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Abstract

We consider the mechanism design problem for agents with single-peaked preferences
over multi-dimensional domains when multiple alternatives can be chosen. Facility
location and committee selection are classic embodiments of this problem. We pro-
pose a class of percentile mechanisms, a form of generalized median mechanisms,
that are (group) strategy-proof, and derive worst-case approximation ratios for so-
cial cost and maximum load for L1 and L2 cost models. More importantly, we
propose a sample-based framework for optimizing the choice of percentiles relative
to any prior distribution over preferences, while maintaining strategy-proofness. Our
empirical investigations, using social cost and maximum load as objectives, demon-
strate the viability of this approach and the value of such optimized mechanisms
vis-à-vis mechanisms derived through worst-case analysis.

1 Introduction

Mechanism design deals with design of protocols to elicit the preferences of self-interested
agents so as to achieve a certain social objective. An important property of mechanisms
is strategy-proofness, which requires that agents have no incentive to misreport their pref-
erences to the mechanism. While payments are often used to ensure that mechanisms are
strategy-proof [23, 6, 11], in many settings payments are infeasible and restrictions on pref-
erences are required. The simple but elegant class of single-peaked preferences is one such
example: roughly speaking, each agent has a single, most-preferred point in the alternative
space and alternatives become less preferred as they are moved away from that point. In
such settings, choosing a single alternative can be accomplished in a strategy-proof fashion
using the famous median mechanism [4] and its generalizations [18, 1]. Such models are
used frequently for modeling political choice, facility location, and other problems. They
also have potential applications in areas such as in the design of a family of products,
customer segmentation, and related tasks, as we discuss below.

Unfortunately, such mechanisms are efficient (e.g., w.r.t. social cost) only in very limited
circumstances. Furthermore, allowing the choice of multiple alternatives (e.g., multiple
facilities) generally causes even these limited guarantees to evaporate. In response, authors
have begun to address the question of approximate mechanism design without money [19],
which focuses on the design of strategy-proof mechanisms for problems such as multi-facility
location that are approximately efficient (i.e., have good approximation ratios) [19, 15, 10].
This work provides some positive results, but is generally restricted to settings involving
two facilities (alternatives) and L2 (Euclidean) preferences.

In this paper, we propose percentile mechanisms—a special case of generalized median
mechanisms [2, 1], but in a more general fashion. Specifically: (a) we consider selection of
multiple alternatives (e.g., multi-facility location) in a multi-dimensional alternative space;
(b) we address both social cost and maximum load as performance metrics; and (c) we
analyze our mechanisms relative to L1 (Manhattan) and L2 (Euclidean) preferences. Our
first contribution is the analysis of the approximation ratios of various percentile mechanisms
under various assumptions. The performance guarantees of such mechanisms under worst-
case assumptions are quite discouraging (much like previous results above).



Indeed, designing mechanisms that have the best possible worst-case guarantees may
lead to poor performance in practice. Our second contribution is the development of a
sample-based empirical framework for the optimization of percentile mechanisms relative to
a known preference distribution. In most realistic applications of mechanism design, such as
facility location, product design, and many others, the designer will have some knowledge
of the preferences of participating agents. Assuming this takes the form of a distribution
over preference profiles, we use profiles sampled from this distribution to optimize the choice
of percentiles. Since the result is a percentile mechanism, strategy-proofness is maintained.
Our empirical results demonstrate that, by exploiting probabilistic domain knowledge, we
obtain strategy-proof mechanisms that outperform mechanisms designed to guard against
worst-case profiles. Our framework can be viewed, conceptually, as a form of automated
mechanism design (AMD), which advocates the use of preference (or type) distributions to
optimize mechanisms [7, 20].

2 Preliminaries

In this section, we introduce our model along with required concepts, notation, and moti-
vation, and then briefly discuss a selection of related work.

2.1 The Social Choice Problem

In a standard social choice setting, we must select an outcome o from an outcome set O,
where each of agents i ∈ N = {1, 2, . . . , n} has a preference over O. Agent preferences are
represented by (weak) total order over O, or in a more precise way by a utility function. In
our setting, we focus on the m-dimensional, q-facility location problem (or (m, q)-problems):
we must choose q points or locations in an m-dimensional space Rm (or some bounded
subspace thereof) to place facilities. Outcomes are then location vectors of the form x =
(x1, . . . , xq), with xj ∈ Rm (for j ≤ q). Each agent i has a type ti denoting the cost
associated with any location x ∈ Rm: we write ci(x, ti) to denote this real-valued cost. Given
an outcome x, i will use the location that has least cost, hence ci(x, ti) = minj≤q ci(xj , ti).

Facility location can be interpreted literally, and naturally models the placement of q
facilities (e.g., warehouses in a supply chain, public facilities such as parks, etc.) in some
geographic space. Agents will then use the least cost (or “closest”) facility. However,
many other choice problems fit within this class. Voting is one example [4, 1]: we can
think of political candidates as being ordered along several dimensions (e.g., stance on the
environment, health care, fiscal policy)—voters have preferences over points in this space—
and one must elect q representatives to a committee or legislative body. In product design,
a vendor may launch a family q new, related products, each described by an m-dimensional
feature vector, with consumer preferences over these options leading them to select their
most preferred. This also can serve as a form of customer segmentation.

In facility location problems and the other settings discussed above, it is natural to
assume agent preferences are single-peaked. Intuitively, this means the agent has a single
“ideal” location, and its cost for any chosen location increases as it “moves away from”
this ideal. Formally, we don’t need a distance metric, only a strict ordering on alternatives
in each dimension, which is used to define a betweenness relation. Let || · ||1 denote the
L1-norm.

Definition 1 [2] An agent i’s preference on m-dimensional space Rm is single-peaked if
there exists a most preferred alternative τ(ti) such that, ∀α, β ∈ Rm satisfying ||τ(ti)−β||1 =
||τ(ti)− α||1 + ||α− β||1, we have ci(α, ti) ≤ ci(β, ti).



Single-peaked preferences require that if a point α lies within the “bounding box” of
τ(ti) and β, then α is at least as preferred as β. Intuitively, as we move farther away from
i’s ideal location τ(ti) we can reach α via some path before we reach β. Note that this
requirement does not restrict i’s relative preference for α and β if neither lies within the
other’s bounding box (w.r.t. τ(ti)).

An agent’s ideal location τ(ti) does not fully determine its preference, even if it is single-
peaked. Despite this, we will equate an agent’s type ti with its ideal location (for reasons
that become clear below). However, within the class of single-peaked preferences, we can
adopt specific cost functions that are fully determined by the ideal location ti. Often distance
metrics are used, and we consider both L1 (Manhattan) and L2 (Euclidean) distances below.
Specifically, we define distance-based cost functions for i as follows:

cpi (x, ti) = min
j≤q
||ti − xj ||p (1)

where p ∈ {1, 2} reflects either L1 or L2 distance from i’s nearest facility. We use xp[i; x] to
denote i’s closest facility in the location vector x under the Lp-norm.

The aim in facility location is to select a set of q facilities that minimize some social
objective. One natural objective is to minimize social cost (SC) given type profile t, where
social cost (relative to some norm p) is given by:

SCp(x, t) =
∑
i

cpi (x, ti) (2)

Alternatively, we could try to balance the load by ensuring no facility is used by too many
agents. Define the load on facility j given outcome x and type profile t as lpj (x, t) =
|{i|xp[i; x] = j}|. We wish to minimize the maximum load (ML), which is defined as:

MLp(x, t) = max
j
lpj (x, t). (3)

This objective makes sense, for instance, when a product designer launches a family of q
new products, consumers purchase the product closest to their ideal product, but costs are
minimized by balancing production; or when facility management costs increase superlin-
early with load. Many other fundamental social objectives, such as fairness (e.g., maximum
agent distance), and combinations thereof can be adopted depending on one’s design goals.

2.2 Mechanisms

The goal of mechanism design is to construct mechanisms that (possibly indirectly) elicit
information about agent preferences so that an outcome choice can be made that achieves
some social objective. We consider direct mechanisms in which agents are asked to reveal
their types, and an outcome is chosen based on the revealed types. In the facility location
with single-peaked preferences, we consider mechanisms that ask agents to declare their
ideal locations, then select an outcome x: that is, a mechanism M is a function f that maps
a declared type profile t into an outcome f(t) ∈ (Rm)q (i.e., q m-dimensional alternatives).

A mechanism f is strategy-proof (or truthful) if:1

ci(f(ti, t−i), ti) ≤ ci(f(t′i, t−i), ti), ∀i, ti, t′i, t−i

In other words, f is strategy-proof if no agent can obtain a better outcome by misreporting
its true type (ideal location). Group strategy-proofness is defined similarly, but requires that

1We use strategy-proof to refer to dominant strategy incentive compatibility (participation is assured in
our settings).



no group of agents S ⊆ N can misreport their types, in a coordinated fashion, so that the
outcome is better for at least one i ∈ S, and no worse for any i ∈ S.

While the ideal is to design strategy-proof mechanisms that achieve some social objective,
such as minimizing social cost, this is not always feasible. In (1, 1)-facility location problems,
if agent preferences are single-peaked, the median mechanism, which selects the median of all
reported ideal locations, is (group) strategy-proof [4, 18] and minimizes social cost if agent
preferences are all determined under a suitable distance metric (such as L1). However, when
one moves to even just two facilities, strategy-proofness and efficiency are incompatible, as
demonstrated by Procaccia and Tennenholtz [19]. They propose the study of approximate
mechanisms to handle such situations: mechanisms that are strategy-proof and come as
close as possible to achieving the social objective (e.g., minimizing social cost). Formally:

Definition 2 A mechanism f has an approximation ratio ε w.r.t. social objective C if:

C(f(t), t) ≤ ε ·min
x
C(x, t).

We refer to such a mechanism as ε-optimal w.r.t. objective C (or ε-efficient when considering
social cost/welfare). When minimizing social cost, we assume the number of agents is greater
than the number of facilities (otherwise, we can trivially locate facilities at each agent’s ideal
to obtain a (group) strategy-proof, efficient mechanism). Notice that our mechanisms are
non-imposing : once facilities are selected, agents are free to choose their favourite (otherwise,
one can trivially minimize ML by assigning agents to facilities in an arbitrary balanced way).

2.3 Related Work

Black [4] first proposed the median mechanism for (1, 1)-facility location, showing it to be
strategy-proof for single-peaked preferences. Moulin [18] proposed a generalized median
scheme (allowing phantom peaks) that he proved to be the unique class of (anonymous)
strategy-proof mechanisms for such preferences. Barberà et al. [2] later generalized this
class of mechanisms further using coalitional systems and provided a characterization result
for (m, 1)-problems. We refer to this class as m-dimensional generalized median schemes.
These schemes select a location by choosing its coordinates in each dimension independently
(in a “median-like” fashion).

Some work considers strategy-proof mechanisms with even more restricted preferences
and domain assumptions. Border and Jordan [5] characterize strategy-proof mechanisms in
m-dimensional spaces assuming separable star-shaped preferences (which include quadratic
preferences). As in [2], location coordinates are chosen in each dimension separately. Massó
and Moreno de Barreda [17] consider symmetric, single-peaked preferences (of which L1 and
L2 are instances), and show that a mechanism is strategy-proof iff it is a disturbed generalized
median voter schemes (which allows discontinuities). Schummer and Vohra [21] consider the
problem of choosing a location on a graph (e.g., a network) relative to an extended notion of
single-peakedness, obtaining positive results for trees, and negative results for cyclic graphs.

Recent attention has been focused on algorithmic aspects and approximation in strategy-
proof facility location when agents have L2 preferences. Procaccia and Tennenholtz [19]
study the one-dimensional problems, and provide upper and lower bounds on the approx-
imation ratio for social cost. Of interest here is their deterministic left-right mechanism,
which is (n − 1)-efficient for (1, 2)-problems. Lu et al. [15] define the (randomized) pro-
portional mechanism with an approximation ratio of 4 for general distance metrics, but
it cannot be applied for more than two facilities. Fotakis and Tzamos [10] show that a
winner-imposing variant of the proportional mechanism is strategy-proof for any number of
facilities, with an approximation ratio of 4q. Escoffier et al. [8] define the first mechanism
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Figure 1: The (0.25, 0.75)-percentile mechanism for n = 9.

for general multi-dimensional location problems, a randomized mechanism with an approx-
imation ratio of n/2, but only in the very restrictive setting where the number of agents is
exactly one more than the number of facilities.

Work on load balancing games is somewhat related, but differs in that cost functions
reflect the externalities agents impose on one another (by sharing a facility or some other
resource). Considerable research has developed price of anarchy [12, 3] and related results.
However, externalities give those models a very different character than ours.

3 Percentile Mechanisms

In this section, we introduce and analyze the class of percentile mechanisms, a special case
of m-dimensional generalized median mechanisms [2, 1].

3.1 One-dimensional Percentile Mechanisms

We begin with one-dimensional facility location problems to develop intuitions. We wish to
place q facilities, with each agent i having a single ideal location ti and single-peaked prefer-
ences. Without loss of generality, we rename the agents so their ideal locations are ordered:
t1 ≤ t2 ≤ . . . ≤ tn. A percentile mechanism is specified by a vector p = (p1, p2, . . . , pq),
where 0 ≤ p1 ≤ p2 . . . ≤ pq ≤ 1: the p-percentile mechanism locates the jth facility at the
pjth percentile of the reported ideal locations. In other words, the jth location is placed at
xj = tij , where ij = b(n− 1) · pjc+ 1.2 Intuitively, we can decompose the mechanism into
q independent rules, each locating one facility.

Example 1 We illustrate the (0.25, 0.75)-percentile mechanism for a two-facility problem
with n = 9 agents in Fig. 1. Ordering reported locations so that t1 ≤ . . . ≤ t9, the mechanism
locates the first facility at x1 = t3 (since b8 · 0.25c+ 1 = 3) and the second at x2 = t7.

The following theorem shows an important property of the mechanism:

Theorem 1 The p-percentile mechanism is (group) strategyproof for any p.

Proof: We prove the theorem for the case of q = 2 (proofs for other cases are similar).
Let S ⊆ N be a coalition of agents, x = (x1, x2) be the location vector if agents truthfully

report their ideals, and x′ = (x′1, x
′
2) be the location vector if agents in S jointly deviate

from their peaks. In addition, let ∆1 = x1−x′1 and ∆2 = x′2−x2. An important observation
is that, according to our mechanism, if either of ∆1 or ∆2 is greater or less than 0, some
agent in S must be strictly worse off. We consider four cases:

I. ∆1 ≥ 0 and ∆2 ≥ 0. Note that we can ignore the case where both ∆1 and ∆2 are 0,
since no agent in S gains by misreporting if neither facility moves. Assume, w.l.o.g.,
that ∆1 > 0 and ∆2 ≥ 0. Recall that x1 is the p1th percentile among all reported

2We could equivalently use order statistics; but the percentile formulation removes dependence on the
number of the agents in the mechanism’s specification. It is well-known that, for any fixed n, Moulin’s
phantom peaks can easily be arranged to implement any order statistic.



peaks. Hence ∆1 > 0 implies that some agent i ∈ S, with ti ≥ x1, reports a new ideal
to the left of x1. Agent i’s cost is now:

ci(x
′, ti) = min{ti − x′1, x′2 − ti} ≥ min{ti − x1, x2 − ti} = ci(x, ti)

II. ∆1 ≥ 0 and ∆2 < 0. In this case, there must be an i ∈ S, with ti ≥ x2, that reports
a new ideal to the left of x2; it’s cost is:

ci(x
′, ti) = ti − x′2 ≥ ti − x2 = ci(x, ti)

III. ∆1 < 0 and ∆2 ≥ 0. This case is completely symmetric to Case II.

IV. ∆1 < 0 and ∆2 < 0. The case is similar to Case II: There must be an i ∈ S whose
ideal is to the right of x2 but misreports to the left of x2, increasing its cost.

We conclude that our percentile mechanism is (group) strategy-proof.
Since any percentile mechanism is strategy-proof for any class of single-peaked pref-

erences, it prevents strategic manipulation even when applied to specific cost/preference
functions. Unfortunately, percentile mechanisms can give rise to poor approximation ratios
when we consider specific cost functions, specifically, L2 or L1 costs.3

Theorem 2 Let agents have L2 (equivalently, L1) preferences. Let p = (p1, p2, . . . , pq)
define a percentile mechanism M . If q ≥ 3, the approximation ratio of M w.r.t. social cost is
unbounded. The approximation ratio w.r.t maximum load is q·z, where z = max1≤j≤q(pj+1−
pj−1) (defining p0 = 0 and pq+1 = 1).

The proof is provided in a longer version of the paper, but we sketch the intuitions here
for the case of social cost.4 The key point is that for any percentile vector, we can construct
an ideal location profile in which the number of different peaks is exactly one more than the
number of facilities, and two of the peaks are arbitrarily close. The percentile mechanism
can locate one facility at each of the “close peaks,” while the optimal solution will select only
one of them. Since optimal social cost is arbitrarily small, an unbounded approximation
ratio results.

Notice that the theorem does not hold for social cost with q = 2 facilities: the left-right
mechanism, which in our terminology is the (0, 1)-percentile mechanism, has a bounded
approximation ratio of n − 1 for social cost [19]. Indeed, it is not hard to show the (0, 1)-
percentile mechanism is the only mechanism within the percentile family that has a bounded
approximation ratio. We conjecture there is no other deterministic mechanism (even outside
the percentile family) that has a bounded approximation ratio. This gives further motivation
to the use of probabilistic priors to optimize the choice of percentiles (see Sec. 4).

With respect to maximum load, it is natural to ask which percentile vector p minimizes z
in Thm. 2. We can show that the percentile mechanism that “evenly distributes” facilities is
approximately optimal, and that it has the smallest approximation ratio within the family.

Proposition 1 Let agents have L2 (equiv. L1) preferences. If q is odd, then the percentile
mechanism with pj = j

q+1 , ∀1 ≤ j ≤ q, is 2q
q+1 -optimal w.r.t. maximum load. If q is even,

then the percentile mechanism with pj = pj+1 = j+1
q+2 , ∀j = 2j′ − 1, 1 ≤ j′ ≤ q/2, is 2q

q+2 -

optimal w.r.t. maximum load.5 In each case, the mechanism has the smallest approximation
ratio within the percentile family.

3Of course, other mechanisms, beyond simple generalized medians, depending on the preference class
(e.g., disturbed median mechanisms for symmetric costs [17] like L1 and L2).

4Any omitted proofs of our main results can be found in the appendix of a longer version of this paper;
see: http://www.cs.toronto.edu/∼cebly/papers.html.

5For even q, the mechanism is partially imposing. We locate two facilities at each selected location, and
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Figure 2: A percentile mechanism for a (2, 2)-problem when n = 11.

3.2 Multi-dimensional Percentile Mechanisms

As discussed above, many social choice problems can be interpreted as “facility location”
problems when viewed as choice in a higher dimensional space, such as selection of politi-
cal/committee representatives, product design, and the like. We now analyze a generaliza-
tion of the percentile mechanism to multi-dimensional spaces.

As above, we assume that agents have single-peaked preferences (see Defn. 1). Reported
types ti are now points in Rm. For any type profile t, let tk1 ≤ tk2 ≤ . . . ≤ tkn be the
ordered projection of t in the kth dimension (for k ≤ m). In other words, we simply order
the reported coordinates in each dimension independently. An m-dimensional percentile
mechanism is specified by a q ×m matrix P = (p1; p2; . . . ; pq), where each pj ∈ [0, 1]m is
an m-vector in the m-dimensional unit cube, with pj = (p1j , p

2
j , . . . , p

m
j ). Given a reported

profile t, the P-percentile mechanism locates the jth facility by selecting, for each dimension
k ≤ m, the pkj th percentile of the ordered projection of t in the kth dimension as the
coordinate of facility j in that dimension. In other words:

xj = (t1b(n−1)·p1
jc+1, t

2
b(n−1)·p2

jc+1, . . . , t
m
b(n−1)·pm

j c+1).

Example 2 Fig. 2 illustrates a 2-D, two facility problem with 11 agents. With P =
(0.2, 0.7; 0.8, 0.3), the P-percentile mechanism locates the first facility at the x-coordinate
of t3 (since b10 · 0.2c+ 1 = 3) and at the y-coordinate of t8; and the second facility is placed
at the x-coordinate of t9 and and the y-coordinate of t4. Notice facilities need not be located
at the ideal point of any agent.

The following results generalize the corresponding one-dimensional results above.

Theorem 3 The m-dimensional P-percentile mechanism is (group) strategy-proof for any
P.

Theorem 4 Let agents have L1 or L2 preferences, and P define a percentile mechanism
M for an (m, q)-facility location problem with m > 1. The approximation ratio of M is
unbounded w.r.t. social cost for any P. The approximation ratio of M is q ·z w.r.t. maximum
load, where z =

∏m
k=1 max1≤j≤q(pkj+1 − pkj−1) (where we define pk0 = 1 and pkq+1 = 1).

balance the agents choosing that location. Agents are indifferent to the “imposed” assignment, so this is
unlike truly imposing mechanisms that remove choice from agents’ hands [10]. We use this mechanism for
convenience—one can define a strictly non-imposing mechanism with the same approximation ratio.



Notice that this result differs from the one-dimensional case, where the (0, 1)-percentile (i.e.,
left-right) mechanism has a bounded approximation ratio for social cost. When m > 1, no
percentile mechanism has this property—this holds because the mechanism may place no
facility at the ideal location of any agent. As above, however, we can optimize the percentiles
for maximum load, when q = q̃m for some q̃ by exploiting Prop. 1 in each dimension:

Proposition 2 Let q = q̃m. If q̃ is odd, the mechanism that locates one facility at each

percentile of the form 1
q̃+1 in each dimension is

(
2q̃
q̃+1

)m
-optimal w.r.t. maximum load. If

q̃ is even, the mechanism that locates two facilities at each percentile of the form
(

2
q̃+2

)
in

each dimension is
(

2q̃
q̃+2

)m
-optimal w.r.t. maximum load. Moreover, these are the smallest

approximation ratios possible within the family of percentile mechanisms.

4 Optimizing Percentile Mechanisms

We’ve seen that percentile mechanisms are (group) strategy-proof for general (m, q)-facility
location problems, and can offer bounded approximation ratios for L1 and L2 preferences
(though only under restricted circumstances for social cost). Unfortunately, these guarantees
require optimizing the choice of percentiles w.r.t. worst-case profiles, which can sometimes
lead to poor performance in practice. For example, in a (1, 2)-problem, decent approxima-
tion guarantees for social cost require using the (0, 1)-percentile mechanism; but if agent
preferences are uniformly distributed in one dimension, this will, in fact, perform quite
poorly. Intuitively, the (0.25, 0.75)-percentile mechanism should have lower expected social
cost by the (probabilistically) “suitable” placement of two facilities, each for use by half of
the agents.

We consider a framework for empirical optimization of percentiles within the family
of percentile mechanisms that should admit much better performance in practice. As in
automated mechanism design [7, 20], we assume a prior distribution D over agent preference
profiles. Hence agent preferences can be correlated in our model. One will often assume
a prior model D (e.g., learned from observation) that renders individual agent preferences
independent given that model, but this is not required. In many practical settings, such
as facility location or product design, such distributional information will in fact be readily
available. We sample preference profiles from this distribution, and use them to optimize
the percentiles in the P matrix to ensure the best possible expected performance w.r.t. our
social objective.

Unlike classic AMD, we restrict ourselves to the specific family of percentile mechanisms.
While this limits the space of mechanisms, we do this for several reasons. First, it provides
a much more compact mechanism parameterization over which to optimize than in typical
AMD settings.6 Second, since the resulting mechanism is (group) strategy-proof no matter
which percentiles are chosen, the optimization need not account for incentive constraints
(unlike standard AMD). Of course, when considering specific classes of single-peaked prefer-
ences, such as L1 or L2 costs as we do here, a wider class of strategy-proof mechanisms could
be used (e.g., disturbed median mechanisms [17]); but these have more parameters, and as
we will see below empirically, they are unlikely to offer any better performance—since our
optimized percentile mechanisms achieve near-optimal social cost. In addition, errors due
to sampling, or even misestimation of the prior D, have no impact on the strategyproof-
ness of the mechanism. Third, unlike Bayesian optimization—in other words, methods that
choose optimal facility placement relative to the prior with no elicitation of ideal locations—
optimized percentile mechanisms are responsive to the specific preferences of the agents.

6AMD has been explored in a parameterized mechanism space, e.g., in combinatorial auctions [13, 14].



Distribution q = 2 q = 3 q = 4

Du
SC (0.25, 0.75) (0.16, 0.5, 0.84) (0.12, 0.37, 0.63, 0.88)
ML (0.49, 0.50)(0.33, 0.35, 0.98)(0.25, 0.26, 0.74, 0.75)

Dg
SC (0.25, 0.75) (0.15, 0.5, 0.85) (0.1, 0.35, 0.65, 0.9)
ML (0.49, 0.50) (0.33, 0.35, 0.9) (0.25, 0.26, 0.74, 0.75)

Dgm
SC (0.17, 0.68)(0.16, 0.59, 0.93)(0.12, 0.37, 0.68, 0.94)
ML (0.49, 0.50)(0.14, 0.65, 0.66)(0.17, 0.34, 0.73, 0.74)

Table 1: Optimal percentiles for different distributions, objectives, and numbers of facilities.

Let agent type profiles t = (t1, t2, . . . , tn) be drawn from distribution D. Given a P-
percentile mechanism, let fP(t) denote the chosen locations when the agent type profile is
t. The goal is to select P to minimize the expected social cost or maximum load:

min
P

ED [SCp(fP(t), t)] ; or min
P

ED [MLp(fP(t), t)]

Naturally, other objectives can be modelled in this way too.
Given Y sampled preference profiles, we optimize percentile selection relative to the Y

sampled profiles. In our experiments below, we use simple numerical optimization for this
purpose. Specifically, we consider all possible values for the percentile matrix P. For each
of them, we compute the average social cost (maximum load) over Y sample profiles, and
select the one that has the minimum objective value. Alternatively, one can formulate the
minimization problem as a mixed integer programming (MIP) for L1 costs, or a mixed integer
quadratically constained program (MIQCP) for L2 costs, and use standard optimization
tools, e.g., CPLEX, to solve the problem. However, determining concise formulations is
non-trivial and effective use of these formulations is left to future research.7

In the following experiments, we consider problems with n = 101 agents, with agent
preferences drawn independently from three classes of distributions: uniform Du, Gaussian
Dg and mixture of Gaussians Dgm with 2 or 3 components. Each distribution reflects
rather different assumptions about agent preferences: that they are spread evenly (Du);
that they are biased toward one specific location (Dg); or that they partitioned into 2 or 3
loose clusters (Dgm). In all cases, T = 500 sampled profiles are used for optimization. We
examine results for both social cost and maximum load.

One-dimensional mechanisms

We begin with simple one-dimensional problems with q = 2, 3 or 4. Table 1 shows the per-
centiles resulting from our optimization for both SC and ML under each of the three distri-
butions.8 For example, when agent ideal locations are uniformly distributed, the (0.25, 0.75)-
percentile mechanism minimizes the expected social cost for two facilities. This is expected,
since the uniform (and Gaussian) distribution partitions agents into two groups of roughly
equal size, and facilities should be located at the median positions of each group.

The performance of the optimized percentile mechanisms is extremely good. Fig. 3 com-
pares the expected social cost and maximum load of our mechanisms with those given by
optimal placement of facilities (results for q = 3 are shown, but others are similar). Recog-
nize however that optimal placement is not realizable with any strategy-proof mechanism.
Despite this, optimized percentile mechanisms perform nearly as well in expectation in all
three cases. Contrast this with the performance of the mechanisms with provable approx-
imation ratios. When q = 2, the (0, 1)-percentile mechanism has an average social cost

7We describe preliminary formulations of the MIP and MIQCP, which do not scale well, in the appendix
of a longer version of this paper; see: http://www.cs.toronto.edu/∼cebly/papers.html.

8Du is uniform on [0, 10]. Dg is Gaussian N (0, 2) with µ = 0, σ2 = 2. Dgm is a Gaussian mixture with
3 components: N (−4, 4) (weight 0.4), N (0, 1) (weight 0.45), and N (5, 2) (weight 0.15).
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Figure 3: Comparison of optimized percentile mechanism and optimal value (q = 3).

0 2 4 6 8 10
0

2

4

6

8

10

 

 

Social Cost Maximum Load

0 1 2 3 4 5 6
-1

0

1

2

3

4

5

 

 

Social Cost Maximum Load

-4 -2 0 2
-4

-2

0

2

4

6

8

 

 

Social Cost Maximum Load

Figure 4: Optimized Percentiles for (a) 2D: Uniform, (b) 2D: Gaussian, (c) 2D: Gaussian
mixture, and (d) 4D.

of 242.4, 340.9 and 523.2 for Du, Dg and Dgm, respectively; but the social cost of our
mechanisms are only 123.7, 76.5, and 165.1, respectively. When q = 3, the (0.25, 0.5, 0.75)-
percentile mechanism has the best approximation ratio for ML (see Prop. 1). Its average
maximum loads are 39.5, 38.7 and 38.3, which are close to (but not as good as) the loads
of the optimized percentile mechanisms (36.5, 36.5, and 36.2).

Multi-dimensional mechanisms

We also experimented with two additional problems. 2D is a (2, 3)-problem where agents
have L2 preferences, capturing, say, the placement of three public projects like libraries, or
warehouses. 4D is a (4, 2)-problem with L1 preferences, which might model the selection of
2 products for launch, each with four attributes that predict consumer demand.9

For the problem 2D we show the expected placement of facilities given the selected
percentiles in Fig. 4(a)-(c), for both SC and ML, for each of the three distributions. (Actual
facility placement will shift to match the reported type profile in each instance.) Placement
for SC tends to be distributed appropriately, while ML places two facilities adjacent to
one another. For 4D, we measure performances rather than visualizing locations. Fig. 4(d)
compares expected SC and ML of our optimized percentile mechanisms to those using true
optimal facility placements: the percentile mechanisms are always optimal for ML;10 and for
SC, non-strategy-proof optimal placements are only 1.75%-4.45% better than placements
using our optimized, strategy-proof mechanisms.11 This strongly suggests that percentile
mechanisms, optimized using priors over preferences, are well-suited to multi-dimensional,
single-peaked domains.

9For 2D, Du is uniform over [0, 10] in each dimension. Dg is normal with mean µ = [3, 2] and covariance
Σ = [2, 1]I. Dgm is a 2 component mixture: N ([−2,−1], [2, 1]I) (weight 0.3) and N ([0, 2], [1, 3]I) (weight
0.7). For 4D, Du is uniform over [0, 10] in each dimension. Dg is N ([3, 2, 1, 2], [2, 3, 4, 1]I). Dgm is a 2
component mixture: N ([2, 1, 0, 1], [4, 6, 8, 5]I) (weight 0.4) and N ([1, 2, 1, 0], [7, 4, 5, 8]I) (weight 0.6).

10This comes from the fact that the mechanism always locates two facilities at almost the same position,
and achieves optimal maximum load. However, this is not always possible for more than two facilities.

11Computing the optimal solution in the multi-dimensional problem is NP-hard, so we use K-means
clustering algorithms as approximations.



5 Conclusion and Future Research

We proposed a family of percentile mechanisms for multi-dimensional, multi-facility location
problems, designed to be (group) strategy-proof when preferences are single-peaked. Using
different costs measures, we derived several approximation ratios. We also developed a
sample-based framework for optimizing percentile mechanisms that, much like automated
mechanism design, exploits priors over preferences. Our empirical results demonstrate the
power of this approach, showing social objectives can be optimized much more effectively
than is possible using mechanisms with tight worst-case performance guarantees (indeed,
our mechanisms provide close to optimal results in practice).

This work is a starting point for the design of optimized mechanisms for single-peaked
domains, and can be extended in a number of ways. Obviously one can consider mech-
anisms for other classes of (single-peaked) preferences (e.g., quadratic [5] or symmetric
single-peaked [17]). Other social objectives should be explored, including those that com-
bine various desiderata (such as SC and ML), and those that trade off facility cost with
benefit (e.g., additional facilities decrease social cost, but the expense must be factored
in as well [16]). Additional development of the optimization models needed for percentile
mechanisms (e.g., our MIP or MIQCP formulations) are needed to make our approach more
practical; preliminary experiments suggest that local search techniques may be very promis-
ing in this respect. Sample complexity results are also of interest. Finally, incremental (or
multi-stage) mechanisms that trade off social cost, communication costs, and agent privacy
[9, 22] would be extremely valuable in our setting.
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