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ABSTRACT
Coalition formation is a problem of great interest in AI, allowing

groups of autonomous, rational agents to form stable teams. Fur-

thermore, the study of coalitional stability concepts and their re-

lation to equilibria that guide the strategic interactions of agents

during bargaining has lately attracted much attention. However,

research to date in both AI and economics has largely ignored the

potential presence of uncertainty when studying either coalitional

stability or coalitional bargaining. This paper is the first to relate

a (cooperative) stability concept under uncertainty, the Bayesian

core (BC), with (non-cooperative) equilibrium concepts of coali-

tional bargaining games. We prove that if the BC of a coalitional

game (and of each subgame) is non-empty, then there exists an

equilibrium of the corresponding bargaining game that produces a

BC element; and conversely, if there exists a coalitional bargain-

ing equilibrium (with certain properties), then it induces a BC

configuration. We thus provide a non-cooperative justification of

the BC stability concept. As a corollary, we establish a sufficient

condition for the existence of the BC. Finally, for small games, we

provide an algorithm to decide whether the BC is non-empty.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Distributed Artificial Intelli-
gence

General Terms
Economics
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1. INTRODUCTION
Coalition formation, widely studied in game theory and

economics [11], has attracted much attention in AI as means
of dynamically forming partnerships or teams of cooperat-
ing agents. Most models of coalition formation assume that
the values of potential coalitions are known with certainty,
implying that agents possess knowledge of the capabilities
of their potential partners, or at least that this knowledge
can be reached via communication (e.g., see [19, 20]). How-
ever, in many natural settings, rational agents must employ
bargaining in order to form coalitions and divide the gen-
erated value without knowing a priori what this value may
be or how suitable their potential partners are for the task
at hand. For instance, an enterprise must often choose sub-
contractors without full certainty of their capabilities. The
creation of virtual organizations has been anticipated as an
important consequence impact of agent coalition technolo-
gies on e-commerce [12]; this cannot be achieved without
addressing this type of uncertainty.

Cooperative game theory deals with the coalition forma-
tion problem, focusing on the question of stability of formed
coalitions. The presence of uncertainty regarding agent abil-
ities poses interesting theoretical questions, such as the dis-
covery of analogs of the traditional concepts of stability. Fur-
thermore, it suggests opportunities for agents to learn about
each others’ abilities through repeated interaction, refining
how coalitions are formed over time.1 As a consequence,
realistic models of coalition formation must be able to deal
with situations in which the presence of uncertainty regard-
ing the effects of coalitional actions and the types (i.e., the
capabilities) of the potential partners is translated into un-
certainty about the values of various coalitions [3, 4].

To this end, we propose a model of coalition formation
in which agents must derive coalitional values by reason-
ing about the types of other agents and the uncertainty in-
herent in the actions a coalition may take. The concept
of the Bayesian core (BC) was proposed by [3] as a suit-
able cooperative solution concept in this setting. In this
paper, we elaborate on the definition of the BC concept—
providing three versions of it (the weak, the strict and the
strong BC). Furthermore, for small games, we propose an al-
gorithmic method to establish the existence of the Bayesian
core (or non-existence thereof): we formulate the problem
as a constraint satisfaction problem (CSP) with polynomial

1We do not deal with any learning issues in this paper, but
we refer to [3] and [4] which do describe relevant approaches.



constraints, and check whether it has a solution.
Cooperative coalition formation largely disregards the bar-

gaining processes by which the coalitions emerge. Non-
cooperative approaches, on the other hand, focus on the
strategic interactions of the players, and the equilibrium
solutions of the coalitional bargaining games that lead to
the formation of coalitions. In recent years, considerable
work has established connections between the outcomes aris-
ing from equilibrium play in coalitional bargaining games
and the core of the underlying coalition formation problem
[15, 10, 9, 8, 18, 25]. The goal of this line of research is
to show that the equilibrium outcomes in particular coali-
tional bargaining games correspond to core allocations and
more generally to prove equivalence of cooperative and non-
cooperative solutions. Such results further justify the use of
the core as a solution concept by contributing to the non-
cooperative justification of the core.

The main contribution of our paper is a non-cooperative
justification of the Bayesian core. We establish the first the-
oretical results relating a cooperative stability concept for
coalition formation under type uncertainty with appropriate
non-cooperative bargaining solutions. We prove that if the
BC of a coalitional game is non-empty, then there exists an
equilibrium of the corresponding bargaining game that pro-
duces a BC element, provided that the BC of each subgame
is nonempty; and conversely, we show that if there exists
a coalitional bargaining equilibrium with certain properties,
then it leads to a BC configuration. As a corollary, we estab-
lish a sufficient condition for the non-emptiness of the BC.
In the process of deriving our main results, we introduce
appropriate non-cooperative games of coalitional bargaining
under uncertainty, and define relevant equilibrium concepts.

2. BACKGROUND AND RELATED WORK
Cooperative game theory deals with situations where play-

ers act together in a cooperative equilibrium selection pro-
cess involving some form of bargaining, negotiation, or ar-
bitration [11]. The problem of coalition formation is the
fundamental area of study within cooperative game theory.

Let N = {1, . . . , n}, n > 2, be a set of players (or “agents”).
A subset C ⊆ N is called a coalition. A coalition structure
is a partition of the set of all agents into disjoint coalitions.
Coalition formation is the process by which individual agents
form such coalitions, generally to solve a problem by coordi-
nating their efforts. The coalition formation problem can be
seen as being composed of the following activities [17]: (a)
the search for an optimal coalition structure; (b) the solu-
tion of a joint problem facing members of each coalition—to
solve the joint problem, the agents have to agree on a coali-
tional action to perform; and (c) division of the value of the
generated solution among the coalition members. These ac-
tivities interact with each other, and the agents should reach
agreement on all those issues through negotiations. For ex-
ample, agents such as carpenters, plumbers and electricians
may come together to engage in construction projects. They
must form coalitions, collectively decide on a choice of coali-
tonal action (e.g., project choice, as which style of house),
and agree to a share of the payoff induced by that choice.

Coalition formation can be abstracted into a fairly simple
model assuming transferable utility, or the existence of a
(divisible) commodity (e.g., money) that players can freely
transfer among themselves. The characteristic function of
a coalitional game with transferable utility (TU-game) [11],

υ : 2n ⇒ <, defines the value υ(C) of each coalition C
[24]. Intuitively, υ(C) represents the maximal payoff the
members of C can jointly receive by cooperating effectively.
An allocation is a vector of payoffs ~x = (x1, ..., xn) assigning
some payoff to each i ∈ N . An allocation is feasible with
respect to coalition structure CS if

P
i∈C xi ≤ υ(C) for

each C ∈ CS, and is efficient if this holds with equality. The
reservation value rvi of an agent i is the amount it can attain
by acting alone (in a singleton coalition): rvi = υ({i}).

A characteristic function is called superadditive if any pair
of disjoint coalitions C and T can improve its payoff by
merging into one coalition: υ(C ∪ T ) ≥ υ(C) + υ(T ) [11].
In a superadditive environment, an optimal solution can be
determined by creating of the grand coalition containing all
N players (with some division of payoff among its members).
We make no superadditivity assumptions in our work.

When rational agents seek to maximize their individual
payoffs, the stability of the underlying coalition structure
becomes critical. A structure would be stable only if the
outcomes attained by the coalitions and the payoff combi-
nations agreed by the agents are such that both individual
and group rationality are satisfied in some way. Research in
coalition formation has developed several notions of stabil-
ity, among the strongest being the core [11]. The core of a
characteristic function game is a set of payoff configurations
〈CS, ~x〉, where each ~x is a vector of payoffs to the agents in
coalition structure CS, which are such that no subgroup of
agents is motivated to depart from CS:

Definition 1. Let CS be some coalition structure, and
let ~x ∈ <n be some allocation of payoffs to the agents. The
core is the set of payoff configurations

{〈CS, ~x〉|∀C ⊆ N,
X

i∈C

xi ≥ υ(C)and
X

i∈N

xi =
X

C∈CS

υ(C)}

A core allocation 〈CS, ~x〉 is both feasible and efficient, and
no subgroup of players can guarantee all of its members a
higher payoff. As such, no coalition would ever “block” the
proposal for a core allocation. Unfortunately, the core is ex-
ponentially hard to compute [16]. Moreover, in many cases
the core is empty, as there exist games for which it is im-
possible to divide the utility in such a way that the coalition
structure becomes stable. If the core exists, however, it is
desirable to establish processes that lead to it.

Dieckmann and Schwalbe [7] provide a dynamic formation
process (a bargaining process that induces an underlying
Markov process) that can be shown to converge to the core,
if it exists. They do not, however, deal with the problem of
the agents agreeing on actions for the coalitions to take—
nor do they deal with the issue of establishing coalitional
bargaining equilibria solutions.

Suijs et al.[23, 22] do not address formation processes, but
do describe a notion of the core under coalition value uncer-
tainty. Payoffs in their model are stochastic, and depend on
the coalition action taken. To deal with payoff stochastic-
ity, they use relative shares for the allocation of the resid-
ual of the stochastic coalitional values. It is assumed that
agents have common expectations regarding expected coali-
tional values. Blankenburg et al.[2] propose a kernel stability
concept under coalitional value uncertainty. More recently,
Yokoo et al. [26] have coined two core concepts for contexts
where the agents’ skills are private information reported by
the agents to a special “mechanism designer” agent; but
these concepts do not take into account the beliefs of the
agents regarding others’ types.



As for non-cooperative approaches, Okada [13] suggests
a form of coalitional bargaining where agreement can be
reached in one bargaining round if the proposer is chosen
randomly, while Chatterjee et al. [5] present a bargaining
model with a fixed proposer order, both focusing on subgame-
perfect equilibria (SPE) [14] in superadditive environments.
Neither model deals with uncertainty or the selection of
coalitional actions.

The work that is most relevant to ours is that of Moldovanu
and Winter [10]. They show that if a strategy profile is an
order independent equilibrium (OIE) (an SPE that remains
an equilibrium and leads to the same payoff allocation for
any choice of proposer in a sequential coalitional bargaining
game), then the resulting payoffs must be in the core—and
conversely, if the coalition formation game has subgames
with nonempty cores, then for each payoff vector there ex-
ists an OIE with the same payoff. The model of [10] differs
from ours: it is deterministic, does not assume random pro-
posers, and assumes superadditive, non-transferable utility.
However, we use a form of OIE in our work, generalized to
incorporate an agent’s (uncertain) beliefs about the abilities
(or types) of potential partners and lack of superadditivity.

Other recent work [15, 9, 8, 18, 25] has also established
connections between the equilibrium outcomes of coalitional
bargaining and the core in deterministic environments. In
establishing similar types of results, not only do we deal
with uncertainty related to agent types (or abilities) and
coalitional action effects, we do so without making additivity
assumptions w.r.t. coalition value. Our model is thus richer
and more realistic than existing ones.

3. A BAYESIAN COALITION FORMATION
MODEL

The need to address type uncertainty, reflecting an agent’s
uncertainty about the abilities of potential partners, is criti-
cal to the modeling of realistic coalition formation problems.
For instance, if a carpenter wants to find a plumber and elec-
trician with whom to build a house, his decision to propose
(or join) such a partnership, to engage in a specific type of
project, and to accept a specific share of the surplus gen-
erated should all depend on his (probabilistic) assessment
of their abilities. To capture this, we start by introducing
the problem of Bayesian coalition formation under type un-
certainty. We then show how this type uncertainty can be
translated into coalitional value uncertainty, adopting the
model introduced by [3]. We then elaborate on the BC con-
cept, a version of which first appeared in [3].

Definition 2. A Bayesian coalition formation problem
(BCFP) is a coalition formation problem that is character-
ized by a set of agents, N ; a set of types per agent, Ti; a set
AC of coalitional actions per coalition C; a set O of stochas-
tic outcomes (or states); a reward function R : O −→ <; and
agent beliefs over types of potential partners.

We now describe each of the BCFP components in turn:
We assume a set of agents N = {1, . . . , n}, and for each
agent i a finite set of possible types Ti. Each agent i has a
specific type t ∈ Ti, which intuitively captures i’s “abilities”.
We let T = ×i∈NTi denote the set of type profiles. For any
coalition C ⊆ N , TC = ×i∈CTi, and for any i ∈ N , T−i =
×j 6=iTj . Each i knows its own type ti, but not those of other
agents. Agent i’s beliefs Bi comprise a joint distribution

over T−i, where Bi(~t−i) is the probability i assigns to other
agents having type profile ~t−i. We use Bi(~tC) to denote the
marginal of Bi over any subset C of agents.

A coalition C has available to it a finite set of coalitional
actions AC . When an action is taken, it results in some out-
come or state s ∈ O. The odds with which an outcome is
realized depends on the types of the coalition members (e.g.,
the outcome of building a house will depend on the capabil-
ities of the team members). We let Pr(s|α,~tC) denote the
probability of outcome s given that coalition C takes action
α ∈ AC and member types are given by ~tC ∈ TC . Finally, we
assume that each stochastic state s results in some reward
R(s), divisible/transferable among the members.

The value of coalition C with members of type ~tC is:

V (C|~tC) = max
α∈AC

X

s

Pr(s|α,~tC)R(s) = max
α∈AC

Q(C, α|~tC)

Unfortunately, this coalition value cannot be used in the
coalition formation process if the agents are uncertain about
the types of their potential partners. However, each i has
beliefs about the value of any coalition based on its expec-
tation of this value w.r.t. other agents’s types:

Vi(C) = max
α∈AC

X

~tC∈TC

Bi(~tC)Q(C, α|~tC) = max
α∈AC

Qi(C, α)

Note that Vi(C) is not simply the expectation of V (C) w.r.t.
i’s belief about types. The expectation Qi of action values
(i.e., Q-values) cannot be moved outside the max opera-
tor: a single action must be chosen which is useful given
i’s uncertainty. Of course, i’s estimate of the value of a
coalition, or any coalitional action, may not conform with
those of other agents. This leads to additional complex-
ity when defining suitable stability concepts. (We turn to
this issue later in this section.) However, i is certain of its
reservation value, the amount it can attain by acting alone:
rv i = Vi({i}) = maxα∈A{i}

P
s Pr(s|α, ti)R(s).

We define a BCFP subgame as follows:

Definition 3. Let N be a set of agents, and S ⊆ N . An
S-agents subgame of a BCFP game with N agents, is the
BCFP with S agents whose sets of types, beliefs, coalitional
actions, outcomes and reward function are the restriction of
their corresponding elements in the N-agents problem.

Thus, for example, an agent i in the S-agent subgame has
the same beliefs regarding potential partners in S as it has
in the N-agent game.

We define an analog of the traditional core concept for
a BCFP. The notion of stability is made somewhat more
difficult by the uncertainty associated with actions: since
the payoffs associated with coalitional actions are stochastic,
allocations must reflect this [23, 22]. Stability is rendered
more complex still by the fact that different agents have
potentially different beliefs about the types of other agents.

Because of the stochastic nature of payoffs, we assume
that players join a coalition with certain relative payoff de-
mands [23, 22]. Intuitively, since the agents cannot expect
to have an accurate estimate of the coalition payoffs (and,
consequently, the payoff shares of coalition members), it is
more natural for them to take into consideration relative
demands; these correspond to the perceived “power struc-
ture” within the coalition and can be used for the allocation
of stoshastic gains or losses.



Let x represent the payoff demand vector 〈x1, . . . , xn〉,
and xC the demands of those players in coalition C, assum-
ing that these demands are observable by all agents. For
any agent i ∈ C we define the relative demand of agent to
be di = xiP

j∈C xj
. If reward R is received by coalition C

as a result of its choice of action, each i receives payoff diR.
This means that the gains or losses due to reward stochastic-
ity are allocated to the agents in proportion to their agreed
upon demands. As such, each agent has beliefs about any
other agent’s expected payoff given a coalition structure and
demand vector. Specifically, agent i’s beliefs about the ex-
pected stochastic payoff of some agent j ∈ C is denoted

p̄i
j = djVi(C)

with dj being the relative demand of agent j given the stated
demands of the agents in C, and Vi(C) the value that i ex-
pects C to have. (Henceforth, whenever we write “demand”,
we imply a “relative demand” unless stated otherwise.) Sim-
ilarly, if i ∈ C, i believes its own expected payoff to be
p̄i

i = diVi(C).
A difficulty with using Vi(C) in the above definition of

expected stochastic payoff is that i’s assessment of the best
(expected reward-maximizing) action for C is not necessar-
ily shared by the rest of the agents. Therefore, we suppose
instead that coalitions are formed using a process by which
some coalitional action α is agreed upon, in the same way
that the demand vector is agreed upon. In this case, i’s be-
liefs about j’s expected payoff is p̄i

j(α, C) = djQi(C, α). Fi-

nally, we let p̄i
j(C, dC , α) denote i’s belief about j’s expected

payoff if j is a member of C ⊆ N with relative demand vec-
tor dC taking action α:

p̄i
j(C, dC , α) = djQi(C, α)

Intuitively, if a coalition structure and payoff allocation
are stable, we would expect: (a) no agent believes it will
receive a payoff (in expectation) that is less than its reser-
vation value; and (b) based on its beliefs, no agent will
have an incentive to suggest that the coalitional agreement
changed—specifically, there is no alternative coalition it could
reasonably expect to join that offers it a better payoff than
it expects to receive given the action choice and allocation
agreed upon by the coalition to which it belongs.

We define the BC as follows:

Definition 4 (weak Bayesian core). Let 〈CS , d, a〉
be a coalition structure-demand vector-action vector triplet,
with Ci denoting the C ∈ CS of which i is a member. Then
〈CS , d, a〉 is in the weak Bayesian core of a BCFP iff there
is no coalition S ⊆ N , demand vector dS and action β ∈ AS

s.t. p̄i
i(S, dS , β) > p̄i

i(Ci, dCi , αCi), ∀i ∈ S, where dCi , αCi

is the projection of d, a on the coalition Ci.

In words, there exists no coalition all of whose members
each believe that they (personally) can be better off in it (in
terms of expected payoffs, given some choice of action) than
they currently are (within the current weak Bayesian core
configuration). The agents’ beliefs, in every C ∈ CS , “coin-
cide” in the weak sense that there is a payoff allocation dC

and some coalitional action αC that is commonly believed to
ensure a better payoff. This doesn’t mean that dC and αC

is what each agent believes to be best. But an agreement on
these is enough to keep any other coalition S from forming
(even if one proposed its formation, others would disagree,
not expecting to become strictly better off themselves).

We can define a stronger version of the Bayesian core, by
demanding that there is no agent who believes that there
exists a coalitional agreement that can make it strictly better
off while not hurting the other members of the coalition,
according to their own beliefs:

Definition 5 (strict Bayesian core). Let 〈CS , d, a〉
be a coalition structure-demand vector-action vector triplet,
with Ci denoting the C ∈ CS of which i is a member.
Then 〈CS , d, a〉 is in the strict Bayesian core of a BCFP iff
there is no coalition S ⊆ N , demand vector dS and action
β ∈ AS s.t., for some i ∈ S, p̄i

i(S, dS, β) > p̄i
i(Ci, dCi , αCi)

and p̄j
j(S, dS, β) ≥ p̄j

j(Cj , dCj , αCj ) ∀j ∈ S, j 6= i, where
dCi , αCi is the projection of d, a on the coalition Ci.

The following is an obvious fact:

Observation 1. The strict Bayesian core is a subset of
the weak Bayesian core.

In a similar manner we can define a different stability con-
cept, which we call the strong BC. The strong BC requires
that there is no agent who believes there is an agreement
that can make it better off and that it expects all partners
to accept based on (its subjective view of) their expected
payoff. This differs from the strict (and the weak) BC in
that the agent assesses its own beliefs about the value of an
agreement to its partners.

Definition 6 (strong Bayesian core). 〈CS , d, a〉 is
in the strong Bayesian core iff there is no coalition S ⊆
N , demand vector dS and action β ∈ AS s.t. for some
i ∈ S p̄i

i(S, dS, β) > p̄i
i(Ci, dCi , αCi) and p̄i

j(S, dS , β) ≥
p̄i

j(Cj , dCj , αCj ) ∀j ∈ S, j 6= i}.
The strong BC describes a notion of stability that is more
tightly linked to the agents’ subjective views on the potential
acceptability of their proposals and is thus more “endoge-
nous” in nature. By comparison, stability in the strict BC
concept (and weak BC) is somewhat distinct. In an element
of the strict BC, there may be an agent i who believes he
would be strictly better off in some other coalition, and who
believes all of his proposed partners would be better off as
well; but the coalition may be considered unacceptable to
some proposed partner j, since his beliefs about the value
of the coalition are different than those of i.

The traditional notion of the core in deterministic settings
is a special case of the weak BC when all agents know the
actual types of other agents, in which case, the strict and
the strong BC coincide and they are a subset of the weak
BC. Since the core does not always exist, the three versions
of the BC do not always exist either. We now make the
following observation, which we will use later in the paper:

Observation 2. Let 〈CSN , d, a〉 be an element of the BC
of a BCFP with agents N . If S ∈ CSN , L = N \ S,
CSL = CSN \ S and dL, αL is the restriction of d, a to
the agents in L, the tuple 〈CSL, dL, αL〉, which is contained
in the 〈CSN , d, a〉 configuration, is an element of the BC of
the corresponding BCFP subgame with L agents.

Obviously, if an agent i in the L = N \ S subset believed
that he could do strictly better in some coalition other than
his current Ci, he would have believed this when the S coali-
tion was present, as well; in that case, 〈CSN , d, a〉 couldn’t
have been a (strong) BC element. Notice that Observation 2
holds for all versions of the BC.



4. A NON-COOPERATIVE JUSTIFICATION
OF THE BAYESIAN CORE

In this section we present the main results of our paper.
We first define a coalitional bargaining game that deals with
the non-cooperative aspects of a BCFP, and then prove our
main propositions, which relate the BC with appropriate
non-cooperative solution concepts for coalition formation
under uncertainty.

4.1 Bayesian Coalitional Bargaining
While coalition structures and allocations can sometimes

be computed centrally, in many situations they emerge as
the result of some bargaining process among the agents, who
propose, accept and reject partnership agreements. We now
define a (Bayesian) coalitional bargaining game (BCBG) for
the Bayesian model above, as a Bayesian extensive game
with observable actions [14], adopting the approach of [4].

The game proceeds in stages, with a randomly chosen
agent proposing a coalition, a coalitional action and an al-
location of payments to partners, who then accept or reject
the proposal. A finite set of bargaining actions is available
to the agents. A bargaining action corresponds to either:
(a) some proposal π = 〈C, PC〉 to form a coalition C with a
specific payoff configuration PC (specifying payoff shares di

to each i ∈ C and a suggested coalitional action αC for C to
perform); or (b) the acceptance or rejection of such a pro-
posal. The game proceeds in stages, and initially all agents
are active. At the beginning of stage t, one of the (say n)
active agents i is chosen randomly with probability γ = 1

n
to make a proposal 〈C, PC〉 (with i ∈ C). Each other j ∈ C
either accepts or rejects this proposal. If all j ∈ C accept,
the agents in C are made inactive and removed from the
game. Value Vt(tC) = δt−1Q(C,αC |tC) is realized by C at
s, and split according to PC , where δ ∈ (0, 1] is the discount
factor. If any j ∈ C rejects the proposal, the agents remain
active (no coalition is formed). At the end of a stage, the
responses are observed by all participants, and the agents
can update their beliefs regarding others using Bayes rule
(as described in [4]). If the game is finite-horizon, at the
end of the final stage F , any i not in any coalition receives
its discounted reservation value δF−1V (ti). In this paper,
however, we will be assuming an infinite horizon (and thus,
due to discounting, agents’ payoffs are zero in the long run,
if they reach no agreement with others in the meantime).

This bargaining game focuses on the strategic interactions
of the rational players, and, thus, provides a non-cooperative
view of the BCFP. The suitable solution concept for the
game above is, as proposed by [4], a perfect Bayesian equi-
librium (PBE) [14]. In this paper, we are interested in
establishing connections between non-cooperative, equilib-
rium solutions of coalitional bargaining games under un-
certainty, and the cooperative solution concepts (i.e., the
BC) of the underlying BCFP. However, the BC, being a
stability concept, implicitly assumes that agents’ beliefs are
settled to specific values before it can be defined. Thus, we
make the simplifying assumption that agents’ beliefs remain
fixed throughout bargaining, and we define an appropriate
sequential equilibrium concept for this game. Certainly, the
fact that an agent i makes a specific proposal to a set of other
agents (or accepts or rejects a particular proposal) can in-
fluence j’s beliefs about i’s type, and thus j’s behavior at
future rounds of the BCBG. However, this form of belief
dynamics over multiple rounds is not (and most problably

cannot be) reflected in a static cooperative solution concept
such as the BC. Hence the motivation for this restriction.

The appropriate solution concept for a BCBG game under
fixed beliefs, is a sequential equilibrium under fixed beliefs:

Definition 7. Let G be a BCBG throughout the course
of which the agents’ beliefs are assumed to remain fixed.
Then, a profile of (possibly mixed) strategies, one for each
player in N , is a sequential equilibrium under fixed beliefs
(SEFB) for G, if, for each i ∈ N and each history h, i’s
strategy continuation after h is optimal, given the strategies
of other players and i’s fixed beliefs.

The SEFB is therefore defined as an extension of SPE and
a restriction of PBE equilibria. This is appropriate for our
fixed-beliefs bargaining game, which is an extensive form
game that does incorporate beliefs (and the fact that differ-
ent agents can have widely varying beliefs about the value
of any coalition) unlike the SPE; the beliefs are merely held
fixed throughout the bargaining process (unlike the PBE).

4.2 Equivalence of the Cooperative and Non-
Cooperative Solutions

We now show that the existence of stable coalition struc-
tures in a coalition formation problem under uncertainty im-
plies the existence of an equilibrium bargaining profile that
leads to their formation; and also that “optimal” coalitional
bargaining under uncertainty leads to stable coalitions.

We first define a subclass of bargaining games that we will
be interested in.

Definition 8. Let C be the class of N-player BCFP with
the following properties:

1. All subgames have a nonempty strict BC.

2. For every member BN = 〈CSN , dN , aN 〉 of the strict
BC, where CSN is of the form {S1, ..., Sk}, every sub-
game with set of players T ⊆ N has an element in its
strict BC in which the coalition structure is of the form
{T ∩ S1, ..., T ∩ Sk} and also the demand vector is the
projection of dN to the corresponding coalition.

In the above definition we ignore the empty sets that may
arise if T does not intersect any of the Sj ’s. Note that
by Observation 2, the properties of Definition 8 are already
satisfied by subgames in which the set of players is a union of
some of the coalitions of CSN . Hence the definition simply
imposes the same properties for other subsets of N as well.

We are now ready to prove our first relevant Proposition:

Proposition 1. Let P ∈ C be an N-player BCFP. Then,
for every member BN = 〈CSN , dN , aN 〉 of the strict BC
of P, there exists an SEFB equilibrium σ∗ = σ∗(BN ) in
pure strategies, of the corresponding BCBG G (under fixed
beliefs) with N players and random proposers, such that, the
coalition structure induced by σ∗ is exactly 〈CSN , dN , aN〉.

Proof. Let BN = 〈CSN , dN , aN 〉 be an arbitrary ele-
ment of the BC of P and let BCS represent the strict BC
of the subgame where the set of agents is S. Let CSN =
{S1, S2, ..., Sk} for some k, where ∪Si = N and Si ∩ Sj = ∅
for every i, j. For each S we choose an element BS =
〈CSS, dS , aS〉 ∈ BCS. In particular, we choose such an
element according to Definition 8. For example if S is the
union of some of the Si’s, i.e., if it consists precisely of some



of the coalitions of CSN , then we let BS be the restriction
of 〈CSN , dN , aN 〉 to S, which by Observation 2 lies in BCS .
Our way of choosing these core elements for each subgame
ensures the following, easy to verify, fact:

Fact 1. Let T ⊆ N and suppose the coalition structure
in BT is {T1, ..., Tl}. Then for the subgame where the set
of players is S = T \ T1, the structure in the corresponding
core element BS is {T2, ..., Tl} and the demand and action
vectors are the same as in T .

Given a triplet 〈C,dC , αC〉, with i ∈ C, we will denote by
p̄i

i(C, dC , αC) the expected payoff of i from the formation of
coalition C, according to i’s beliefs. We will also use p̄i

i(BS)
to denote p̄i

i(Ci, dCi , αCi), where Ci is the coalition in the
coalition structure of BS that i belongs to.

Consider now the following strategy σ∗
i for a player i:

(i) If i is the proposer in some round of the game, and the
set of agents still present is S, let C denote i’s coalition in
the coalition structure of BS , and let dC , αC be its cor-
responding demand vector and action, i.e., we look at the
projection of BS to coalition C that contains i. Then, i
proposes 〈C, dC , αC〉 to the rest of the agents in C2.
(ii) If i is a responder, the subset of agents still present is S,
and the standing proposal is 〈T, dT , αT 〉 (with i ∈ T ), then
i accepts iff p̄i

i(〈T, dT , αT 〉) ≥ p̄i
i(BS).

Let σ∗ be the profile of the strategies of all players. It
is clear that, no matter what the nature’s choice of pro-
posers in the game is, if σ∗ is played then the outcome of
the game is exactly BN . To see this, suppose that the first
random proposer at round 1, say i, belongs to S1 (recall
BN = 〈CSN , dN , aN 〉 and CSN = {S1, S2, ..., Sk}). Then
i will propose 〈S1, dS1 , αS1〉, with dS1 , αS1 being the pro-
jection of dN , aN to S1. By the definition of σ∗ all other
members of S1 will accept and the game will go to round
2 with the remaining players L = N \ S1. Suppose agent
j is now the proposer and j ∈ S2. By the way we defined
BL, we know that CSL = {S2, ..., Sk}, (because L consists
of a collection of coalitions of CSN ) therefore j will propose
〈S2, dS2 , αS2〉 with dS2 , αS2 being the projection of dN , aN

on S2. The other members of S2 will accept the proposal
and the game will continue in the same manner. Hence after
k rounds the game will end and the outcome will be BN .

It remains to show that σ∗ is an SEFB equilibrium.
Assume i is a proposer at some round of the game, the set

of active players is S and all players apart from i will play
according to σ∗ from this point of the game onwards. Let
〈C, dC , αC〉 be the triplet of BS with i ∈ C. We want to
show that i cannot gain by deviating from σ∗. Suppose i de-
viates by proposing 〈T, dT , βT 〉, different from 〈C,dC , αC〉,
where C is the coalition of BS that i belongs to. Consider
first the case that p̄i

i(T, dT , βT ) > p̄i
i(BS) Note that in this

case T cannot be a singleton since that would contradict
the fact that BS ∈ BCS . Hence |T | ≥ 2. Then the pro-
posal is accepted only if for all agents j ∈ T ,j 6= i, it is
the case that p̄j

j(T, dT , βT ) ≥ p̄j
j(BS) (since they follow σ∗).

However, if this is the case, then we have found a coalition,
namely T , along with a demand vector and an action such
that agent i believes he is strictly better off and no other
agent believes that he is worse off. This contradicts the fact
that BS ∈ BCS, hence the proposal is never accepted and i
cannot gain from such a deviation.
2We must assume the non-emptiness of BCS in order to
define this strategy at any bargaining round.

Consider now the case that p̄i
i(T, dT , βT ) ≤ p̄i

i(BS). Agent
i cannot gain from such a deviation either. If the proposal
is accepted he does not gain more than his payoff under σ∗

i .
If the proposal is rejected, then the game moves to the next
round without any coalition forming. In the next round, if
the proposer is some other member of C, then the proposal
for i will be 〈C, dC , αC〉, which does not give him a better
payoff than p̄i

i(BS). If i is chosen to be a proposer again,
then we already know that he cannot propose a coalition
that gives him better payoff. Now suppose the chosen pro-
poser, say j, does not belong to C and let Cj ⊆ S be the
coalition of BS that j belongs to. Since every player apart
from i follows σ∗, j will propose Cj which will be accepted
and the game will move to the next round where the set of
players is S \Cj . By Fact 1 the core element BS\Cj

for this
subgame still contains 〈C, dC , αC〉. Hence by repeating the
above arguments, i cannot gain more than p̄i

i(BS). There-
fore, whenever nature i becomes a proposer, i cannot gain a
better payoff than the payoff he obtains if he follows σ∗.

Assume now that i is a responder to some offer 〈T, dT , βT 〉
and the current set of active players is S. Suppose that
all the agents in T that responded before i have already
accepted the proposal and let U be the set of agents who
are to decide after agent i.
Case 1: p̄i

i(T, dT , βT ) ≥ p̄i
i(BS). Then according to σ∗

agent i should accept the proposal. If i deviates from σ∗ and
rejects the proposal then there are two subcases to consider.
If all agents in U are going to accept the proposal then i
would receive a payoff of at least p̄i

i(BS) had he followed
σ∗. Since he rejected the proposal, no coalition forms and
the game goes to the next round. In the next round either
he is the proposer, in which case we know by the previous
arguments that he cannot gain more than p̄i

i(BS) or someone
else is the proposer in which case again, using Fact 1, he
cannot gain more than p̄i

i(BS) because all other agents follow
σ∗. If on the other hand some agent in U will reject the
proposal then it does not matter whether i accepts or rejects.
The game moves to the next round and agent i cannot obtain
a payoff better than the payoff under σ∗.
Case 2: p̄i

i(T, dT , βT ) < p̄i
i(BS). Then according to σ∗

agent i should reject the proposal. If i deviates from σ∗ and
accepts the proposal then if all agents in U also accept, the
coalition T forms and agent i receives a payoff which is less
than p̄i

i(BS). However, if he had followed σ∗, the proposal
would have been rejected and in the future he would have
obtained p̄i

i(BS).3 If some agent in U will reject the proposal
then as in Case 1, i cannot profit by the deviation from σ∗.

Overall, agent i cannot benefit by any deviation from σ∗
i

and, thus, σ∗ is a SEFB of the corresponding game G.

Proposition 1 remains true if we use the weak BC instead
of the strict one. In that case we only have to modify the
strategy σ∗ accordingly. Due to lack of space we omit the
details here. For the reverse direction (can an SEFB give
rise to a configuration that belongs to the core?), we cannot
hope to always have a positive answer since the BC does not
always exist. However we can provide a positive answer if
the bargaining game possesses equilibria whose outcomes do
not depend on the random choice of the proposers. The fol-
lowing definition is a generalization of the one given in [10].

Definition 9. An SEFB equilibrium in pure strategies
is order independent if, whenever it is played, it leads to
3Notice that this argument holds only for δ = 1.



the same outcome 〈CS , d, a〉 regardless of the choice of pro-
posers.

Note that the equilibrium defined in the proof of The-
orem 1 is also order independent. In the following result,
we show that order independent equilibria lead to outcomes
that belong to the weak BC. We are not aware at the mo-
ment if this result is true for the strict or the strong BC.

Proposition 2. Let σ∗ be an order independent SEFB
equilibrium strategy profile in pure strategies for a BCBG
G with random proposers and discount factor δ. Then, the
outcome of σ∗, 〈CS , d, a〉 must be in the weak BC of the
corresponding BCFP.

Proof. Let 〈CS , d, a〉 be the outcome of the game if the
equilibrium σ∗ is played. Assume, contrary to the proposi-
tion, that 〈CS , d, a〉 is not in the weak BC. Let p̄i

i(σ
∗; t = 1)

denote i’s expected payoff under σ∗ (i.e., if everybody fol-
lows σ∗ right from the first round). Since 〈CS , d, a〉 derived
by σ∗ is not in the weak BC, there exists a coalition S ⊆ N ,
a demand vector dS and an action αS such that:

p̄j
j(S,dS , αS) > p̄j

j(σ
∗; t = 1) ∀j ∈ S (1)

Consider now an agent i ∈ S, and consider the following
strategy for i:
(i) If i is chosen by nature to be the first proposer, then i
proposes 〈S, dS , αS〉.
(ii) In all other cases, i follows σ∗

i .
We will show that this deviation from σ∗ benefits agent

i ∈ S in expectation when the other agents play according
to σ∗, and therefore σ∗ cannot be an SEFB equilibrium.

Assume that i was chosen by nature to be the first pro-
poser. Then, i proposes 〈S, dS, αS〉 with the above property.
Note that |S| ≥ 2, otherwise we would already have a con-
tradiction to σ∗ being an equilibrium.

All other agents j ∈ S follow their σ∗-equilibrium strate-
gies. Consider a responder j ∈ S and consider the subgame
that starts at the node where j is to decide whether to ac-
cept or reject the proposal and assume every other agent in
S \ {i, j} has accepted. Note that from this point onwards
every agent (including i) plays according to σ∗, which is an
equilibrium for this subgame (since σ∗ is a sequential equi-
librium). We will show that it is optimal for j to accept.

If j rejects the proposal, then the game moves to round
2 where all agents are present and from then on they all
play σ∗. Since σ∗ is order independent, the configuration
〈CS, d, a〉 will form and therefore agent j can get a payoff
of at most p̄j

j(σ
∗; t = 1) (possibly discounted). On the other

hand if j accepts the proposal he obtains a better payoff
by (1). Hence rejecting the proposal cannot be optimal for
j. By backward induction, the proposal of agent i must be
accepted by all agents of S, therefore the coalition S will
form and i will obtain a better payoff. This implies that σ∗

is not an equilibrium, a contradiction.

Remark 1. Note that in Proposition 2 we allow the bar-
gaining game to have an arbitrary discount factor δ ≤ 1,
whereas in the game defined in the proof of Proposition 1 we
did not allow any discounting (δ = 1).

A consequence of Proposition 2 is the following corollary,
which provides a condition for the existence of the weak BC.

Corollary 1. If an order independent SEFB equilibrium
strategy profile exists, then the weak BC cannot be empty.

5. TESTING FOR THE EXISTENCE OF THE
BAYESIAN CORE

Even in a deterministic setting where there is no uncer-
tainty, testing for the nonemptiness of the core is an in-
tractable problem. In fact, even in superadditive games,
where the coalition structure is simply the grand coalition
N and we only need to find an allocation of payoffs to the
agents, the problem is NP-hard (see, e.g., [6], where a con-
cise game representation is used and superadditivity is as-
sumed). In the absence of superadditivity, as is our case
there are even worse lower bounds on the complexity of the
problem. Sandholm et al. [16] show that in order to find an
approximately optimal coalition structure (i.e., in order to
be able to establish a bound from the optimum), exponen-
tially many coalition structures have to be searched (at least
2n−1, if n agents). All these suggest that it is unlikely to find
an efficient algorithm for verification of the BC’s existence.

Here we show that for a relatively small number of agents
it is feasible to check for the nonemptiness of the BC with-
out employing a brute-force approach that simply searches
over all coalition structures. We formulate the problem as a
constraint satisfaction problem (CSP), where the constraints
are polynomial equalities or inequalities. We can then use
existing algorithms that solve such CSP’s (e.g. see [1, 21]).

Before we present the polynomial program that solves our
problem, we make some simplifying assumptions. First we
assume that for each coalition there is a finite (and not
very large) number of possible demand vectors that one
could propose (i.e., there is a finite number of possible ways
in which the agents will split the payoff of the coalition).
W.l.og., assume that each coalition has k actions available.

The CSP that we present below tests the nonemptiness of
the weak BC and has 4 types of variables. Similar CSPs can
be written for the strict and the strong BC too. For each
coalition S, there is an indicator variable XS which indicates
whether coalition S will form in the coalition structure that
we are looking for. We also have a variable ri for each agent
i that indicates the share that i will have in the coalition
that he belongs. Furthermore, let Qi(S, j) denote the payoff
that coalition S gets if the jth action is taken (recall there
are k available actions). Then for each coalition S and ac-
tion j, j = 1, ..., k we have an indicator variable αS

j that
indicates whether action j is taken or not (if coalition S
forms). Finally, for each possible deviation from the core,
say 〈T, d, β〉, where d is a |T |-dimensional demand vector
(d1, ..., d|T |) and β is one of the k available actions to coali-
tion T we have an auxiliary variable Z

T,d,β
whose role is to

ensure that it cannot be the case that all agents gain more
expected payoff if they deviate to T .

XS(1 − XS) = 0 ∀S ⊆ N (2)

XS(1 −
X

i∈S

ri) = 0 ∀S ⊆ N (3)

ri ≥ 0 ∀i ∈ N (4)
X

S:i∈S

XS = 1 ∀ i ∈ N (5)

αS
j (1 − αS

j ) = 0 ∀S ⊆ N, j ∈ {1, ..., k} (6)
Y

i∈T

[ZT,d,β − (diQi(T, β) − ri

X

S:i∈S

XS

kX

j=1

αS
j Qi(S, j))] = 0

∀T, d, β ∈ {1, ..., k}
(7)



ZT,d,β ≤ diQi(T, β) − ri

X

S:i∈S

XS

kX

j=1

αS
j Qi(S, j)

∀T, d, β, i ∈ T (8)

ZT,d,β ≤ 0 ∀T, d, β ∈ {1, ..., k} (9)

Proposition 3. The above problem is feasible iff the weak
BC of the corresponding game is nonempty.

Proof. Suppose that the program is feasible and con-
sider a solution. Then constraints (2) and (6) ensure that
the variables XS and αS

j are integer 0/1 variables. Hence we
can see them as indicator variables, indicating which coali-
tions were chosen by the solution and which action was taken
(if XS = 1 we consider that S forms). Constraints (5) ensure
that the coalitions that form make up a coalition structure;
each agent belongs to exactly one of them. Constraints (3)
and (4) ensure that for any coalition that forms the demands
ri for i ∈ S form a valid demand vector. The rest of the con-
straints ensure that there is no coalition T , demand vector
d and action β that would make all agents of T better off.
For a coalition T and an agent i ∈ T , let εi be the amount
by which i’s payoff changes if he deviates from the solution
to the program to 〈T, d, β〉. Constraints (7) and (8) make
sure that the variable Z

T,d,β
is equal to mini εi because the

expression ri

P
S:i∈S XS

Pk
j=1 αS

j Qi(S, j) is equal to the ex-
pected payoff of agent i under the feasible solution of the
program (recall only one of the variables XS with i ∈ S is set
to 1 and the rest are 0). Finally the last constraint ensures
that for any 〈T, d, β〉, miniεi ≤ 0, which means that there
is no coalitional agreement that can make all agents strictly
better off. The reverse direction is straightforward.

The number of variables in the program above is O(kd2n),
where k is the number of actions, d the number of demand
vectors, and n the number of agents. Although the worst
case running time guarantees for such a program can be pro-
hibitively high in most realistic settings [1], it can be solved
heuristically for small problem sizes [21] and thus is a better
tool than a brute-force approach. Moreover, this program
offers a concise way to describe existence conditions, since
there is no obvious way to define balancedness [11] in an
uncertain, non-superadditive environment.

6. CONCLUSIONS
We have further developed the foundations of coalition

formation under a realistic model of uncertainty by propos-
ing new stability concepts for BCFPs and assessing the re-
lated bargaining processes. We have established strong con-
nections between a cooperative coalitional stability concept
under type uncertainty and non-cooperative equilibrium so-
lutions of the corresponding bargaining games. We proved
that if the BC of a coalitional game is non-empty, then there
exists an equilibrium of the corresponding bargaining game
that induces an element of the BC; and we showed that if
an order independent coalitional bargaining equilibrium ex-
ists, then it leads to a BC configuration. This provides a
non-cooperative justification of the BC. We also established
a sufficient condition for the existence of the weak BC and—
for small games—an algorithm to decide whether the BC is
non-empty. Current and future work includes investigating
these issues for the stronger stability concepts (e.g., strong
BC) and other bargaining models.
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