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Abstract
Single-peakedness is one of the most commonly used do-
main restrictions in social choice. However, the extent
to which agent preferences are single-peaked in practice,
and the extent to which recent proposals for approximate
single-peakedness can further help explain voter prefer-
ences, is unclear. In this article, we assess the ability of
both single-dimensional and multi-dimensional approxi-
mations to explain preference profiles drawn from several
real-world elections. We develop a simple branch-and-
bound algorithm that finds multi-dimensional, single-
peaked axes that best fit a given profile, and which
works with several forms of approximation. Empirical
results on two election data sets show that preferences
in these elections are far from single-peaked in any one-
dimensional space, but are nearly single-peaked in two
dimensions. Our algorithms are reasonably efficient in
practice, and also show excellent anytime performance.

1 Introduction
Social choice deals with the aggregation of individual pref-
erences to determine a consensus decision. However, mech-
anisms for social choice are complicated by computational,
communication and incentive issues. For example, gen-
eral impossibility results limit the ability to incentivize
agents to truthfully reveal their preferences [Gibbard, 1973;
Satterthwaite, 1975]. Fortunately, certain domain restric-
tions allow one to circumvent these issues. The widely-
studied notion of single-peaked preferences [Black, 1948;
Moulin, 1980] does just this. When options can be or-
dered along an axis, and an agent’s preference for an op-
tion can be defined using the “distance” along this axis
from her most preferred (or ideal) point, protocols such as
the median mechanism reduce communication burden, en-
sure truthful reporting, and can often ease computational de-
mands. Multi-dimensional single-peakedness, using multiple
axes, also admits effective mechanisms [Barberà et al., 1993;
Barberà, 2010].

While conceptually attractive, single-peakedness is a very
strong assumption, one unlikely to hold in realistic settings—
e.g., elections with thousands of voters and more than a hand-
ful of candidates [Conitzer, 2009; Escoffier et al., 2008].
However, one might hope that preferences are approximately

single-peaked, and thereby retain some of the advantages
mentioned above. To this end, recent research has begun to
investigate computational methods to test single-peakedness
[Escoffier et al., 2008], and various forms of approxima-
tion (e.g., by deleting outlier candidates, clustering candi-
dates, deleting voters, or adding additional axes) [Escoffier
et al., 2008; Faliszewski et al., 2011; Erdélyi et al., 2012;
Galand et al., 2012]. These techniques, however, have fo-
cused on one-dimensional (1D) preferences, and have not
been tested empirically to determine if these approximations
can explain observed preferences in real-world elections or
other social choice problems.

We address this issue in two ways. First, we test single-
peaked consistency, and several forms of approximation (in
isolation and in combination) on two election data sets to
see if these approximations have any empirical explanatory
power. To do so, we develop a branch-and-bound (BB) algo-
rithm to find the best (1D) axis given a preference profile, i.e.,
the ordering of candidates for which the greatest number of
voters are single-peaked. The algorithm is easily extended to
support various forms of approximation. While the best-axis
problem is computationally difficult, our method works well
in practice. We show that none of the forms of approximation
proposed in the literature come close to explaining voter pref-
erences in these elections: the best axis explains under 2.9%
of voter preferences in one case and under 0.4% in the other;
and even aggressive approximation improves this to only 50%
and 25%, respectively. To address this, we extend our algo-
rithm to find the best multi-dimensional ordering to explain
a preference profile. Focusing on the two-dimensional (2D)
case, we show that exact 2D-single-peakedness explains the
datasets much better—without approximation, the best axis
set explains over 65.7% and 47.3% of voter preferences, re-
spectively; and with a very small degree of approximation,
the 2D model explains almost all voters.

Apart from our algorithmic developments, our findings
suggest that a focus on multi-dimensional rather than 1D
models can greatly enhance the applicability of single-peaked
models in practice. In so doing, one may be able to apply
richer and more effective preference learning and mechanism
design techniques to practical problems.



2 Single-peakedness and its Approximations
Our setting is standard in social choice. Let N = {1, . . . , n}
be a set of agents (or voters) and C = {1, . . . , z} be a set of
z options (or candidates). Each voter i ∈ N has a preference
(or strict total order)�i overC, with a �i bmeaning i prefers
a to b. A preference profile �= {�1, . . . ,�n} reflects the
joint preferences of all voters.

Single-peaked preferences. An axis A is any strict order-
ing <A of the candidates C. Intuitively, it represents an or-
dering of candidates relative to some salient quality, e.g., on
the left-right political spectrum. In the 1D case, we assume a
single axis. Each voter i has an ideal point τi = τ(�i), which
is her most preferred candidate: we say that i’s preference are
single-peaked w.r.t. axis A if a �i b whenever b <A a <A τi
or τi <A a <A b. Informally, the “closer” a candidate is to i’s
ideal point τi, the more preferred it is. Notice that, given A,
i’s ideal point does not uniquely determine its full ranking�i.
But when all voter preferences are single-peaked relative to a
fixed axis A, mechanisms such as the median mechanism can
be used, in which voters need only specify their ideal points.

The definition can be extended to m dimensions by assum-
ing m distinct axes. Let Am = 〈A1, . . . , Am〉 be such an
m-dimensional space:
Definition 1 [Barberà et al., 1993] i’s preference order�i is
single-peaked w.r.t. Am if a �i b whenever we have, for each
axis Ad, d ≤ m, either b <Ad

a <Ad
τi or τi <Ad

a <Ad
b.

In other words, if a lies within the “bounding box” of τi and
b, then a is preferred to b, since a is “closer” to the peak τi
than b. For any a, b ∈ C satisfying this relationship, we refer
to b = 〈τi, a, b〉 as a bounding box constraint on �i, and
denote b1 = τi, b2 = a and b3 = b. This does not restrict
i’s preference for a and b if neither lies within the other’s
bounding box w.r.t. τi. As in the 1D case, a profile is m-
dimensional single-peaked w.r.t. Am if each voter preference
�i is. In such a case, generalized median mechanisms can
be used to truthfully elicit voter peaks and efficiently select
outcomes [Barberà et al., 1993; Barberà, 2010].
Example 1 The following 2D example with five candidates
c1, . . . , c5 illustrates the concept. Assume two axes, A1 =
c4 <A1 c3 <A1 c1 <A1 c2 <A1 c5 and A2 = c1 <A2

c2 <A2 c4 <A2 c5 <A2 c3. The only bounding box con-
straint is 〈c1, c2, c5〉, which induces two constraints on voter
preferences: (a) if τi = c1, then we must have c2 �i c5; and
(b) if τi = c5, then we must have c2 �i c1.

Single-peaked approximations. While single-peakedness
is a powerful concept, preference profiles are unlikely to be
single-peaked in practice, especially as the number of vot-
ers or candidates becomes large.1 Several forms of approxi-
mate single-peakedness have been proposed recently that al-
low limited violations of the constraints imposed by single-
peakedness. We now outline some of these.

1In problems defined on metric spaces, such as facility location
[Procaccia and Tennenholtz, 2009; Lu et al., 2010; Escoffier et al.,
2011; Dokow et al., 2012; Sui et al., 2013] single-peakedness is
more likely to hold, but even then may be compromised by consid-
erations apart from distance.

Given a profile �, one important task is testing whether
it is single-peaked. Escoffier et al. [2008] develop an algo-
rithm for this purpose in the 1D setting. It has a running time
of O(nz) (recall n and c are the number of agents and can-
didates, respectively), improving on an earlier O(n2z) algo-
rithm proposed by Bartholdi and Trick [1986]. It exploits the
fact that candidates ranked last in any voter’s ranking must
lie at the extreme points of the axis. The algorithm finds an
axisA that renders the profile (perfectly) single-peaked if one
exists; but if no such A exists, it does not find a best axis that
fits the greatest number of voters, nor does it generalize to
multiple dimensions (see below).

Approximation methods attempt to find some minimal
change to the profile that would render it single-peaked. Fal-
iszewski et al. [2011] consider the removal of maverick voters
to render a profile single-peaked (e.g., perhaps certain voters
are “irrational” in their declared preferences). The aim is to
delete as few mavericks as possible, which measures the qual-
ity of the approximation.

Definition 2 [Faliszewski et al., 2011] A profile � is k-
maverick single-peaked if a profile �′ obtained by removing
at most k voters from � is single-peaked.

Erdélyi et al. [2012] consider local candidate deletion (LCD),
allowing the deletion of misordered candidates from each
voter’s preference—the notion is “local” since different can-
didates can be deleted from each �i. The goal is to minimize
the (local) number of candidates deleted.

Definition 3 [Erdélyi et al., 2012] A profile � is k-local can-
didate deletion (k-LCD) single-peaked if a profile �′ ob-
tained by removing at most k candidates from each �i is
single-peaked.

One can also approximate single-peakedness by allowing
multiple axes, where each voter must be single-peaked w.r.t.
at least one of these axes:

Definition 4 [Escoffier et al., 2008] A profile � is k-
additional axis (k-AA) single-peaked if there are k + 1 axes
A1, . . . , Ak+1 such �i is single-peaked w.r.t. at least one
axis, ∀i ∈ N .

It is important to note that k-AA single-peakedness, while it
implies k + 1-dimensional single-peakedness, is not equiva-
lent to it. It imposes the stringent requirement that each voter
be single-peaked with respect to one of the axes, something
not needed in true multi-dimensional models.

Several other notions of approximation have been pro-
posed, but these are somewhat weaker than those above, so
we do not investigate them. Among these are k-Dodgson
[Faliszewski et al., 2011], which allows performing at most
k swaps of adjacent candidates in each voter’s ranking. k-
LCD is at least as powerful, since deleting a candidate is at
least as effective as swapping two candidates [Erdélyi et al.,
2012]. Another is clustered single-peakedness [Galand et al.,
2012], which allows groups of candidates to be clustered and
requires single-peakedness w.r.t. such clusters, with the aim
of minimizing maximal cluster size. k-LCD (indeed “global”



candidate deletion) can simulate its effects (though their qual-
ity measures are somewhat different).

Other related work. Key research on single-peakedness
in the 1D and multi-dimensional cases have been outlined
above, as have recent proposals for approximation. See Bar-
bera’s [2010] excellent survey for an overview of how single-
peakedness is exploited in voting and mechanism design (and
see Schummer and Vohra’s [2007] discussion of computa-
tional considerations).

The rich literature on spatial models for voter or consumer
choice bears a strong relationship as well [Hotelling, 1929;
Hinich, 1978; Poole and Rosenthal, 1985]. Spatial models
explain voter choice by inferring (from data) distances be-
tween voters and candidates, and typically using some form
of probabilistic choice based on these distances [Bradley and
Terry, 1952; Luce, 1959; Shepard, 1959]. While the model is
more restrictive than multi-dimensional single-peakedness in
some senses, stochastic choice allows for accommodation of
“misorderings,” much like approximations in single-peaked
models. Spatial models are typically used to explain choice
data rather than full preference rankings (see [Gormley and
Murphy, 2007] for an exception).

Finally, work in behavioral social choice [Regenwetter et
al., 2006] addresses very related questions, observing that
standard domain restrictions (such as single-peakedness or
Sen’s value restriction) are rarely observed in real-world elec-
tion data. Probabilistic variants of such conditions are used to
explain (among other things) the stability often observed in
elections, and specifically the overwhelming lack of majority
cycles. We take a different approach, investigating various
approximations to the domain restrictions themselves. We
extend them to multiple dimensions, and focus on recovering
approximate variants of single-peakedness to (ultimately) as-
sist in the design of mechanisms. However, our conceptual
stances are very much aligned.

3 One-Dimensional Branch and Bound
To find the best approximations for single-peaked prefer-
ences, we first consider the best axis problem: given a pro-
file �, find a single axis A that explains the preferences of
the greatest number of voters (i.e., renders�i single-peaked).
Letting the score s(A) of an axis be the number of voters
whose preferences are consistent with it, we want to find
the axis A∗ with the greatest score. This is, of course, just
the optimization variant of the k-maverick problem, which is
NP-complete [Erdélyi et al., 2012]. However, we develop a
branch-and-bound algorithm for this problem, and use this as
a building block for generating additional axes and for sup-
porting k-LCD approximation. We focus in this section on
1D single-peakedness.

3.1 The Algorithm
Our branch-and-bound algorithm, 1D-SPBB, is specified in
Alg. 1 and adopts ideas from the single-peaked consis-
tency method of Escoffier et al. [2008]. Each node in
the search tree is labeled by a partial axis of the form
Ap,q = {(c1, . . . , cp), . . . , (cq, . . . , cz)}, where p candidates
c1 <Ap,q

. . . <Ap,q
cp are ordered on the left of the

Algorithm 1 1D-SPBB(A0,z+1 ← ∅, Cr ← C, lb∗ ← 0)
1: while There exists an unchecked axis do
2: Pick two candidates c′ and c′′ from Cr

3: Build the axis Ap+1,q−1 from Ap,q by locating c′ at
the position of p+ 1 and c′′ at q − 1

4: if Cr\{c′, c′′} = ∅ then
5: Mark the complete axis Ap+1,q−1 as checked
6: Compute the score s(Ap+1,q−1)
7: if s(Ap+1,q−1) > lb∗ then
8: lb∗ ← s(Ap+1,q−1) and A∗ ← Ap+1,q−1
9: else

10: Compute the upper bound ub for Ap+1,q−1
11: if ub > lb∗ then
12: 1D-SPBB(Ap+1,q−1, Cr\{c′, c′′}, lb∗)
13: else
14: Mark the whole branch as checked
15: Return

axis and z − q + 1 candidates cq <Ap,q
. . . <Ap,q

cz
are ordered on the right. The remaining candidates Cr =
C\{c1, . . . , cp, cq, . . . , cm} are not yet ordered on the axis.
An extension of partial axis Ap,q is any complete axis A that
retains the two suborderings and completes the ordering by
placing the remaining candidates between the two in some
fashion. Let E(Ap,q) be the set of extensions of Ap,q . We
say a voter i is consistent with Ap,q if �i is single-peaked for
some A ∈ E(Ap,q). 1D-SPBB also maintains, at each node,
the list of voters who are consistent with that node’s partial
axis.

The algorithm starts with an empty axis and extends it from
the “outside in.” At each step, 1D-SPBB branches by plac-
ing two candidates in Cr at positions p + 1 and q − 1 of
a partial axis Ap,q to form a more complete axis Ap+1,q−1.
It then computes the induced bounding box constraints and
the corresponding consistent voters. The number of consis-
tent voters provides a upper bound on the score s(A) of any
A ∈ E(Ap+1,q−1). If the axis is complete, this gives us the
exact score s(A) of this axis, and a lower bound on s(A∗).
In typical fashion, 1D-SPBB maintains a global lower bound
lb∗, corresponding to the score of the best complete axis A∗
found so far. It cuts the search for extensions of a partial axis
Ap,q when the upper bound onAp,q falls below lb∗; and when
it terminates, the best axis A∗ is the optimal axis.

We now consider several key steps in the algorithm that
ensure its practicality despite the theoretical hardness of the
problem. First, note that axes of the form A1,z at the first
level of the search tree fix only the two extreme points of the
axis. Symmetry means that we need not consider any axis
with c′ at the leftmost position and c at the rightmost, if we
have already expanded the partial axis with c leftmost and c′
rightmost. This reduces the search tree size by a factor of two,
improving efficiency.

A critical component of 1D-SPBB is the identification of
consistent voters given a partial (or complete) axis. Given A,
Alg. 2 computes an upper bound on the score of any Ã ∈
E(A); and if A is complete, it will return s(A). We let A[j]
denote the candidate at the jth position of A and �i,t the
candidate ranked tth in voter i’s preference�i. The algorithm
is based on that of Escoffier et al. [2008] for testing single-



Algorithm 2 Compute Score or Upper Bound of (Partial)
Axis A

1: V ← {}%Set of consistent voters%
2: for agent i ∈ N do
3: consistent← TRUE
4: l← 1, r ← n %Left and right pointers%
5: for t from z to 1 do
6: if A[l] =�i,t or unplaced candidate then
7: l← l + 1
8: else if A[r] =�i,t or unplaced candidate then
9: r ← r − 1

10: else
11: consistent← FALSE
12: break
13: if consistent = TRUE then
14: V ← V ∪ {i}

peaked consistency, exploiting the fact that candidates ranked
last in any �i must lie at the extreme ends of the axis.

Since Alg. 2 will be called frequently by 1D-SPBB
(Alg. 1), its running time should be slight. Fortunately, it
is easy to see that this is the case:
Theorem 1 Algorithm 2 has a running time of O(nz).

Good heuristics for selecting branches (i.e., partial axes
to expand) can have a dramatic impact on any branch-and-
bound algorithm: the ability to increase our lower bound
quickly can significantly impact the degree of pruning. Our
current heuristic simply expands nodes in descending order
of their upper bounds, in the hope that a partial axis with a
large upper bound will have some completion with a high
score, thereby improving our global lower bound. If addi-
tional domain-specific information is available, other heuris-
tics may be used. For instance, if a probabilistic prior distri-
bution over voter preferences is known, then the expected de-
gree of consistency can be used to heuristically score nodes
for expansion. Other possibilities include expanding nodes
that are “least similar” or most likely to be “correct” given
the nodes that have already been expanded.

3.2 Approximation
We use the best axis algorithm 1D-SPBB as the core of more
general algorithms to find optimal axes under various forms
of approximation, and to estimate the degree to which a pref-
erence profile is approximately single-peaked. We propose
several extensions of 1D-SPBB for three different notions of
approximate single-peaked consistency. In some cases, the
algorithms do not guarantee discovery of the optimal approx-
imation (i.e., the minimum k), but they provide both upper
and lower bounds on the degree of approximation.

k-maverick consistency. Computing the minimum k for
which a profile is k-maverick consistent is precisely what 1D-
SPBB does. The best axisA∗ found by the algorithm explains
s(A∗) consistent voters (and this is the maximum number of
voters explainable by any axis). Hence, the remaining n −
s(A∗) voters form the maverick set of minimum size. Hence,
Alg. 1 can be applied without any change.

k-additional axis consistency. The 1D-SPBB algorithm

can also be used to compute k-AA consistency. We investi-
gate a simple greedy algorithm to approximate the minimum
k for which a profile� is k-AA single-peaked consistent. The
algorithm, 1D-SPBB-AA, works as follows: starting with the
full profile, we find the best axisA1 using 1D-SPBB. We then
remove all n1 voters consistent with A1 from the profile and
rerun 1D-SPBB on the profile of the n−n1 remaining voters.
We repeat until the profile is empty. If it terminates after k+1
iterations, 1D-SPBB-AA verifies k-AA consistency.

The value k determined by 1D-SPBB-AA is only an up-
per bound on the minimum k required for k-AA consistency
because of its greedy nature: it may not give the optimal k.
The first iteration of the algorithm also determines a lower
bound on k: if the first axis returned explains n1 voters, then
k ≥ d n

n1
e is needed to ensure k-AA consistency. We exploit

this fact below in analyzing our data sets. Deciding if a profile
is k-AA consistent is NP-complete [Erdélyi et al., 2012].

k-local candidate deletion consistency. We can readily
adapt 1D-SPBB to work with k-LCD consistency. Specifi-
cally, given a fixed value of k, we modify the algorithm to
compute the best axis, i.e., the axis that renders the greatest
number of voters single-peaked when we allow up to k can-
didates to be deleted from any voter’s ranking. This is useful
if we wish to see how single-peaked a profile is when voters,
say, make “mistakes” in their ballots, or fail to distinguish
certain candidates from one another. We can also combine
this with k-AA consistency, finding the number of additional
axes needed when each axis is allowed to explain voter pref-
erences using k-LCD.

1D-SPBB can be used directly for this purpose, and re-
quires only a modification in Alg. 2, when computing the up-
per bound of a partial axis (or score of a complete axis) for
k-LCD. Instead of reporting a violation of single-peakedness
when �i is inconsistent with the (partial) axis, it records, for
each voter i, the number of inconsistencies detected so far—
each inconsistency can be managed by a local deletion. If
k + 1 violations occur, then i is reported as inconsistent with
the (partial) axis.

We use this method to find the best axis for fixed values of
k in experiments below. We also adapt the greedy algorithm,
1D-SPBB-AA, to find (approximate) the minimal number of
additional axes needed when allowing k-LCD: we call this
method 1D-SPBB-AA-k-LCD. Since the number of consis-
tent voters is non-decreasing in k, we can use binary search
to find the minimum value of k that ensures k-LCD single-
peaked consistency w.r.t. the best axis found by Alg. 1. Since
we can always make any profile single-peaked by removing
z − 2 candidates from each voter’s ranking in the worst case,
binary search will take at most log2(z − 1) iterations. Like
k-AA, this problem is NP-complete [Erdélyi et al., 2012] and
the algorithm may not find the minimum number of local dele-
tions required: this is due to the fact that when a violation
occurs, we simply remove the lower-ranked candidate in �i,
whereas a deletion of the higher-ranked candidate may have
led to a fewer future deletions for voter i. Thus our method
returns only an upper bound of the optimal solution.



Dublin West Dublin North
# of consistent voters 109 (2.9%) 14 (0.4%)
Complete axis visited 2 3

Branch out due to bound 9,375 509,202
Running time (in sec.) 0.64 2.92

Figure 1: 1-D branch-and-bound results (best single axis).

3.3 Results from 2002 Irish General Election
We applied our algorithms to two data sets taken from the
2002 Irish general election.2 The Dublin West election has
9 candidates and 29,989 votes of the top-t form (for varying
values of t), of which 3,800 are complete preference rankings.
In Dublin North, there are 12 candidates and 43,942 votes, of
which 3,662 are complete.3 Our primary experiments are run
on the subset of votes comprising all complete rankings. We
first ran 1D-SPBB (Alg. 1), combined with Alg. 2, to compute
the best single axis for the two data sets. Fig. 1 shows that the
best axis explains, assuming single-peaked preferences, a tiny
fraction of voter preferences, only 109 of 3,800 (2.87%) and
14 of 3,662 (0.38%) in West and North, respectively. Clearly
voter preferences are far from being single-peaked.

Our methods can easily be adopted to partial rankings in
the obvious fashion (we omit details here). Preliminary re-
sults on the full voting data sets, including the truly partial
rankings, show that 6% (resp., 6.5%) of voters are single-
peaked w.r.t. the best axis in the West (resp., North) data
sets. This larger fraction is not unexpected, since single-
peakedness cannot be violated by unranked candidates (so
voters with top-t preferences for smaller values of t are con-
sistent with far more axes). Despite this, voter preferences
remain far from being single-peaked.

We also see that 1D-SPBB is quite efficient. While the
total number of axes are 9!/2 ≈181K and 12!/2 ≈240M ,
respectively, the algorithm needs only 0.64s. (resp., 2.92s) to
find the best axis, visiting only two (resp., three) complete
axes, and branching out 9,375 (resp., 509,202) times, indicat-
ing good pruning due to strong lower bounds.

We also investigate the various approximations described
above. The (single) best axis results immediately tell us that
k-maverick consistency requires deletion of 97.13% (resp.,
99.62%) of voters to ensure the preference profile is single-
peaked. We also immediately obtain a lower bound on k-AA
consistency: Dublin West needs a minimum of d 3800109 e = 35
additional axes, while North needs 262 additional axes. We
also ran the greedy k-LCD approximation algorithm, 1D-
SPBB-AA-k-LCD, for different values of k (when k = 0, this
is just 1D-SPBB-AA). Fig. 2(a) and (b) show the percentage
of voters explained with each additional axis added for dif-
ferent values of k (note the log-scale on the x-axis). Without
k-LCD approximation (i.e., when k = 0), 447 (resp., 1,452)
axes are needed to explain all voter preferences (this is an up-
per bound on k-AA consistency). k-LCD without multiple
axes requires k = 7 (resp., k = 10)—the maximum possible
for each data set. Even with k-LCD for reasonable values of
k, many additional axes are needed to explain the data: for

2Data sets obtained from: www.dublincountyreturningofficer.com.
3A ranking has top-t form if a voter ranks only his t most-

preferred candidates. If t < m− 1, the ranking is incomplete.

instance, 31 axes are needed to explain Dublin West when
k = 2, while Dublin North, with an aggressive k = 4, needs
39 axes. The linear nature of the plots (recall the log-scale)
also shows that deletion of maverick voters will not help. This
suggests that, even allowing for combinations of approxima-
tions proposed in the literature, preferences in these data sets
are very far from being single-peaked in 1D. This motivates
the use of higher-dimensional models, to which we now turn.

4 Two-dimensional Branch and Bound
Since voter preferences in the data sets above are not single-
peaked in the one-dimensional sense—even when aggressive
approximation is considered—the explanatory power of these
proposed approximations in 1D is rather limited. We now ex-
tend these techniques to two-dimensional (2D) models. Our
extensions generalize beyond two dimensions, but we focus
on 2D models for ease of presentation, and also because, as
we see below, two dimensions suffice for our data sets.

4.1 The Algorithm
Extending our branch-and-bound algorithm to the 2D case
presents several challenges. First, the search space explodes,
as we must potentially consider all O((z!)2) combinations of
first and second axes. Second, candidates ranked last in some
�i need no longer lie at the extreme point of an axis (e.g., in
Ex. 1, c4 �i c3 �i c1 �i c5 �i c2 is a valid single-peaked
preference, but the least preferred candidate c2 is not extreme
on either axis). Third, in two-dimensions, some axes are dom-
inated by others—these should be pruned for computational
efficiency to the greatest extent possible. We now outline a
2D extension of the 1D-SPBB called 2D-SPBB. We omit full
details due to space limitations and focus on the intuitions be-
hind the method. However, we do explain how to tackle each
of the issues above.

To address the combinatorial explosion of possible pairs
of axes, instead of considering all candidate permutations as
possible first axes, we admit only a relatively small set of
potential initial axes, or a limited sample of possible axes. For
each such (potential) first axis, we fix it as our first dimension,
then apply our 1D algorithm 1D-SPBB to compute the second
dimension. Our implementation uses 1D-SPBB-AA to find
the collection of 1D axes that fully explains the given profile
�—we use this as our set of potential first dimension axes.
This guarantees that each�i is single-peaked consistent w.r.t.
at least one of the axes.4 This way of structuring 2D-SPBB
means any axis searched/expanded in the first dimension is
always complete, never partial. Of course, this is simply a
heuristic, and may limit our ability to find a good 2D model.

Computing scores and upper bounds. To address the sec-
ond problem, we develop a new algorithm to compute the up-
per bound for a pair of partial axes in a 2D space (i.e., max-
imum number of voters that are consistent with some exten-
sion of the partial pair), or the score of the pair of axes if
they are complete. This includes variants that incorporate the
same forms of approximation as above. One key difference

4If a voter is single-peaked w.r.t. one axis A, then she is also
single-peaked w.r.t. any 2D-space using A as one of its axes.
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Figure 2: 1-D branch-and-bound results, with LCD-approximation: (a) Dublin West; (b) Dublin North.

between 2D and 1D lies in the computation of consistency. In
a 2D space, the inconsistency of �i with single-peakedness
only occurs with the violation of some bounding box con-
straint (see Ex. 1): our algorithm checks for such violations.
Specifically, for each �i, we compute the set of bounding
box constraints B induced by the partial axes. Recall that
each constraint b = 〈b1,b2,b3〉, involves three candidates:
if τi = b1 (resp., τi = b3), then we must have b2 �i b3

(resp., b2 �i b1) to ensure single-peakedness of �i. If no
constraints are violated, i joins the set of consistent voters.

As in the 1D case, consistency testing must be fast to en-
sure that nodes in the branch-and-bound tree are processed
quickly. Consistency testing is polynomial time:

Theorem 2 Given a preference profile �, the number of vot-
ers consistent with a pair of partial axes A1, A2 can be com-
puted in O(nz4) time.

Proof: The set of bounding box constraints B can be com-
puted in O(z3) time, since each constraint involves candi-
date triples (of which there are at most

(
z
3

)
). Testing a rank-

ing �i against each such constraint (as described above) can
be accomplished in O(z) time, and must be done at most
once for each of n voters. (generally, substantially fewer
at deeper nodes in the tree).5 Thus total running time is
O(c3) +O(nc4) = O(nz4).

We mention two important details regarding the compu-
tation of B. First, it can be done incrementally by inherit-
ing bounding box constraints from nodes higher in the search
tree, then adding only the new constraints induced by plac-
ing two more candidates on the second axis. Second, for
any incomplete axis, apart from “explicit” constraints in-
volving candidates on the axis, we can also compute “im-
plicit” constraints. For example, suppose A1 is fixed, with
c1 <A1

c2 <A1
c3 <A1

c4 <A1
c5 <A1

c6, while A2 is
partial, with A2 = c1 <A2

c6 <A2
. . . <A2

c5 <A2
c2. The

only explicit constraint is 〈c6, c5, c2〉; but four implicit con-
straints can be added: 〈c1, c3, c5〉, 〈c1, c4, c5〉, 〈c6, c4, c2〉 and
〈c6, c3, c2〉. This allows more precise upper bound computa-
tion and more aggressive pruning.

Removing dominated axes. The fact that pairs of axes
in 2D give rise to bounding box constraints leads to a form
of “domination” that can be exploited to further reduce the
combinatorial overhead of searching.

5Other efficiencies, e.g., caching consistency tests across voters
with identical preference orderings, are also possible.

Dublin West Dublin North
k = 0 2,498/3800 1,732/3,662
k = 1 3,553/3800 2,948/3,662
k = 2 3,788/3800 3,436/3,662
k = 3 3,800/3800 3,645/3,662

Figure 3: 2-D branch-and-bound: number of consistent voters
with single best axis using k-LCD approximation.

Definition 5 A pair of (partial) axes A = 〈A1, A2〉 is domi-
nated byA′ = 〈A′1, A′2〉 if the set of bounding box constraints
induced by A′ is a strict subset of that induced by A.

Consider A = 〈A1, A2〉, with complete axis A1 = c1 <A1

c2 <A1 c3 <A1 c4 <A1 c5 and partial axis A2 = c1 <A2

. . . <A2 c5. A = 〈A1, A2〉 is dominated by a different pair
A = 〈A1, A

′
2〉: we obtain strictly fewer bounding box con-

straints by swapping c1 with whichever candidate happens to
be placed in the second position ofA2, and c5 with whichever
candidate is placed in the fourth position. As such, assuming
A1 is fixed (as we would in a specific branch of 2D-SPBB), a
different axis A′2 offers strictly more flexibility than A2.

We exploit this fact by using an algorithm for removing
(some, but not all) dominated axes during 2D-SPBB: detect-
ing this can allow pruning of a large part of the branch-and-
bound tree. We test domination by checking whether a swap
of two adjacent candidates on any axis can induce a strict sub-
set of original constraints (as in the above example): if yes,
the (partial) axis is pruned. This simple test is sound; and
while it does not ensure pruning of all dominated axes, it im-
proves run-time dramatically.

Approximation. As in the 1D case, 2D-SPBB automati-
cally generates the minimal k required for k-maverick consis-
tency. Of course, if we use sampling to limit the axes that will
be considered for the first dimension, we will obtain only an
upper bound on k. It can also be applied repeatedly to greed-
ily approximate the minimal set of additional 2D “axis pairs”
needed to explain a profile; and we easily incorporate k-LCD
approximation into 2D-SPBB using similar modifications to
those described in Sec. 3.2. We focus on k-LCD below.

4.2 Results from the 2002 Irish General Election
We use the Dublin West and North data sets to test the effec-
tiveness of 2D-SPBB and specifically the ability of k-LCD
approximation to fit the Irish voting data. Fig. 3 shows the
fraction of voters that are explained by the best axis pair gen-
erated using 2D-SPBB, both without approximation (k = 0),
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Figure 4: 2-D branch-and-bound results, anytime performance: (a) Dublin West; (b) Dublin North.

and allowing k-LCD approximation for k ≤ 3. The contrast
with the 1D fit is notable: even without approximation, the
best 2D-axis pair explains 65.7% (resp., 47.3%) of all vot-
ers. Allowing 2 out of 9 (resp., 3 out of 12) local candidate
deletion provides a near-perfect fit, covering 99.68% (resp.,
99.54%) of voters. This strongly suggests that the 2D model
carries far more explanatory power for this Irish voting data.

The 2D algorithms are more computationally intensive
than their 1D counterparts (though restricting attention to
sampled axes in the first dimension helps tremendously). It is
instructive to examine the anytime performance of 2D-SPBB
to see how quickly it converges to the best 2D model, and
how quickly model quality improves for various levels of k-
LCD. Figs. 4 (a) and (b) show that, while convergence to the
best 2D model can take a considerable amount of time, the
anytime performance is very good, allowing the discovery
of models that capture most of the (explainable) voters ex-
tremely quickly (note the log-scale on the x-axis).

5 Conclusions and Future Work
We have developed a branch-and-bound algorithm designed
to determine the degree to which a preference profile can
be viewed as single-peaked in both the single- and multi-
dimensional senses. It uses, and combines, various forms
of approximation. Experiments on two election data sets
demonstrate clearly that one-dimensional models, for any
reasonable degree of approximation, cannot explain voter
preferences in the two data sets we have explored. By con-
trast, a two-dimensional model provides an excellent fit, using
very low degrees of local candidate deletion (as the only form
of approximation) to explain the preferences of over 99% of
the voters in each data set. Our algorithms are very effec-
tive in practice in 1D spaces, and feasible in 2D with strong
anytime performance, despite the NP-completeness of these
problems. While these findings are preliminary, and need to
be corroborated on further election and other preference data
sets, they suggest that the extension to two (or additional) di-
mensions may render the use of single-peaked modeling, or
its approximations, more applicable in practice.

A number of interesting directions emerge from this work.
One is to further develop the theoretical foundations of single-
peaked consistency for different forms of approximations,
especially as we move to higher dimensions. Erdélyi et
al. [2012] show that the 1D-problem is NP-complete for sev-
eral of the forms of approximation considered here. We

conjecture that the problem remains NP-complete in two-
dimensions for the approximations discussed in this paper.

Obviously, multi-dimensional single-peakedness is a much
weaker assumptions than its 1D counterpart; so while it may
fit preference data better, its predictive power is lessened. De-
veloping a deeper understanding of these tradeoffs is vital.
An interesting question is, for instance, minimum conditions
on profiles that prevent the fit of any m-dimensional model
(c.f 1D, where single-peakedness can be violated with only
two voters and four candidates, or three voters and three can-
didates [Ballester and Haeringer, 2011]).

Another direction is the exploration of connections with
spatial models [Hinich, 1978; Poole and Rosenthal, 1985].
which are more restrictive than multi-dimensional single-
peaked models in some ways, and more flexible in others.
Interestingly, 1D and 2D models are often considered to be
sufficient in practice [Poole and Rosenthal, 1985], corroborat-
ing our findings in the more qualitative single-peaked frame-
work.6 Related is developing connections to the probabilistic
models of behavioral social choice [Regenwetter et al., 2006].

Finally, this work as an important step towards the design
of mechanisms for approximately single-peaked preferences.
While much attention has been paid to mechanisms that ex-
ploit single-peakedness [Moulin, 1980; Barberà et al., 1993;
Schummer and Vohra, 2007; Procaccia and Tennenholtz,
2009; Lu et al., 2010; Escoffier et al., 2011; Dokow et al.,
2012; Sui et al., 2013; Fotakis and Tzamos, 2010], little work
has addressed the impact of approximate single-peakedness
on these mechanisms, or the design and analysis of mecha-
nisms specifically for approximate single-peakedness. Hav-
ing a sense of which forms of approximation best fit real-
world preferences can help focus mechanism design efforts
on those most likely to have a practical impact.
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