instantiation of the relevant features (parents ofF), the user must specify her preference ordering over val-
ues of F conditional on the parents assuming the instanti-
ated values; for instance, f1 may be preferred to f2 wheng1 and h2 hold. Such a preference is given a ceteris paribus
interpretation: f1 is preferred to f2 given g1 and h2 all else
being equal. In other words, for any fixed instantiation of
the remaining features, an outcome where f1 holds is pre-
ferred to one where f2 holds (assuming g1 and h2). Such
statements are arguably quite natural and appear in several
places (e.g., in e-commerce applications). For instance, the
product selection service offered by Active Buyer’s Guide
asks for (unconditional) ceteris paribus statements in as-
sessing a user’s preference for various products.1 Condi-
tional expressions offer even greater flexibility. Generally,
tools for representing and reasoning about ceteris paribus
preferences are important because they should aid in the
elicitation process for naive users.

1See www.activebuyersguide.com. The tools there
also ask for some semi-quantitative information about prefer-
ences.

Preference elicitation is a complex task and is a key focus
in work on decision analysis [13, 11, 9], especially elicita-
tion involvingexpert users. Automating the process of pref-
erence extraction can be very difficult. Straightforward ap-
proaches involving the direct comparison of all pairs of out-
comes are generally infeasible for a number of reasons, in-
cluding the exponential number of outcomes (in the num-
ber of relevant features for which preferences are indicated)
and the complexity of the questions that are asked (the com-
parison of complete outcomes). There has been consider-
able work on exploiting the structure of preferences and
utility functions in a way that allows them to be appropri-
ately decomposed [13, 1]. For instance, if certain attributes
are preferentially independent of others [13], one can assign
degrees of preference to these attribute values without wor-
rying about other attribute values. Furthermore, if one as-
sumes more stringent conditions, often one can construct an
additive value function in which each attribute contributes
to overall preference to a certain “degree” (the weight of
that attribute) [13]. For instance, it is common in engineer-
ing design problems to make such assumptions and simply
require users to assess the weights [6]. This allows the di-
rect tradeoffs between values of different attributes to be as-
sessed concisely. Case-based approaches have also recently
been considered [10].

Models such as these make the preference elicitation pro-
cess easier by imposing specific requirements on the form
of the utility or preference function. We consider our CP-
network representation to offer an appropriate tradeoff be-
tween allowing flexible preference expression and impos-
ing a particular preference structure. Specifically, unlike
much of the work cited above, conditional preference state-
ments will be permitted.

The remainder of the paper is organized as follows. In Sec-
tion 2, we describe the necessary background on preference
functions. We define our graphical preference model, CP-
networks, in Section 3 and describe its semantics in terms
of ceteris paribus (conditional preferential independence)
statements. Though the CP-semantics of the local prefer-
ence statements could be considered somewhat weak, some
surprisingly strong conclusions regarding dominance can
often be drawn based on the network structure. In Sec-
tion 4, we consider the task of answering dominance queries
as a search for a sequence of more preferred (or less pre-
ferred) alternatives leading the to potentially dominating
(or dominated) outcome. We formally define the search
space and describe several completeness-preserving prun-
ing techniques. In Section 5, we describe several search
strategies, heuristics designed to work effectively for cer-
tain types of problems. We show that these heuristics
are backtrack-free for certain types of networks and where
backtrack pointsarise for other types. We also describe how
to view this problem as a planning problem. To conclude,
in Section 6 we briefly describe the use of CP-nets in two
abstract applications. The first is the sorting of a product
database using the preferences over product features, allow-

ing the most preferred products to be identified for a con-
sumer. The second is the use of CP-nets in constraint-based
optimization. Finally, we offer some thoughts on future re-
search.

2 Preference Relations

We focus our attention on single-stage decision problems
with complete information, ignoring in this paper any is-
sues that arise in multi-stage, sequential decision analysis
and any considerations of risk that arise in the context of un-
certainty.2 We begin with an outline of the relevant notions
from decision theory. We assume that the world can be in
one of a number of states S and at each state s there are a
number of actions As that can be performed. Each action,
when performed at a state, has a specific outcome (we do
not concern ourselves with uncertainty in action effects or
knowledge of the state). The set of all outcomes is denotedO. A preference ranking is a total preorder � over the set
of outcomes: o1 � o2 means that outcome o1 is equally
or more preferred to the decision maker than o2. The aim
of decision making under certainty is, given knowledge of
a specific state, to choose the action that has the most pre-
ferred outcome. We note that the ordering� will be differ-
ent for different decision makers. For instance, two differ-
ent customers might have radically different preferences for
different types of computer systems that a sales program is
helping them configure.

Often, for a state s, certain outcomes in O cannot result
from any action a 2 As: those outcomes that can obtain are
called feasible outcomes (given s). In many instances, the
mapping from states and actions to outcomes can be quite
complex. In other decision scenarios, actions and outcomes
may be equated: a user is allowed to directly select a feasi-
ble outcome (e.g., select a product with a desirable combi-
nation of features). Often states may play no role (i.e., there
is a single state).

What makes the decision problem difficult is the fact that
outcomes of actions and preferences are not usually rep-
resented so directly. We focus here on preferences. We
assume a set of features (or variables or attributes) F =fF1; � � �Fng over which the decision maker has prefer-
ences. Each feature Fi is associated with a domain of fea-
ture values Fi = ff i1; � � �f inig it can take. The product
space F = F1 � � � � � Fn is the set of outcomes. Thus
direct assessment of a preference function is usually infea-
sible due to the exponential size of F . We denote a partic-
ular assignment of values to a set X � F as ~x, and the
concatenation of two such partial assignments to X and Y
(X \ Y = ;) by ~x~y. If X [Y = F , ~x~y is a (complete)
outcome.

Fortunately, a preference function can be specified (or par-
tially specified) concisely if it exhibits sufficient structure.

2Such issues include assigning preferences to sequences of
outcome states, assessing uncertainty in beliefs and system dy-
namics, and assessing the user’s attitude towards risk.

We describe certain types of structure here, referring to
[13] for a detailed description of these (and other) struc-
tural forms and a discussion of their implications. These no-
tions are standard in multi-attribute utility theory. A set of
features X is preferentially independent of its complementY = F �X iff, for all ~x1; ~x2; ~y1; ~y2, we have~x1~y1 � ~x2~y1 iff ~x1~y2 � ~x2~y2
In other words, the structure of the preference relation over
assignments to X, when all other features are held fixed, is
the same no matter what values these other features take.
If the relation above holds, we say ~x1 is preferred to ~x2
ceteris paribus. Thus, one can assess the relative prefer-
ences over assignments to X once, knowing these prefer-
ences do not change as other attributes vary. We can define
conditional preferential independence analogously. Let X,Y and Z partition F (each set is nonempty). X and Y are
conditionally preferentially independent given ~z iff, for all~x1; ~x2; ~y1; ~y2, we have~x1~y1~z � ~x2~y1~z iff ~x1~y2~z � ~x2~y2~z
In other words, the preferential independence of X and Y
only holds when Z is assigned ~z. If this relation holds for
all assignments ~z, we say X and Y are conditionally pref-
erentially independent given Z.

This decomposability of a preference functions often allows
one to identify the most preferred outcomes rather readily.
Unfortunately, the ceteris paribus component of these defi-
nitions ensures that the statements one makes are relatively
weak. In particular, they do not imply a stance on specific
value tradeoffs. For instance, suppose two features A andB are preferentially independent so that the preferences for
values of A and B can be assessed separately; e.g., sup-
pose a1 � a2 and b1 � b2. Clearly, a1b1 is the most pre-
ferred outcome and a2b2 is the least; but if feasibility con-
straints make a1b1 impossible, we must be satisfied with
one of a1b2 or a2b1. We cannot tell which is most preferred
using these separate assessments. However, under stronger
conditions (e.g., mutual preferential independence) one can
construct an additive value function in which weights are
assigned to different attributes (or attribute groups). This
is especially appropriate when attributes take on numerical
values. We refer to [13] for a discussion of this problem.

Given such a specification of preferences, a number of dif-
ferent techniques can be used to search the space of feasible
outcomes for a most preferred outcome.

3 CP-Networks

In this section we describe a network representation that al-
lows the compact (but generally incomplete) representation
of a preference relation. We first describe the basic model
and its semantics and then describe inference procedures for
dominance testing.

Our representation for preferences is graphical in nature,
and exploits conditional preferential independence in struc-
turing a user’s preferences. The model is similar to a Bayes
net on the surface; however, the nature of the relation be-
tween nodes within a network is generally quite weak (e.g.,
compared with the probabilistic relations in Bayes nets).
Others have defined graphical representations of preference
relations; for instance Bacchus and Grove [1] have shown
some strong results pertaining to undirected graphical rep-
resentations of additive independence. Our representation
and semantics is rather distinct, and our main aim in using
the graph is to capture statements of conditional preferential
independence. We note that reasoning about ceteris paribus
statements has been explored in AI, though not in the con-
text of network representations [7].

For each feature F , we ask the user to identify a set of par-
ent features P (F) that can affect her preference over vari-
ous F values. That is, given a particular value assignment
to P (F), the user should be able to determine a preference
order for the values of F , all other things being equal. For-
mally, denoting all other features aside from F and P (F)
by F , we have thatF and F are conditionallypreferentially
independent given P (F). Given this information, we ask
the user to explicitly specify her preferences over F values
for all possibleP (F) values. We use the above information
to create an annotated graph in which each feature F hasP (F) as its set of parents. The node F is annotated with a
condition preference table (CPT) describing the user’s pref-
erences over F ’s values given every combination of par-
ent values.3 We call these structures conditional preference
networks (or CP-networks). We note that nothing in the
semantics forces the graph to be acyclic, though we argue
below that most natural networks will indeed be acyclic.
Moreover, even cyclic CP-networks cannot express all pos-
sible total preference orderings, as can be shown by a simple
counting argument.

We illustrate the network semantics and some of its conse-
quences with a series of examples. In the following exam-
ples all features are boolean, though our semantics is de-
fined for features with arbitrary finite domains.

Example 1 Asking the user to describe her preference over
feature B, we are told that this preference depends on the
value for A and on that value alone (ceteris paribus). We
then make A a parent of B and ask about her preference onB for each value of A. She may say that, when a holds,
she prefers b over b, and when a holds she prefers b over b,
ceteris paribus. This is written here as:a : b � ba : b � b

3That is, we assume that a preorder is provided over the do-
main of F , such that for any two values fi and fj , either fi � fj ,fj � fi, or fi and fj are equally preferred. For ease of presen-
tation, we ignore indifference in our algorithms (though its treat-
ment is straightforward). We assume this relation is fully specified
(though see Section 6).

Example 2 Suppose we have two features A and B, whereA is a parent of B and A has no parents. Assume the fol-
lowing conditional preferences:a � a; a : b � b; a : b � b
Somewhat surprisingly, this information is sufficient to to-
tally order the outcomes:ab � ab � ab � ab:
Notice that we can judge each outcome in terms of the con-
ditional preferences it violates. The ab outcome violates
none of the preference constraints. Outcome ab violates the
conditional preference forB. Outcome ab violates the pref-
erence forA. Outcome ab violates both. What is surprising
is that the ceteris paribus semantics implies that violating
theA constraint is worse than violating theB constraint (we
have ab � ab). That is, the parent preferences have higher
priority than the child preferences.

Example 3 Suppose we have three features A, B, and C,
and suppose that the preference dependency graph is dis-
connected. Let’s assume that a � a, b � b, and c � c.
Given this information we can conclude that abc is the most
preferred outcome, then comes abc, abc, and abc. These
three cannot be ordered based on the information provided.
Less preferred than the last two is abc, and so on. The least
preferred outcome is abc.
Example 4 Suppose we have three features A, B, and C,
and the conditional preference graph forms a chain with A
having no parents,A the parent ofB, andB the parent ofC.
Suppose we have the following dependence information:a � a; a : b � b; a : b � b; b : c � c; b : c � c
These preference constraints imply the following ordering:abc � abc � abc � abc � abc � abc � abc;
which totally orders all but one of the outcomes. Notice
how we get from one outcome to the next in the chain: we
flip (or exchange) the value of exactly one feature according
to the preference dependency information. The element not
in this chain is abc, and we can derive the ordering abc �abc � abc. Thus, the only two outcomes not totally ordered
are abc and abc. From Example 2, we saw that violations of
preference constraints for parent features are worse than vi-
olations of constraints over child preferences. In one of the
two unordered outcomes we violate the preference of the
most important feature (A), while in the other outcome we
violate preference over two less important features (B andC). The semantics of CP-networks does not specify which
of these tuples is preferred.

There are two important things to notice about these exam-
ples. First, a chain of “flipping feature values” can be used
to show that one outcome is better than another. In Exam-
ple 4, the conditional preferences for C allow the value of

C to be “flipped” in outcome abc to obtain abc. B’s value
can then be flipped (given a) to obtain abc, and so on. Sec-
ond, violations are worse (i.e., have a larger negative im-
pact on preference) the higher up they are in the network,
although we cannot compare two (or more) lower level vi-
olations to violation of a single ancestor constraint. These
observations underly the inference algorithms below.

As mentioned, the semantics of CP-nets do not preclude
cyclic networks. For instance, a two-variable network
where A depends on B and B depends on could be consis-
tently quantified as follows:a : b � b; a : b � bb : a � a; b : a � a
Under these preferences, the user simply prefers A and B
to have the same value, with both ab and ab maximally
preferred. Acyclic graphs always have a unique most-
preferred outcome. We note that cyclic preference graphs
can be inconsistent (e.g., in the example above, simply re-
verse the conditional preferences forB under each value ofA). Indeed, acyclic graphs are always consistent (i.e., cor-
respond to at least one well-defined preference ordering). It
seems there is rarely a need for cyclic structures unless one
wants to express indifference between certain assignments
to subsets of variables. In this case, one can often cluster
the variables to maintain acyclicity. In what follows, we as-
sume that our CP-nets are acyclic.

4 Searching for Flipping Sequences

We assume we are given an acyclic CP-network over fea-
tures F1; � � �Fn. By convention, we assume the ordering of
these features respects the topology of the network (that is,
the parents of any Fi have indices j < i). We use xi; x0i; yi,
etc. to denote values of feature Fi. The basic inference
problem we address is the following: given a CP-networkN , and two outcomes x = x1x2 � � �xn, y = y1y2 � � �yn, isx � y a consequence of preferences of the CP-network? In
other words, is the outcome x preferred to y? We treat the
inference problem as a search for a flipping sequence from
the (purported) less preferred outcome y, through a series
of more preferred outcomes, to the (purported) more pre-
ferred outcome x, where each value flip in the sequence is
sanctioned by the networkN . Conversely, we can view the
problem as a search in the opposite direction, from the more
preferred outcome to the less preferred outcome.

4.1 Improving Search

Given any CP-network, and a query x � y, we define the
improving search tree as follows. The search tree is rooted
aty = y1y2 � � �yn; the children of any nodez = z1z2 � � �zn
in the search tree are those outcomes that can be reached by
changing one feature value zi to z0i such that z0i � zi given
the values zj ; j < i. Note that possible improving valuesz0i of Fi can be readily determined by inspecting the CPT

A

C

B

E F

D

G

H

Figure 1: An Example Conditional Preference Graph

for Fi. Since the only preference statements explicitly rep-
resented in the network are those captured by the CPTs, it
is clear that x � y is implied by N iff there exists a path
from y to x in the improving search tree. Thus, any com-
plete search procedure—any procedure guaranteed to ex-
amine every branch of the search tree—will be a sound and
complete query answering procedure. All procedures dis-
cussed in this paper are, in this sense, sound and complete.

Example 5 Consider the preference graph of Figure 1.
Suppose that the conditional preferences are:a � a; b � b;(a ^ b) _ (a ^ b) : c � c; (a ^ b) _ (a ^ b) : c � cc : d � d; c : d � d; d : e � e; d : e � e;d : f � f ; d : f � f ; f : g � g; f : g � gg : h � h; g : h � h
Suppose we want to compare outcome abcdefgh (which
violates the G preference) and outcome abcdefgh (which
violates the A preference). In order to show that the first
is preferred, we generate the sequence: abcdefgh �abcdefgh � abcdefgh � abcdefgh � abcdefgh �abcdefgh. Intuitively, we constructed a sequence of in-
creasingly preferred outcomes, using only valid conditional
independence relations represented in the CP-network, by
flipping values of features. We are allowed to change the
value of a “higher priority” feature (higher in the network)
to its preferred value, even if this introduces a new prefer-
ence violation for some lower priority feature (a descendent
in the network). For instance, the first flip of A’s value in
this sequence to its preferred state repairs the violation ofA’s preference constraint, while introducing a preference
violation with respect toC (the value c is dispreferred whenab holds). This process is repeated (e.g., making C take its
conditionally most preferred value at the expense of violat-
ing the preference for D) until the single preference viola-
tion of F (in the “target” outcome) is shown to be preferred
to the single preference violation of A (in the initial out-
come). This demonstrates how the violation of conditional
preference for a feature is dispreferred to the violation of
one of its descendent’s preferences.

Suppose we compare abcdefgh (which violates theG pref-
erence and theH preference) and abcdefgh (which violates
theA preference). These turn out not to be comparable (nei-
ther is preferred to the other). The sequence of flips above
cannot be extended to change the values of bothG andH so
that their preference constraints are violated. The sole vio-
lation of the A constraint cannot be dominated by the vio-
lation of two (or more) descendents in a chain.

If we want to compare abcdefgh (which violates the E
preference and theG preference) and abcdefgh (which vio-
lates theA preference), we can use the following sequence:abcdefgh � abcdefgh � abcdefgh � abcdefgh �abcdefgh. The violation of E and G is preferred to the vi-
olation ofA: intuitively, theA violationcan be absorbed by
violation in each path starting at D.

Now consider the comparison of abcdefgh (which violates
theG andH preferences) and abcdefgh (which violates theA and B preferences). We can use the following sequence
of flips to show preference: abcdefgh � abcdefgh �abcdefgh � abcdefgh � abcdefgh � abcdefgh �abcdefgh � abcdefgh � abcdefgh � abcdefgh. This
shows how two violations in ancestor features covers two
violations in their descendents.

These examples illustrate how certain preference violations
have priority over others in determining the relative order-
ing of two outcomes. Intuitively, dominance is shown by
constructing a sequence of legal flips from the initial out-
come to the target.

4.2 Worsening Search

A query x � y can also be answered using search through
the worsening search tree, defined as follows. The search
tree is rooted at x = x1x2 � � �xn; the children of any nodez = z1z2 � � � zn in the search tree are those outcomes that
can be reached by changing one feature value zi to z0i such
that z0i � zi given the values zj ; j < i. Note that possi-
ble worsening values z0i of Fi can be readily determined by
inspecting the CPT for Fi. Again, it is clear that x � y is
implied byN iff there exists a path from x to y in the wors-
ening search tree.

While clearly any path from x to y that exists in the wors-
ening search tree corresponds to a path from y to x in the
improving search tree, and vice versa, the search space may
be such that searching in the improving search tree is most
effective for some queries, while searching in the worsen-
ing search tree is most appropriate for others.

Example 6 Consider the CP-network described in Exam-
ple 4. Suppose we wish to test whether abc � abc. Takingabc as the root of the worsening tree, the only path one can
generate is abc � abc � abc � abc. In other words, the
worsening tree does not branch and leads directly to a pos-
itive answer to the query. In contrast, the improving search
tree rooted at abc consists of six branches (with a maximum
length of seven nodes), and only one path leads to a solution
(see Figure 2).

_ _
a b c

a b c

 _
a b c

_ _ _
a b c

_
a b c

a b c

 _ _
a b c

a b c

_ _
a b c

 _
a b c

 _
a b c

_ _ _
a b c

a b c

 _ _
a b c

 _ _
a b c

 _
a b c

 _
a b c

a b c

a b c

Figure 2: Improving Search Tree from abc (Example 6)

Example 7 With the same network, consider the queryabc � abc. Taking abc as the root of the improving search
tree, the only path in the tree is abc � abc � abc � abc. In
contrast, the worsening search tree rooted at abc consists of
six branches (with a maximum length of seven nodes), and
only one path leads to a solution.

For this reason, we believe that a parallel search in both the
improving and worsening search trees is generally most ap-
propriate. Though we have illustrated positive queries only,
the same considerations apply to negative queries, where, in
fact, exploiting small search trees is especially important in
order to quickly fail.

4.3 Suffix Fixing and Extension

Though we haven’t yet detailed specific search procedures,
in the remainder of this section we suppose that we have
some complete (and necessarily sound) search procedure.
Regardless of whether one uses improving or worsening
search, there are two simple rules that allow one to make
deterministic moves in search space (i.e., choose flips that
need not be backtracked over, or reconsidered) without im-
pacting completeness of the search procedure.

The first rule is suffix fixing. We define a suffix of an al-
ternative z = z1z2 � � �zn to be some subset of the valueszizi+1 � � � zn, i � 1. A suffix can be defined for any le-
gal ordering of the features. Suppose an improving search
for the query x � y takes us from the root node y to nodez = z1z2 � � �zn. Suppose further that some suffix of z
matches the suffix of target x; that is, zj = xj for all j � i.4
The suffix fixing rule requires that those features making up
the suffix never be flipped. The following proposition en-
sures that we never need reconsider a decision not to flip
features in a matching suffix.

Proposition 1 Let there be a path in the improving search

4The matching suffix can be “created” by a reordering of the
features that is consistent with the partial ordering of the (acyclic)
CP-network.

tree from rooty to nodez, such that some suffix of zmatches
that of the target x. If there is a path from y tox that passes
through z, then there is a path from z to x such that every
node along that path has the same values as z for the fea-
tures that make up the suffix.

This effectively restricts the search tree under z to have only
paths that retain the suffix values. Though one may have to
backtrack over choices that lead to z, one will not have to
consider the full search tree under z. The suffix fixing rule
also applies to worsening search.

A second completeness-preserving rule is the suffix exten-
sion rule. Suppose that a path to intermediate node z has
been found that matches some suffix of the target x. Fur-
thermore, suppose that the values of z allow this suffix to be
extended; that is, suffix zizi+1 � � �zn matches the target and
feature F i�1 can be improved from zi�1 to z0i�1 = xi�1.5

Then the flip to z0i�1 can be chosen and not reconsidered.

Proposition 2 Let there exist a path in the improving
search tree from root y to node z, such that some suffix ofz matches that of the target x, and that the suffix can be ex-
tended by a legal move from z to z0. If there exists a path
from y to x that passes through z, then there exists a path
from z0 to x such that every node along that path has the
same values as z0 for the features that make up the extended
suffix.

Example 8 Consider the CP-network of Figure 1 with the
conditional preferences as in Example 5. Suppose we were
to consider the queryabcdefgh � abcdefgh
using an improving search. Suffix fixing means that we
never have to consider flipping g, h or e (there is a reorder-
ing of the features that has these three as the rightmost fea-
tures). The suffix extension rule means that we can flip f tof (as d : f � f), without backtracking over this choice. We
cannot immediately flip d to d in the context of c, so suffix
extension is not applicable (once f is flipped).

4.4 Forward Pruning

In this section we describe a general pruning mechanism
that can be carried out given a query x � y. It� often quickly shows that no flipping sequence is pos-

sible;� prunes the domains of the features to reduce the flip-
ping search space;� doesn’t compromise soundness or completeness; and� is relatively cheap (time is O(nrd2) where n is the
number of features, r is the maximum number of con-
ditional preference rules for each feature, and d is the
size of the biggest domain).

The general idea is to sweep forward through the network,
pruning any values of a feature that cannot appear in any

5Again, the suffix can be found using feature reordering.

(improving or worsening) flipping sequence to validate a
query. Intuitively, we consider the set of flips possible, ig-
noring interdependence of the parents and the number of
times the parents can change their values.

We consider each feature in an order consistent with the net-
work topology (so that parents of a node are considered be-
fore the node). For each feature F , we build a graph with
nodes corresponding to the possible values for F , and for
each conditional preference relationc : v1 � v2 � � � � � vd
such that c is consistent with the pruned values of the par-
ents of F , we include an arc between the successive values
(i.e., between the values vi and vi+1).

We can prune any value that isn’t on a directed path fromx’s value for feature F to y’s value for feature F . This can
be implemented by running Dijkstra’s algorithm [5] twice:
once to find the nodes reachable from x’s value for featureF and again to find the nodes that can reach y’s value for
feature F . These sets of nodes can be intersected to find the
possible values for F . If there are no nodes remaining, the
domination query fails: there is no legal flipping sequence.
This often results in quick failure for straightforward cases,
so that we only carry out the search for non-obvious cases.

Example 9 Consider the CP-network of Figure 1 with the
conditional preferences as in Example 5. Consider a query
of the form ab : : : � ab : : :
First we consider A. We can draw an arc a ! a, and
find that both a and a are on a path, so no values of A are
pruned.6 We then consider B and draw an arc b ! b; but
there are no paths from b to b, so the query fails quickly
without looking at the other features.

One could imagine extending this pruning phase to include
more information, such as the sequences of values through
which the parents can pass. From this one can determine
the possible sequences of values through which the child
feature could pass. Generally, the combinatorics of main-
taining such sequences is prohibitive; but in the binary case,
any path through the set of values is completely determined
by the starting value and a count of the number of times
the value flips. Pruning still ignores the possible interde-
pendencies of the values for the parents, but for singly-
connected networks (where we can guarantee the sequences
of values the parents can pass through are independent),
pruning is complete in the sense that if it stops without fail-
ing there is a flipping sequence. This was the basis of the
counting algorithm in [3] for singly-connected binary CP-
networks.

6If the example were changed slightly so that A had a third
value a, where a � a � a, then this third value could be pruned
from A, thus simplifying the tables for all the children of A.

5 Search Strategies and Heuristics

In the previous section, the search space was formally de-
fined, and several completeness preserving rules for prun-
ing the search space were defined. This leaves open the is-
sue of effective procedures for searching. In this section we
describe several heuristics for exploring the search tree. We
first describe some simple heuristics that seem to be effec-
tive for many networks, and are, in fact, backtrack-free for
certain classes of networks. We then show how this search
problem can be recast as a planning problem and briefly de-
scribe the potential benefits of such a view.

5.1 Rightmost and Least-Improving Heuristics

The rightmost heuristic requires that the variable whose
value one flips when deciding which child to move to is the
rightmost variable that can legally be flipped. For instance,
consider the improving search tree in Example 6 (as illus-
trated in Figure 2). Given a target outcome abc, we see that
the rightmost heuristic leads us directly to the target in two
steps. If the target outcome were different, say abc, then
the rightmost heuristic has the potential to lead us astray.
However, when we incorporate the suffix-fixing rule into
the search, we see that the rightmost heuristic (defined now
as flipping the rightmost value that doesn’t destroy a suf-
fix match) will lead directly to any target outcome in the
search tree. For example, given target outcome abc, the
rightmost heuristic discovers the shortest path to the target:
notice also that suffix-fixing prevents us from exploring the
longest (length six) path to the target.

This example suggests that for chains, the rightmost heuris-
tic will lead to a proof, if one exists, without backtracking.
This may not be the the case, however, if variables are not
all binary.

Example 10 Consider the CP-network where variable A,
with domain fa1; a2; a3g, is a parent of boolean variableB.
Conditional preferences are given bya1 � a2 � a3a1 : b � b; a2 : b � b; a3 : b � b
Given query a1b � a3b, the rightmost heuristic in an im-
proving search could first construct the sequence a3b �a1b, reaching a dead end (thus requiring backtracking). The
direct sequence a3b � a2b � a2b � a1b is also consistent
with the rightmost heuristic.

In the example above, the rightmost heuristic permitted a
“jump” froma3 to the most preferred valuea1 without mov-
ing through the intermediate value a2. This prevented it
from discovering the correct flipping sequence.

In multivalued domains, another useful heuristic is the least
improving heuristic (or in worsening searches, the least
worsening heuristic): when the rightmost value can be
flipped to several improving values given its parents, the
improving value that is least preferred is adopted. This al-
lows greater flexibility in the movement of “downstream”

variables. While one can always further improve the value
of the variable in question from its least improving value
to a more preferred value (provided that parent values are
maintained), “skipping” values may prevent us from setting
its descendents to their desired values.

Both the rightmost and least improving heuristics can be
viewed as embodying a form of least commitment. Flipping
the values of the rightmost possible variable (i.e., a variable
with the smallest number of descendents in the network)
can be seen as leaving maximum flexibility in flipping the
values of other variables. An upstream variable limits the
possible flipping sequences more drastically than a down-
stream variable—specifically, altering a specific variable
does not limit the ability to flip the values of its nondescen-
dents. For the reasons described above, the least improving
heuristic can be cast in a similar light.

Unfortunately, while the least-commitment approach works
well in practice, it does not allow backtrack-free search in
general, as the following example shows.

Example 11 Consider the CP-network with three variablesA, B and C such that A is the only parent of B and B is
the only parent of C. Suppose A has domain fa; ag, B has
domain fb1; b2; b3g and C has domain fc; cg, with the fol-
lowing conditional preferences:a � a;a : b3 � b2 � b1;a : b3 � b1 � b2;b2 : c � c; b1 _ b3 : c � c
Consider the query ab3c � ab1c with an improving search.c cannot be improved in the context of b1. However b1 can
be improved to b3 in the context of a, but this leads to a dead
end. The right thing to do is to flip a first, then change b1 tob2 which will let you flip c and then change b2 to b3.

While queries over chain-structured networks with mul-
tivalued variables cannot reliably be searched backtrack-
free using the rightmost and least-improving heuristics, this
search approach is backtrack-free for chains when all vari-
ables are binary. Intuitively, this is the case because chang-
ing the value of the rightmost allowable variable does not
impact the ability to flip its parent’s value; furthermore,
changing this variable cannot prevent its child from being
flipped, since if the child needed a different value (and could
have been flipped), it would have been flipped earlier. For
similar reasons, binary tree-structured networks (where ev-
ery variable has at most one parent, but perhaps multiple
children) can also be searched backtrack-free.

Example 12 Consider the binary tree-structured prefer-
ence graph of Figure 3 with the conditional preferences:a � aa : b � b; a : b � ba : c � c; a : c � c

A

B C

D E

Figure 3: A Tree-Structured Conditional Preference Graphc : d � d; c : d � dc : e � e; c : e � e
Consider the query abcde � abcde. Suppose we are search-
ing for an improving flipping sequence from abcde. By suf-
fix fixing, we leave e untouched. The first value we flip is c.
Since this is the only way we could ever get to flipd, and be-
cause c is binary, there is only ever one other value it could
have. We can now flip d forming abcde (d and e then re-
main untouched). We can flip b, and fix it by suffix fixing
(as there is an ordering where it is part of the fixed suffix).
The only value we can flip at this point is a; this gives usabcde. We can now flip c and we are done.

Proposition 3 The rightmost search heuristic, in conjunc-
tion with suffix-fixing and suffix-extension, is complete and
backtrack-free for chain- and tree-structured CP-nets with
binary variables.

Polytrees (singly-connected networks containing no undi-
rected cycles) cannot be searched without backtracking in
general, even when variables are binary. This is due to
the fact that several parents of a given node may each be
allowed to have their values flipped, but only one of the
choices may lead to the target outcome, while the others
lead to deadends. For instance, suppose we consider Exam-
ple 5, restricted to the variables A;B;C, and are given the
query abc � abc. Using an improving search rooted at abc,
we have a choice of flippingA orB. IfB is chosen, we start
down the path abc � abc; but this clearly cannot lead to the
target, since there is no way to flip B back to b. A deadend
will be reached and we must backtrack to flip A before B,
leading to the solution path abc � abc � abc.
Essentially, this means we have to may have to consider dif-
ferent variable orderings over the ancestors of a given node.
It turns out that these are the only backtrack points in binary
polytrees.

Finally, for general (multiply-connected) CP-nets, complex
interdependencies can exist among the parents of variables
because the parents themselves may share ancestors. This
can lead to complex search paths in the successful search for
a flipping sequence. Though we don’t provide examples,
one can construct networks and specific queries such that no
fixed ordering of variables allows the rightmost heuristic to
work backtrack-free. We also note that the shortest flipping
sequence for certain queries can be exponential in length
given a maximally-connected acyclic network (e.g., we can

require sequences of lengthO(2n=2) in ann-variable binary
network). We do not believe such sequences are required in
singly-connected networks.

It should be noted that while one can generate example net-
works and queries that require complicated search, involv-
ing considerable backtracking using most simple heuristics,
such examples tend to be rather intricate and obscure. They
invariably require a tight interaction between the network
structure, the conditional preference statements quantifying
the network, and the specific query itself. None of the nat-
ural examples we have seen require much search.

5.2 Flipping Sequences as Plans

In this paper we have considered searching directly for flip-
ping sequences. This can be seen as a case of state-space
search. It is also possible to think about answering domi-
nance queries as a type of planning problem. A conditional
preference statement of the formc : v1 � v2 � � � � � vd
can be converted into a set of STRIPS actions for improv-
ing the value for a variable. In particular, this conditional
preference statement can be converted into a set of d � 1
STRIPS operators of the form (for 1 < i � d):

Preconditions: c ^ vi
Add List: vi�1
Delete list: vi
This corresponds to the action of improvingvi to vi�1 in the
context of c. (A different set of actions would be created for
worsening).

Given a query x � y, we treat y as the start state and x as
the goal state. It is readily apparent that that the query is a
consequence of the CP-network if and only if there is a plan
for the associated planning problem. A plan corresponds to
a flipping argument.

The previous algorithms can be viewed as state-based for-
ward planners. It is often the case that domain-specific
heuristics can be easily added to a forward search [2], and
we expect the same here. We could also use other planning
techniques such as regression, partial-order planning, plan-
ning as satisfiability and stochastic local search methods
for this problem. The application of regression and partial-
order planners (more generally, backchaining planners) can
provide support for reasoning about the changes in ancestor
values required for a specific descendent to flip its value to
its target. We note that the planning problems generated by
CP-queries will generally look quite different in form from
standard AI planning problems, as there are many more ac-
tions, and each action is directed toward achieving a partic-
ular proposition and requires very specific preconditions.

6 Concluding Remarks

In this paper we introduced CP-networks, a new graphi-
cal model for representing qualitative preference orderings
which reflects conditional dependence and independence
of preference statements under a ceteris paribus semantics.
This formal framework often allows compact and arguably
natural representations of preference information. We ar-
gued that given a CP-network, the basic inference problem
of determining whether one of two given vectors of feature
values is preferred to the other is equivalent to the task of
finding a connecting sequence of flipping individual feature
values. We characterized the corresponding search space
and described several strategies and heuristics which often
significantly reduce the search effort and allow one to solve
many problem instances efficiently.

We see various applications of CP-networks and our domi-
nance testing strategies and heuristics. One of these is sort-
ing a product database according to user-specified prefer-
ences. This problem is highly relevant in the context of
electronic commerce. Several rather conceptually simplis-
tic implementations are available on the World Wide Web
(e.g., Active Buyers Guide). The general idea is to assist
a user in selecting a specific product from a database ac-
cording to her preferences. Here, it is very important to use
compact and natural representations for preference infor-
mation. CP-networks extend current models (which typi-
cally don’t allow conditional preference statements). An-
other important aspect of this problem is that the given
database precisely defines the items (represented as vec-
tors of feature values) available, and preference information
is only required to such an extent that the choice is suffi-
ciently narrowed down to a small selection of products from
this database. Dominance testing strategies are important
in this context to find a set of Pareto-optimal choices given
the (conditional) preference information extracted from the
user. Here, an interactive and dynamic approach appears
to be most promising, where the user is prompted for addi-
tional preference statements until the ordering of the items
in the database is sufficiently constrained by the preference
information to offer a reasonably small selection of prod-
ucts. While the dominance algorithms are an important part
of the database sorting task, the problem does not generally
require that all pairwise comparisons be run to completion.
Certain preprocessing steps can be taken, that exploit the
network structure, to partition tuples in the database accord-
ing to values of high priority attributes.

Another application area is constraint-based configuration,
where the task is to assemble a number of components ac-
cording to user preferences such that given compatibility
constraints are satisfied [3, 6]. A simple example of this is
the assembly of components for computer systems where,
for instance, the type of system bus constrains the choice of
video and sound cards. CP-networks can be used to repre-
sent the user preferences which are used together with com-
patibility constraints to search for most preferred, feasible

configurations. In contrast to the database sorting applica-
tion above, here the set of possible vectors of feature values
(i.e., configurations) is not explicitly given, but implicitly
specified by the compatibility constraints. Dominance test-
ing is again required for finding most preferred solutions,
but now it has to be combined with mechanisms which limit
the search to feasible configurations [3].

We are currently extending this work in two directions.
First, the search strategies and heuristics for dominance
testing presented in this paper have to be implemented in
order to empirically assess their performance on various
types of problem instances, including real-world problems,
as well as handcrafted examples exhibiting uniform, reg-
ular structures of theoretical interest. Secondly, we are
working on various extensions of the framework presented
here. These include cases where the conditional preference
statements contain a small amount of quantitative informa-
tion. In particular, existing applications (such as online in-
teractive consumer guides) suggest that a limited amount
of such quantitative preference information might be rela-
tively easy to extract from the user in a natural way, and is
very useful for inducing stronger preference orderings.

Another interesting issue is the extension of the represen-
tation and reasoning system such that incompletely spec-
ified conditional preference information (i.e., incomplete
CP-tables) can be taken into account. This is motivated by
the fact that often the full preference information given by
the CP-tables is not required for deciding a particular dom-
inance query. Therefore, it seems to be useful to consider
mechanisms which allow incompletely specified CP-tables
and dynamically prompt the user for additional preference
information when it is needed.

Finally, we intend to investigate the tradeoffs between the
amount of user-interaction required for extracting the pref-
erence information and the amount of computation needed
for determining most preferred feature vectors. By asking
very specific questions about particular, potentially com-
plex preferences, finding most preferred feature vectors
can become much easier. On the other hand, asking too
many questions, especially those not really necessary for
establishing relevant preferences, will annoy the user and
make the system less usable. Thus, finding good trade-
offs between the amount of user-interaction and computa-
tion time for answering queries—such as finding most pre-
ferred items from a database or optimal configurations—
seems to be a promising direction for future research. This
is related to the motivation underlying goal programming
[8, 12]. The representations and search techniques pre-
sented in this paper form a starting point for such investi-
gations.

Acknowledgements: This research was supported by IRIS-
III Project “Interactive Optimization and Preference Elicitation”
(BOU).

References
[1] Fahiem Bacchus and Adam Grove. Graphical models for

preference and utility. In Proceedings of the Eleventh Con-
ference on Uncertainty in Artificial Intelligence, pages 3–10,
Montreal, 1995.

[2] Fahiem Bacchus and Froduald Kabanza. Using tem-
poral logic to control search in a forward chaining
planner. In Proceedings of the 3rd European Work-
shop on Planning, 1995. Available via the URL
ftp://logos.uwaterloo.ca:/pub/tlplan/tlplan.ps.Z.

[3] Craig Boutilier, Ronen Brafman, Chris Geib, and David
Poole. A constraint-based approach to preference elicitation
and decision making. In AAAI Spring Symposium on Quali-
tative Decision Theory, Stanford, 1997.

[4] U. Chajewska, L. Getoor, J. Norman, and Y. Shahar. Util-
ity elicitation as a classification problem. In Proceedings of
the Fourteenth Conferenceon Uncertainty in Artificial Intel-
ligence, pages 79–88, Madison, WI, 1998.

[5] Thomas H. Cormen, Charles E. Lierson, and Ronald L.
Rivest. Introduction to Algorithms. MIT Press, Cambridge,
MA, 1990.

[6] Joseph G. D’Ambrosio and William P. Birmingham.
Preference-directed design. Journal for Artificial Intelli-
gence in Engineering Design, Analysis and Manufacturing,
9:219–230, 1995.

[7] Jon Doyle and Michael P. Wellman. Preferential semantics
for goals. In Proceedings of the Ninth National Conference
on Artificial Intelligence, pages 698–703, Anaheim, 1991.

[8] J. S. Dyer. Interactive goal programming. Management Sci-
ence, 19:62–70, 1972.

[9] Simon French. Decision Theory. Halsted Press, New York,
1986.

[10] Vu Ha and Peter Haddawy. Toward case-based preference
elicitation: Similarity measures on preference structures. In
Proceedingsof the Fourteenth Conferenceon Uncertainty in
Artificial Intelligence, pages 193–201, Madison, WI, 1998.

[11] Ronald A. Howard and James E. Matheson, editors. Read-
ings on the Principles and Applications of Decision Analysis.
Strategic Decision Group, Menlo Park, CA, 1984.

[12] James P. Ignizio. Linear Programming in Single and Mul-
tiple Objective Systems. Prentice-Hall, Englewood Cliffs,
1982.

[13] R. L. Keeney and H. Raiffa. Decisions with Multiple Objec-
tives: Preferences and Value Trade-offs. Wiley, New York,
1976.

[14] Yezdi Lashkari, Max Metral, and Pattie Maes. Collabora-
tive interface agents. In Proceedingsof the Twelfth National
Conference on Artificial Intelligence, pages 444–449, Seat-
tle, 1994.

[15] Hien Nguyen and Peter Haddawy. The decision-theoretic
video advisor. In AAAI-98 Workshop on Recommender Sys-
tems, pages 77–80, Madison, WI, 1998.

