Learning Complex Concepts using Crowdsourcing: A Bayesian Approach

Paolo Viappiani¹, Sandra Zilles², Howard J. Hamilton², and Craig Boutilier³

- ¹ Department of Computer Science, Aalborg University, Denmark
- ² Department of Computer Science, University of Regina, Canada
- ³ Department of Computer Science, University of Toronto, Canada

Abstract. We develop a Bayesian approach to concept learning for crowdsourcing applications. A probabilistic belief over possible concept definitions is maintained and updated according to (noisy) observations from experts, whose behaviors are modeled using discrete types. We propose recommendation techniques, inference methods, and query selection strategies to assist a user charged with choosing a configuration that satisfies some (partially known) concept. Our model is able to simultaneously learn the concept definition and the types of the experts. We evaluate our model with simulations, showing that our Bayesian strategies are effective even in large concept spaces with many uninformative experts.

1 Introduction

Crowdsourcing is the act of outsourcing a problem to a group or a community. It is often referred to as *human computation*, as human "experts" are used to solve problems that present difficulties for algorithmic methods; examples include Amazon's Mechanical Turk, the ESP game (for image labeling), and *reCaptcha* (for book digitization). Multiple human teachers, or experts, give feedback about (label) a particular problem instance. For instance, users refer to sites such as Yahoo! Answers to ask questions about everything from cooking recipes to bureaucratic instructions to health suggestions (e.g., which ingredients do I need to make tiramisu? how do I apply for a Chinese visa? how do I lose 20 pounds?).

As the information obtained with crowdsourcing is inherently noisy, effective strategies for aggregating multiple sources of information are critical. Aggregating noisy labels and controlling workflows are two problems in crowdsourcing that have recently been addressed with principled techniques [5, 11, 4]. In this work, we address the problem of generating recommendations for a user, where recommendation quality depends on some latent concept. The knowledge of the concept can only be refined by aggregating information from noisy information sources (e.g., human experts), and the user's objective is to maximize the quality of her choice as measured by satisfaction of the unknown latent concept. Achieving *complete* knowledge of the concept may be infeasible due to the quality of information provided by the experts. Fortunately, complete concept knowledge is generally unnecessary to select a satisfying instance of that concept. For instance, to successfully make tiramisu (a type of cake), certain ingredients might be necessary, while others may be optional. The concept *c* represents all possible "correct" 2 Paolo Viappiani, Sandra Zilles, Howard J. Hamilton, and Craig Boutilier

recipes that are consistent with the abstract notion of the cake. A configuration or instance x is a candidate recipe, and it satisfies c iff it can be used to make the cake (i.e., is correct). By asking various, possibly noisy, experts about particular ingredients, the user may "learn" a recipe satisfying c without ever learning *all* recipes satisfying c.

Following [2], our aim is not to learn the concept definition *per se*; rather we want to learn just enough about it to make a (near-)optimal decision on the user's behalf. By exploiting the structure of the concept, a recommender system can adopt a strategy that queries only concept information that is relevant to the task at hand. For instance, if the system knows that an ingredient is extremely unlikely to be used in tiramisu, or is unlikely to be available, querying about this ingredient is unlikely to be helpful. Finally, the system needs to select the experts whose answers are (predicted to be) as informative as possible.

Our main contributions are 1) computational procedures to aggregate concept information (originating from noisy experts) into a probabilistic belief, 2) algorithms to generate recommendations that maximize the likelihood of concept satisfaction and 3) strategies to interactively select queries and experts to pose them to.

Our work is related to the model of Boutilier et al. [2, 3], who present a regret-based framework for learning subjective features in the context of preference elicitation. Our approach can be seen both as a Bayesian counterpart of that model, and as an extension to the case of multiple experts.

2 Bayesian Concept Learning Approach

We consider the problem of learning a latent concept by aggregating information from several sources called *experts*. Each expert may have a partial and incorrect definition of the concept. As in traditional concept learning [10, 9], we assume an abstract concept c is drawn from a concept class C. However, instead of trying to identify the concept explicitly, we maintain a distribution over possible concept definitions, and update the distribution according to the information acquired from the experts, in order to recommend an instance that is highly likely to satisfy the concept.

2.1 Concepts

We consider the problem of learning an abstract boolean concept drawn from a fixed concept class. A boolean concept c is a function $\{0, 1\}^n \rightarrow \{0, 1\}$, where $\{\mathcal{X}_1, \ldots, \mathcal{X}_n\}$ is a set of n boolean features. A *solution* (goal of the learning problem) is any boolean vector (configuration) $(x_1, \ldots, x_n) \in \{0, 1\}^n$ for which $c(x_1, \ldots, x_n) = 1$. We allow the solution space to be restricted by feasibility constraints; below we assume linear constraints of the type $A \cdot x \leq B$ (with matrix A and vector B of the right dimensions). For example, *budget constraints* associate a vector of costs (a_1, \ldots, a_n) with each feature and require the total cost of a solution not to exceed the available budget b.

Throughout the paper, we restrict our focus to conjunctions [6] as the class of latent concepts, although our abstract model can be extended to boolean functions in general. A conjunctive concept c is a conjunction of literals over (some of) the atoms $\mathcal{X}_1, \ldots, \mathcal{X}_n$, e.g., $c = \mathcal{X}_2 \land \neg \mathcal{X}_4 \land \mathcal{X}_7$. A conjunction c can be equivalently represented

as an assignment (X_1^c, \ldots, X_n^c) of features $\mathcal{X}_1, \ldots, \mathcal{X}_n$ to the domain $\{T, F, DC\}$; in other words X_i^c can have one of the values T (true; the literal \mathcal{X}_i occurs in c), F (false; the literal $\neg \mathcal{X}_i$ occurs in c), or DC (don't care; the atom \mathcal{X}_i does not occur in c). In the above example, $X_2^c = X_7^c = T$, $X_4^c = F$, and $X_i^c = DC$ for $i \in \{1, 3, 5, 6\}$.

Since the latter representation is used throughout the text, we write $c = (X_1^c, \ldots, X_n^c)$ and, with a slight abuse of notation, we will sometime refer to X_i^c as the "value" of feature *i* in concept *c*; we will also drop the superscript when *c* is clear from context. A configuration $x = (x_1, \ldots, x_n)$ yields c(x) = 1 (we say *x* satisfies *c*) iff (i) $x_i = 1$ for each *i* such that the literal \mathcal{X}_i occurs in $c(X_i^c = T)$, and (ii) $x_i = 0$ for each *i* such that the literal $\neg \mathcal{X}_i$ occurs in $c(X_i^c = F)$.

Because the concept is unknown, the system maintains a belief $P(c) = P(X_1^c, ..., X_n^c)$. We assume some prior distribution over concepts. It is sometimes convenient to reason with the marginal probabilities, $P(X_i)$, representing the distribution over feature *i*, i.e., $P(X_i = T)$, $P(X_i = F)$, and $P(X_i = DC)$; for convenience, we write these terms as $P(T_i)$, $P(F_i)$, and $P(DC_i)$, respectively.

2.2 Query Types

The system acquires information about the concept by posing queries to a set of experts. These concept queries can be of different forms (e.g., membership, equivalence, superset, or subset queries [1]) and their answers partition the hypothesis space. For instance, a membership query asks whether a given configuration x satisfies the concept (e.g., *"Is this a valid recipe for tiramisu?"*). Membership queries can be too cognitively demanding for a crowd-sourcing domain, as an expert would have to verify every problem feature to check whether the provided instance is satisfied. Thus, in this work we focus on *literal* queries, a special form of *superset queries*. A literal query q_i on feature i asks for the value of X_i ; possible answers to the query are T, F, or DC.⁴ Literal queries can be thought of as requests for a piece of information such as "Are eggs needed for tiramisu?". Query strategies for selecting literal queries are discussed in Section 4.⁵

2.3 Expert Types

In practice, experts do not always provide correct answers. Hence we assume that experts belong to different populations or *types* from a set $\mathcal{T} = \{t_1, \ldots, t_k\}$. The type of an expert represents the expert's capacity and commitment to correctly answering queries about the concept (or aspects thereof). For instance, as in [4], types might discriminate "good" or knowledgeable experts, whose answers are likely to be correct, from "bad" experts, whose answers are drawn randomly. Our model generalizes to any number of types.

We indicate the assignments of types to experts with a vector $\theta = (\theta^1, \dots, \theta^m)$, where $\theta^j \in \mathcal{T}$ is the type of expert j. A further natural assumption is that experts are

⁴ Alternatively, one could ask queries such as "Is X_i positive in the concept definition?" Adapting our model to such queries is straightforward.

⁵ Notice that literal queries cannot be answered unambiguously in general since dependencies may exist; but the value of a literal in a conjunctive concept is independent of the value of any other literal.

Fig. 1. Abstract model for learning an unknown concept from mutiple noisy experts.

noisy and provide feedback with respect to their subjective definition of the concept. In other words, we assume that there exists one underlying (true) concept definition $\hat{c} = (X_1, \ldots, X_n)$, but each expert's response is based on its own subjective concept $c^j = (X_1^j, \ldots, X_n^j)$. When a query q_i^j on feature *i* is posed to expert *j*, the expert reveals its subjective value X_i^j for that feature (either T, F or DC). Subjective concepts are distributed, in turn, according to a generative model $P(c^j | \hat{c}, \theta^j)$, given expert type θ^j and true concept \hat{c} . For example, an "uninformed" expert may have a subjective concept that is probabilistically independent of \hat{c} , while an "informed" expert may have a concept that is much more closely aligned with \hat{c} with high probability. In our experiments below, we assume a factored model $P(X_i^j | X_i, \theta^j)$. Moreover, since we always ask about a specific literal, we call this distribution the *response model*, as it specifies the probability of expert responses as a function of their type. This supports Bayesian inference about the concept given expert answers to queries (note that we do not assume expert types).

The graphical model for the general case is shown in Figure 1. In Figure 2 we show the model for conjunctions with 3 features and 2 experts; the subjective concept c^j of expert $j \in \{1, 2\}$ is composed of X_1^j, X_2^j and X_3^j .

As queries provide only "noisy" information about the true concept \hat{c} , the system cannot fully *eliminate* hypotheses from the version space given expert responses. To handle concept uncertainty, the system maintains a distribution or *belief* P(c) over concept definitions, as well as a distribution over expert types $P(\theta)$. Both distributions are updated whenever queries are answered.

Fig. 2. Graphical model for Bayesian learning of conjunctions: 3 features, 2 experts.

Beliefs about the true concept and expert subjective concepts will generally be correlated, as will beliefs about the types of different experts. Intuitively, if two experts consistently give similar answers, we expect them to be of the same type. When we acquire additional evidence about the type of one expert, this evidence affects our belief about the type of the other expert as well. Thus, when new evidence e is acquired, the joint posterior $P(c, \theta | e)$ cannot be decomposed into independent marginals over c and the θ^j , since c and θ are not generally independent. Similarly, new evidence about feature X_i might change one's beliefs about types, and therefore influence beliefs about another feature X_j . We discuss the impact of such dependence on inference below.

2.4 Decision Making

The system needs to recommend a configuration $x = (x_1, \ldots, x_n) \subseteq \{0, 1\}^n$ that is likely to satisfy the concept (e.g., a recipe for tiramisu), based on the current belief P(c). A natural approach is to choose a configuration x^* that maximizes the *a posteriori* probability of concept satisfaction (MAPSAT) according to the current belief: $x^* \in \arg \max_x P(c(x))$.

Exact maximization typically requires enumerating all possible configurations and concept definitions. Since this is not feasible, we consider the marginalized belief over concept features and optimize, as a surrogate, the product of probabilities of the individual features satisfying the configuration: $P(c(x)) \approx \tilde{P}(c(x)) = \prod_i P(c_i(x_i))$, where c_i is the restriction of concept c to feature i. In this way, optimization without feasibility or budget constraints can be easily handled. For each feature i, we choose $x_i = 1$ whenever $P(T_i) \geq P(F_i)$, and choose $x_i = 0$ otherwise.

However, in the presence of feasibility constraints, we cannot freely choose to set attributes in order to maximize the probability of concept satisfaction. We show how, using a simple reformulation, this can be solved as an integer program. Let $p_i^+ = P(T_i) + P(DC_i)$ be the probability that setting $x_i = 1$ is consistent with the concept definition for the *i*-th feature; similarly let $p_i^- = P(F_i) + P(DC_i)$ be the probability that setting $x_i = 0$ is consistent. Then the probability of satisfying the *i*-th feature is $P(c_i(x_i)) = p_i^+ x_i + p_i^- (1 - x_i)$. The overall (approximated) probability of concept satisfaction can be written as:

$$P(c(x)) \approx \prod_{1 \le i \le n} p_i^+ x_i + p_i^- (1 - x_i) = \prod_{1 \le i \le n} (p_i^+)^{x_i} \prod_{1 \le i \le n} (p_i^-)^{(1 - x_i)}$$
(1)

The latter form is convenient because we can linearize the expression by applying logarithms. To obtain the feasible configuration x^* maximizing the probability of satisfaction, we solve the following integer program (the known term has been simplified):

$$\max_{x_1,...,x_n} \sum_{1 \le i \le n} [log(p_i^+) - log(p_i^-)] \cdot x_i$$
(2)

s.t.
$$A \cdot x \le B$$
 (3)

$$x \in \{0,1\}^n \tag{4}$$

3 Inference

When a query is answered by some expert, the system needs to update its beliefs. Let e_i^j represent the evidence (query response) that expert j offers about feature i. Using Bayes' rule, we update the probability of the concept: $P(c|e_i^j) \propto P(e_i^j|c)P(c)$. Since the type θ^j of expert j is also uncertain, inference requires particular care. We consider below several strategies for inference. When discussing their complexity, we let n denote the number of features, m the number of experts, and k the number of types.

Exact Inference Exact inference is intractable for all but the simplest concepts. A naive implementation of exact inference would be exponential in both the number of features and the number of experts. However, inference can be made more efficient by exploiting the independence in the graphical model. Expert types are mutually independent given concept c: $P(\theta|c) = \prod_{1 \le j \le m} P(\theta^j | c)$. This means that each concept can be "safely" associated with a vector of m probabilities $P(\theta^1 | c), \ldots, P(\theta^m | c)$, one for each expert. For a concept space defined over n features, we explicitly represent the 3^n possible concept definitions, each associated with a matrix (of dimension m by k) representing $P(\theta|c)$. The probability of a concept is updated by multiplying the likelihood of the evidence and renormalizing: $P(c|e_i^j) \propto P(e_i^j | c)P(c)$. As the queries we consider are *local* (i.e., only refer to a single feature), the likelihood $P(e_i^j | c)$ of c is

$$P(e_{i}^{j}|c) = \sum_{t \in \mathcal{T}} P(e_{i}^{j}|\theta^{j} = t, X_{i}^{c}) P(\theta^{j} = t|c),$$
(5)

where X_i^c is the value of c for feature \mathcal{X}_i . The vector $(P(\theta^1|c, e_i^j), \ldots, P(\theta^m|c, e_i^j))$ is updated similarly. The overall complexity of this approach to exact inference is $O(3^n mk)$. Since the number of experts m is usually much larger than the number of features n, exact inference is feasible for small concept spaces, in practice, those with up to 5–10 features. In our implementation, exact inference with n = 8 and m = 100 requires 1–2 seconds per query.

Naive Bayes This approach to inference makes the strong assumption that X_i and θ^j are mutually conditionally independent. This allows us to factor the concept distribution into marginals over features: $P(X_1), \ldots, P(X_n)$; similarly beliefs about experts are represented as $P(\theta^1), \ldots, P(\theta^m)$. The likelihood $P(e_i^j|X_i)$ of an answer to a query can be related to $P(e_i^j|\theta^j, X_i)$ (the response model) by marginalization over the possible types of expert $j: P(e_i^j|X_i) = \sum_{v \in \{t_1, t_2, \ldots\}} P(e_i^j|\theta^j = v, X_i)P(\theta^j = v|X_i)$. We write the expression for the updated belief about X_i given evidence as follows:⁶

$$P(X_{i}|e_{i}^{j}) = \frac{P(e_{i}^{j}|X_{i})P(X_{i})}{P(e_{i}^{j})}$$
(6)

$$= \frac{\sum_{t \in \mathcal{T}} P(e_i^j | X_i, \theta^j = t) P(\theta^j, X_i)}{\sum_{z \in \{T, F, DC\}} \sum_{t \in \mathcal{T}} P(e_i^j | X_i = z, \theta^j = t) P(\theta^j, X_i)}$$
(7)

We update belief $P(X_i)$ using current type beliefs $P(\theta^1), \ldots, P(\theta^m)$. Our strong independence assumption allows simplification of Eq. 7:

$$P(X_{i}|e_{i}^{j}) = \frac{\sum_{t \in \mathcal{T}} P(e_{i}^{j}|X_{i}, \theta^{j} = t) P(\theta^{j} = t)}{\sum_{z} \sum_{t'} P(e_{i}^{j}|X_{i} = z, \theta^{j} = t') P(\theta^{j} = t') P(X_{i} = z)} P(X_{i})$$
(8)

Similarly, for beliefs about types we have:

$$P(\theta^{j}|e_{i}^{j}) = \frac{\sum_{z} P(e_{i}^{j}|X_{k} = z, \theta^{j}) P(X_{i} = z)}{\sum_{z'} \sum_{t} P(e_{i}^{j}|X_{i} = z', \theta^{j} = t) P(\theta^{j}) P(X_{i} = z')} P(\theta^{j})$$
(9)

This approximation is crude, but performs well in some settings. Moreover, with space complexity O(n+m) and time complexity O(nm), it is very efficient.

Monte Carlo This approximate inference technique maintains a set of l particles, each representing a specific concept definition, using importance sampling. As with exact inference, we can factor beliefs about types. The marginal probability $P(X_i)$ that a given feature is true in the concept is approximated by the fraction of the particles in which X_i is true (marginalization over types is analogous). Whenever queries are answered, the set of particles is updated recursively with a resampling scheme. Each particle is weighted by the likelihood of the concept definition associated with that particle when evidence e_k^u is observed (the higher the likelihood, the higher the chance of resampling). Formally, the expression of the likelihood of a particle is analogous to the case of exact inference, but we only consider a limited number of possible concepts. Monte Carlo has O(lmk) complexity; hence, it is more expensive than Naive Bayes but much less expensive than exact inference.

4 Query Strategies

We now present elicitation strategies for selecting queries. Each strategy is a combination of methods that, given the current beliefs about the concept and the types: i) selects

⁶ Using Naive Bayes, we only update concept beliefs about X_i , the feature we asked about. Similarly, for types, we only update relative to θ^j , the expert that answered the query.

Paolo Viappiani, Sandra Zilles, Howard J. Hamilton, and Craig Boutilier

8

a feature to ask about; and ii) selects the expert to ask. Expert selection depends on the semantics of the types; here, as in [4], we assume experts are either "knowledgeable" (type t_1) or "ignorant" (type t_2). As a baseline, we consider two inefficient strategies for comparison purposes: (i) *broadcast* iterates over the features and, for each, asks the same query to a fixed number of experts; and (ii) *dummy* asks random queries of random experts; both baselines simply recommend solutions based on the most frequent answers received, without any optimization w.r.t. beliefs about concept satisfaction.

Feature Selection We consider three strategies aimed at directly reducing concept uncertainty. The maximum entropy (or maxent) strategy selects the feature whose probability distribution over $\{T, F, DC\}$ has the greatest entropy. Unfortunately, this measure treats being uncertain between a T and F as the same as being uncertain between T and DC. The *minval* strategy selects the feature \mathcal{X}_f with the lowest probability of "getting it right:" that is, $f = \arg\min_i \{\max(p_i^+, p_i^-)\}$ is viewed as the feature with the greatest potential for improvement. Each feature is "scored" using the probability, given our current beliefs, that the best guess for its feature value will match the true concept. The intention is to reduce the uncertainty that most hinders the chance of satisfying the concept. Finally, queries can be evaluated with respect to their capacity to improve decision quality using value of information [8]. Value of information can be optimized myopically or non myopically [7]. As there are m experts and n features, brute force maximization of myopic value of information would require considering mn queries, and for each performing the necessary Bayesian updates. We optimize *expected value* of perfect information (EVPI); as shown below, this criterion can be computed using the current belief without expensive Bayesian updates. In this setting, EVPI measures the expected gain in the quality of a decision should we have access to perfect information about a particular feature. In other words, given an oracle able to provide the actual value (T, F or DC) of a feature, which should we ask about? The value of querying feature X_i is:⁷

$$EVPI_{i} = \sum_{z \in \{T, F, DC\}} P(X_{i} = z) \max_{x} P(c(x) | X_{i} = z).$$
(10)

Since we aim to select queries quickly, we also consider *Naive EVPI*, where $P(c(x)|X_i)$ is approximated by the product of the probabilities of satisfying each feature.

Observation 1 In unconstrained problems, the feature selected with the minval heuristic strategy is identical to that selected by maximum Naive EVPI.

A proof is provided in the appendix. It relies on the fact that, without feasibility constraints, one can optimize features independently. For the more general case, given feature *i*, we define $x^{+i} = \arg \max_{x \in X: x_i=1} P(c(x))$ to be the optimal configuration among those where feature *i* is true; we define x^{-i} analogously. We write the approximate satisfaction probabilities as $\tilde{P}(c(x^{+i})) = p_i^+ \cdot p_{\neq i}^{+i}$, where $p_{\neq i}^{+i} = \prod_{j \neq i} P(c_j(x^{+i}))$, and $\tilde{P}(c(x^{-i})) = p_i^- \cdot p_{\neq i}^{-i}$.

⁷ We consider each possible response (T, F or DC) by the oracle, the recommended configuration conditioned to the oracle's answer, and weight the results using the probability of the oracle's response.

Observation 2 Naive EVPI can readily be computed using the current belief:

$$EVPI_{i} = P(T_{i})p_{\neq i}^{+i} + P(F_{i})p_{\neq i}^{-i} + P(DC_{i}) \cdot \max\{p_{\neq i}^{+i}, p_{\neq i}^{-i}\}$$

A proof is provided in the appendix. From this observation it follows that if $P(DC_i) = 0$ (i.e., we know that a feature is either true or false in the concept definition), then $EVPI_i = \tilde{P}(c(x^{+i})) + \tilde{P}(c(x^{-i}))$. The most informative feature is the feature *i* that maximizes the sum of the probabilities of concept satisfaction of x^{+i} and x^{-i} . This, in particular, is true when one considers a concept space where "don't care" is not allowed.

Naive EVPI query maximization is generally very efficient. As the current best configuration x^* will coincide with either x^{+i} or x^{-i} for any feature *i*, it requires only n+1MAPSAT-optimizations and *n* evaluations of EVPI using Observation 2. Its computational complexity is not affected by the number of experts *m*.

Expert Selection For a given feature, the *greedy* strategy selects the expert with the highest probability of giving an informative answer (i.e., the one with the highest probability of having type t_1). It is restricted to never ask the the same expert about the same feature, which would be useless in our model. However, there can be value in posing a query to an expert other than that predicted to be most "knowledgeable" because we may learn more about the types of other experts. The *soft max* heuristic accomplishes this by selecting an expert *j* according to a Boltzmann distribution $\frac{e^{P(\theta^j = t_1)/\tau}}{\sum_r e^{P(\theta^r = t_1)/\tau}}$ with "temperature" τ , so that experts that are more likely to be of type t_1 are queried more often.

Combined Selection There can be value in jointly choosing the feature and expert to ask as a pair. We consider strategies inspired by work on multi-armed bandit problems [12], which strives to resolve the tradeoff between *exploration* and *exploitation*. In our setting, we use the term exploitation to refer to strategies such as EVPI that try to directly learn more about the concept in question; in exploitation mode, we select experts greedily. We use the term exploration to refer to strategies such as soft max, whose goal is to learn more about expert types; in exploration mode, we select the feature we are most certain about because it will provide the most information about any given expert's type. The *explore-exploit* strategy embodies this tradeoff. We first generate the pair (i, j), where \mathcal{X}_i is the feature that maximizes EVPI and j is the expert chosen greedily as above. We then use our current belief $P(\theta^j)$ about j's type to switch between exploitation and exploration: (a) we sample j's type using our belief $P(\theta^j)$; (b) if the sampled type is t_1 (knowledgeable), we pose query q_i^j (exploitation); (c) otherwise, we generate a new pair (i', j'), where i' is the index of the feature we are most certain about and expert j' is chosen using soft max, and pose query $q_{i'}^{j'}$ (exploration). In practice this method is more effective using a Boltzmann distribution over types; in the experiments below we "exploit" with probability $0.5 + 0.5 \frac{e^{P(\theta^j = t_1)/\tau}}{e^{P(\theta^j = t_1)/\tau + e^{P(\theta^j = t_2)/\tau}}}$.

5 Experiments

We experimented with the query strategies described in Section 4 by comparing their effectiveness on randomly generated configuration problems and concepts. Queries posed

Fig. 3. Simulation with 5 features, 100 experts (20% knowledgeable experts); 300 runs.

to simulated experts, each with a type and a subjective concept drawn from a prior distribution.⁸ At any stage, each strategy recommends a configuration (decision) based on the current belief and selects the next query to ask; we record whether the current configuration satisfies the true concept.

The concept prior (which is available to the recommender system) is sampled using independent Dirichlet priors for each feature; this represents cases where prior knowledge is available about which features are most likely to be involved (either positively or negatively) in the concept. A *strategy* is a combination of: an inference method; a heuristic for selecting queries (feature and expert); and a method for making recommendations (either MAPSAT or *Most Popular*, the latter a heuristic that recommends each configuration feature based on the most common response from the experts).

Our results below show that good recommendations can be offered with very limited concept information. Furthermore, our decision-theoretic heuristics generate queries that allow a concept-satisfying recommendation to be found quickly (i.e., with relatively few expert queries). In the first experiment (see Figure 3), we consider a setting with 5 features and 100 experts, and compare all methods for Bayesian inference (Exact,

⁸ The type is either "knowledgeable" or "ignorant." We define probabilities for subjective concept definitions such that 70% of the time, knowledgeable experts reveal the true value of a particular feature (i.i.d. over different features), and a true T value is reported to be DC with higher probability than is F (0.2 and 0.1, respectively; and the values are symmetric when T and F are interchanged). Ignorant experts are uniformative (in expectation): each feature of the subjective concept is given a value T, F, and DC sampled i.i.d. from a random multinomial, the latter is drawn from a Dirichlet prior Dir(4,4,4) once for each run of the simulation. Since an expert's answers are consistent with its subjective concept, repeating a query to some expert has no value.

Fig. 4. MAPSAT vs Most Popular (5 features, 100 experts, 30% knowledgeable, 300 runs).

Naive and Monte Carlo with 100 particles). All three methods generate queries using minval (to select features) and greedy (to select experts). We also include broadcast and dummy. Only 20% of the experts are knowledgeable, which makes the setting very challenging, but potentially realistic in certain crowdsourcing domains. Nonetheless our Bayesian methods identify a satisfactory configuration relatively quickly. While the exact method performs best, naive inference is roughly as effective as the more computationally demanding Monte Carlo strategy, and both provide good approximations to Exact in terms of recommendation quality. Dummy and broadcast perform poorly; one cannot expect to make good recommendations by using a simple "majority rule" based on answers to poorly selected queries. In a similar setting with a different proportion of informative experts, we show that MAPSAT outperforms Most Popular for choosing the current recommendation also when used with exact inference (Figure 4).⁹

In the next experiment, we consider a much larger concept space with 30 boolean variables (Figure 5). In this more challenging setting, exact inference is intractable; so we use naive Bayes for inference and compare heuristics for selecting features for queries. *Minval* is most effective, though maxent and random perform reasonably well.

Finally we evaluate heuristics for selecting experts (random, greedy and softmax) and the combined strategy (explore-exploit) in the presence of budget constraints. Each feature is associated with a cost a_i uniformly distributed between 1 and 10; this cost is only incurred when setting a feature as positive (e.g., when buying an ingredient); the available budget b is set to $0.8 \cdot \sum_i a_i$.

Figure 6 shows that the explore-exploit strategy is very effective, outperforming the other strategies. This suggests that our combined method balances exploration (asking queries in order to learn more about the types of experts) and exploitation (asking queries of the expert predicted to be most knowledgeable) in an appropriate fashion.

⁹ As our heuristics only ask queries that are relevant, recommendations made by the Most Popular strategy are relatively good in this case.

Fig. 5. Evaluation of feature selection methods in a larger concept space (30 features; 50% knowledgeable; 500 runs).

Interestingly, *Naive*(*EVPI*, *greedy*, *MAPSAT*), while using the same underlying heuristic for selecting features as *Naive*(*explore-exploit*, *MAPSAT*), asks very useful queries initially, but after approximately 50-60 queries begins to underperform the explore-exploit method: it never explicitly asks queries aimed at improving its knowledge about the types of experts. Although the number of queries posed in these results may seem large, it is important to realize that they are posed of different experts: a single expert is asked at most n queries, with most experts asked only 1 or 2 queries. Figure 7 shows a histogram of the number of queries posed to each expert by the explore-exploit method in this last experiment. At the extremes we see that 34 experts are asked just a single query, while only 3 experts are asked 20 queries. Indeed, only 9 experts are asked more than 10 queries.

6 Discussion and Future Work

We have presented a probabilistic framework for learning concepts from noisy experts in a crowdsourcing setting, with an emphasis on learning just enough about the concept to support the identification of a positive concept instance with high probability. We described methods for making recommendations given uncertain concept information and how to determine the most "relevant" queries. Since experts are noisy, our methods acquire indirect information about their reliability by aggregating their responses to form a distribution over expert types. Our experiments showed the effectiveness of our query strategies and our methods for inference and recommendations, even in large concept spaces, with many uninformative experts, and even when "good" experts are noisy.

Fig. 6. Evaluation of expert selection methods (20 features; 20% of experts are knowledgeable; 500 runs).

The are many interesting future directions. Development of practical applications and validation with user studies is of critical importance. While we have focused on conjunctive concepts in this paper, we believe our model can be extended to more general concept classes. Special care, however, must be taken in developing several key aspects of such an extended model, including: the exact semantics of queries; the representation of the concept distribution; and inference over types and concepts. We are also interested in game-theoretic extensions of the model that allow (some or all) experts to provide responses that reflect their self-interest (e.g., by guiding a recommender system to specific products) and in adopting inference methods that can learn the hyperparameters without relying on the availability of informative priors.

Further investigation of query selection strategies is important. Our strategies incorporate notions from the multi-armed bandit literature, including means of addressing the exploration-exploitation tradeoff, a connection we would like to develop further. We are currently exploring a formulation of the query selection problem as a Markov decision process, which will allow *sequential* optimal query selection. Principled methods for query optimization in preference elicitation [13] could also provide valuable insights in this domain.

Our model values configurations based on their probability of satisfying the concept (i.e., assuming binary utility for concept satisfaction). Several other utility models can be considered. For instance, we might define utility as a sum of some conceptindependent reward for a configuration—reflecting user preferences over features that are independent of the latent concept—plus an additional reward for concept satisfaction (as in [2, 3]). One could also consider cases in which it is not known with certainty which features are available: the problem of generating recommendations under both concept and availability uncertainty would be of tremendous interest.

Fig. 7. Distribution of the number of queries posed to experts.

References

- 1. Dana Angluin. Queries and concept learning. Machine Learning, 2:319-342, 1988.
- Craig Boutilier, Kevin Regan, and Paolo Viappiani. Online feature elicitation in interactive optimization. In *Proceedings of the Twenty-sixth International Conference on Machine Learning (ICML-09)*, pages 73–80, Montreal, 2009.
- Craig Boutilier, Kevin Regan, and Paolo Viappiani. Simultaneous elicitation of preference features and utility. In *Proceedings of the Twenty-fourth AAAI Conference on Artificial Intelligence (AAAI-10)*, pages 1160–1167, Atlanta, 2010.
- Shuo Chen, Jianwen Zhang, Guangyun Chen, and Changshui Zhang. What if the irresponsible teachers are dominating? In *Proceedings of the Twenty-fourth AAAI Conference on Artificial Intelligence (AAAI-10)*, pages 419–424, Atlanta, 2010.
- Peng Dai, Mausam, and Daniel S. Weld. Decision-theoretic control of crowd-sourced workflows. In Proceedings of the Twenty-fourth AAAI Conference on Artificial Intelligence (AAAI-10), pages 1168–1174, Atlanta, 2010.
- David Haussler. Learning conjunctive concepts in structural domains. *Machine Learning*, 4:7–40, 1989.
- David Heckerman, Eric Horvitz, and Blackford Middleton. An approximate nonmyopic computation for value of information. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 15(3):292–298, 1993.
- 8. Ronald Howard. Information value theory. *IEEE Transactions on Systems Science and Cybernetics*, 2(1):22–26, 1966.
- Michael J. Kearns and Ming Li. Learning in the presence of malicious errors. SIAM Journal on Computing, 22:807–837, 1993.
- Tom M. Mitchell. Version spaces: A candidate elimination approach to rule learning. In Proceedings of the Fifth International Joint Conference on Artificial Intelligence (IJCAI-77), pages 305–310, Cambridge, 1977.
- Dafna Shahaf and Eric Horvitz. Generalized task markets for human and machine computation. In *Proceedings of the Twenty-fourth AAAI Conference on Artificial Intelligence* (AAAI-10), pages 986–993, Atlanta, 2010.

- 12. Richard S. Sutton and Andrew G. Barto. *Reinforcement Learning: An Introduction*. MIT Press, Cambridge, MA, 1998.
- Paolo Viappiani and Craig Boutilier. Optimal Bayesian recommendation sets and myopically optimal choice query sets. In *Advances in Neural Information Processing Systems 23 (NIPS)*, pages 2352–2360, Vancouver, 2010.

7 Appendix

Proof of Observation 1: Assume we ask the oracle about feature *i*. Let $p_j^* = \max(p_j^+, p_j^-)$ for any feature *j*. The optimal configuration x^* in the updated belief given the oracle's response is such that $x^* = \arg \max_x \prod_i P(c_i(x)|X_i = v)$, where *v* (either *T*, *F* or *DC*) is the oracle's response. Since there are no constraints, it can be optimized independently for the different features. Feature *i* of the optimal configuration x_i^* will necessarily be set to 1 or 0 in a way consistent with *v* (in case of *DC*, either is equivalent) and we are sure that x_i^* satisfies feature *i*; all other features *j* will be set according to p_j^* . The (approximated) probability of concept satisfaction is:

$$\max_{x} \prod_{j} P(c_{j}(x)|X_{i}=v) = \prod_{j \neq i} \max(p_{j}^{+}, p_{j}^{-}) = \prod_{j \neq i} p_{j}^{*} = p_{\neq i}^{*}.$$
 (11)

Therefore, $EVPI_i = \sum_{v=T,F,DC} P(X_i = v) \cdot p_{\neq i}^* = p_{\neq i}^*$. The argument follows from observing that $i = \arg \max p_{\neq i}^*$ iff $i = \arg \min p_i^*$.

Proof of Observation 2: Note that x^{+i} and x^{-i} are the optimal configurations in the posterior beliefs $P(c|X_i = T)$ and $P(c|X_i = F)$ respectively. In the case that the oracle's answer is DC ("don't care") then the optimal configuration is either x^{+i} or x^{-i} depending on which of the two gives higher probability of satisfying all features beside *i*. The argument follows from Equation 10.