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Abstract

Bayesian approaches to utility elicitation typically adopt (myopic) expected value of infor-
mation (EVOI) as a natural criterion for selecting queries. However, EVOI-optimization is
usually computationally prohibitive. In this paper, we examine EVOI optimization using
choice queries, queries in which a user is ask to select her most preferred product from a
set. We show that, under very general assumptions, the optimal choice query w.r.t. EVOI
coincides with the optimal recommendation set, that is, a set maximizing the expected util-
ity of the user selection. Since recommendation set optimization is a simpler, submodular
problem, this can greatly reduce the complexity of both exact and approximate (greedy)
computation of optimal choice queries. We also examine the case where user responses
to choice queries are error-prone (using both constant and mixed multinomial logit noise
models) and provide worst-case guarantees. Finally we present a local search technique for
query optimization that works extremely well with large outcome spaces.

1 Introduction

Utility elicitation is a key component in many decision support applications and recommender sys-
tems, since appropriate decisions or recommendations depend critically on the preferences of the
user on whose behalf decisions are being made. Since full elicitation of user utility is prohibitively
expensive in most cases (w.r.t. time, cognitive effort, etc.), we must often rely on partial utility in-
formation. Thus in interactive preference elicitation, one must selectively decide which queries are
most informative relative to the goal of making good or optimal recommendations. A variety of
principled approaches have been proposed for this problem. A number of these focus directly on
(myopically or heuristically) reducing uncertainty regarding utility parameters as quickly as possi-
ble, including max-margin [10], volumetric [12], polyhedral [22] and entropy-based [1] methods.

A different class of approaches does not attempt to reduce utility uncertainty for its own sake, but
rather focuses on discovering utility information that improves the quality of the recommendation.
These include regret-based [3, 23] and Bayesian [7, 6, 2, 11] models. We focus on Bayesian models
in this work, assuming some prior distribution over user utility parameters and conditioning this
distribution on information acquired from the user (e.g., query responses or behavioral observations).
The most natural criterion for choosing queries is expected value of information (EVOI), which can
be optimized myopically [7] or sequentially [2]. However, optimization of EVOI for online query
selection is not feasible except in the most simple cases. Hence, in practice, heuristics are used that
offer no theoretical guarantees with respect to query quality.

In this paper we consider the problem of myopic EVOI optimization using choice queries. Such
queries are commonly used in conjoint analysis and product design [15], requiring a user to indicate
which choice/product is most preferred from a set of k options. We show that, under very general
assumptions, optimization of choice queries reduces to the simpler problem of choosing the opti-
mal recommendation set, i.e., the set of k products such that, if a user were forced to choose one,
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maximizes utility of that choice (in expectation). Not only is the optimal recommendation set prob-
lem somewhat easier computationally, it is submodular, admitting a greedy algorithm with approx-
imation guarantees. Thus, it can be used to determine approximately optimal choice queries. We
develop this connection under several different (noisy) user response models. Finally, we describe
query iteration, a local search technique that, though it has no formal guarantees, finds near-optimal
recommendation sets and queries much faster than either exact or greedy optimization.

2 Background: Bayesian Recommendation and Elicitation

We assume a system is charged with the task of recommending an option to a user in some multi-
attribute space, for instance, the space of possible product configurations from some domain (e.g.,
computers, cars, rental apartments, etc.). Products are characterized by a finite set of attributes
X = {X1, ...Xn}, each with finite domain Dom(Xi). Let X ⊆ Dom(X ) denote the set of feasible
configurations. For instance, attributes may correspond to the features of various cars, such as color,
engine size, fuel economy, etc., with X defined either by constraints on attribute combinations (e.g.,
constraints on computer components that can be put together) or by an explicit database of feasible
configurations (e.g., a rental database). The user has a utility function u : Dom(X ) → R. The
precise form of u is not critical, but in our experiments we assume that u(x;w) is linear in the
parameters (or weights) w (e.g., as in generalized additive independent (GAI) models [8, 5].) We
often refer to w as the user’s “utility function” for simplicity, assuming a fixed form for u. A simple
additive model in the car domain might be:

u(Car ;w) = w1f1(MPG) + w2f2(EngineSize) + w3f3(Color ).

The optimal product x∗
w for a user with utility parameters w is the x ∈ X that maximizes u(x;w).

Generally, a user’s utility function w will not be known with certainty. Following recent models of
Bayesian elicitation, the system’s uncertainty is reflected in a distribution, or beliefs, P (w; θ) over
the space W of possible utility functions [7, 6, 2]. Here θ denotes the parameterization of our model,
and we often refer to θ as our belief state. Given P (·; θ), we define the expected utility of an option
x to be EU (x; θ) =

∫
W

u(x;w)P (w; θ)dw. If required to make a recommendation given belief θ,

the optimal option x∗(θ) is that with greatest expected utility EU ∗(θ) = maxx∈X EU (x; θ), with
x∗(θ) = argmaxx∈X EU (x; θ).

In some settings, we are able to make set-based recommendations: rather than recommending a
single option, a small set of k options can be presented, from which the user selects her most pre-
ferred option [15, 20, 23]. We discuss the problem of constructing an optimal recommendation set
S further below. Given recommendation set S with x ∈ S, let S⊲x denote that x has the greatest
utility among those items in S (for a given utility function w). Given feasible utility space W , we
define W ∩ S⊲x ≡ {w ∈ W : u(x;w) ≥ u(y;w), ∀y 6= x, y ∈ S} to be those utility functions
satisfying S ⊲ x. Ignoring “ties” over full-dimensional subsets of W (which are easily dealt with,
but complicate the presentation), the regions W ∩ S⊲xi, xi ∈ S, partition utility space.

A recommender system can refine its belief state θ by learning more about the user’s utility function
w. A reduction in uncertainty will lead to better recommendations (in expectation). While many
sources of information can be used to assess a user preferences—including the preferences of related
users, as in collaborative filtering [14], or observed user choice behavior [15, 19]—we focus on
explicit utility elicitation, in which a user is asked questions about her preferences.

There are a variety of query types that can be used to refine one’s knowledge of a user’s utility
function (we refer to [13, 3, 5] for further discussion). Comparison queries are especially natural,
asking a user if she prefers one option x to another y. These comparisons can be localized to specific
(subsets of) attributes in additive or GAI models, and such structured models allow responses w.r.t.
specific options to “generalize,” providing constraints on the utility of related options. In this work
we consider the extension of comparions to choice sets of more than two options [23] as is common
in conjoint analysis [15, 22]. Any set S can be interpreted as a query: the user states which of the k
elements xi ∈ S she prefers. We refer to S interchangeably as a query or a choice set.

The user’s response to a choice set tells us something about her preferences; but this depends on
the user response model. In a noiseless model, the user correctly identifies the preferred item in
the slate: the choice of xi ∈ S refines the set of feasible utility functions W by imposing k − 1
linear constraints of the form u(xi;w) ≥ u(xj ;w), j 6= i, and the new belief state is obtained by
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restricting θ to have non-zero density only on W ∩S⊲xi and renormalizing. More generally, a noisy
response model allows that a user may select an option that does not maximize her utility. For any
choice set S with xi ∈ S, let S  xi denote the event of the user selecting xi. A response model R
dictates, for any choice set S, the probability PR(S  xi;w) of any selection given utility function
w. When the beliefs about a user’s utility are uncertain, we define PR(S  xi; θ) =

∫
W

PR(S  
xi;w)P (w; θ)dw. We discuss various response models below.

When treating S as a query set (as opposed to a recommendation set), we are not interested in its
expected utility, but rather in its expected value of information (EVOI), or the (expected) degree to
which a response will increase the quality of the system’s recommendation. We define:

Definition 1 Given belief state θ, the expected posterior utility (EPU ) of query set S under R is

EPUR(S; θ) =
∑
x∈S

PR(S  x; θ)EU ∗(θ|S  x) (1)

EVOI (S; θ) is then EPU (S; θ)− EU ∗(θ), the expected improvement in decision quality given S.
An optimal query (of fixed size k) is any S with maximal EV OI , or equivalently, maximal EPU .

In many settings, we may wish to present a set of options to a user with the dual goals of offering
a good set of recommendations and eliciting valuable information about user utility. For instance,
product navigation interfaces for e-commerce sites often display a set of options from which a user
can select, but also give the user a chance to critique the proposed options [24]. This provides one
motivation for exploring the connection between optimal recommendation sets and optimal query
sets. Moreover, even in settings where queries and recommendation are separated, we will see that
query optimization can be made more efficient by exploiting this relationship.

3 Optimal Recommendation Sets

We consider first the problem of computing optimal recommendation sets given the system’s uncer-
tainty about the user’s true utility function w. Given belief state θ, if a single recommendation is to
be made, then we should recommend the option x∗(θ) that maximizes expected utility EU (x, θ).
However, there is often value in suggesting a “shortlist” containing multiple options and allowing
the user to select her most preferred option. Intuitively, such a set should offer options that are
diverse in the following sense: recommended options should be highly preferred relative to a wide
range of “likely” user utility functions (relative to θ) [23, 20, 4]. This stands in contrast to some rec-
ommender systems that define diversity relative to product attributes [21], with no direct reference
to beliefs about user utility. It is not hard to see that “top k” systems, those that present the k options
with highest expected utility, do not generally result in good recommendation sets [20].

In broad terms, we assume that the utility of a recommendation set S is the utility of its most
preferred item. However, it is unrealistic to assume that users will select their most preferred item
with complete accuracy [17, 15]. So as with choice queries, we assume a response model R dictating
the probability PR(S  x; θ) of any choice x from S:

Definition 2 The expected utility of selection (EUS) of recommendation set S given θ and R is:

EUSR(S; θ) =
∑
x∈S

PR(S  x; θ)EU (x; θ|S  x) (2)

We can expand the definition to rewrite EUSR(S; θ) as:

EUSR(S; θ) =

∫
W

[
∑
x∈S

PR(S  x;w) u(x;w)]P (w; θ)dw (3)

User behavior is largely dictated by the response model R. In the ideal setting, users would always
select the option with highest utility w.r.t. her true utility functionw. This noiseless model is assumed
in [20] for example. However, this is unrealistic in general. Noisy response models admit user
“mistakes” and the choice of optimal sets should reflect this possibility (just as belief update does,

3



see Defn. 1). Possible constraints on response models include: (i) preference bias: a more preferred
outcome in the slate given w is selected with probability greater than a less preferred outcome; and
(ii) Luce’s choice axiom [17], a form of independence of irrelevant alternatives that requires that the
relative probability (if not 0 or 1) of selecting any two items x and y from S is not affected by the
addition or deletion of other items from the set. We consider three different response models:

• In the noiseless response model, RNL, we have PNL(S  x;w) =
∏

y∈S I[u(x;w) ≥ u(y;w)]
(with indicator function I). Then EUS becomes

EUSNL(S; θ) =

∫
W

[max
x∈S

u(x;w)]P (w; θ)dw.

This is identical to the expected max criterion of [20]. Under RNL we have S  x iff S⊲x.

• The constant noise model RC assumes a multinomial distribution over choices or responses where
each option x, apart from the most preferred option x∗

w relative to w, is selected with (small)
constant probability PC(S  x;w) = β, with β independent of w. We assume β < 1

k
, so the

most preferred option is selected with probability PC(S  x∗
w ;w) = α = 1 − (k − 1)β > β.

This generalizes the model used in [10, 2] to sets of any size. If x∗
w(S) the optimal element in S

given w, and u∗
w(S) is its utility, then EUS is:

EUSC(S; θ) =

∫
W

[αu∗
w(S) +

∑
y∈S−{x∗

w(S)}

βu(x;w)]P (w; θ)dw

• The logistic response model RL is commonly used in choice modeling, and is variously known as
the Luce-Sheppard [16], Bradley-Terry [11], or mixed multinomial logit model. Selection prob-

abilities are given by PL(S  x;w) = exp(γu(x;w))∑
y∈S exp(γu(y;w)) , where γ is a temperature parameter.

For comparison queries (i.e., |S| = 2), RL is the logistic function of the difference in utility
between the two options.

We now consider properties of the expected utility of selection EUS under these various models.
All three models satisfy preference bias, but only RNL and RL satisfy Luce’s choice axiom. EUS
is monotone under the noiseless response model RNL: the addition of options to a recommendation
set S cannot decrease its expected utility EUSNL(S; θ). Moreover, say that option xi dominates xj

relative to belief state θ, if u(xi;w) > u(xj ;w) for all w with nonzero density. Adding a set-wise
dominated option x to S (i.e., an x dominated by some element of S) does not change expected
utility under RNL: EUSNL(S∪{x}; θ) = EUSNL(S; θ). This stands in constrast to noisy response
models, where adding dominated options might actually decrease expected utility.

Importantly, EUS is submodular for both the noiseless and the constant response models RC :

Theorem 1 For R ∈ {RNL, RC}, EUSR is a submodular function of the set S. That is, given
recommendation sets S ⊆ Q, option x 6∈ S, S′ = S ∪ {x}, and Q′ = Q ∪ {x}, we have:

EUSR(S
′; θ)− EUSR(S; θ) ≥ EUSR(Q

′; θ)− EUSR(Q; θ) (4)

The proof is omitted, but simply shows that EUS has the required property of diminishing returns.
Submodularity serves as the basis for a greedy optimization algorithm (see Section 5 and worst-case
results on query optimization below). EUS under the commonly used logistic response model RL is
not submodular, but can be related to EUS under the noiseless model—as we discuss next—allowing
us to exploit submodularity of the noiseless model when optimizing w.r.t. RL.

4 The Connection between EUS and EPU

We now develop the connection between optimal recommendation sets (using EUS) and optimal
choice queries (using EPU/EVOI). As discussed above, we’re often interested in sets that can serve
as both good recommendations and good queries; and since EPU/EVOI can be computationally
difficult, good methods for EUS-optimization can serve to generate good queries as well if we have
a tight relationship between the two.
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In the following, we make use of a transformation Tθ,R that modifies a set S in such a way that
EUS usually increases (and in the case of RNL and RC cannot decrease). This transformation is
used in two ways: (i) to prove the optimality (near-optimality in the case of RL) of EUS-optimal
recommendation sets when used as query sets; (ii) and directly as a computationally viable heuristic
strategy for generating query sets.

Definition 3 Let S = {x1, · · · , xk} be a set of options. Define:

Tθ,R(S) = {x∗(θ|S  x1;R), · · · , x∗(θ|S  xk;R)}

where x∗(θ|S  xi;R) is the optimal option (in expectation) when θ is conditioned on S  xi

w.r.t. R.

Intuitively, T (we drop the subscript when θ,R are clear from context) refines a recommendation
set S of size k by producing k updated beliefs for each possible user choice, and replacing each
option in S with the optimal option under the corresponding update. Note that T generally produces
different sets under different response models. Indeed, one could use T to construct a set using one
response model, and measure EUS or EPU of the resulting set under a different response model.
Some of our theoretical results use this type of “cross-evaluation.”

We first show that optimal recommendation sets under both RNL and RC are optimal (i.e.,
EPU/EVOI-maximizing) query sets.

Lemma 1 EUSR(Tθ,R(S); θ) ≥ EPUR(S; θ) for R ∈ {NL,C}
Proof: For the RNL , the argument relies on partitioning W w.r.t. options in S:

EPUNL(S; θ) =
∑

i,j

P (S⊲xi, T (S)⊲x
′
j ; θ)EU(x

′
i, θ[S⊲xi, T (S)⊲x

′
j ]) (5)

EUSNL(T (S); θ) =
∑

i,j

P (S⊲xi, T (S)⊲x
′
j ; θ)EU(x

′
j ; θ[S⊲xi, T (S)⊲x

′
j ]) (6)

Compare the two expression componentwise: 1) If i = j then the components of each expression are the same. 2) If i 6= j, for any w with nonzero density in

θ[S ⊲ xi, T (S)⊲ x′
j ], we have u(x′

j ;w) ≥ u(x′
i, w), thus EU (x′

j) ≥ EU (xi) in the region S ⊲ xi, T (S)⊲ x′
j . Since EUSNL(T (S); ·) ≥

EPUNL(S; ·) in each component, the result follows. For RC the proof uses the same argument, along with the observation that: EUSC(S; θ) =
∑

i P (S⊲

xi; θ)(αEU(xi, θ[S⊲xi]) + β
∑

j 6=i EU(sj , θ[S⊲xi])).

From Lemma 1 and the fact that EUSR(S; θ) ≤ EPUR(S, θ), it follows that EUSR(T (S); θ) ≥
EUSR(S; θ). We now state the main theorem (we assume the size k of S is fixed):

Theorem 2 Assume response model R ∈ {NL,C} and let S∗ be an optimal recommendation set.
Then S∗ is an optimal query set: EPU (S∗; θ) ≥ EPU (S; θ), ∀S ∈ X

k

Proof: Suppose S∗ is not an optimal query set, i.e., there is some S s.t. EPU(S; θ) > EPU(S∗; θ). Applying T to S gives a new query set T (S),

which by the results above shows: EUS(T (S); θ) ≥ EPU(S; θ) > EPU(S∗; θ) ≥ EUS(S∗; θ). This contradicts the EUS-optimality of S∗.

Another consequence of Lemma 1 is that posing a queryS involving an infeasible option is pointless:
there is always a set with only elements in X with EPU/EVOI at least as great. This is proved by
observing the lemma still holds if T is redefined to allow sets containing infeasible options.

It is not hard to see that admitting noisy responses under the logistic response modelRL can decrease
the value of a recommendation set, i.e., EUSL(S; θ) ≤ EUSNL(S; θ). However, the loss in EUS
under RL can in fact be bounded. The logistic response model is such that, if the probability of
incorrect selection of some option is high, then the utility of that option must be close to that of the
best item, so the relative loss in utility is small. Conversely, if the loss associated with some incorrect
selection is great, its utility must be significantly less than that of the best option, rendering such an
event extremely unlikely. This allows us to bound the difference between EUSNL and EUSL at
some value ∆max that depends only on the set cardinality k and on the temperature parameter γ (we
derive an expression for ∆max below):

Theorem 3 EUSL(S; θ) ≥ EUSNL(S; θ)−∆max.

Under RL, our transformation TL does not, in general, improve the value EUSL(S) of a recom-
mendation set S. However the set TL(S) is such that its value EUSNL, assuming selection under
the noiseless model, is greater than the expected posterior utility EPU L(S) under RL:
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Lemma 2 EUSNL(TL(S); θ) ≥ EPU L(S; θ)

We use this fact below to prove the optimal recommendation set under RL is a near-optimal query
under RL. It has two other consequences: First, from Thm. 3 it follows that EUSL(TL(S); θ) ≥
EPU L(S; θ) − ∆max. Second, EPU of the optimal query under the noiseless model is at least as
great that of the optimal query under the logistic model: EPU ∗

NL(θ) ≥ EPU ∗
L(θ).

1 We now derive
our main result for logistic responses: the EUS of the optimal recommendation set (and hence its
EPU) is at most ∆max less than the EPU of the optimal query set.

Theorem 4 EUS ∗
L(θ) ≥ EPU ∗

L(θ)−∆max.

Proof: Consider the optimal query S∗
L and the set S′ = TL(S∗

L) obtained by applying TL . From Lemma 2, EUSNL(S
′; θ) ≥ EPUL(S∗

L, θ) =

EPU
∗
L(θ). From Thm. 3, EUSL(S′; θ) ≥ EUSNL(S

′; θ) − ∆max ; and from Thm. 2, EUS
∗
NL

(θ) = EPU
∗
NL

(θ). Thus EUS
∗
L(θ) ≥

EUSL(S′; θ) ≥ EUSNL(S
′; θ) − ∆max ≥ EPU

∗
L(θ) − ∆max

The loss ∆(S; θ) = EUSNL(S; θ) − EUSL(S; θ) in the EUS of set S due to logistic noise can
be characterized as a function of the utility difference z = u(x1) − u(x2) between options x1

and x2 of S, and integrating over the possible values of z (weighted by θ). For a specific value
of z ≥ 0, EUS-loss is exactly the utility difference z times the probability of choosing the less
preferred option under RL: 1 − L(γz) = L(−γz) where L is the logistic function. We have

∆(S; θ) =
∫ +∞

−∞
|z| · 1

1+eγ|z|P (z; θ)dz. We derive a problem-independent upper bound on ∆(S; θ)

for any S, θ by maximizing f(z) = z · 1
1+eγz with z ≥ 0. The maximal loss ∆max = f(zmax) for a

set of two hypothetical items s1 and s2 is attained by having the same utility difference u(s1, w) −

u(s2, w) = zmax for any w ∈ W . By imposing ∂f
∂z

= 0, we obtain e−γz−γz+1 = 0. Numerically,

this yields zmax ∼ 1.279 1
γ

and ∆max ∼ 0.2785 1
γ

. This bound can be expressed on a scale that is

independent of the temperature parameter γ; intuitively, ∆max corresponds to a utility difference so
slight that the user identifies the best item only with probability 0.56 under RL with temperature γ.
In other words, the maximum loss is so small that the user is unable able to identify the preferred
item 44% of the time when asked to compare the two items in S. This derivation can be generalized
to sets of any size k, yielding ∆k

max = 1
γ
· LW(k−1

e
), where LW (·) is the Lambert W function.2

5 Set Optimization Strategies

We discuss several strategies for the optimization of query/recommendation sets in this section,
and summarize their theoretical and computational properties. In what follows, n is the number of
options |X|, k the size of the query/recommendation set, and l is the “cost” of Bayesian inference
(e.g., the number of particles in a Monte Carlo sampling procedure).

Exact Methods The naive maximization of EPU is more computationally intensive than EUS-
optimization, and is generally impractical. Given a set S of k elements, computing EPU (S, θ)
requires Bayesian update of θ for each possible response, and expected utility optimization for each
such posterior. Query optimization requires this be computed for nk possible query sets. Thus EPU
maximization is O(nk+1kl). Exact EUS optimization, while still quite demanding, is only O(nkkl)
as it does not require EU-maximization in updated distributions. Thm. 2 allows us to compute
optimal query sets using EUS-maximization under RC and RNL, reducing complexity by a factor
of n. Under RL, Thm. 4 allows us to use EUS-optimization to approximate the optimal query, with
a quality guarantee of EPU ∗ −∆max.

Greedy Optimization A simple greedy algorithm can be used construct a recommendation
set of size k by iteratively adding the option offering the greatest improvement in value:
argmaxx EUSR(S ∪ {x}; θ). Under RNL and RC , since EUS is submodular (Thm. 1), the

greedy algorithm determines a set with EUS that is within η = 1 − (k−1
k

)k of the optimal value

1
EPUL(S; θ) is not necessarily less than EPUNL(S; θ): there are sets S for which a noisy response might

be “more informative” than a noiseless one. However, this is not the case for optimal query sets.
2Lambert W, or product-log, is defined as the principal value of the inverse of x · ex. The loss-maximizing

set Smax may contain infeasible outcomes; so in practice loss may be much lower.
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EUS∗ = EPU∗ [9].3 Thm. 2 again allows us to use greedy maximization of EUS to determine a
query set with similar gaurantees.

Under RL, EUSL is no longer submodular. However, Lemma 2 and Thm. 3 allow us to use EUSNL,
which is submodular, as a proxy. Let Sg the set determined by greedy optimization of EUSNL. By
submodularity, η · EUS∗

NL ≤ EUSNL(Sg) ≤ EUS∗
NL; we also have EUS∗

L ≤ EUS ∗
NL. Applying

Thm. 3 to Sg gives: EUSL(Sg) ≥ EUSNL(Sg)−∆. Thus, we derive

EUSL(Sg)

EUS∗
L

≥
η · EUS∗

NL −∆

EUS ∗
L

≥
η · EUS ∗

NL −∆

EUS∗
NL

≥ η −
∆

EUS ∗
NL

(7)

Similarly, we derive a worst-case bound for EPU w.r.t. greedy EUS-optimization (using the fact
that EUS is a lower bound for EPU, Thm. 3 and Thm. 2):

EPU L(Sg)

EPU ∗
L

≥
EUSL(Sg)

EPU ∗
L

≥
η · EUS ∗

NL −∆

EPU ∗
NL

=
η · EUS ∗

NL −∆

EUS∗
NL

≥ η −
∆

EUS∗
NL

(8)

Greedy maximization of S w.r.t. EUS is extremely fast, O(k2ln), or linear in the number of options
n: it requires O(kn) evaluations of EUS , each with cost kl.4

Query Iteration The T transformation (Defn. 3) gives rise to a natural heuristic method for com-
puting, good query/recommendation sets. Query iteration (QI) starts with an initial set S, and locally
optimizes S by repeatedly applying operator T (S) until EUS (T (S); θ)=EUS(S; θ). QI is sensitive
to the initial set S, which can lead to different fixed points. We consider several initialization strate-
gies: random (randomly choose k options), sampling (include x∗(θ), and sample k − 1 points wi

from P (w; θ), and for each of these add the optimal item to S, while forcing distinctness) and greedy
(initialize with the greedy set Sg).

We can bound the performance of QI relative to optimal query/recommendation sets assuming RNL

or RC . If QI is initialized with Sg, performance is no worse than greedy optimization. If initialized
with an arbitrary set, we note that, because of submodularity, EU ∗ ≤ EUS∗ ≤ kEU ∗. The
condition T (S) = S implies EUS(S) = EPU (S). Also note that, for any set Q, EPU (Q) ≥ EU ∗.
Thus, EUS (S) ≥ 1

k
EUS ∗. This means for comparison queries (|S| = 2), QI achieves at least 50%

of the optimal recommendation set value. This bound is tight and corresponds to the singleton
degenerate set Sd = {x∗(θ), .., x∗(θ)} = {x∗(θ)}. This solution is problematic since T (Sd) = Sd

and has EVOI of zero. However, under RNL, QI with sampling initialization avoids this fixed point
provably by construction, always leading to a query set with positive EVOI.

Complexity of one iteration of QI is O(nk + lk), i.e., linear in the number of options, exactly like
Greedy. However, in practice it is much faster than Greedy since typically k << l. While we have
no theoretical results that limit the iterations required by QI to converge, in practice, a fixed point is
reached in very quickly (see below).

Evaluation We compare the strategies above empirically on choice problems with random user
utility functions using both noiseless and noisy response models.5

Bayesian inference is realized by a Monte Carlo method with importance sampling (particle weights
are determined by applying the response model to observed responses). To overcome the problem of
particle degeneration (most particles eventually have low or zero weight), we use slice-sampling [18]
to regenerate particles w.r.t. to the response-updated belief state θ whenever the effective number of
samples drops significantly (50000 particles were used in the simulations). Figure 1(a) shows the
average loss of our strategies in an apartment rental dataset, with 187 outcomes, each character-
ized by 10 attributes (either numeric or categorical with domain sizes 2–6), when asking pairwise
comparison queries with noiseless responses. We note that greedy performs almost as well as exact
optimization, and the optimal item is found in roughly 10–15 queries. Query iteration performs
reasonably well when initialized with sampling, but poorly with random seeds.

3This is 75% for comparison queries (k = 2) and at worst 63% (as k → ∞).
4A practical speedup can be achieved by maintaining a priority queue of outcomes sorted by their potential

EUS-contribution (monotonically decreasing due to submodularity). When choosing the item to add to the set,
we only need to evaluate a few outcomes at the top of the queue (lazy evaluation).

5Utility priors are mixtures of 3 Gaussians with µ = U [0, 10] and σ = µ/3 for each component.
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In the second experiment, we consider the Boston Housing dataset with 506 items (1 binary and
13 continous attributes) and a logistic noise model for responses with γ = 1. We compare the
greedy and QI strategies (exact methods are impractical on problems of this size) in Figure 1(b);
we also consider a hybrid greedy(EUS,NL) strategy that optimizes “assuming” noiseless responses,
but is evaluated using the true response model RL. QI(sampling) is more efficient when using TNL

instead of TL and this is the version plotted. Overall these experiments show that (greedy or exact)
maximization of EUS is able to find optimal—or near-optimal when responses are noisy—query
sets. Finally, we compare query optimization times on the two datasets in the following table:

exactEPU exactEUS greedy(EPU,L) QI(greedy(EUS,L)) greedy(EUS,L) greedy(EUS,NL) QI(sampling) QI(rand)

n=30, k=2 47.3s 10.3s 1.5s 0.76s 0.65s 0.12s 0.11s 0.11s

n=187, k=2 1815s 405s 9.19s 2.07s 1.97s 1.02s 0.15s 0.17s

n=187, k=4 - 10000s 39.7s 7.89s 7.71s 1.86s 0.16s 0.19s

n=187, k=6 - - 87.1s 15.7s 15.4s 2.55s 0.51s 0.64s

n=506, k=2 - - 14.6s 4.09s 3.99s 0.93s 0.05s 0.06s

n=506, k=4 - - 64.9s 15.4s 15.2s 1.12s 0.08s 0.10s

n=506, k=6 - - 142s 32.9s 32.8s 1.53s 0.09s 0.13s

Among our strategies, QI is certainly most efficient computationally, and is best suited to large
outcome spaces. Interestingly, QI is often faster with sampling initialization than with random
initialization because it needs fewer iteration on average before convergence (3.1 v.s. 4.0).

6 Conclusions

We have provided a novel analysis of set-based recommendations in Bayesian recommender sys-
tems, and have shown how it is offers a tractable means of generating myopically optimal or near-
optimal choice queries for preference elicitation. We examined several user response models, show-
ing that optimal recommendation sets are EVOI-optimal queries under noiseless and constant noise
models; and that they are near-optimal under the logistic/Luce-Sheppard model (both theoretically
and practically). We stress that our results are general and do not depend on the specific implemen-
tation of Bayesian update, nor on the specific form of the utility function. Our greedy strategies—
exploiting submodularity of EUS computation—perform very well in practice and have theoretical
approximation guarantees. Finally our experimental results demonstrate that query iteration, a sim-
ple local search strategy, is especially well-situated to large decision spaces.

A number of important directions for future research remain. Further theoretical and practical in-
vestigation of local search strategies such as query iteration is important. Another direction is the
development of strategies for Bayesian recommendation and elicitation in large-scale configuration
problems, e.g., where outcomes are specified by a CSP, and for sequential decision problems (such
as MDPs with uncertain rewards). Finally, we are interested in elicitation strategies that combine
probabilistic and regret-based models.
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