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Abstract. We address optimal group manipulation in multi-
dimensional, multi-facility location problems. We focus on two families
of mechanisms, generalized median and quantile mechanisms, evaluating
the difficulty of group manipulation of these mechanisms. We show that,
in the case of single-facility problems, optimal group manipulation can
be formulated as a linear or second-order cone program, under the L1-
and L2-norms, respectively, and hence can be solved in polynomial time.
For multiple facilities, we show that optimal manipulation is NP-hard,
but can be formulated as a mixed integer linear or second-order cone
program, under the L1- and L2-norms, respectively. Despite this hard-
ness result, empirical evaluation shows that multi-facility manipulation
can be computed in reasonable time with our formulations.

1 Introduction

Mechanism design deals with the design of protocols to elicit the preferences of
self-interested agents to achieve some social objective [22]. An important prop-
erty in mechanism design is strategy-proofness, which requires that there is no
incentive for an individual agent to misreport their preferences. While much work
in mechanism design deals with settings where monetary transfers can be used
to facilitate strategy-proofness [6,18,31], many problems do not admit payments
for a variety of reasons [28].

The Gibbard-Satterthwaite theorem [16,27] shows that under fairly broad
conditions, one cannot construct mechanisms that achieve strategy-proofness in
general. However, one can impose restrictions on the preference domain to escape
this impossibility result. A widely used restriction is single-peakedness [4]. In
single-peaked domains, each agent has a single, most-preferred ideal point in
the outcome space, and (loosely) her preference for outcomes decreases with as
the distance of that outcome from the ideal increases. In such settings, strategy-
proofness is guaranteed by the classic median mechanism and its generalizations
for single outcomes [2,24], or quantile mechanisms [29] for multiple outcomes.
Applications of such models include facility location, voting, product design,
customer segmentation, and many others.

While these mechanisms are individual strategy-proof, they are not group
strategy-proof —a group of agents may jointly misreport their preferences to
induce a more preferred outcome that makes some group members better off
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without harming others. In this paper, we consider the group manipulation
problem for facility location problems (FLPs) with multiple facilities in multi-
dimensional spaces, with a focus on quantile mechanisms (QMs) (and to some
extent generalized median mechanisms (GMMs)). Since these mechanisms are
both transparent and (individual) strategy-proof for general multi-dimensional,
multi-FLPs, we seek to understand the difficulty of their group manipulation
problems.

Our primary contribution is to formulate the group manipulation problem—
for both single- and multi-FLPs under both the L1- and L2-norms (where these
metrics measure distance/cost between ideal points and facilities)—as convex
optimization problems, and study their computational complexity. We show that
single-FLPs with L1 and L2 costs can be specified as linear programs (LPs) and
second-order cone programs (SOCPs), respectively. This means both can be
solved in polynomial time (using interior point methods [5]). By contrast, we
show that multi-FLPs are NP-hard by reduction from the geometric p-median
problem [23] under both norms. Despite this, we provide formulations of prob-
lems as mixed integer linear (MILPs) and mixed integer SOCPs (MISOCPs)
for L1 and L2 costs, respectively. We also test these formulations empirically,
with results that suggest commercial solvers can compute group manipulations
(or prove that none exists) for multi-FLPs of reasonable size rather effectively,
despite the theoretical NP-hardness of the problem.

2 Background and Notation

We begin by defining FLPs, the quantile mechanism, the group manipulation
problem we consider, and provide a brief discussion of related work.

2.1 Facility Location and Group Manipulation

A d-dimensional, m-facility facility location problem (FLP) involves selecting
m facilities in some d-dimensional subspace S ⊆ Rd (we omit mention of
S subsequently, assuming all locations fall in S). We assume a set of agents
N = {1, . . . , n}, each with an ideal location or type ti ∈ Rd, which determines her
cost si(x, ti) for using a facility located at x (we sometimes refer to this as facility
x). Given a location vector x = (x1, . . . , xm), xj ∈ Rd, of m facilities, we assume
each agent uses her most preferred facility, defining si(x, ti) = minj≤m si(xj , ti).
Given the ideal points of all agents, our goal is to select an outcome that imple-
ments some social choice function (e.g., minimize social cost, ensure Pareto effi-
ciency, etc.). Below we equate cost with L1 or L2 distance. A mechanism for
an FLP is a function f that accepts as input the reported ideal points of the n
agents and returns a location vector x.

FLPs can be interpreted literally, naturally modeling the placement of homo-
geneous facilities (e.g., warehouses, public projects) in a geographic space, where
agents use the least cost or closest facility. Voting is often modeled this way,
where candidates are ordered along each of several dimensions (e.g., stance on
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environment, fiscal policy, etc.), voters have ideal points in this space, and one
elects one or more candidates to a legislative body. Product design, customer
segmentation, and other problems can be modeled as FLPs.

Even without explicit distance functions, it is often natural to assume agent
(ordinal) preferences are single-peaked : an agent’s preferences are constrained
so that outcomes become less preferred as they are “moved away” from her
ideal point (or peak). When preferences are single-peaked, the classic median
mechanism and its generalizations [2,24] guarantee strategy-proofness. Sui et al.
[29] develop quantile mechanisms (QMs) which extend these mechanisms to the
multi-facility, multi-dimensional case. We focus here on QMs.

Definition 1. [29] Let q = �q1; . . . ;qm� be a m × d matrix, where each qj =
{q1

j , . . . , qd
j } is a d-vector in the unit cube. A q-quantile mechanism fq asks each

agent i to report her ideal location (or peak) ti. The mechanism locates each
facility j at the qk

j th quantile among the n reported peaks in each dimension k
independently.

Example 1. Consider the two-dimensional quantile mechanism in which q =
�0.25, 0.75; 1.0, 0.5�. Given a peak profile of 5 agents t = ((1, 4), (2, 7), (4, 2),
(7, 9), (8, 3)), the q-quantile mechanism will locate the first facility at the inter-
section of quantile 0.25 in the first dimension and quantile 0.75 in the second
dimension, i.e., (2, 7) in this example; and the second facility at (8, 4).

We note that quantile mechanisms are special case of generalized median
mechanisms (GMMs) [2,24] when applied to single-FLPs, and can be interpreted
as applying a specific form of GMM to the selection of each of the m facilities.
As such, QMs are (individual) strategy-proof [29]. However, the characteriza-
tion of Barberà et al. [2] shows that no (anonymous) mechanism can offer group
strategy-proofness for multi-dimensional, multi-FLPs in general.1 The main rea-
son that group manipulation is possible is that a group of manipulators can
submit a joint misreport of their ideal locations in which each of them increases
her cost in some dimensions but decreases it in others, thereby achieving a lower
total cost.

In this paper, we investigate the computational problem of finding just such a
group manipulation. Specifically, we consider: (a) the formulation of the optimal
group manipulation problem as mathematical programs of various types; (b)
the computational complexity of this problem; and (c) how much manipulators
might gain given optimal manipulations, under different cost functions, when
GMMs/QMs are used.2

1 Anonymity is critical, as dictatorial mechanisms belong to the class of GMMs and
are group strategy-proof.

2 Barberà et al.’s [2] characterizations do not preclude the existence of group strategy-
proof mechanisms when specific cost functions are used. However, it is still meaning-
ful to study the group manipulation of GMMs and QMs due to their simplicity and
intuitive nature, their (individual) strategy proofness, and their flexibility. Indeed,
these are the only “natural” such mechanisms for multi-dimensional, multi-FLPs of
which we are aware.
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Informally, the optimal group manipulation problem is that of finding a joint
misreport for a group of manipulators such that the outcome induced by this
misreport is such that: (a) the sum of costs of the manipulators is minimized; and
(b) relative to the outcome that would have been induced by truthful reporting,
no manipulator is worse-off and at least one is strictly better-off. Our objective
of minimizing the sum of costs is the natural one, which represents the social
welfare of the manipulators. While one general problem is whether there exists a
joint misreport such that no one is worse-off, our optimization version subsumes
the former problem.3 We formalize this as follows:

Definition 2. Let N = S∪M , where S is a set of sincere agents and M is a set
of manipulators with type vectors tS and tM . Let fq be a QM with quantile matrix
q. Let xq = fq(tM , tS) be the location vector chosen by fq if all agents report
their peaks truthfully, and x�

q = fq(t�M , tS) be the location vector chosen given
some misreport t�M by the manipulators M . The optimal group manipulation
problem is to find a joint misreport t�M for the agents in M satisfying:

t�
M = arg min

�
i∈M

si

�
x�

q, ti

�
(1)

s.t. si

�
x�

q, ti

�
≤ si (xq, ti) , ∀i ∈ M

si

�
x�

q, ti

�
< si (xq, ti) , for some i ∈ M

Given a group of manipulators M , we generally refer to the remaining agents
S = N\M as “sincere,” though we need not presume that their reports are
truthful in general, only that M knows (or can anticipate) their reports.

2.2 Related Work

There has been extensive study of the manipulation problem in other social
choice, especially in the contect of voting. While the Gibbard-Satterthwaite the-
orem shows that strategy-proof mechanisms do not exist in general, Bartholdi et
al. [3] demonstrated that manipulation of certain voting rules can be computa-
tionally difficult. This spawned an important line of research into the complexity
of manipulation for many voting rules—collectively this can be viewed as propos-
ing the use of computational complexity as a barrier to practical manipulation;
see, for example, [8,13] for an excellent survey. Recent work has shown that
when preferences are single-peaked, the constructive manipulation problem—in
which a set of manipulators try to find a set of preference rankings (reports)
that would make a specific candidate win—becomes polynomial time solvable
for many voting rules [12]. Our work is similar in its objective to this approach,
with a key difference being that in voting outcomes are discrete and atomic,
whereas we deal with a continuous, multi-dimensional space.
3 NP-hardness refers to the corresponding decision problem (as is colloquially under-

stood for optimization problems): is there a misreport that gives the manipulators
total cost less than epsilon (for any fixed epsilon). This implies NP-hardness of exis-
tence (set cost to truthful cost).
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Exploiting computational complexity to prevent (or reduce the odds of)
manipulation is somewhat problematic in that it focuses on worst-case scenar-
ios, and usually assumes full knowledge of agent preferences. Recent work has
studied average case manipulability (i.e., the probability that a preference profile
is “easily” manipulable, assuming some distribution over preferences or prefer-
ence profiles), and shows that manipulation is often feasible both theoretically
and empirically [7,14,19,26,32,33]. The complete information assumption has
also been challenged, and manipulation given probabilistic knowledge of other
agent’s preferences has been studied in equilibrium [1,21] and from an optimiza-
tion perspective [20].

3 Group Manipulation for Single-FLPs

In this section, we address the problem of group manipulation for single-facility
location problems, first describing its general form, then describing a linear pro-
gramming formulation under the L1-norm, and finally describing a second-order
cone programming formulation under the L2-norm.

3.1 Group Manipulation Specification

Recall from Definition 2 that a group manipulation is a set of misreports by the
manipulating coalition M such that no manipulators is worse off and at least one
is better off. The optimization formulation of this problem in Eq. (1) requires
that one find the misreport that provides the greatest total benefit to the coali-
tion. This explicit, straightforward formulation considers all possible misreports
(i.e., the vector of purported “preferred” locations of each manipulator), which
in principle induces a large search space. Fortunately, we can decrease the search
space dramatically by only considering viable locations for manipulator misre-
ports. We first define viability :

Definition 3. Let fq be a QM with quantile matrix q. A location x ∈ Rd is
viable for a manipulating coalition M if there exists a joint misreport t�

M s.t.
x = fq(t�M , tS), where tS is the report from the sincere agents S = N\M . We
say t�M implements x in this case.

The following critical proposition shows that, in single-FLPs, if a mechanism
fq selects a location x�

q = fq(tS , t�M ) under a group manipulation t�M , then it
also selects x�

q if each manipulator misreports x�
q as her peak.

Proposition 1. For single-FLPs, let t�M be a group manipulation and x�
q be a

viable location implemented by t�M under mechanism fq. Then x�
q is also imple-

mented by the group manipulation t∗M = {x�
q, . . . , x�

q}.

Proof (Sketch). We provide a sketch of proof for d = 2, but the analysis can be
easily generalized. Consider an arbitrary group manipulation t�M , which imple-
ments location x�

q = fq(t�M , tS) ∈ R2 (as shown in Fig. 1). Let us denote the
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i

Fig. 1. Each manipulator can move her misreport to x�
q without changing the outcome.

misreport of each manipulator by t�i = (t
�1
i , t

�2
i ), ∀i ∈ M and the location by

x�
q = (x

�1
q , x

�2
q ).

Pick an arbitrary manipulator i ∈ M , and assume w.l.o.g. that t
�1
i ≤ x

�1
q

and t
�2
i ≥ x

�2
q . We construct another group manipulation t

��
M by changing the

misreport of manipulator i to x�
q. Recall that the mechanism fq locates the

facility at a specified quantile, so we have:

fq(t�M , tS) = fq((t�i, t
�
M\i), tS)

= fq(((t
�1
i , x

�2
q ), t�M\i), tS)

= fq(((x
�1
q , x

�2
q ), t�M\i), tS)

= fq((x�
q, t�M\i), tS) = fq(t

��
M , tS)

Repeating this procedure over all manipulators completes our proof.

Proposition 1 demonstrates that we can limit our attention to the “unani-
mous” reporting of viable locations when searching for optimal misreports, with-
out considering misreports that reveal locations that cannot be implemented or
realized by the manipulators. Therefore, we can reformulate the optimal group
manipulation problem (Definition 2) as follows:

Definition 4. Let fq be a QM with quantile matrix q. Let xq = fq(tM , tS) and
x�
q = fq(t�M , tS) be the location chosen by fq under truthful reports and misreport

t�M , resp. Optimal group manipulation can be reformulated as:
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min
x∈Rd

�
i∈M

si (x, ti) (2)

s.t. si (x, ti) ≤ si (xq, ti) , ∀i ∈ M (3)
si (x, ti) < si (xq, ti) , for some i ∈ M (4)
x is a viable location under fq (5)

In the sequel, our specific formulations of the problem will rely on Definition 4.
We can also safely omit the constraints in Eq. 4, as they can easily be checked
after the fact given the optimized location vector—if no manipulator is strictly
better off, then a group manipulation obviously cannot exist.

3.2 LP Formulation Under the L1-norm

We now consider the formulation of optimal manipulation when the L1-norm is
used as the cost function, i.e., si(x, ti) =

�
k≤d |xk − tki | for any location x ∈ Rd.

Let x = (x1, . . . , xd) represent the location to be optimized (i.e., the location
induced by the manipulation) in single-FLPs, where each xk is a continuous
variable. Let ci be a continuous variable denoting the cost of manipulator i given
outcome x. We can formulate the objective function Eq. (2), and the constraints
Eq. (3), as follows:

min
x

�
i∈M

ci (6)

s.t. ci =
�

k≤d
|xk − tk

i |, ∀i ∈ M (7)

0 ≤ ci ≤ ui, ∀i ∈ M (8)

where ui = si(xq, ti) is the cost of manipulator i under a truthful report tM by
the manipulators.

This formulation contains absolute values in the nonlinear constraints (7). We
introduce an additional set of variables to linearize these constraints. Letting Dk

i
be an upper bound on the distance between ti and x in the kth dimension, we
linearize the constraints (7) as follows:

−Dk
i ≤ tk

i − xk ≤ Dk
i , ∀i ∈ M, ∀k ≤ d (9)

Dk
i ≥ 0, ∀i ∈ M, ∀k ≤ d (10)

ci =
�

k≤d
Dk

i , ∀i ∈ M (11)

Finally, we need constraints that guarantee the new location x is viable.
Recall that a QM locates the facility at a specified quantile of reported peaks in
each dimension independently, and by Proposition 1 we can assume w.l.o.g. that
all manipulators use the same misreport. This implies that a viable location for
the facility is bounded by the reported coordinates of two sincere agents in each
dimension. Formally, let q = (q1, . . . , qd) be the quantile vector (for single-FLPs,
we have a single vector rather than a full matrix), and let

⊥k = min{z ∈ Z+ : z + |M | ≥ qk · n} and

�k = max{z ∈ Z+ : |S| + |M | − z ≥ (1 − qk) · n}.

If we let x̄k
S = {x̄k

1 , . . . , x̄k
|S|} denote the ordered coordinates of the reports of

agents S in the kth dimension, we have:
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Lemma 1. For single-FLPs, a location x = (x1, . . . , xd) ∈ Rd is viable if and
only if x̄k

⊥k ≤ xk ≤ x̄k
�k , ∀k ≤ d.

This lemma ensures that we can use the following boundary constraints as to
enforce viability (see Eq. (5)):

x̄k
⊥k ≤ xk ≤ x̄k

�k , ∀k ≤ d (12)

To summarize, we can formulate the optimal group manipulation under
the L1-norm as an LP. The objective function (6) minimizes the sum of costs
over all manipulators. Constraints (8)–(11) guarantee that no manipulators is
worse-off, and constraints (12) ensure that the optimized location induced by the
misreport is viable. The LP has O(d|M |) variables. We state this result formally
in the following theorem:

Theorem 1. The optimal group manipulation problem for single facility loca-
tion under the L1-norm can be formulated as a linear program (LP), with objec-
tive function (6) and constraints (8)–(12).

As such, the optimal manipulation problem can be solved in polynomial time.

3.3 SOCP Formulation Under the L2-norm

The optimization formulation for the L1-norm above can be easily modified
to account for L2-costs. Specifically, we need only a minor modification of the
constraints (11) to incorporate Euclidean distances as follows:

(ci)
2 ≥
�

k≤d

�
Dk

i

�2

, ∀i ∈ M (13)

Constraint (13), combined with the objective function (6) and con-
straints (8)–(10) and (12), constitutes a second-order cone program (SOCP)
under the L2-norm:

Theorem 2. The optimal group manipulation problem for the single facility
location under the L2-norm can be formulated as a second-order cone program
(SOCP), with objective function (6) and constraints (8)–(10) and (12)–(13).

Since SOCPs can be solved in polynomial time, we have:

Remark 1. The optimal group manipulation problem for single-facility location
under both the L1- and L2-norms can be solved in polynomial time.

4 Group Manipulation for Multi-FLPs

In this section, we extend our analysis of group manipulation to multi-facility
location problems. Unlike single-FLPs, we show that problem in computation-
ally intractable for multi-FLPs, under both the L1- and L2-norms. However,
we provide mathematical programming models that are often quite efficient in
practice.
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4.1 The Complexity of Group Manipulation

We first show group manipulation is NP-hard for multi-FLPs.

Theorem 3. Optimal group manipulation for multi-facility location under
either the L1- or L2-norms is NP-hard.

This hardness result is proved using a reduction from the geometric p-median
problem, which is known to be NP-hard under both L1- and L2-distance [23].
Given a set of points in the d-dimensional space (d ≥ 2), the geometric p-median
is a set P of p points that minimizes the sum of distances between each given
point and its closest point in P . A complete proof is provided in a longer version
of this paper. The rough intuition is as follows. Considering the optimal group
manipulation problem for (p + 1) facilities, our proof assumes no sincere agents,
and constructs a manipulator location profile and QM fq such that all (p + 1)
facilities are located at a single extreme position by fq given truthful reports.
However, the optimal group manipulation induces the mechanism to “spread
out” p of the facilities to the benefit of a subset of the manipulators, without
harming those who would use the original position. This constitutes an optimal
solution to the p-median problem for the p non-extreme locations. As such, an
algorithm for optimal group manipulation can be used to solve the p-median
problem.

While this implies that worst-case instances may be difficult to solve, it does
not mean that instances arising in practice can’t be solved efficiently. We now
describe formulations of optimal group manipulation for multi-FLPs as integer
programs that may support practical solution. Our formulations are quite com-
pact, and combined with the empirical evaluation in Sect. 5, suggest that optimal
group manipulations can be found reasonably quickly.

4.2 MILP Formulation Under the L1-norm

We first describe our mixed integer linear programming (MILP) formulation of
optimal group manipulation under the L1-norm. Due to space limitations, we
defer certain technical details and proofs to a longer version of this paper. The
following result is analogous to Proposition 1 for single-FLPs.

Proposition 2. Let t�M be a group manipulation and x = {(x1
1, . . . , x

d
1), . . . ,

(x1
m, . . . , xd

m)} be a viable location vector implemented by t�M . Let Xk =
{xk

1 , . . . , xk
m} denote the set of coordinates of these facilities in the kth dimen-

sion. Then there exists a group manipulation t∗M that implements x, where
t∗i ∈ �

k≤d Xk, ∀i ∈ M .

In other words, we can assume w.l.o.g. that manipulators misreports are drawn
from the “intersection positions” in different dimensions induced by the different
facilities. The precise misreports at these intersection positions must be coordi-
nated to guarantee a viable location vector (see below).

Let x = {(x1
1, . . . , x

d
1), . . . , (x

1
m, . . . , xd

m)} represent the location vector to be
optimized. Let ci be the cost of manipulator i given outcome x, cij be the cost
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of manipulator i w.r.t. facility j, and Iij be an indicator variable whose value is
1 iff the closest facility for manipulator i is j. We can formulate the objective
Eq. (2), and the constraints Eq. (3), as follows:

minx∈(Rd)m
�

i∈M
ci (14)

s.t. ci =
�

j≤m
Iij · cij , ∀i ∈ M (15)

�
j≤m

Iij = 1, ∀i ∈ M (16)

Iij ∈ {0, 1}, ∀i ∈ M, ∀j ≤ m (17)
0 ≤ ci ≤ ui, ∀i ∈ M, ∀j ≤ m (18)

cij ≥ 0, ∀i ∈ M, ∀j ≤ m (19)

where ui = si(xq, ti) is the cost of manipulator i under a truthful report tM by
the manipulators.

Since both Iij and cij are variables in constraint (15), we must linearize
these quadratic terms by introducing additional variables. Let Oij be some upper
bound on the product of Iij and cij . We can then replace the constraint (15) by

ci =
�

j≤m
Oij , ∀i ∈ M (20)

Oij ≥ cij + (Iij − 1)U, ∀i ∈ M, ∀j ≤ m (21)
Oij ≥ 0, ∀i ∈ M, ∀j ≤ m (22)

where U is any upper bound on manipulator cost.
Let Dk

ij be an upper bound on the distance between manipulator i and facility
j in the kth dimension. We have:

−Dk
ij ≤ tk

i − xk
j ≤ Dk

ij , ∀i ∈ M, ∀j ≤ m, ∀k ≤ d (23)

Dk
ij ≥ 0, ∀i ∈ M, ∀j ≤ m, ∀k ≤ d (24)

cij =
�

k≤d
Dk

ij , ∀i ∈ M, ∀j ≤ m (25)

Finally, we must ensure that x is viable. Let

⊥k
j = min{z ∈ Z+ : z + |M | ≥ qk

j · n} and

�k
j = max{z ∈ Z+ : |S| + |M | − z ≥ (1 − qk

j ) · n}
and x̄k

S = {x̄1, . . . , x̄|S|} be the ordered coordinates of the reports of sincere agents
in S in the kth dimension. We break [x̄k

⊥k
j
, x̄k

�k
j
] into several (ordered) close and

open intervals: [x̄k
⊥k

j
, x̄k

⊥k
j
], (x̄k

⊥k
j
, x̄k

⊥k
j +1

), . . . , (x̄k
�k

j −1
, x̄k

�k
j
), [x̄k

�k
j
, x̄k

�k
j
] (see Fig. 2

for an illustration). Let Δk
j index these intervals (0 ≤ Δk

j < 2|M | + 1), and let
IΔk

j
be an indicator variable whose value is 1 iff the coordinate of facility j is

contained in the Δk
j th interval in the kth dimension. We then have:
�

Δk
j

IΔk
j

= 1, ∀j ≤ m, ∀k ≤ d (26)
�

Δk
j

IΔk
j
x̄k

l ≤ xk
j ≤
�

Δk
j

IΔk
j
x̄k

r , ∀j ≤ m, ∀k ≤ d (27)

IΔk
j

∈ {0, 1}, ∀j ≤ m, ∀k ≤ d (28)
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Fig. 2. For each facility in each dimension, the boundaries are split into small intervals,
each bounded by one/two sincere agents.

where l = ⊥k
j + �Δk

j /2� and r = ⊥k
j + �(Δk

j + 1)/2�.
For each interval, we pre-compute the number of sincere agents that lie to the

left of and right of it (including equality) in each dimension k, which we denote
by LΔk

j
and RΔk

j
, respectively. We also introduce another indicator variable T k

ij

whose value is 1 iff manipulator i misreports the location of facility j in the kth
dimension (this binary variable can be relaxed, since all terms in (29) and (30)
are integral). Given a quantile matrix q, the location vector x to be optimized
is viable if the following constraints are satisfied:

�
Δk

j

IΔk
j
LΔk

j
+
�

j�≤qj

�
i∈M

T k
ij� ≥ nqk

j , ∀j, ∀k (29)
�

Δk
j

IΔk
j
RΔk

j
+
�

j�≥qj

�
i
T k

ij� ≥ n(1 − qk
j ), ∀j, ∀k (30)

�
j≤m

T k
ij = 1, ∀i ∈ M, ∀k ≤ d (31)

T k
ij ∈ [0, 1], ∀i ∈ M, ∀j ≤ m, ∀k ≤ d (32)

The LHS of constraint (29) indicates the total number of sincere agents (the
first term) and manipulators (the second term) to the left of (or at) facility j in
the kth dimension, where j� ≤q j denotes the facility j� to the left of j in the kth
dimension, (i.e., qk

j� ≤ qk
j ). According to fq, this number should be greater than

or equal to nqk
j . Constraints (30) are similar, but used to count from the right.

Constraints (31) and (32) ensure that each manipulator reports the location of
one facility on each dimension.

To summarize, we can formulate optimal group manipulation for multi-FLPs
under the L1-norm as a MILP with O(dm|M |) binary and continuous variables:
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Theorem 4. The optimal group manipulation problem for multi-facility location
under the L1-norm can be formulated as a mixed integer linear program with
objective function (14) and constraints (16)–(32).

The final step is to construct a misreport profile t�M that implements the
location vector optimized above. By Proposition 2, we can arbitrarily choose
a set of manipulators of size exactly

�
i T k

ij for each target facility j in each
dimension k.

4.3 MISOCP Formulation Under the L2-norm

When optimizing misreports for multi-FLPs under the L2-norm, we can use an
approach similar to that used in the single-facility case, and formulate the opti-
mal manipulation as an mixed-integer SOCP (MISOCP). We need only modify
constraints (25) as follows:

(cij)
2 ≥
�

k≤d

�
Dk

ij

�2

, ∀i ∈ M, ∀j ≤ m (33)

Using this we obtain the following result:

Theorem 5. The optimal group manipulation problem for multi-FLPs under
the L2-norm can be formulated as a mixed integer second-order cone program,
with objective function (14), and constraints (16)–(24) and (26)–(33).

5 Empirical Evaluation

In this section, we evaluate the efficiency of the formulations outlined above.
We provide empirical results only for multi-facility problems here (since the
optimal manipulation problem for single-FLPs is poly-time solvable), testing
the efficiency of the MILP/ MISOCP described in Sect. 4.

We test two problems. The first is a two-dimensional, two-facility loca-
tion problem under the L2-norm, where the quantile matrix used is q =
{0.3, 0.4; 0.8, 0.7}. The second is a four-dimensional, three-facility location
problem under the L1-norm, where the quantile matrix used is q =
{0.1, 0.6, 0.4, 0.9; 0.4, 0.2, 0.8, 0.6; 0.7, 0.8, 0.3, 0.4}. For both problems, we vary
the number of sincere agents |S| ∈ {100, 200, 500}, and the number of manip-
ulators |M | ∈ {5, 10, 20, 50, 100, 200}. We randomly generated 100 problems
instances for each parameter setting in which the peaks of both the sincere
agents and the manipulators are randomly drawn from the same data set (data
sets are explained in detail below). We compute the average execution time of our
MILP/MISOCP models, and the probability of manipulation (i.e., the propor-
tion of the 100 instances in which a viable manipulation exists for the randomly
chosen manipulators).

For the two-dimensional problem, we use preference data from the Dublin
west constituency in the 2002 Irish General Election. Since the data includes
only voter rankings over the set of candidates, the ideal location of each voter is
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Fig. 3. Time to compute an optimal manipulation (y-axis is log-scale, x-axis is approx.
log-scale). Error bars show sample st. dev.

Fig. 4. Probability of a manipulation existing (y-axis is log-scale, x-axis is approx.
log-scale).

unknown. Fortunately, recent analysis suggests that this data is approximately
single-peaked in two-dimensions [30], and a spatial model using L2 distance can
be used to explain voter preferences [17]. We fit this data to a two-dimensional
spatial model, and estimate the voter peaks and candidate positions in the under-
lying latent space so constructed (Details are provided in a longer version of this
paper.) For the four-dimensional problem, we use a synthetic data set in which
the peaks of both sincere agents and manipulators are randomly generated from
a uniform distribution on the unit cube.

For each instance, the MILP/MISOCP is solved using CPLEX 12.51, on a
2.9GHz, quad-core machine with 8GB memory. Figure 3 shows the average com-
putation time required to find the optimal group manipulation (or show that
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no group manipulation exists) for both models. We see that our formulations
admit very effective solution—for small problems, the optimal group manipu-
lation is found in less than 1 second; even for reasonably large problems, such
as the four-dimensional, three-facility problem with 100 sincere agents and 200
manipulators, the optimal manipulation is found in 35.47 s (on average). The
performance of our formulations is also very stable (see error bars in the figure).

We illustrate the probability of manipulation for both problems in Fig. 4. For
2D problems, the probability of manipulation decreases from around 80 % to 0
quickly, indicating that it is very hard for a randomly selected set of manipula-
tors to find a viable manipulation; for 4D problems, the probability remains high
(close to 1) even with 20 manipulators then decreases with larger sets of manip-
ulator. This is not surprising since, as the number of manipulator get larger, it is
harder for them to find a mutually beneficial misreport. The higher probability
for 4D problems is due to the fact that we are placing three facilities rather than
two, increasing the potential of viable manipulations.

6 Conclusion

In this paper, we addressed the optimal group manipulation problem in multi-
dimensional, multi-facility location problems. Specifically, we analyzed the com-
putational problems of manipulating quantile mechanisms. We showed that opti-
mal manipulation for single-facility problems can be formulated as an LP or
SOCP, under the L1- and L2-norm, respectively, and thus can be solved in
polynomial time. By contrast, the optimal manipulation problem for multi-
facility problems is NP-hard, but can be formulated as an ILP or MISOCP
under the L1- and L2-norm, respectively. Our empirical evaluation shows that
our MILPs/MISOCPs formulation for multi-FLPs scales well, despite the NP-
hardness result.

Our work suggests a number of interesting future directions. First, more
empirical results would be helpful in understanding the practical ease or difficulty
of group manipulation, as well as the probability of manipulation, the potential
gain of manipulators, and the impact on social welfare. Second, other objec-
tives for the manipulating coalition (e.g., minimizing the maximum cost), and
mechanisms with other cost functions are also of interest. Finally, some research
[17,25,30] has shown that agent preferences are often not exactly single-peaked,
but may be approximately so under some forms of approximation [9–11,15].
The theoretical and empirical evaluation of group manipulation in such settings
would be extremely valuable.
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