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Abstract. We develop a Bayesian approach to concept learning for crowdsourc-

ing applications. A probabilistic belief over possible concept definitions is main-

tained and updated according to (noisy) observations from experts, whose behav-

iors are modeled using discrete types. We propose recommendation techniques,

inference methods, and query selection strategies to assist a user charged with

choosing a configuration that satisfies some (partially known) concept. Our model

is able to simultaneously learn the concept definition and the types of the experts.

We evaluate our model with simulations, showing that our Bayesian strategies are

effective even in large concept spaces with many uninformative experts.

1 Introduction

Crowdsourcing is the act of outsourcing a problem to a group or a community. It is

often referred to as human computation, as human “experts” are used to solve problems

that present difficulties for algorithmic methods; examples include Amazon’s Mechan-

ical Turk, the ESP game (for image labeling), and reCaptcha (for book digitization).

Multiple human teachers, or experts, give feedback about (label) a particular problem

instance. For instance, users refer to sites such as Yahoo! Answers to ask questions

about everything from cooking recipes to bureaucratic instructions to health sugges-

tions (e.g., which ingredients do I need to make tiramisu? how do I apply for a Chinese

visa? how do I lose 20 pounds?).

As the information obtained with crowdsourcing is inherently noisy, effective strate-

gies for aggregating multiple sources of information are critical. Aggregating noisy la-

bels and controlling workflows are two problems in crowdsourcing that have recently

been addressed with principled techniques [5, 11, 4]. In this work, we address the prob-

lem of generating recommendations for a user, where recommendation quality depends

on some latent concept. The knowledge of the concept can only be refined by aggre-

gating information from noisy information sources (e.g., human experts), and the user’s

objective is to maximize the quality of her choice as measured by satisfaction of the un-

known latent concept. Achieving complete knowledge of the concept may be infeasible

due to the quality of information provided by the experts. Fortunately, complete concept

knowledge is generally unnecessary to select a satisfying instance of that concept. For

instance, to successfully make tiramisu (a type of cake), certain ingredients might be

necessary, while others may be optional. The concept c represents all possible “correct”
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recipes that are consistent with the abstract notion of the cake. A configuration or in-

stance x is a candidate recipe, and it satisfies c iff it can be used to make the cake (i.e.,

is correct). By asking various, possibly noisy, experts about particular ingredients, the

user may “learn” a recipe satisfying c without ever learning all recipes satisfying c.

Following [2], our aim is not to learn the concept definition per se; rather we want

to learn just enough about it to make a (near-)optimal decision on the user’s behalf.

By exploiting the structure of the concept, a recommender system can adopt a strategy

that queries only concept information that is relevant to the task at hand. For instance,

if the system knows that an ingredient is extremely unlikely to be used in tiramisu,

or is unlikely to be available, querying about this ingredient is unlikely to be helpful.

Finally, the system needs to select the experts whose answers are (predicted to be) as

informative as possible.

Our main contributions are 1) computational procedures to aggregate concept in-

formation (originating from noisy experts) into a probabilistic belief, 2) algorithms to

generate recommendations that maximize the likelihood of concept satisfaction and 3)

strategies to interactively select queries and experts to pose them to.

Our work is related to the model of Boutilier et al. [2, 3], who present a regret-based

framework for learning subjective features in the context of preference elicitation. Our

approach can be seen both as a Bayesian counterpart of that model, and as an extension

to the case of multiple experts.

2 Bayesian Concept Learning Approach

We consider the problem of learning a latent concept by aggregating information from

several sources called experts. Each expert may have a partial and incorrect definition

of the concept. As in traditional concept learning [10, 9], we assume an abstract concept

c is drawn from a concept class C. However, instead of trying to identify the concept

explicitly, we maintain a distribution over possible concept definitions, and update the

distribution according to the information acquired from the experts, in order to recom-

mend an instance that is highly likely to satisfy the concept.

2.1 Concepts

We consider the problem of learning an abstract boolean concept drawn from a fixed

concept class. A boolean concept c is a function {0, 1}n → {0, 1}, where {X1, . . . ,Xn}
is a set of n boolean features. A solution (goal of the learning problem) is any boolean

vector (configuration) (x1, . . . , xn) ∈ {0, 1}n for which c(x1, . . . , xn) = 1. We allow

the solution space to be restricted by feasibility constraints; below we assume linear

constraints of the type A · x ≤ B (with matrix A and vector B of the right dimen-

sions). For example, budget constraints associate a vector of costs (a1, . . . , an) with

each feature and require the total cost of a solution not to exceed the available budget b.

Throughout the paper, we restrict our focus to conjunctions [6] as the class of la-

tent concepts, although our abstract model can be extended to boolean functions in

general. A conjunctive concept c is a conjunction of literals over (some of) the atoms

X1, . . . ,Xn, e.g., c = X2 ∧¬X4 ∧X7. A conjunction c can be equivalently represented
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as an assignment (Xc
1 , . . . , X

c
n) of features X1, . . . ,Xn to the domain {T, F,DC}; in

other words Xc
i can have one of the values T (true; the literal Xi occurs in c), F (false;

the literal ¬Xi occurs in c), or DC (don’t care; the atom Xi does not occur in c). In the

above example, Xc
2=Xc

7=T , Xc
4=F , and Xc

i =DC for i ∈ {1, 3, 5, 6}.

Since the latter representation is used throughout the text, we write c = (Xc
1 , . . . , X

c
n)

and, with a slight abuse of notation, we will sometime refer to Xc
i as the “value” of fea-

ture i in concept c; we will also drop the superscript when c is clear from context. A

configuration x = (x1, . . . , xn) yields c(x) = 1 (we say x satisfies c) iff (i) xi = 1 for

each i such that the literal Xi occurs in c (Xc
i =T ), and (ii) xi = 0 for each i such that

the literal ¬Xi occurs in c (Xc
i =F ).

Because the concept is unknown, the system maintains a beliefP (c) = P (Xc
1 , . . . , X

c
n).

We assume some prior distribution over concepts. It is sometimes convenient to reason

with the marginal probabilities, P (Xi), representing the distribution over feature i, i.e.,

P (Xi = T ), P (Xi = F ), and P (Xi =DC); for convenience, we write these terms as

P (Ti), P (Fi), and P (DCi), respectively.

2.2 Query Types

The system acquires information about the concept by posing queries to a set of experts.

These concept queries can be of different forms (e.g., membership, equivalence, super-

set, or subset queries [1]) and their answers partition the hypothesis space. For instance,

a membership query asks whether a given configuration x satisfies the concept (e.g.,

“Is this a valid recipe for tiramisu?”). Membership queries can be too cognitively de-

manding for a crowd-sourcing domain, as an expert would have to verify every problem

feature to check whether the provided instance is satisfied. Thus, in this work we focus

on literal queries, a special form of superset queries. A literal query qi on feature i asks

for the value of Xi; possible answers to the query are T , F , or DC.4 Literal queries

can be thought of as requests for a piece of information such as “Are eggs needed for

tiramisu?”. Query strategies for selecting literal queries are discussed in Section 4.5

2.3 Expert Types

In practice, experts do not always provide correct answers. Hence we assume that ex-

perts belong to different populations or types from a set T = {t1, . . . , tk}. The type

of an expert represents the expert’s capacity and commitment to correctly answering

queries about the concept (or aspects thereof). For instance, as in [4], types might dis-

criminate “good” or knowledgeable experts, whose answers are likely to be correct,

from “bad” experts, whose answers are drawn randomly. Our model generalizes to any

number of types.

We indicate the assignments of types to experts with a vector θ = (θ1, . . . , θm),
where θj ∈ T is the type of expert j. A further natural assumption is that experts are

4 Alternatively, one could ask queries such as “Is Xi positive in the concept definition?” Adapt-

ing our model to such queries is straightforward.
5 Notice that literal queries cannot be answered unambiguously in general since dependencies

may exist; but the value of a literal in a conjunctive concept is independent of the value of any

other literal.
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Fig. 1. Abstract model for learning an unknown concept from mutiple noisy experts.

noisy and provide feedback with respect to their subjective definition of the concept.

In other words, we assume that there exists one underlying (true) concept definition

ĉ = (X1, . . . , Xn), but each expert’s response is based on its own subjective concept

cj = (Xj
1 , . . . , X

j
n). When a query q

j
i on feature i is posed to expert j, the expert re-

veals its subjective value X
j
i for that feature (either T, F or DC). Subjective concepts

are distributed, in turn, according to a generative model P (cj |ĉ, θj), given expert type

θj and true concept ĉ. For example, an “uninformed” expert may have a subjective con-

cept that is probabilistically independent of ĉ, while an “informed” expert may have a

concept that is much more closely aligned with ĉ with high probability. In our experi-

ments below, we assume a factored model P (Xj
i |Xi, θ

j). Moreover, since we always

ask about a specific literal, we call this distribution the response model, as it specifies

the probability of expert responses as a function of their type. This supports Bayesian

inference about the concept given expert answers to queries (note that we do not assume

expert types are themselves observed; inference is also used to estimate a distribution

over types).

The graphical model for the general case is shown in Figure 1. In Figure 2 we show

the model for conjunctions with 3 features and 2 experts; the subjective concept cj of

expert j ∈ {1, 2} is composed of X
j
1 , X

j
2 and X

j
3 .

As queries provide only “noisy” information about the true concept ĉ, the system

cannot fully eliminate hypotheses from the version space given expert responses. To

handle concept uncertainty, the system maintains a distribution or belief P (c) over con-

cept definitions, as well as a distribution over expert types P (θ). Both distributions are

updated whenever queries are answered.
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Fig. 2. Graphical model for Bayesian learning of conjunctions: 3 features, 2 experts.

Beliefs about the true concept and expert subjective concepts will generally be cor-

related, as will beliefs about the types of different experts. Intuitively, if two experts

consistently give similar answers, we expect them to be of the same type. When we

acquire additional evidence about the type of one expert, this evidence affects our be-

lief about the type of the other expert as well. Thus, when new evidence e is acquired,

the joint posterior P (c, θ|e) cannot be decomposed into independent marginals over c

and the θj , since c and θ are not generally independent. Similarly, new evidence about

feature Xi might change one’s beliefs about types, and therefore influence beliefs about

another feature Xj . We discuss the impact of such dependence on inference below.

2.4 Decision Making

The system needs to recommend a configuration x = (x1, . . . , xn) ⊆ {0, 1}n that

is likely to satisfy the concept (e.g., a recipe for tiramisu), based on the current belief

P (c). A natural approach is to choose a configurationx∗ that maximizes the a posteriori

probability of concept satisfaction (MAPSAT) according to the current belief: x∗ ∈
argmaxx P (c(x)).

Exact maximization typically requires enumerating all possible configurations and

concept definitions. Since this is not feasible, we consider the marginalized belief over

concept features and optimize, as a surrogate, the product of probabilities of the individ-

ual features satisfying the configuration: P (c(x)) ≈ P̃ (c(x)) =
∏

i P (ci(xi)), where

ci is the restriction of concept c to feature i. In this way, optimization without feasibil-

ity or budget constraints can be easily handled. For each feature i, we choose xi = 1
whenever P (Ti) ≥ P (Fi), and choose xi = 0 otherwise.

However, in the presence of feasibility constraints, we cannot freely choose to set

attributes in order to maximize the probability of concept satisfaction. We show how,

using a simple reformulation, this can be solved as an integer program. Let p+i =
P (Ti) + P (DCi) be the probability that setting xi = 1 is consistent with the concept

definition for the i-th feature; similarly let p−i = P (Fi) + P (DCi) be the probability

that setting xi = 0 is consistent. Then the probability of satisfying the i-th feature is
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P (ci(xi)) = p+i xi + p−i (1 − xi). The overall (approximated) probability of concept

satisfaction can be written as:

P (c(x)) ≈
∏

1≤i≤n

p
+
i xi + p

−
i (1− xi) =

∏

1≤i≤n

(p+i )
xi

∏

1≤i≤n

(p−i )
(1−xi) (1)

The latter form is convenient because we can linearize the expression by applying

logarithms. To obtain the feasible configuration x∗ maximizing the probability of satis-

faction, we solve the following integer program (the known term has been simplified):

max
x1,...,xn

∑

1≤i≤n

[log(p+i )− log(p−i )] · xi (2)

s.t. A · x ≤ B (3)

x ∈ {0, 1}n (4)

3 Inference

When a query is answered by some expert, the system needs to update its beliefs. Let

e
j
i represent the evidence (query response) that expert j offers about feature i. Using

Bayes’ rule, we update the probability of the concept: P (c|eji ) ∝ P (eji |c)P (c). Since

the type θj of expert j is also uncertain, inference requires particular care. We con-

sider below several strategies for inference. When discussing their complexity, we let n

denote the number of features, m the number of experts, and k the number of types.

Exact Inference Exact inference is intractable for all but the simplest concepts. A naive
implementation of exact inference would be exponential in both the number of features
and the number of experts. However, inference can be made more efficient by exploiting
the independence in the graphical model. Expert types are mutually independent given
concept c: P (θ|c) =

∏
1≤j≤m P (θj |c). This means that each concept can be “safely”

associated with a vector of m probabilities P (θ1|c), . . . , P (θm|c), one for each expert.
For a concept space defined over n features, we explicitly represent the 3n possible
concept definitions, each associated with a matrix (of dimension m by k) representing
P (θ|c). The probability of a concept is updated by multiplying the likelihood of the

evidence and renormalizing: P (c|eji ) ∝ P (eji |c)P (c). As the queries we consider are

local (i.e., only refer to a single feature), the likelihood P (eji |c) of c is

P (eji |c) =
∑

t∈T

P (eji |θ
j = t,X

c
i )P (θj = t|c), (5)

where Xc
i is the value of c for feature Xi. The vector (P (θ1|c, eji ), . . . , P (θm|c, eji ))

is updated similarly. The overall complexity of this approach to exact inference is

O(3nmk). Since the number of experts m is usually much larger than the number of

features n, exact inference is feasible for small concept spaces, in practice, those with

up to 5–10 features. In our implementation, exact inference with n = 8 and m = 100
requires 1–2 seconds per query.
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Naive Bayes This approach to inference makes the strong assumption that Xi and θj

are mutually conditionally independent. This allows us to factor the concept distribution
into marginals over features: P (X1), . . . , P (Xn); similarly beliefs about experts are

represented as P (θ1), . . . , P (θm). The likelihoodP (eji |Xi) of an answer to a query can

be related to P (eji |θ
j , Xi) (the response model) by marginalization over the possible

types of expert j: P (eji |Xi) =
∑

v∈{t1,t2,...}
P (eji |θ

j = v,Xi)P (θj = v|Xi). We write the

expression for the updated belief about Xi given evidence as follows:6

P (Xi|e
j
i ) =

P (eji |Xi)P (Xi)

P (eji )
(6)

=

∑
t∈T P (eji |Xi, θ

j= t)P (θj, Xi)
∑

z∈{T,F,DC}

∑
t∈T P (eji |Xi=z, θj= t)P (θj, Xi)

(7)

We update belief P (Xi) using current type beliefs P (θ1), . . . , P (θm). Our strong
independence assumption allows simplification of Eq. 7:

P (Xi|e
j
i ) =

∑
t∈T P (eji |Xi, θ

j= t)P (θj= t)
∑

z

∑
t′
P (eji |Xi=z, θj = t′)P (θj= t′)P (Xi=z)

P (Xi) (8)

Similarly, for beliefs about types we have:

P (θj |eji ) =

∑
z
P (eji |Xk = z, θj)P (Xi = z)

∑
z′

∑
t
P (eji |Xi = z′, θj = t)P (θj)P (Xi = z′)

P (θj) (9)

This approximation is crude, but performs well in some settings. Moreover, with space

complexity O(n+m) and time complexity O(nm), it is very efficient.

Monte Carlo This approximate inference technique maintains a set of l particles, each

representing a specific concept definition, using importance sampling. As with exact

inference, we can factor beliefs about types. The marginal probability P (Xi) that a

given feature is true in the concept is approximated by the fraction of the particles

in which Xi is true (marginalization over types is analogous). Whenever queries are

answered, the set of particles is updated recursively with a resampling scheme. Each

particle is weighted by the likelihood of the concept definition associated with that

particle when evidence euk is observed (the higher the likelihood, the higher the chance

of resampling). Formally, the expression of the likelihood of a particle is analogous to

the case of exact inference, but we only consider a limited number of possible concepts.

Monte Carlo has O(lmk) complexity; hence, it is more expensive than Naive Bayes but

much less expensive than exact inference.

4 Query Strategies

We now present elicitation strategies for selecting queries. Each strategy is a combina-

tion of methods that, given the current beliefs about the concept and the types: i) selects

6 Using Naive Bayes, we only update concept beliefs about Xi, the feature we asked about.

Similarly, for types, we only update relative to θj , the expert that answered the query.
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a feature to ask about; and ii) selects the expert to ask. Expert selection depends on the

semantics of the types; here, as in [4], we assume experts are either “knowledgeable”

(type t1) or “ignorant” (type t2). As a baseline, we consider two inefficient strategies

for comparison purposes: (i) broadcast iterates over the features and, for each, asks the

same query to a fixed number of experts; and (ii) dummy asks random queries of ran-

dom experts; both baselines simply recommend solutions based on the most frequent

answers received, without any optimization w.r.t. beliefs about concept satisfaction.

Feature Selection We consider three strategies aimed at directly reducing concept un-

certainty. The maximum entropy (or maxent) strategy selects the feature whose probabil-

ity distribution over {T, F,DC} has the greatest entropy. Unfortunately, this measure

treats being uncertain between a T and F as the same as being uncertain between T and

DC. The minval strategy selects the feature Xf with the lowest probability of “getting

it right:” that is, f = argmini{max(p+i , p
−
i )} is viewed as the feature with the great-

est potential for improvement. Each feature is “scored” using the probability, given our

current beliefs, that the best guess for its feature value will match the true concept.

The intention is to reduce the uncertainty that most hinders the chance of satisfying

the concept. Finally, queries can be evaluated with respect to their capacity to improve

decision quality using value of information [8]. Value of information can be optimized

myopically or non myopically [7]. As there are m experts and n features, brute force

maximization of myopic value of information would require considering mn queries,

and for each performing the necessary Bayesian updates. We optimize expected value

of perfect information (EVPI); as shown below, this criterion can be computed using the

current belief without expensive Bayesian updates. In this setting, EVPI measures the

expected gain in the quality of a decision should we have access to perfect information

about a particular feature. In other words, given an oracle able to provide the actual

value (T, F or DC) of a feature, which should we ask about? The value of querying

feature Xi is:7

EVPI i =
∑

z∈{T,F,DC}

P (Xi=z)max
x

P (c(x)|Xi=z). (10)

Since we aim to select queries quickly, we also consider Naive EVPI, whereP (c(x)|Xi)
is approximated by the product of the probabilities of satisfying each feature.

Observation 1 In unconstrained problems, the feature selected with the minval heuris-

tic strategy is identical to that selected by maximum Naive EVPI.

A proof is provided in the appendix. It relies on the fact that, without feasibil-

ity constraints, one can optimize features independently. For the more general case,

given feature i, we define x+i = argmaxx∈X:xi=1 P (c(x)) to be the optimal con-

figuration among those where feature i is true; we define x−i analogously. We write

the approximate satisfaction probabilities as P̃ (c(x+i)) = p+i · p+i
6=i, where p+i

6=i =
∏

j 6=i P (cj(x
+i)), and P̃ (c(x−i)) = p−i · p−i

6=i.

7 We consider each possible response (T, F or DC) by the oracle, the recommended configuration

conditioned to the oracle’s answer, and weight the results using the probability of the oracle’s

response.
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Observation 2 Naive EVPI can readily be computed using the current belief:

EVPI i = P (Ti)p
+i
6=i + P (Fi)p

−i
6=i + P (DCi) ·max{p+i

6=i, p
−i
6=i}

A proof is provided in the appendix. From this observation it follows that ifP (DCi)=
0 (i.e., we know that a feature is either true or false in the concept definition), then

EVPI i = P̃ (c(x+i)) + P̃ (c(x−i)). The most informative feature is the feature i that

maximizes the sum of the probabilities of concept satisfaction of x+i and x−i. This, in

particular, is true when one considers a concept space where “don’t care” is not allowed.

Naive EVPI query maximization is generally very efficient. As the current best con-

figuration x∗ will coincide with either x+i or x−i for any feature i, it requires only n+1
MAPSAT-optimizations and n evaluations of EVPI using Observation 2. Its computa-

tional complexity is not affected by the number of experts m.

Expert Selection For a given feature, the greedy strategy selects the expert with the

highest probability of giving an informative answer (i.e., the one with the highest prob-

ability of having type t1). It is restricted to never ask the the same expert about the same

feature, which would be useless in our model. However, there can be value in posing

a query to an expert other than that predicted to be most “knowledgeable” because we

may learn more about the types of other experts. The soft max heuristic accomplishes

this by selecting an expert j according to a Boltzmann distribution eP (θj =t1)/τ
∑

r eP (θr =t1)/τ with

“temperature” τ , so that experts that are more likely to be of type t1 are queried more

often.

Combined Selection There can be value in jointly choosing the feature and expert to

ask as a pair. We consider strategies inspired by work on multi-armed bandit prob-

lems [12], which strives to resolve the tradeoff between exploration and exploitation.

In our setting, we use the term exploitation to refer to strategies such as EVPI that try

to directly learn more about the concept in question; in exploitation mode, we select

experts greedily. We use the term exploration to refer to strategies such as soft max,

whose goal is to learn more about expert types; in exploration mode, we select the fea-

ture we are most certain about because it will provide the most information about any

given expert’s type. The explore-exploit strategy embodies this tradeoff. We first gen-

erate the pair (i, j), where Xi is the feature that maximizes EVPI and j is the expert

chosen greedily as above. We then use our current belief P (θj) about j’s type to switch

between exploitation and exploration: (a) we sample j’s type using our belief P (θj);
(b) if the sampled type is t1 (knowledgeable), we pose query q

j
i (exploitation); (c) oth-

erwise, we generate a new pair (i′, j′), where i′ is the index of the feature we are most

certain about and expert j′ is chosen using soft max, and pose query q
j′

i′ (exploration).

In practice this method is more effective using a Boltzmann distribution over types; in

the experiments below we “exploit” with probability 0.5 + 0.5 eP (θj=t1)/τ

eP (θj=t1)/τ+eP (θj=t2)/τ
.

5 Experiments

We experimented with the query strategies described in Section 4 by comparing their ef-

fectiveness on randomly generated configuration problems and concepts. Queries posed
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Fig. 3. Simulation with 5 features, 100 experts (20% knowledgeable experts); 300 runs.

to simulated experts, each with a type and a subjective concept drawn from a prior dis-

tribution.8 At any stage, each strategy recommends a configuration (decision) based

on the current belief and selects the next query to ask; we record whether the current

configuration satisfies the true concept.

The concept prior (which is available to the recommender system) is sampled using

independent Dirichlet priors for each feature; this represents cases where prior knowl-

edge is available about which features are most likely to be involved (either positively

or negatively) in the concept. A strategy is a combination of: an inference method; a

heuristic for selecting queries (feature and expert); and a method for making recom-

mendations (either MAPSAT or Most Popular, the latter a heuristic that recommends

each configuration feature based on the most common response from the experts).

Our results below show that good recommendations can be offered with very limited

concept information. Furthermore, our decision-theoretic heuristics generate queries

that allow a concept-satisfying recommendation to be found quickly (i.e., with rela-

tively few expert queries). In the first experiment (see Figure 3), we consider a setting

with 5 features and 100 experts, and compare all methods for Bayesian inference (Exact,

8 The type is either “knowledgeable” or “ignorant.” We define probabilities for subjective con-

cept definitions such that 70% of the time, knowledgeable experts reveal the true value of a

particular feature (i.i.d. over different features), and a true T value is reported to be DC with

higher probability than is F (0.2 and 0.1, respectively; and the values are symmetric when T

and F are interchanged). Ignorant experts are uniformative (in expectation): each feature of the

subjective concept is given a value T, F, and DC sampled i.i.d. from a random multinomial, the

latter is drawn from a Dirichlet prior Dir(4,4,4) once for each run of the simulation. Since an

expert’s answers are consistent with its subjective concept, repeating a query to some expert

has no value.
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Fig. 4. MAPSAT vs Most Popular (5 features, 100 experts, 30% knowledgeable, 300 runs).

Naive and Monte Carlo with 100 particles). All three methods generate queries using

minval (to select features) and greedy (to select experts). We also include broadcast

and dummy. Only 20% of the experts are knowledgeable, which makes the setting very

challenging, but potentially realistic in certain crowdsourcing domains. Nonetheless

our Bayesian methods identify a satisfactory configuration relatively quickly. While the

exact method performs best, naive inference is roughly as effective as the more compu-

tationally demanding Monte Carlo strategy, and both provide good approximations to

Exact in terms of recommendation quality. Dummy and broadcast perform poorly; one

cannot expect to make good recommendations by using a simple “majority rule” based

on answers to poorly selected queries. In a similar setting with a different proportion

of informative experts, we show that MAPSAT outperforms Most Popular for choosing

the current recommendation also when used with exact inference (Figure 4).9

In the next experiment, we consider a much larger concept space with 30 boolean

variables (Figure 5). In this more challenging setting, exact inference is intractable;

so we use naive Bayes for inference and compare heuristics for selecting features for

queries. Minval is most effective, though maxent and random perform reasonably well.

Finally we evaluate heuristics for selecting experts (random, greedy and softmax)

and the combined strategy (explore-exploit) in the presence of budget constraints. Each

feature is associated with a cost ai uniformly distributed between 1 and 10; this cost is

only incurred when setting a feature as positive (e.g., when buying an ingredient); the

available budget b is set to 0.8 ·
∑

i ai.

Figure 6 shows that the explore-exploit strategy is very effective, outperforming the

other strategies. This suggests that our combined method balances exploration (ask-

ing queries in order to learn more about the types of experts) and exploitation (asking

queries of the expert predicted to be most knowledgeable) in an appropriate fashion.

9 As our heuristics only ask queries that are relevant, recommendations made by the Most Pop-

ular strategy are relatively good in this case.
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Fig. 5. Evaluation of feature selection methods in a larger concept space (30 features; 50% knowl-

edgeable; 500 runs).

Interestingly, Naive(EVPI,greedy,MAPSAT), while using the same underlying heuristic

for selecting features as Naive(explore-exploit,MAPSAT), asks very useful queries ini-

tially, but after approximately 50-60 queries begins to underperform the explore-exploit

method: it never explicitly asks queries aimed at improving its knowledge about the

types of experts. Although the number of queries posed in these results may seem large,

it is important to realize that they are posed of different experts: a single expert is asked

at most n queries, with most experts asked only 1 or 2 queries. Figure 7 shows a his-

togram of the number of queries posed to each expert by the explore-exploit method

in this last experiment. At the extremes we see that 34 experts are asked just a single

query, while only 3 experts are asked 20 queries. Indeed, only 9 experts are asked more

than 10 queries.

6 Discussion and Future Work

We have presented a probabilistic framework for learning concepts from noisy experts

in a crowdsourcing setting, with an emphasis on learning just enough about the concept

to support the identification of a positive concept instance with high probability. We

described methods for making recommendations given uncertain concept information

and how to determine the most “relevant” queries. Since experts are noisy, our methods

acquire indirect information about their reliability by aggregating their responses to

form a distribution over expert types. Our experiments showed the effectiveness of our

query strategies and our methods for inference and recommendations, even in large

concept spaces, with many uninformative experts, and even when “good” experts are

noisy.



Learning Complex Concepts using Crowdsourcing: A Bayesian Approach 13

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

number of queries

c
o

n
c
e

p
t 

s
a

ti
s
fa

c
ti
o

n
 (

a
v
g

)

 

 

Naive(EVPI, random, MAPSAT)

Naive(EVPI, softmax, MAPSAT)

Naive(EVPI, greedy, MAPSAT)

Naive(ExploreExploit, MAPSAT)

Fig. 6. Evaluation of expert selection methods (20 features; 20% of experts are knowledgeable;

500 runs).

The are many interesting future directions. Development of practical applications

and validation with user studies is of critical importance. While we have focused on

conjunctive concepts in this paper, we believe our model can be extended to more gen-

eral concept classes. Special care, however, must be taken in developing several key

aspects of such an extended model, including: the exact semantics of queries; the repre-

sentation of the concept distribution; and inference over types and concepts. We are also

interested in game-theoretic extensions of the model that allow (some or all) experts to

provide responses that reflect their self-interest (e.g., by guiding a recommender system

to specific products) and in adopting inference methods that can learn the hyperparam-

eters without relying on the availability of informative priors.

Further investigation of query selection strategies is important. Our strategies incor-

porate notions from the multi-armed bandit literature, including means of addressing

the exploration-exploitation tradeoff, a connection we would like to develop further.

We are currently exploring a formulation of the query selection problem as a Markov

decision process, which will allow sequential optimal query selection. Principled meth-

ods for query optimization in preference elicitation [13] could also provide valuable

insights in this domain.

Our model values configurations based on their probability of satisfying the con-

cept (i.e., assuming binary utility for concept satisfaction). Several other utility models

can be considered. For instance, we might define utility as a sum of some concept-

independent reward for a configuration—reflecting user preferences over features that

are independent of the latent concept—plus an additional reward for concept satisfac-

tion (as in [2, 3]). One could also consider cases in which it is not known with certainty

which features are available: the problem of generating recommendations under both

concept and availability uncertainty would be of tremendous interest.
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7 Appendix

Proof of Observation 1: Assume we ask the oracle about feature i. Let p∗j = max(p+j , p
−
j )

for any feature j. The optimal configuration x∗ in the updated belief given the oracle’s response

is such that x∗ = argmaxx
∏

i
P (ci(x)|Xi = v), where v (either T ,F or DC) is the oracle’s

response. Since there are no constraints, it can be optimized independently for the different fea-

tures. Feature i of the optimal configuration x∗
i will necessarily be set to 1 or 0 in a way consistent

with v (in case of DC, either is equivalent) and we are sure that x∗
i satisfies feature i; all other

features j will be set according to p∗j . The (approximated) probability of concept satisfaction is:

max
x

∏

j

P (cj(x)|Xi=v) =
∏

j 6=i

max(p+j , p
−
j ) =

∏

j 6=i

p
∗
j = p

∗
6=i. (11)

Therefore, EV PIi =
∑

v=T,F,DC
P (Xi = v) ·p∗6=i = p∗6=i. The argument follows from observ-

ing that i = argmax p∗6=i iff i = argmin p∗i .

Proof of Observation 2: Note that x+i and x−i are the optimal configurations in the posterior

beliefs P (c|Xi = T ) and P (c|Xi = F ) respectively. In the case that the oracle’s answer is

DC (“don’t care”) then the optimal configuration is either x+i or x−i depending on which of

the two gives higher probability of satisfying all features beside i. The argument follows from

Equation 10.


