Reasoning With Conditional CeterisParibus Preference Statements

Craig Boutilier
Dept. of Computer Science
University of British Columbia
Vancouver, BC V6T 174
cebly@cs.ubc.ca

Abstract

In many domainsit isdesirableto assess the pref-
erences of usersin aqualitativerather than quan-
titative way. Such representations of qualitative
preference orderings form an important compo-
nent of automated decision tools. We propose
agraphical representation of preferences that re-
flects conditional dependence and independence
of preference statements under a ceteris paribus
(al else being equal) interpretation. Such arep-
resentation isoften compact and arguably natural .
We describe severa search algorithmsfor domi-
nance testing based on this representation; these
algorithms are quite effective, especialy in spe-
cific network topologies, such as chain- and tree-
structured networks, as well as polytrees.

1 Introduction

Preference dicitation is an important aspect of automated
decision making. Inmany applicationdomains, thespace of
possible actions or decisions available to someone is fixed,
with well-understood dynamics; the only variable compo-
nent in the decision making process are the preferences of
the user on whose behalf a decision isbeing made. Thisis
often the case in domains such as product configuration or
medical diagnosis (to name but two).

Extracting preference information from users is generally
arduous, and human decision anaysts have developed so-
phisticated techniques to help dlicit this information from
decision makers[11]. A key god in the study of computer-
based decision support isthe construction of tool sthat allow
the preference eicitation process to be automated, either
partially or fully. In particular, methodsfor extracting, rep-
resenting and reasoning about the preferences of naive users
isespecially important in Al applications, where users can-
not be expected to have the patience (or sometimesthe abil -
ity) to provide detailed preference relations or utility func-
tions. In applications ranging from collaborative filtering
[14] and recommender systems [15] to product configura-
tion [6] to medica decision making [4], typica users may

Ronen |. Brafman
Department of Math and CS
Ben-Gurion University
Beer Sheva, Israel 84105
brafman@cs.bgu.ac.il

Holger H. Hoos and David Poole
Dept. of Computer Science
University of British Columbia
Vancouver, BC V6T 174
{hoos,poole} @cs.ubc.ca

not be able to provide much more than qualitativerankings
of fairly circumscribed outcomes.

Ideally, a preference representation for such applications
would capture statements that are natura for users to as-
sess, are reasonably compact, and support effective infer-
ence (particularly when deciding whether one outcome is
preferred to, or dominates, another). In this paper, we ex-
plore a network representation of conditional preference
statements under a ceteris paribus (all el se equal) assump-
tion. The semantics of our local preference statements cap-
ture the classical notion of (conditional) preferential inde-
pendence [13], while our CP-network (conditiona prefer-
ence network) representation allows these statements to be
organized in a precise way. We also describe several infer-
ence algorithmsfor dominance queries, and show that these
are very efficient for certain classes of networks, and seem
to work well on genera network structures.

Our conditional ceteris paribus semantics requiresthat the
user specify, for any specific feature I of interest, which
other features can impact her preferences for vaues of F'.
For each instantiation of the relevant features (parents of
I"), the user must specify her preference ordering over val-
ues of I conditional on the parents assuming the instanti-
ated values; for instance, f1 may be preferred to f, when
g1 and h, hold. Such apreferenceisgivenaceteris paribus
interpretation: f; ispreferredto f, given g, and h- all else
being equal. In other words, for any fixed instantiation of
the remaining features, an outcome where f; holdsis pre-
ferred to one where f, holds (assuming ¢; and hs). Such
statements are arguably quite natural and appear in several
places (e.g., in e-commerce applications). For instance, the
product selection service offered by Active Buyer’'s Guide
asks for (unconditional) ceteris paribus statements in as-
sessing a user’s preference for various products.! Condi-
tional expressions offer even greater flexibility. Generally,
tools for representing and reasoning about ceteris paribus
preferences are important because they should aid in the
elicitation process for naive users.

1See www. act i vebuyer sgui de. com The tools there
also ask for some semi-quantitative information about prefer-
ences.

Preference dlicitation is a complex task and is a key focus
in work on decision analysis[13, 11, 9], especidly dlicita
tioninvolvingexpert users. Automating the process of pref-
erence extraction can be very difficult. Straightforward ap-
proachesinvolvingthedirect comparison of al pairsof out-
comes are generally infeasible for a number of reasons, in-
cluding the exponential number of outcomes (in the num-
ber of relevant features for which preferences areindicated)
and the complexity of the questionsthat are asked (the com-
parison of complete outcomes). There has been consider-
able work on exploiting the structure of preferences and
utility functionsin away that alows them to be appropri-
ately decomposed [13, 1]. For instance, if certain attributes
arepreferentially independent of others[13], onecan assign
degrees of preference to these attribute val ues without wor-
rying about other attribute values. Furthermore, if one as-
sumes more stringent conditions, often one can construct an
additive value function in which each attribute contributes
to overall preference to a certain “degree” (the weight of
that attribute) [13]. For instance, it is common in engineer-
ing design problems to make such assumptions and ssimply
require users to assess the weights[6]. This alows the di-
rect tradeoffs between values of different attributesto be as-
sessed concisaly. Case-based approaches have also recently
been considered [10].

Models such as these make the preference elicitation pro-
cess easier by imposing specific requirements on the form
of the utility or preference function. We consider our CP-
network representation to offer an appropriate tradeoff be-
tween alowing flexible preference expression and impos-
ing a particular preference structure. Specifically, unlike
much of thework cited above, conditional preference state-
ments will be permitted.

The remainder of the paper is organized asfollows. In Sec-
tion 2, we describe the necessary background on preference
functions. We define our graphica preference model, CP-
networks, in Section 3 and describe its semantics in terms
of ceteris paribus (conditional preferential independence)
statements. Though the CP-semantics of the local prefer-
ence statements coul d be considered somewhat weak, some
surprisingly strong conclusions regarding dominance can
often be drawn based on the network structure. In Sec-
tion4, weconsider thetask of answering dominancequeries
as a search for a sequence of more preferred (or less pre-
ferred) aternatives leading the to potentially dominating
(or dominated) outcome. We formally define the search
space and describe several completeness-preserving prun-
ing techniques. In Section 5, we describe severa search
strategies, heuristics designed to work effectively for cer-
tain types of problems. We show that these heuristics
are backtrack-free for certain types of networks and where
backtrack pointsarisefor other types. We a so describe how
to view this problem as a planning problem. To conclude,
in Section 6 we briefly describe the use of CP-netsin two
abstract applications. The first is the sorting of a product
database using the preferences over product features, allow-

ing the most preferred products to be identified for a con-
sumer. The second isthe use of CP-netsin constraint-based
optimization. Finally, we offer some thoughtson futurere-
search.

2 Preference Relations

We focus our attention on single-stage decision problems
with complete information, ignoring in this paper any is-
sues that arise in multi-stage, sequential decision anaysis
and any considerationsof risk that arisein the context of un-
certainty.? We begin with an outlineof the relevant notions
from decision theory. We assume that the world can be in
one of a number of states S and at each state s there are a
number of actions .4, that can be performed. Each action,
when performed at a state, has a specific outcome (we do
not concern ourselves with uncertainty in action effects or
knowledge of the state). The set of all outcomesis denoted
O. A preference ranking is a total preorder > over the set
of outcomes: o; > o0, means that outcome o, is equally
or more preferred to the decision maker than o,. The aim
of decision making under certainty is, given knowledge of
a specific state, to choose the action that has the most pre-
ferred outcome. We note that the ordering > will be differ-
ent for different decision makers. For instance, two differ-
ent customers might haveradically different preferencesfor
different types of computer systems that asales programis
hel ping them configure.

Often, for a state s, certain outcomes in @ cannot result
fromany actiona € A;: those outcomesthat can obtainare
caled feasible outcomes (given s). In many instances, the
mapping from states and actions to outcomes can be quite
complex. In other decision scenarios, actionsand outcomes
may be equated: auser isallowed to directly select afeas-
ble outcome (e.g., select a product with a desirable combi-
nation of features). Often statesmay play norole(i.e, there
isasinglestate).

What makes the decision problem difficult is the fact that
outcomes of actions and preferences are not usualy rep-
resented so directly. We focus here on preferences. We
assume a set of features (or variables or attributes) 7' =
{F1,---F,} over which the decision maker has prefer-
ences. Each feature I is associated with a domain of fea-
ture values F; = {fi,---fi } it can take. The product
space F = Fy x --- x [F, isthe set of outcomes. Thus
direct assessment of a preference function is usualy infea
sible due to the exponential size of 7. We denote a partic-
ular assignment of valuestoaset X C [as #, and the
concatenation of two such partial assignmentsto X and Y’
(XNY =0 byzy. f X UY = F, Zyisa(complete)
outcome.

Fortunately, a preference function can be specified (or par-
tially specified) concisaly if it exhibits sufficient structure.

23uch issues include assigning preferences to sequences of
outcome states, assessing uncertainty in beliefs and system dy-
namics, and assessing the user’s attitude towards risk.

We describe certain types of structure here, referring to
[13] for a detailed description of these (and other) struc-
tura formsand adiscussion of theirimplications. These no-
tions are standard in multi-attribute utility theory. A set of
features X is preferentially independent of its complement
Y = F— X iff, fordl #, %s, 41, y, we have

Trgh = Eofn iff Eiyo = Lafo

In other words, the structure of the preference relation over
gnmentsto X, when al other features are held fixed, is
the same no matter what values these other features take.
If the relation above holds, we say #; is preferred to @5
ceteris paribus. Thus, one can assess the relative prefer-
ences over assignments to X once, knowing these prefer-
ences do not change as other attributesvary. We can define
conditional preferentia independence analogoudly. Let X,
Y and Z partition F' (each set isnonempty). X and Y are
conditionally preferential ly independent given ' iff, for all
fl, fz, gl, 372, we have

T1 7 - Zoth 7 If Z1007 = Toin?

In other words, the preferential independence of X and Y
only holdswhen 7 isassigned 7. If thisrelation holds for
all assignments z, wesay X and Y are conditionally pref-
erentially independent given 7.

Thisdecomposahility of apreference functionsoften alows
one to identify the most preferred outcomes rather readily.
Unfortunately, the ceteris paribus component of these defi-
nitionsensuresthat the statements one makes arerelatively
weak. In particular, they do not imply a stance on specific
value tradeoffs. For instance, suppose two features A and
B are preferentially independent so that the preferences for
values of A and B can be assessed separately; e.g., sup-
pose a; > as and by > by. Clearly, a;b; isthe most pre-
ferred outcome and a- b, isthe least; but if feasibility con-
straints make a1b; impossible, we must be satisfied with
oneof ay b, Or asb;. We cannot tell whichismost preferred
using these separate assessments. However, under stronger
conditions(e.g., mutual preferential independence) one can
congtruct an additive value function in which weights are
assigned to different attributes (or attribute groups). This
is especially appropriate when attributes take on numerical
values. We refer to [13] for adiscussion of this problem.

Given such a specification of preferences, a number of dif-
ferent techni ques can be used to search the space of feasible
outcomes for a most preferred outcome.

3 CP-Networks

In thissection we describe a network representation that al -
lowsthe compact (but generally incompl ete) representation
of a preference relation. We first describe the basic model
and its semanticsand then describe inference proceduresfor
dominance testing.

Our representation for preferences is graphical in nature,
and exploitsconditional preferential independencein struc-
turingauser’s preferences. Themodel issimilar to aBayes
net on the surface; however, the nature of the relation be-
tween nodes within anetwork is generally quitewesk (e.g.,
compared with the probabilistic relations in Bayes nets).
Othershave defined graphical representationsof preference
relations; for instance Bacchus and Grove [1] have shown
some strong results pertaining to undirected graphical rep-
resentations of additive independence. Our representation
and semantics is rather distinct, and our main aim in using
thegraphisto capture statementsof conditional preferential
independence. We notethat reasoning about ceteris paribus
statements has been explored in Al, though not in the con-
text of network representations[7].

For each feature ', we ask the user to identify a set of par-
ent features P(F') that can affect her preference over vari-
ous F' values. That is, given a particular value assignment
to P(F'), the user should be able to determine a preference
order for thevalues of F, dl other thingsbeing equal. For-
mally, denoting all other festures aside from F and P(F)
by I, we havethat I and F' are conditionally preferentially
independent given P(F). Given thisinformation, we ask
the user to explicitly specify her preferences over F' values
for al possible P(F') values. We usethe aboveinformation
to create an annotated graph in which each feature ' has
P(F) asitsset of parents. The node F' is annotated with a
condition preference table (CPT) describing theuser’ spref-
erences over F's values given every combination of par-
ent values.® We call these structures conditional preference
networks (or CP-networks). We note that nothing in the
semantics forces the graph to be acyclic, though we argue
below that most natural networks will indeed be acyclic.
Moreover, even cyclic CP-networks cannot express al pos-
sibletotal preference orderings, ascan beshownby asimple
counting argument.

Weillustrate the network semantics and some of its conse-
guences with a series of examples. In the foll owing exam-
ples al features are boolean, though our semantics is de-
fined for features with arbitrary finite domains.

Example1 Askingtheuser to describe her preference over
feature B, we are told that this preference depends on the
value for A and on that value alone (ceteris paribus). We
then make A aparent of B and ask about her preference on
B for each value of A. She may say that, when « holds,
she prefers b over b, and when @ holds she prefers b over b,
ceteris paribus. Thisiswritten here as:

a:b>=1
a:b=b

3That is, we assume that a preorder is provided over the do-
main of £, such that for any two values f; and f;, either f; > f;,
fi = fi,or fi and f; are equally preferred. For ease of presen-
tation, we ignore indifference in our algorithms (though its treat-
ment is straightforward). We assumethisrelation isfully specified
(though see Section 6).

Example2 Supposewe havetwo features A and B, where
A isaparent of B and A has no parents. Assume the fol-
lowing conditional preferences:

a=a a:b>=b T:bx=b
Somewhat surprisingly, thisinformation is sufficient to to-
tally order the outcomes:

ab > ab = ab > ab.

Notice that we can judge each outcome in terms of the con-
ditiona preferences it violates. The ab outcome violates
noneof the preference constraints. Outcome ab violatesthe
conditional preferencefor B. Outcomeab viol atesthe pref-
erence for A. Outcomeab violatesboth. What issurprising
isthat the ceteris paribus semantics implies that violating
the A congtraintisworsethan violatingthe B constraint (we
have ab > @b). That is, the parent preferences have higher
priority than the child preferences.

Example3 Suppose we have three features A, B, and C,
and suppose that the preference dependency graph is dis-
connected. Let'sassumethata > @, b > b, and ¢ > @.
Given thisinformationwe can concludethat abc isthemost
preferred outcome, then comes @be, abe, and abé. These
three cannot be ordered based on theinformation provided.
Less preferred than the last two is abe, and so on. The least
preferred outcome is abe.

Example4 Suppose we have three features A, B, and C,
and the conditional preference graph forms a chain with A
having no parents, A theparent of B, and B theparent of C'.
Suppose we have the following dependence information:

a-a, a:b>=b a@:bs=b b:cwc b:C>c

These preference constraintsimply the following ordering:
abe = abé = abé = abe = @be = @be = abe,

which totally orders all but one of the outcomes. Notice
how we get from one outcome to the next in the chain: we
flip (or exchange) theval ue of exactly onefeature according
to the preference dependency information. The element not
in this chain is @be, and we can derive the ordering abe >
@be > abc. Thus, the only two outcomes not totally ordered
are@be and abe. From Example 2, we saw that viol ationsof
preference constraintsfor parent features are worse than vi-
olationsof constraints over child preferences. 1n one of the
two unordered outcomes we violate the preference of the
most important feature (A), whilein the other outcome we
violate preference over two less important features (B and
(). The semantics of CP-networks does not specify which
of these tuplesis preferred.

There are two important thingsto notice about these exam-
ples. Firgt, achain of “flipping feature values’ can be used
to show that one outcome is better than another. In Exam-
ple 4, the conditional preferences for C' allow the value of

C' to be“flipped” in outcome @be to obtain abe. B’svalue
can then be flipped (given @) to obtain @be, and so on. Sec-
ond, violations are worse (i.e., have a larger negative im-
pact on preference) the higher up they are in the network,
although we cannot compare two (or more) lower level vi-
olationsto violation of a single ancestor constraint. These
observations underly the inference a gorithms bel ow.

As mentioned, the semantics of CP-nets do not preclude
cyclic networks. For instance, a two-variable network
where A dependson B and B depends on could be consis-
tently quantified as follows:

a:b=b, a:b=b
b:a=a b:a@>a

Under these preferences, the user simply prefers A and B
to have the same value, with both ab and @b maximally
preferred. Acyclic graphs aways have a unique most-
preferred outcome. We note that cyclic preference graphs
can be inconsistent (e.g., in the example above, simply re-
verse the conditional preferences for B under each value of
A). Indeed, acyclic graphs are aways consistent (i.e., cor-
respond to at least one well-defined preference ordering). It
seemsthereisrarely aneed for cyclic structures unless one
wants to express indifference between certain assignments
to subsets of variables. In this case, one can often cluster
thevariablesto maintain acyclicity. Inwhat follows, we as-
sume that our CP-nets are acyclic.

4 Searchingfor Flipping Sequences

We assume we are given an acyclic CP-network over fea
tures £, - - - F,. By convention, we assume the ordering of
these features respects the topol ogy of the network (that is,
the parentsof any F; haveindices;j <). Weusez;, %, vi,
etc. to denote vaues of feature F;. The basic inference
problem we address is the following: given a CP-network
N, andtwo outcomesx = x12s -+ Ty, ¥y = Y1Y2 - - Yn, IS
x = y aconsequence of preferences of the CP-network? In
other words, isthe outcome x preferred to y? We treat the
inference problem as a search for a flipping sequence from
the (purported) less preferred outcome y, through a series
of more preferred outcomes, to the (purported) more pre-
ferred outcome x, where each valueflip in the sequenceis
sanctioned by the network ~. Conversely, we can view the
problem as asearch inthe oppositedirection, fromthe more
preferred outcome to the less preferred outcome.

4.1 Improving Search

Given any CP-network, and aquery x > y, we define the
improving search tree as follows. The search tree isrooted
ay = y1y2 - - yn; thechildrenof any nodez = 2125 - - - 2,
in the search tree are those outcomes that can be reached by
changing one feature value z; to z; such that z/ = z; given
the values z;, j < ¢ Note that possible improving values
z! of F; can be readily determined by inspecting the CPT

Figure 1: An Example Conditiona Preference Graph

for F;. Since the only preference statements explicitly rep-
resented in the network are those captured by the CPTSs, it
isclear that x > y isimplied by N iff there exists a path
from y to x in theimproving search tree. Thus, any com-
plete search procedure—any procedure guaranteed to ex-
amine every branch of the search tree—will be a sound and
complete query answering procedure. All procedures dis-
cussed in thispaper are, in this sense, sound and complete.

Example5 Consider the preference graph of Figure 1.
Suppose that the conditional preferences are:

a=a, bx>b;

(aADYV(@AD):c>=T (aAb)V(GAD):Cxc
c:d=d; e:d=d, d:e-e€ d:e>e;
d:f=f, d:f=f; f:9=7 [:T>4g
g:h=h, g:h=nh

Suppose we want to compare outcome abede fgh (which
violates the G preference) and outcome @bede fgh (which
violates the A preference). In order to show that the first
is preferred, we generate the sequence: abede fgh <
abedefgh < abedefgh < abedefgh < abedefgh <
abede fgh. Intuitively, we constructed a sequence of in-
creasingly preferred outcomes, using only vaid conditional
independence relations represented in the CP-network, by
flipping values of features. We are allowed to change the
value of a“higher priority” feature (higher in the network)
toits preferred value, even if thisintroduces a new prefer-
enceviolationfor somelower priority feature (a descendent
in the network). For instance, thefirst flip of A’svaluein
this sequence to its preferred state repairs the violation of
A’s preference constraint, while introducing a preference
violationwith respect to C (thevaluez isdispreferred when
ab holds). This processisrepested (e.g., making C' tekeits
conditionally most preferred val ue at the expense of violat-
ing the preference for D) until the single preference viola
tionof [(inthe“target” outcome) is shown to be preferred
to the single preference violation of A (in the initia out-
come). Thisdemonstrates how the violation of conditional
preference for a feature is dispreferred to the violation of
one of its descendent’s preferences.

Supposewe compare abede fgh (Whichviolatesthe G pref-
erenceandthe H preference) and abede fgh (whichviolates
the A preference). Theseturn out not to be comparable (nei-
ther is preferred to the other). The sequence of flips above
cannot be extended to changethe values of both G and H so
that their preference constraints are violated. The sole vio-
lation of the A constraint cannot be dominated by the vio-

lation of two (or more) descendentsin a chain.

If we want to compare abedefgh (which violates the F
preference and the & preference) and abede fgh (whichvio-
latesthe A preference), we can use the foll owing sequence:
abede fgh < abedefgh < abedefgh < abedefgh <
abedefgh. Theviolationof £ and G ispreferred to the vi-
olationof A: intuitively, the A violationcan be absorbed by

violationin each path starting at D.

Now consider the comparison of abede fgh (which violates
theG and H preferences) and abede fgh (whichviolatesthe
A and B preferences). We can use the following sequence
of flips to show preference: @bedefgh < abedefgh <
abedefgh < abedefgh < abédefgh < abedefgh <
abede fgh < abedefgh < abedefgh < abedefgh. This
shows how two violations in ancestor features covers two
violationsin their descendents.

These examplesillustratehow certain preference violations
have priority over othersin determining the relative order-
ing of two outcomes. Intuitively, dominance is shown by
congtructing a sequence of legal flips from the initial out-
come to the target.

4.2 Worsening Search

A query x = y can aso be answered using search through
the worsening search tree, defined as follows. The search
treeisrooted a x = xy 2> - - - @, ; the children of any node
Z = z1%9 - - -z iNthe search tree are those outcomes that
can be reached by changing one feature value z; to =/ such
that z; < z; giventhevalues z;,j < 4. Note that possi-
bleworsening values =/ of F; can be readily determined by
inspecting the CPT for ;. Again, itisclear thatx > y is
implied by N iff there existsapathfromx toy inthewors-
ening search tree.

While clearly any path from x to y that existsin the wors-
ening search tree corresponds to a path from y to x in the
improving search tree, and vice versa, the search space may
be such that searching in the improving search treeis most
effective for some queries, while searching in the worsen-
ing search treeis most appropriatefor others.

Example6 Consider the CP-network described in Exam-
ple 4. Suppose we wish to test whether abe - @be. Taking
abe asthe root of the worsening tree, the only path one can
generate is abe > @bc > abc > a@be. In other words, the
worsening tree does not branch and leads directly to a pos-
itive answer to the query. In contrast, theimproving search
treerooted at abe consists of six branches (with amaximum
length of seven nodes), and only one path leadsto asolution
(see Figure 2).

abc
e B
abc abc abc
/ |
abc abc abc abc
I /7 \
abc abc abc
I / __ _
abc abc a?c aFc
aFE aTE
abc abc

Figure 2: Improving Search Tree from @be (Example 6)

Example7 With the same network, consider the query
abe > @be. Taking abe as the root of theimproving search
tree, the only path inthetreeisabé < abé < abe < abe. In
contrast, the worsening search treerooted at abc consists of
six branches (with a maximum length of seven nodes), and
only one path leads to a solution.

For thisreason, we believethat a parallel search in both the
improving and worsening search treesis generally most ap-
propriate. Thoughwe haveillustrated positivequeriesonly,
the same considerationsapply to negative queries, where, in
fact, exploitingsmall search treesisespecially important in
order to quickly fail.

4.3 Suffix Fixing and Extension

Though we haven't yet detailed specific search procedures,
in the remainder of this section we suppose that we have
some complete (and necessarily sound) search procedure.
Regardless of whether one uses improving or worsening
search, there are two simple rules that alow one to make
deterministic moves in search space (i.e., choose flips that
need not be backtracked over, or reconsidered) without im-
pacting compl eteness of the search procedure.

The first rule is suffix fixing. We define a suffix of an al-
ternativez = 2129 - - - 2, to be some subset of the values
ZiZit1 - Zn, ¢ > 1. A suUffix can be defined for any le-
gal ordering of the features. Suppose an improving search
for the query x = y takes us from the root node y to node
Z = z129---zn. Suppose further that some suffix of z
matches the suffix of target x; thatis, z; = z; foral j > i.4
The suffix fixing rule requiresthat those features making up
the suffix never be flipped. The following proposition en-
sures that we never need reconsider a decision not to flip
features in a matching suffix.

Proposition 1 Let there be a path in the improving search
4The matching suffix can be “created” by areordering of the

featuresthat is consistent with the partial ordering of the (acyclic)
CP-network.

treefromroot y to nodez, such that some suffix of z matches
that of thetarget x. If thereisa pathfromy to x that passes
through z, then there is a path from z to x such that every
node along that path has the same values as z for the fea-
tures that make up the suffix.

Thiseffectively restrictsthe search treeunder z tohave only
pathsthat retain the suffix values. Though one may haveto
backtrack over choices that lead to z, one will not have to
consider the full search tree under z. The suffix fixing rule
also appliesto worsening search.

A second compl eteness-preserving rule is the suffix exten-
sion rule. Suppose that a path to intermediate node z has
been found that matches some suffix of the target x. Fur-
thermore, supposethat thevaluesof z allow thissuffix to be
extended; that is, suffix z; zj 41 - - - z, matchesthetarget and
feature F*~! can beimproved fromz;_; to 2/, = z;_,.°
Then theflipto z/_; can be chosen and not reconsidered.

Proposition 2 Let there exist a path in the improving
search tree fromroot y to node z, such that some suffix of
z matchesthat of thetarget x, and that the suffix can be ex-
tended by a legal move fromz to z’. If there exists a path
fromy to x that passes through z, then there exists a path
from z’ to x such that every node along that path has the
samevaluesasz’ for thefeaturesthat make up the extended
Ssuffix.

Example8 Consider the CP-network of Figure 1 with the
conditiona preferences asin Example 5. Supposewe were
to consider the query

abedefgh - abede fgh

using an improving search. Suffix fixing means that we
never haveto consider flipping ¢, h or e (thereisareorder-
ing of the features that has these three as the rightmost fea-
tures). The suffix extension rulemeans that we canflip f to
f(asd: f > f), without backtracking over thischoice. We
cannot immediately flip d to d in the context of &, so suffix
extension is not applicable (once f isflipped).

44 Forward Pruning

In this section we describe a general pruning mechanism
that can be carried out given aquery x > y. It
o often quickly shows that no flipping sequence is pos-
sible;
¢ prunes the domains of the features to reduce the flip-
ping search space;
¢ doesn’t compromise soundness or compl eteness; and
e isrelaively cheap (time is O(nrd?) where n is the
number of features, » isthe maximum number of con-
ditiona preference rules for each feature, and d isthe
size of the biggest domain).

The general ideaisto sweep forward through the network,
pruning any values of a feature that cannot appear in any

SAgain, the suffix can be found using feature reordering.

(improving or worsening) flipping sequence to vaidate a
guery. Intuitively, we consider the set of flips possible, ig-
noring interdependence of the parents and the number of
times the parents can change their values.

We consider each featurein an order consistent withthe net-
work topology (so that parents of anode are considered be-
fore the node). For each feature ', we build a graph with
nodes corresponding to the possible values for F', and for
each conditional preference relation

CIVUL > Ug - Uy

such that ¢ is consistent with the pruned values of the par-
entsof F', we include an arc between the successive values
(i.e., between thevalues v; and v;41).

We can prune any value that isn't on a directed path from
x'svauefor feature F to y’svauefor feature . Thiscan
be implemented by running Dijkstra sagorithm [5] twice:
once to find the nodes reachable from x’s value for feature
I and again to find the nodes that can reach y’svaue for
feature /. These sets of nodes can beintersected to find the
possiblevauesfor F. If there are no nodes remaining, the
domination query fails: thereisno lega flipping sequence.
Thisoften resultsin quick failurefor straightforward cases,
so that we only carry out the search for non-obvious cases.

Example9 Consider the CP-network of Figure 1 with the
conditional preferences asin Example 5. Consider a query
of theform

ab...=ab...

First we consider A. We can draw an arc a — @, and
find that both « and @ are on a path, so no values of A are
pruned.® We then consider B and draw an arc b — b; but
there are no paths from b to b, so the query fails quickly
without looking at the other features.

One could imagine extending this pruning phase to include
more information, such as the sequences of values through
which the parents can pass. From this one can determine
the possible sequences of values through which the child
feature could pass. Generaly, the combinatorics of main-
tai ning such sequencesisprohibitive; but inthebinary case,
any path through the set of valuesiscompletely determined
by the starting value and a count of the number of times
the vaue flips. Pruning still ignores the possible interde-
pendencies of the values for the parents, but for singly-
connected networks (wherewe can guarantee the sequences
of values the parents can pass through are independent),
pruning iscomplete inthe sense that if it stopswithout fail-
ing there is a flipping sequence. This was the basis of the
counting algorithmin [3] for singly-connected binary CP-
networks.

6If_the example were changed slightly so that A had a third
valuea, wherea = @ > a, then this third value could be pruned
from A, thus simplifying the tablesfor all the children of A.

5 Search Strategiesand Heuristics

In the previous section, the search space was formally de-
fined, and several completeness preserving rules for prun-
ing the search space were defined. This leaves opentheis
sue of effective proceduresfor searching. Inthissectionwe
describe severa heuristicsfor exploringthe search tree. We
first describe some simple heuristics that seem to be effec-
tive for many networks, and are, in fact, backtrack-free for
certain classes of networks. We then show how this search
problem can be recast as a planning problem and briefly de-
scribe the potentia benefits of such aview.

5.1 Rightmost and Least-Improving Heuristics

The rightmost heuristic requires that the variable whose
value one flips when deciding which child to movetoisthe
rightmost variablethat can legally be flipped. For instance,
consider the improving search tree in Example 6 (as illus-
trated in Figure 2). Given atarget outcome @b, we see that
the rightmost heuristic leads us directly to the target in two
steps. If the target outcome were different, say abe, then
the rightmost heuristic has the potentia to lead us astray.
However, when we incorporate the suffix-fixing rule into
the search, we see that the rightmost heuristic (defined now
as flipping the rightmost value that doesn’'t destroy a suf-
fix match) will lead directly to any target outcome in the
search tree. For example, given target outcome abe, the
rightmost heuristic discovers the shortest path to the target:
noticea so that suffix-fixing prevents usfrom exploring the
longest (Iength six) path to the target.

Thisexample suggeststhat for chains, the rightmost heuris-
ticwill lead to a proof, if one exists, without backtracking.
This may not be the the case, however, if variables are not
all binary.

Example10 Consider the CP-network where variable A,
withdomain {a1, as, as},isaparent of booleanvariable B.
Conditional preferences are given by

a] > a2 > as
ar:b>=b; as:b>=b as:b>b

Given query aib > asb, the rightmost heuristic in an im-
proving search could first construct the sequence azb <
a1b, reaching adead end (thusrequiring backtracking). The
direct sequence asb < asb < asb < a;bisaso consistent
with the rightmost heuristic.

In the example above, the rightmost heuristic permitted a
“jump” fromas tothemost preferred value a; without mov-
ing through the intermediate value a,. This prevented it
from discovering the correct flipping sequence.

In multivalued domains, another useful heuristicistheleast
improving heuristic (or in worsening searches, the least
worsening heuristic): when the rightmost value can be
flipped to severa improving values given its parents, the
improving value that is least preferred isadopted. Thisal-
lows greater flexibility in the movement of “downstream”

variables. While one can always further improve the value
of the variable in question from its least improving value
to a more preferred value (provided that parent values are
mai ntained), “ skipping” values may prevent usfrom setting
its descendents to their desired values.

Both the rightmost and least improving heuristics can be
viewed asembodying aform of least commitment. Flipping
thevalues of therightmost possiblevariable (i.e., avariable
with the smallest number of descendents in the network)
can be seen as leaving maximum flexibility in flipping the
values of other variables. An upstream variable limitsthe
possible flipping sequences more drastically than a down-
stream variable—specifically, altering a specific variable
does not limit the ability to flip the values of its nondescen-
dents. For thereasons described above, the least improving
heuristic can be cast inasimilar light.

Unfortunately, whilethe | east-commitment approach works
well in practice, it does not allow backtrack-free search in
general, as the following example shows.

Example 11 Consider the CP-network with threevariables
A, B and C' such that A istheonly parent of B and B is
the only parent of C'. Suppose A hasdomain {a, @}, B has
domain {1, b2, b3} and C' has domain {¢, ¢}, with the fol-
lowing conditional preferences:

a > a;

a:bs > by = by;
a:bs > by > bs;

by 1€ > ¢ byVbsg:c-¢

Consider the query abse = @by c with an improving search.
¢ cannot beimproved in the context of b,. However b, can
beimprovedto b3 inthecontext of @, but thisleadsto adead
end. Theright thingto doistoflip a first, then change b, to
b, which will let you flip ¢ and then change b to bs.

While queries over chain-structured networks with mul-
tivalued variables cannot reliably be searched backtrack-
free using therightmost and | east-improving heurigtics, this
search approach is backtrack-free for chains when al vari-
ables are binary. Intuitively, thisis the case because chang-
ing the value of the rightmost alowable variable does not
impact the ability to flip its parent’s value; furthermore,
changing this variable cannot prevent its child from being
flipped, sinceif thechild needed adifferent value (and could
have been flipped), it would have been flipped earlier. For
similar reasons, binary tree-structured networks (where ev-
ery variable has at most one parent, but perhaps multiple
children) can a so be searched backtrack-free.

Example12 Consider the binary tree-structured prefer-
ence graph of Figure 3 with the conditional preferences:

a>a
a:b=b, a:bs=b
a:c»7¢ a:cr»c

Figure 3: A Tree-Structured Conditional Preference Graph

c:d-d;

c:e > ¢€;

Considerthequery abede > @bede. Supposewe are search-
ing for an improvingflipping sequence fromabede. By suf-
fix fixing, weleave e untouched. Thefirst valueweflipisec.
Sincethisistheonly way we could ever get toflipd, and be-
cause ¢ isbinary, thereis only ever oneother valueit could
have. We can now flip d forming @bede (d and e then re-
main untouched). We can flip b, and fix it by suffix fixing
(asthere isan ordering where it is part of the fixed suffix).
The only value we can flip at this point is a; this gives us
abede. We can now flip ¢ and we are done.

Proposition 3 The rightmost search heuristic, in conjunc-
tion with suffix-fixing and suffix-extension, is complete and
backtrack-free for chain- and tree-structured CP-netswith
binary variables.

Polytrees (singly-connected networks containing no undi-
rected cycles) cannot be searched without backtracking in
genera, even when variables are binary. This is due to
the fact that severa parents of a given node may each be
allowed to have their values flipped, but only one of the
choices may lead to the target outcome, while the others
lead to deadends. For instance, supposewe consider Exam-
ple5, restricted to thevariables A, B, C, and are given the
query abe > @be. Using an improving search rooted a @be,
wehaveachoiceof flipping A or B. If B ischosen, we start
down the path @bc < @be; but thisclearly cannot lead to the
target, since thereisno way to flip B back to . A deadend
will be reached and we must backtrack to flip A before B,
leading to the solution path @be < abe < abe.

Essentially, thismeanswe haveto may haveto consider dif-
ferent variable orderingsover the ancestors of agiven node.
It turnsout that these are theonly backtrack pointsin binary
polytrees.

Finally, for general (multiply-connected) CP-nets, complex
interdependencies can exist among the parents of variables
because the parents themselves may share ancestors. This
can lead to compl ex search pathsin the successful search for
a flipping sequence. Though we don’t provide examples,
one can construct networksand specific queriessuch that no
fixed ordering of variables allows the rightmost heuristic to
work backtrack-free. We also notethat the shortest flipping
sequence for certain queries can be exponentia in length
given amaximally-connected acyclic network (e.g., we can

requi re sequences of length O(27/?) in an n-variablebinary
network). We do not believe such sequences arerequiredin
singly-connected networks.

It should be noted that while one can generate example net-
works and queriesthat require complicated search, involv-
ing considerabl e backtracking usingmost simple heuristics,
such examplestend to be rather intricate and obscure. They
invariably require a tight interaction between the network
structure, the conditional preference statements quantifying
the network, and the specific query itself. None of the nat-
ural examples we have seen require much search.

5.2 Flipping Sequences as Plans

In this paper we have considered searching directly for flip-
ping sequences. This can be seen as a case of state-space
search. It is also possibleto think about answering domi-
nance queries as atype of planning problem. A conditional
preference statement of the form

CIVUL > Ug - Uy

can be converted into a set of STRIPS actions for improv-
ing the value for avariable. In particular, this conditiona
preference statement can be converted into aset of d — 1
STRIPS operators of theform (for 1 < i < d):

Preconditions. ¢ A v;
Add List: v;_1
Ddetelist: v;

Thiscorrespondsto the action of improvingv; tov; _; inthe
context of ¢. (A different set of actionswould be created for
worsening).

Givenaquery x > y, wetreat y asthe start state and x as
the goal state. It is readily apparent that that the query isa
consequence of the CP-network if and only if thereisaplan
for the associated planning problem. A plan correspondsto
aflipping argument.

The previous agorithms can be viewed as state-based for-
ward planners. It is often the case that domain-specific
heuristics can be easily added to a forward search [2], and
we expect the same here. We could also use other planning
techniques such as regression, partial-order planning, plan-
ning as satisfiability and stochastic loca search methods
for this problem. The application of regression and partial-
order planners (more generally, backchaining planners) can
provide support for reasoning about the changes in ancestor
values required for a specific descendent toflip itsvalue to
itstarget. We note that the planning problems generated by
CP-querieswill generally look quite different in form from
standard Al planning problems, as there are many more ac-
tions, and each action isdirected toward achieving a partic-
ular proposition and requires very specific preconditions.

6 Concluding Remarks

In this paper we introduced CP-networks, a new graphi-
cal model for representing qualitative preference orderings
which reflects conditional dependence and independence
of preference statements under a ceteris paribus semantics.
Thisformal framework often allows compact and arguably
natural representations of preference information. We ar-
gued that given a CP-network, the basic inference problem
of determining whether one of two given vectors of feature
values is preferred to the other is equivaent to the task of
finding a connecting sequence of flippingindividual feature
values. We characterized the corresponding search space
and described severa strategies and heuristics which often
significantly reduce the search effort and allow oneto solve
many problem instances efficiently.

We see various applications of CP-networks and our domi-
nance testing strategies and heuristics. One of theseis sort-
ing a product database according to user-specified prefer-
ences. This problem is highly relevant in the context of
electronic commerce. Severa rather conceptually simplis-
tic implementations are available on the World Wide Web
(e.g., Active Buyers Guide). The general ideais to assist
a user in selecting a specific product from a database ac-
cordingto her preferences. Here, it isvery important to use
compact and natural representations for preference infor-
mation. CP-networks extend current models (which typi-
caly don't alow conditiona preference statements). An-
other important aspect of this problem is that the given
database precisely defines the items (represented as vec-
torsof featurevalues) avail able, and preference information
is only required to such an extent that the choice is suffi-
ciently narrowed downto asmall sel ection of productsfrom
this database. Dominance testing strategies are important
in this context to find a set of Pareto-optimal choices given
the (conditional) preference informati on extracted from the
user. Here, an interactive and dynamic approach appears
to be most promising, where the user is prompted for addi-
tional preference statements until the ordering of the items
in the database is sufficiently constrained by the preference
information to offer a reasonably small selection of prod-
ucts. Whilethe dominance algorithmsare an important part
of the database sorting task, the problem does not generally
requirethat al pairwise comparisons be run to completion.
Certain preprocessing steps can be taken, that exploit the
network structure, to partitiontuplesin the database accord-
ing to values of high priority attributes.

Another application area is constraint-based configuration,
where the task is to assemble a number of components ac-
cording to user preferences such that given compatibility
congtraints are satisfied [3, 6]. A simple example of thisis
the assembly of components for computer systems where,
for instance, thetype of system bus constrainsthe choice of
video and sound cards. CP-networks can be used to repre-
sent the user preferences which are used together with com-
patibility constraints to search for most preferred, feasible

configurations. In contrast to the database sorting applica
tion above, here the set of possiblevectors of feature values
(i.e.,, configurations) is not explicitly given, but implicitly
specified by the compatibility constraints. Dominance test-
ing is again required for finding most preferred solutions,
but now it has to be combined with mechanismswhich limit
the search to feasible configurations[3].

We are currently extending this work in two directions.
First, the search strategies and heuristics for dominance
testing presented in this paper have to be implemented in
order to empirically assess their performance on various
types of problem instances, including real-world problems,
as well as handcrafted examples exhibiting uniform, reg-
ular structures of theoretical interest. Secondly, we are
working on various extensions of the framework presented
here. These include cases where the conditional preference
statements contain a small amount of quantitativeinforma-
tion. In particular, existing applications (such as onlinein-
teractive consumer guides) suggest that a limited amount
of such quantitative preference information might be rela
tively easy to extract from the user in a natural way, and is
very useful for inducing stronger preference orderings.

Another interesting issue is the extension of the represen-
tation and reasoning system such that incompletely spec-
ified conditional preference information (i.e., incomplete
CP-tables) can be taken into account. Thisis motivated by
the fact that often the full preference information given by
the CP-tablesis not required for deciding a particular dom-
inance query. Therefore, it seems to be useful to consider
mechanisms which alow incompletely specified CP-tables
and dynamically prompt the user for additional preference
information when it is needed.

Finally, we intend to investigate the tradeoffs between the
amount of user-interaction required for extracting the pref-
erence information and the amount of computation needed
for determining most preferred feature vectors. By asking
very specific questions about particular, potentialy com-
plex preferences, finding most preferred feature vectors
can become much easier. On the other hand, asking too
many questions, especially those not really necessary for
establishing relevant preferences, will annoy the user and
make the system less usable. Thus, finding good trade-
offs between the amount of user-interaction and computa
tion time for answering queries—such as finding most pre-
ferred items from a database or optima configurations—
seems to be a promising direction for futureresearch. This
is related to the motivation underlying goal programming
[8, 12]. The representations and search techniques pre-
sented in this paper form a starting point for such investi-
gations.

Acknowledgements: This research was supported by IRIS
Il Project “Interactive Optimization and Preference Elicitation”
(BOU).

References

[1] Fahiem Bacchus and Adam Grove. Graphical models for
preference and utility. In Proceedings of the Eleventh Con-
ferenceon Uncertainty in Artificial Intelligence, pages3-10,
Montreal, 1995.

[2] Fahiem Bacchus and Froduald Kabanza. Using tem-
poral logic to control search in a forward chaining
planner. In Proceedings of the 3rd European Work-
shop on Planning, 1995. Available via the URL
ftp://logos.uwaterloo.ca:/publ/tiplan/tiplan.ps.Z.

[3] Craig Boutilier, Ronen Brafman, Chris Geib, and David
Poole. A constraint-based approach to preference licitation
and decision making. In AAAI Spring Symposiumon Quali-
tative Decision Theory, Stanford, 1997.

[4] U. Chajewska, L. Getoor, J. Norman, and Y. Shahar. Util-
ity elicitation as a classification problem. In Proceedingsof
the Fourteenth Conferenceon Uncertainty in Artificial Intel-
ligence, pages 79-88, Madison, WI, 1998.

[5] Thomas H. Cormen, Charles E. Lierson, and Ronald L.
Rivest. Introductionto Algorithms. MIT Press, Cambridge,
MA, 1990.

[6] Joseph G. D’Ambrosio and William P Birmingham.
Preference-directed design. Journal for Artificial Intelli-
gencein Engineering Design, Analysis and Manufacturing,
9:219-230, 1995.

[7] Jon Doyle and Michael P. Wellman. Preferential semantics
for goals. In Proceedingsof the Ninth National Conference
on Artificial Intelligence, pages 698-703, Anaheim, 1991.

[8] J.S. Dyer. Interactive goal programming. Management Sci-
ence, 19:62—70, 1972.

[9] Simon French. Decision Theory. Halsted Press, New York,
1986.

[10] Vu Ha and Peter Haddawy. Toward case-based preference
elicitation: Similarity measureson preference structures. In
Proceedingsof the Fourteenth Conferenceon Uncertainty in
Artificial Intelligence, pages 193-201, Madison, WI, 1998.

[11] Ronald A. Howard and James E. Matheson, editors. Read-
ingsonthePrinciplesand Applications of Decision Analysis.
Strategic Decision Group, Menlo Park, CA, 1984.

[12] JamesP. Ignizio. Linear Programmingin Single and Mul-
tiple Objective Systems. Prentice-Hall, Englewood Cliffs,
1982.

[13] R.L.Keeney andH. Raiffa. Decisionswith Multiple Objec-
tives: Preferencesand Value Trade-offs. Wiley, New York,
1976.

[14] Yezdi Lashkari, Max Metral, and Pattie Maes. Collabora-
tive interface agents. In Proceedingsof the Twelfth National
Conference on Artificial Intelligence, pages 444-449, Seat-
tle, 1994.

[15] Hien Nguyen and Peter Haddawy. The decision-theoretic
video advisor. In AAAI-98 Workshop on Recommender Sys-
tems, pages 77-80, Madison, WI, 1998.

