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Abstract
We consider the mechanism design problem for agents
with single-peaked preferences over multi-dimensional
domains when multiple alternatives can be chosen. Facil-
ity location and committee selection are classic embodi-
ments of this problem. We propose a class of percentile
mechanisms, a form of generalized median mechanisms,
that are strategy-proof, and derive worst-case approxima-
tion ratios for social cost and maximum load for L1 and
L2 cost models. More importantly, we propose a sample-
based framework for optimizing the choice of percentiles
relative to any prior distribution over preferences, while
maintaining strategy-proofness. Our empirical investiga-
tions, using social cost and maximum load as objectives,
demonstrate the viability of this approach and the value
of such optimized mechanisms vis-à-vis mechanisms de-
rived through worst-case analysis.

1 Introduction
Mechanism design deals with design of protocols to elicit
the preferences of self-interested agents so as to achieve a
certain social objective. An important property of mecha-
nisms is strategy-proofness, which requires that agents have
no incentive to misreport their preferences to the mecha-
nism. While payments are often used to ensure that mech-
anisms are strategy-proof [Vickrey, 1961; Clarke, 1971;
Groves, 1973], in many settings payments are infeasible and
restrictions on preferences are required. The simple but ele-
gant class of single-peaked preferences is one such example:
roughly speaking, each agent has a single, most-preferred
point in the alternative space, with alternatives becoming less
preferred the further they are from that point. In such set-
tings, choosing a single alternative can be accomplished in
a strategy-proof fashion using the well-known median mech-
anism [Black, 1948] and its generalizations [Moulin, 1980;
Barberà, 2010]. Such models are used frequently for political
choice, facility location, and other problems. They also have
potential applications in areas such as in the design of a fam-
ily of products, customer segmentation, and related tasks, as
we discuss below.

Unfortunately, such mechanisms are efficient (e.g., w.r.t.
social cost) only in very limited circumstances. Further-
more, allowing the choice of multiple alternatives (e.g., mul-

tiple facilities) generally causes even these limited guaran-
tees to evaporate. In response, research has begun to ad-
dress the question of approximate mechanism design with-
out money [Procaccia and Tennenholtz, 2009], which focuses
on the design of strategy-proof mechanisms for problems
such as multi-facility location that are approximately effi-
cient (i.e., have good approximation ratios) [Lu et al., 2010;
Fotakis and Tzamos, 2010]. This work provides some pos-
itive results, but is generally restricted to settings involving
two facilities (or adopts other restrictions) andL2 (Euclidean)
preferences.

In this paper, we propose percentile mechanisms, a type
of generalized median mechanism [Barberà et al., 1993;
Barberà, 2010], but we address a more general class of prob-
lems. Specifically: (a) we consider problems involving selec-
tion of multiple alternatives (e.g., multi-facilities) in a multi-
dimensional alternative space; (b) we address both social cost
and maximum load as performance metrics; and (c) we ana-
lyze our mechanisms relative to L1 (Manhattan) and L2 (Eu-
clidean) preferences.

Our first contribution is the analysis of the approxima-
tion ratios of percentile mechanisms under various assump-
tions. The performance guarantees of such mechanisms un-
der worst-case assumptions are quite discouraging (like previ-
ous results). Indeed, designing mechanisms that have worst-
case guarantees may lead to poor performance in practice.
Our second contribution is the development of a sample-
based empirical framework for optimizing percentile mech-
anisms relative to a known preference distribution. In most
realistic applications, such as facility location, product de-
sign, and many others, the designer will have some knowl-
edge of the preferences of participating agents. Assuming
this takes the form of a distribution, we use profiles sampled
from this distribution to optimize percentiles while maintain-
ing strategy-proofness. Our empirical results demonstrate
that, by exploiting probabilistic domain knowledge, we ob-
tain strategy-proof mechanisms that outperform mechanisms
designed to guard against worst-case profiles. Our framework
can be viewed as a form of automated mechanism design
(AMD), which advocates the use of preference (or type) dis-
tributions to optimize mechanisms [Conitzer and Sandholm,
2002; Sandholm, 2003].



2 Preliminaries
In this section, we introduce our model along with required
concepts, notation, and motivation, and then briefly discuss a
selection of related work.

2.1 The Social Choice Problem
In social choice, the goal is selection of an outcome o ∈ O,
where each agent i ∈ N = {1, 2, . . . , n} has a prefer-
ence over O. Preferences are represented by a (weak) to-
tal order over O, or by a utility function. We focus on
the m-dimensional, q-facility location problem (or (m, q)-
problems): we must choose q points or locations in an m-
dimensional space Rm (or some bounded subspace thereof)
at which to place facilities. Outcomes are thus location vec-
tors of the form x = (x1, . . . , xq), with xj ∈ Rm (for j ≤ q).
Each agent i has a type ti fixing the cost ci(x, ti) associated
with any location x ∈ Rm. Given outcome x, i uses the loca-
tion with least cost, hence ci(x, ti) = minj≤q ci(xj , ti).

Facility location can be interpreted literally, and naturally
models the placement of q facilities (e.g., warehouses, pub-
lic facilities, etc.) in some geographic space where agents
use the least cost (or “closest”) facility. However, many other
social choice problems fit within this class. Voting is one
example [Black, 1948; Barberà, 2010]: political candidates
can be ordered along several dimensions (e.g., stance on en-
vironment, health care, fiscal policy)—voters have prefer-
ences over points in this space—and one must elect q can-
didates to a legislative body. In product design, a vendor
may launch a family of q related products, each described by
an m-dimensional feature vector, with consumer preferences
over these options leading them to select their most preferred.
This also can serve as a form of customer segmentation.

It is natural to assume agent preferences are single-peaked
in settings such as those above. Intuitively, this means the
agent has a single “ideal” location, and its cost for any chosen
location increases as it “moves away from” this ideal. For-
mally, we need only a strict ordering on alternatives, rather
than a distance metric, to define a betweenness relation.

Definition 1 [Barberà et al., 1993] An agent i’s preference
on m-dimensional space Rm is single-peaked if there exists
a most preferred alternative τ(ti) such that, ∀α, β ∈ Rm

satisfying ||τ(ti)−β||1 = ||τ(ti)−α||1 + ||α−β||1, we have
ci(α, ti) ≤ ci(β, ti), where || · ||1 is the L1-norm.

Single-peaked preferences require that if a point α lies
within the “bounding box” of τ(ti) and β, then α is at least
as preferred as β. Intuitively, as we move farther away from
i’s ideal location τ(ti) we can reach α via some path before
we reach β. Note that this does not restrict i’s relative pref-
erence for α and β if neither lies within the other’s bounding
box with respect to the ideal point τ(ti).

An agent’s ideal location τ(ti) does not fully determine
its preferences, even when single-peaked. Despite this, we
will equate an agent’s type ti with its ideal location (for rea-
sons that become clear below). However, within the class of
single-peaked preferences, we can adopt specific cost func-
tions that are fully determined by the ideal location ti. Often

distance metrics are used, and we consider both L1 (Man-
hattan) and L2 (Euclidean) distances below. Specifically, we
define distance-based cost functions for i as follows:

cpi (x, ti) = min
j≤q
||ti − xj ||p (1)

where p ∈ {1, 2} reflects either L1 or L2 distance from i’s
nearest facility. We use xp[i;x] to denote i’s closest facility
in the location vector x under the Lp-norm.

The aim in facility location is to select a set of q facilities
that minimize some social objective. One natural objective is
to minimize social cost (SC) given type profile t, where social
cost (relative to some norm p) is given by:

SC p(x, t) =
∑
i

cpi (x, ti) (2)

Alternatively, we could try to balance the load by ensuring
no facility is used by too many agents. Defining load on
facility j given outcome x and type profile t as lpj (x, t) =

|{i|xp[i;x] = j}|, we minimize the maximum load (ML):

MLp(x, t) = max
j
lpj (x, t). (3)

This objective makes sense, for instance, when a product de-
signer launches a family of q new products, consumers pur-
chase the product closest to their ideal product, but costs
are minimized by balancing production; or when facility
management costs increase superlinearly with load. Many
other fundamental social objectives, such as fairness (e.g.,
maximum agent distance), and combinations thereof can be
adopted depending on one’s design goals.

2.2 Mechanisms
We now consider direct mechanisms, where agents reveal
their types and an outcome is chosen based on the revealed
types to maximize some social objective. In facility location
with single-peaked preferences, agents declare their ideal lo-
cations: hence a mechanism is a function f that maps a de-
clared type profile t to an outcome f(t) ∈ (Rm)q (i.e., q
m-dimensional alternatives).

A mechanism f is strategy-proof (or truthful) if:1

ci(f(ti, t−i), ti) ≤ ci(f(t′i, t−i), ti), ∀i, ti, t′i, t−i
In other words, f is strategy-proof if no agent can obtain a
better outcome by misreporting its true type (ideal location).
Group strategy-proofness is defined similarly, but requires
that no group of agents S ⊆ N can misreport their types,
in a coordinated fashion, so that all agents in S gain. That is,
for all t, for all S, and for all t′S , there is some i ∈ S such
that ci(f(t), ti) ≤ ci(f(t′S , t−S), ti).

While the ideal is to design strategy-proof mechanisms
that achieve some social objective (e.g., minimizing social
cost), this is not always feasible. In (1, 1)-facility location
problems, if agent preferences are single-peaked, the me-
dian mechanism, which selects the median of all reported
ideal locations, is in fact (group) strategy-proof [Black, 1948;

1We use strategy-proof to refer to dominant strategy incentive
compatibility; (individual) rationality is assured in our settings.



Moulin, 1980], and minimizes social cost if agent preferences
are all determined by a suitable distance metric. However,
when one moves to even just two facilities, strategy-proofness
and efficiency are incompatible [Procaccia and Tennenholtz,
2009]. Procaccia and Tennenholtz [2009] propose approxi-
mate mechanisms to handle such situations: mechanisms that
are strategy-proof, and come as close as possible to achieving
the social objective. Formally:
Definition 2 A mechanism f has an approximation ratio ε
w.r.t. social objective C if:

C(f(t), t) ≤ ε ·min
x
C(x, t).

Such mechanisms as ε-optimal w.r.t. objective C (or ε-
efficient if C is social cost/welfare). When minimizing so-
cial cost, we assume the number of agents is greater than the
number of facilities (otherwise, we can trivially locate facil-
ities at each agent’s ideal to obtain a (group) strategy-proof,
efficient mechanism). Also we focus on non-imposing mech-
anisms: once facilities are selected, agents are free to choose
their favorite (otherwise, one can trivially minimize ML by
assigning agents to facilities in an arbitrary balanced way).

2.3 Related Work
Black [1948] first proposed the median mechanism for (1, 1)-
facility location, showing it to be strategy-proof for single-
peaked preferences. Moulin’s [1980] generalized median
scheme allows phantom peaks, and is the unique class of
(anonymous) strategy-proof mechanisms for such prefer-
ences. Barberà et al. [1993] later generalized this class fur-
ther using coalitional systems, and provided a characteriza-
tion result for (m, 1)-problems. These m-dimensional gener-
alized median schemes select a (single) location by choos-
ing its coordinates in each dimension independently (in a
“median-like” fashion).

Some work has considered strategy-proof mechanisms
with even more restricted preferences and domain assump-
tions, for example: m-dimensional, separable star-shaped
preferences (including quadratic preferences) [Border and
Jordan, 1983]; symmetric, single-peaked preferences (of
which L1 and L2 are instances) [2011]; and location on
a graph (e.g., a network) relative to an extended notion of
single-peakedness [Schummer and Vohra, 2002; Dokow et
al., 2012].

Recent attention has been focused on algorithmic aspects
and approximation in strategy-proof facility location when
agents have L2 preferences. Procaccia and Tennenholtz
[2009] study the one-dimensional problem, providing up-
per and lower bounds on the approximation ratio for social
cost. Of interest here is their deterministic left-right mecha-
nism, which is (n − 1)-efficient for (1, 2)-problems. Fotakis
and Tzamos [2012] characterize the class of all determinis-
tic strategy-proof mechanisms with bounded approximation
ratios for (1, 2)-problems on the real line (and show that no
such mechanisms exist for (1, q)-problems, q ≥ 3). Lu et
al. [2010] define the (randomized) proportional mechanism
with an approximation ratio of 4 for general distance metrics,
but it cannot be applied with more than two facilities. Fo-
takis and Tzamos [2010] show that a winner-imposing vari-
ant of the proportional mechanism is strategy-proof for any

1t

Facility 1 Facility 2

2t 3t 4t 5t 6t 7t 8t 9t

Figure 1: The (0.25, 0.75)-percentile mechanism (n = 9).

number of facilities, with an approximation ratio of 4q. Es-
coffier et al. [2011] define the first mechanism for general
multi-dimensional location problems, a randomized mecha-
nism with approximation ratio n/2, but only in the very re-
strictive setting where the number of agents is exactly one
more than the number of facilities.

Work on load balancing games is somewhat related, but
differs in that cost functions reflect the externalities agents
impose on one another (by sharing a facility or some other
resource). Considerable research has developed price of an-
archy [Koutsoupias and Papadimitriou, 1999; Berthold, 2007]
and related results. However, externalities give those models
a very different character than ours.

3 Percentile Mechanisms
In this section, we introduce the class of percentile mecha-
nisms, a special case of generalized median mechanisms [Bar-
berà et al., 1993; Barberà, 2010].

3.1 One-dimensional Percentile Mechanisms
We begin with one-dimensional facility location problems to
develop intuitions. We wish to place q facilities, with each
agent i having a single ideal location ti and single-peaked
preferences. Without loss of generality, we rename the agents
so their ideal locations are ordered: t1 ≤ t2 ≤ . . . ≤
tn. A percentile mechanism is specified by a vector p =
(p1, p2, . . . , pq), where 0 ≤ p1 ≤ p2 . . . ≤ pq ≤ 1: the p-
percentile mechanism locates the jth facility at the pj th per-
centile of the reported ideal locations. In other words, the jth
location is placed at xj = tij , where ij = b(n− 1) · pjc+ 1.2
Intuitively, we can decompose the mechanism into q indepen-
dent rules, each locating one facility.
Example 1 We illustrate the (0.25, 0.75)-percentile mech-
anism for a two-facility problem with n = 9 agents in
Fig. 1. Ordering reported locations so that t1 ≤ . . . ≤ t9,
the mechanism locates the first facility at x1 = t3 (since
b8 · 0.25c+ 1 = 3) and the second at x2 = t7.

The following is an important property of the mechanism:
Theorem 1 The p-percentile mechanism is (group) strategy-
proof for any p.

Proof sketch: We prove the theorem for the case of q = 2
(the proof for q > 2 is similar).

Let S ⊆ N be a coalition of agents, x = (x1, x2) be
the location vector if agents truthfully report their ideals, and
x′ = (x′1, x

′
2) be the location vector if agents in S jointly de-

viate from their peaks. In addition, let ∆1 = x1 − x′1 and

2We could equivalently use order statistics; but the percentile for-
mulation removes dependence on the number of the agents in the
mechanism’s specification.



∆2 = x′2 − x2. We show that if either ∆1 or ∆2 is strictly
greater or strictly less than 0, some agent in S is worse off
in the percentile mechanism, which is sufficient to establish
(group) strategy-proofness. There are four cases to consider:

I. ∆1 ≥ 0 and ∆2 ≥ 0. We can ignore the case where
both ∆1 and ∆2 are 0, since no agent in S gains by mis-
reporting if neither facility moves. Assume, w.l.o.g., that
∆1 > 0 and ∆2 ≥ 0. Recall that x1 is the p1th percentile
among all reported peaks. Hence ∆1 > 0 implies that
some agent i ∈ S, with ti ≥ x1, reports a new ideal to
the left of x1. Agent i’s cost is now:

ci(x
′, ti) = min{ti − x′1, x′2 − ti}

≥ min{ti − x1, x2 − ti} = ci(x, ti)

II. ∆1 ≥ 0 and ∆2 < 0. In this case, there must be an
i ∈ S, with ti ≥ x2, that reports a new ideal to the left
of x2; it’s cost is:

ci(x
′, ti) = ti − x′2 > ti − x2 = ci(x, ti)

III. ∆1 < 0 and ∆2 ≥ 0. This case is completely sym-
metric to case II.

IV. ∆1 < 0 and ∆2 < 0. The case is similar to case II:
There must be an i ∈ S whose ideal is to the right of x2
but misreports to the left of x2, increasing its cost.

This establishes (group) strategy-proofness.
Since any percentile mechanism is strategy-proof for any

class of single-peaked preferences, it prevents strategic ma-
nipulation even when applied to specific cost/preference
functions. Unfortunately, percentile mechanisms can give
rise to poor approximation ratios when we consider specific
cost functions, specifically, L1 or L2 costs.
Theorem 2 Let agents have L1 or L2 preferences. Let p =
(p1, p2, . . . , pq) define a percentile mechanism M . If q ≥ 3,
the approximation ratio of M w.r.t. social cost is unbounded.
The approximation ratio w.r.t. maximum load is q · z, where
z = max1≤j≤q(pj+1 − pj−1) (let p0 = 0 and pq+1 = 1).

Proof sketch: We first show the approximation ratio is un-
bounded when the objective is social cost minimization. The
intuition is that for any percentile vector p, there is a type pro-
file for which optimal social cost is arbitrarily small, while the
mechanism-induced social cost is constant. We prove this for
the case of q = 3 (the proof can easily be extended to q > 3).

Let q = 3, and assume that each agent’s types is one of
only four possible ideal locations, 0, δ, 2 and 3. For any
percentile vector p = (p1, p2, p3), consider a type profile
(τ(t1), τ(t2), . . . , τ(tn)) where τ(t1) = . . . = τ(i1) = 0 and
τ(ti1+1) = . . . = τ(ti2) = δ, with b(n− 1) · p1c+ 1 ≤ i1 <
b(n− 1) · p2c+ 1 ≤ i2. Given these reports, the p-percentile
mechanism locates the first two facilities at locations 0 and
δ. In addition, let n1, n2, n3 and n4 be the number of agents
whose ideal locations are 0, δ, 2 and 3, respectively. When δ
is small enough, the mechanism incurs a social cost of n3 (if
the third facility is located at 3) or n4 (if the third facility is
located at 2). However, the optimal location of the three fa-
cilities for this profile is 0, 2 and 3, which has optimal social
cost of n2 · δ. Thus the approximation ratio is unbounded.

For maximum load, assume a percentile vector p =
(p1, . . . , pq), and the induced location vector x =
(x1, . . . , xq). For each 1 ≤ j ≤ q, the number of agents us-
ing facility xj is at most lj(t, f(t)) = n · (pj+1 − pj−1); this
occurs when each agent with a peak in (xj−1, xj+1) is closest
to xj , in which case maximum load is ML(t, f(t)) = n · z,
where z = max1≤j≤q(pj+1−pj−1). However, optimal max-
imum load, which is dn/qe, occurs using a location vector
such that each facility is evenly loaded. So the approximation
ratio is n·z

dn/qe ≤ q · z.
Notice that the theorem does not hold for social cost with

q = 2 facilities: the left-right mechanism, or (0, 1)-percentile
mechanism, has a bounded approximation ratio of n − 1 for
social cost [Procaccia and Tennenholtz, 2009]. Indeed, the
(0, 1)-percentile mechanism is the only mechanism within
the percentile family that has a bounded approximation ra-
tio, and the only anonymous, deterministic mechanism with a
bounded approximation ratio for (1, 2)-problems.3 For q ≥ 3,
not only does no percentile mechanism have bounded approx-
imation ratio, it has recently been shown that no determinis-
tic mechanism has bounded approximation ratio [Fotakis and
Tzamos, 2012]. This gives further motivation for the use of
probabilistic priors to optimize percentiles for average-case
rather than worst-case performance (see Sec. 4).

With respect to maximum load, it is natural to ask which
percentile vector p minimizes z in Thm. 2. We can show that
the percentile mechanism that “evenly distributes” facilities
is approximately optimal, and that it has the smallest approx-
imation ratio within the family.

Proposition 1 Let agents have L1 or L2 preferences. If q is
odd, then the percentile mechanism with pj = j

q+1 , ∀1 ≤
j ≤ q, is 2q

q+1 -optimal w.r.t. maximum load. If q is even,
then the percentile mechanism with pj = pj+1 = j+1

q+2 , ∀j =

2j′ − 1, 1 ≤ j′ ≤ q/2, is 2q
q+2 -optimal w.r.t. maximum load.4

In each case, the mechanism has the smallest approximation
ratio within the percentile family.

All proofs omitted here can be found in a longer version of
this paper5

3.2 Multi-dimensional Percentile Mechanisms
As discussed above, many social choice problems can be
interpreted as “facility location” problems when viewed as
choice in a higher dimensional space, such as selection of
political/committee representatives, product design, and the
like. We now analyze a generalization of the percentile mech-
anism to multi-dimensional spaces.

3The characterization results of Fotakis and Tzamos [2012] show
that the only deterministic mechanisms for (1, 2)-problems are the
(0, 1)-percentile mechanism and dictatorial mechanisms.

4For even q, the mechanism is partially imposing. We locate two
facilities at each selected location, and balance the agents choosing
any location; they are indifferent to the “imposed” assignment, so it
isn’t truly imposing mechanisms (we don’t remove choice from the
agents [Fotakis and Tzamos, 2010]). We use this for convenience;
there are strictly non-imposing mechanisms with the same ratio.

5See: http://www.cs.toronto.edu/∼cebly/papers.html.
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Figure 2: A percentile mechanism for the (2, 2)-problem (n = 11).

As above, we assume that agents have single-peaked pref-
erences (see Defn. 1). Reported types ti are now points in
Rm. For any type profile t, let tk1 ≤ tk2 ≤ . . . ≤ tkn be the
ordered projection of t in the kth dimension (for k ≤ m).
In other words, we simply order the reported coordinates
in each dimension independently. An m-dimensional per-
centile mechanism is specified by a q × m matrix P =
(p1;p2; . . . ;pq), where each pj ∈ [0, 1]m is an m-vector
in the unit cube, with pj = (p1j , p

2
j , . . . , p

m
j ). Given a re-

ported profile t, the P-percentile mechanism locates the jth
facility by selecting, for each dimension k ≤ m, the pkj th per-
centile of the ordered projection of t in the kth dimension as
the coordinate of facility j in that dimension. Formally:

xj = (t1b(n−1)·p1
jc+1, t

2
b(n−1)·p2

jc+1, . . . , t
m
b(n−1)·pm

j c+1).

Example 2 Fig. 2 illustrates a 2-D, two facility problem with
11 agents. With P = (0.2, 0.7; 0.8, 0.3), the P-percentile
mechanism locates the first facility at the x-coordinate of t3
(since b10 · 0.2c + 1 = 3) and at the y-coordinate of t8; and
the second facility is placed at the x-coordinate of t9 and and
the y-coordinate of t4. Notice facilities need not be located at
the ideal point of any agent.

The following result says that the m-dimensional per-
centile mechanism is strategy-proof.

Theorem 3 The m-dimensional P-percentile mechanism is
strategy-proof for any P.

Strategy-proofness can be easily verified. The mechanism is
not group strategy-proof: in a two-dimensional model, two
agents i and j can collude to misreport their preferences such
that i’s misreport benefits j in one dimension, and j’s misre-
port benefits i in the other, making both better off.

The following results generalize the corresponding one-
dimensional results above.

Theorem 4 Let agents have L1 or L2 preferences, and P de-
fine a percentile mechanismM for an (m, q)-facility location
problem with m > 1. The approximation ratio of M is un-
bounded w.r.t. social cost. The approximation ratio of M is
q·z w.r.t. maximum load, where z =

∏m
k=1 max1≤j≤q(pkj+1−

pkj−1) (let pk0 = 1 and pkq+1 = 1).

Notice that this result differs from the one-dimensional case,
where the (0, 1)-percentile (i.e., left-right) mechanism has a

Distribution q = 2 q = 3 q = 4

Du
SC (0.25, 0.75) (0.16, 0.5, 0.84) (0.12, 0.37, 0.63, 0.88)

ML (0.49, 0.50) (0.33, 0.35, 0.98) (0.25, 0.26, 0.74, 0.75)

Dg
SC (0.25, 0.75) (0.15, 0.5, 0.85) (0.1, 0.35, 0.65, 0.9)

ML (0.49, 0.50) (0.33, 0.35, 0.9) (0.25, 0.26, 0.74, 0.75)

Dgm
SC (0.17, 0.68) (0.16, 0.59, 0.93) (0.12, 0.37, 0.68, 0.94)

ML (0.49, 0.50) (0.14, 0.65, 0.66) (0.17, 0.34, 0.73, 0.74)

Table 1: Optimal percentiles for different distributions, objectives,
and numbers of facilities.

bounded approximation ratio for social cost. When m > 1,
no percentile mechanism has this property—this holds be-
cause the mechanism may place no facility at the ideal lo-
cation of any agent. As above, however, we can optimize the
percentiles for maximum load, when q = q̃m for some q̃ by
exploiting Prop. 1 in each dimension:

Proposition 2 Let q = q̃m. If q̃ is odd, the mechanism that
locates one facility at each 1

q̃+1 th percentile in each dimen-

sion is
(

2q̃
q̃+1

)m
-optimal w.r.t. maximum load. If q̃ is even,

the mechanism that locates two facilities at each 2
q̃+2 th per-

centile in each dimension is
(

2q̃
q̃+2

)m
-optimal w.r.t. maximum

load. Moreover, these are the smallest approximation ratios
within the family of percentile mechanisms.

4 Optimizing Percentile Mechanisms
We have seen that percentile mechanisms are strategy-proof
for general (m, q)-facility location problems, and can of-
fer bounded approximation ratios for L1 and L2 preferences
(though only under certian conditions for social cost). Un-
fortunately, these guarantees require optimizing the choice of
percentiles w.r.t. worst-case profiles, which can lead to poor
performance in practice. For example, in a (1, 2)-problem,
decent approximation guarantees for social cost require us-
ing the (0, 1)-percentile mechanism; but if agent preferences
are uniformly distributed in one dimension, this will perform
quite poorly. Intuitively, the (0.25, 0.75)-percentile mecha-
nism should have lower expected social cost due to its “prob-
abilistically suitable” placement of two facilities, each for use
by half of the agents.

We consider a framework for empirical optimization of
percentiles within the family of percentile mechanisms that
admits much better performance in practice. As in auto-
mated mechanism design [Conitzer and Sandholm, 2002;
Sandholm, 2003], we assume a prior distribution D over
agent preference profiles. One will often assume a prior
model D (e.g., learned from observation) that renders indi-
vidual agent preferences independent given that model, but
this is not a requirement for our method. In many settings,
such as facility location or product design, such distributional
information will readily be available. We sample preference
profiles from this distribution, and use them to optimize per-
centiles to ensure the best expected performance w.r.t. our so-
cial objective.

Unlike classic AMD, we restrict ourselves to the spe-
cific family of percentile mechanisms. While this limits
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Figure 3: Comparison of optimized percentile mechanism
and optimal value (q = 3).
the space of mechanisms, we do this for several reasons.
First, it provides a much more compact mechanism param-
eterization over which to optimize than in typical AMD set-
tings.6 Second, since the resulting mechanism is “automati-
cally” strategy-proof, no matter which percentiles are chosen,
the optimization need not account for incentive constraints.
Third, unlike Bayesian optimization—in other words, meth-
ods that choose optimal facility placement relative to the prior
with no elicitation of ideal locations—optimized percentile
mechanisms are responsive to the specific preferences of the
agents. (We empirically compare percentile mechanisms to
Bayesian optimization below.)

Let agent type profiles t = (t1, t2, . . . , tn) be drawn from
distribution D. Given a P-percentile mechanism, let fP(t)
denote the chosen locations when the agent type profile is t.
The goal is to select P to minimize the expected social cost
or maximum load:

min
P

ED [SC p(fP(t), t)] ; or min
P

ED [MLp(fP(t), t)]

Naturally, other objectives can be modelled in this way too.
Given Y sampled preference profiles, we optimize per-

centile selection relative to the Y sampled profiles. In our ex-
periments below, we use simple exhaustive optimization for
this purpose. Specifically, we consider all possible values for
the percentile matrix P. For each, we compute the average
social cost (maximum load) over Y sample profiles, and se-
lect the one with minimum objective value. This is feasible
for problems of the size we consider.

For larger problems, one can formulate the minimiza-
tion problem as a mixed integer program (MIP) for L1

costs, or a mixed integer quadratically constrained program
(MIQCP) for L2 costs, and use standard optimization tools,
e.g., CPLEX, to solve the problem. Relaxed formulations re-
quire O(nm) variables however, rendering them intractable
for problems with large numbers of agents. We also experi-
mented with gradient and coordinate ascent algorithms from
random starting points (i.e., P-matrices) on all of the prob-
lems described below. These worked extremely well: no run
of either algorithm on the problems below converged to a so-
lution more than 2% from optimal (on avg. within 0.5% of
optimal); and with 100 random restarts, both methods found
the optimal solution in every instance (and did so quickly, in
times ranging from 0.88–1.97 sec.). Further algorithmic de-
velopments remain a key focus of research.

In the following experiments, we consider problems with
n = 101 agents, with agent preferences drawn independently

6AMD has been explored in parameterized mechanisms, e.g., in
combinatorial auctions [Likhodedov and Sandholm, 2004; 2005].

Distr.
1D 2D 4D

n = 101 n = 21 n = 101 21 n = 101 21

q = 2 3 4 q = 2 3 4 q = 3 q = 2

Du 2.2 3.0 3.8 9.7 18.5 24.6 1.4 7.4 1.0 6.2
Dg 1.4 2.3 3.1 11.6 19.7 27.9 1.5 5.4 0.9 2.9
Dgm 2.2 1.7 3.8 8.2 11.9 21 1.2 6.2 0.9 3.6

Table 2: Percentage improvement in social cost of optimized per-
centile mechanism vs. Bayesian optimization.

from three classes of distributions: uniformDu, GaussianDg

and mixture of GaussiansDgm with 2 or 3 components. Each
distribution reflects rather different assumptions about agent
preferences: that they are spread evenly (Du); that they are
biased toward one specific location (Dg); or that they parti-
tioned into 2 or 3 loose clusters (Dgm). In all cases, T = 500
sampled profiles are used for optimization. We examine re-
sults for both social cost and maximum load.

One-dimensional mechanisms
We begin with simple one-dimensional problems with q = 2,
3 or 4. Table 1 shows the percentiles resulting from our
optimization for both SC and ML under each of the three
distributions.7 For example, when agent ideal locations are
uniformly distributed, the (0.25, 0.75)-percentile mechanism
minimizes the expected social cost for two facilities. This is
expected, since the uniform (and Gaussian) distribution parti-
tions agents into two groups of roughly equal size, and facil-
ities should be located at the median positions of each group.

The performance of the optimized percentile mechanisms
is extremely good. Fig. 3 compares the expected social cost
and maximum load of our mechanisms with those given by
optimal placement of facilities (results for q = 3 are shown,
but others are similar). Recognize however that optimal
placement is not realizable with any strategy-proof mecha-
nism. Despite this, optimized percentile mechanisms perform
nearly as well, in expectation, as optimal placement in all
three cases. Contrast this with the performance of the mech-
anisms with provable approximation ratios. When q = 2,
the (0, 1)-percentile mechanism has an average social cost of
242.4, 340.9 and 523.2 for Du, Dg and Dgm, respectively;
but the social cost of our mechanisms are only 123.7, 76.5,
and 165.1, respectively. When q = 3, the (0.25, 0.5, 0.75)-
percentile mechanism has the best approximation ratio for
ML (see Prop. 1). Its average maximum loads are 39.5, 38.7
and 38.3, which are close to (but not as good as) the loads of
the optimized percentile mechanisms (36.5, 36.5, and 36.2).

We also compare the performance (w.r.t. social cost only)
of our optimized percentile mechanism with Bayesian op-
timization (see column 1D in Table 2). Bayesian opti-
mization performs almost as well as the optimal percentile
mechanism when the number of agents is large. However,
for the smaller population, eliciting ideal locations using
the percentile mechanism gives much better results than the
Bayesian approach. For example, when q = 4, the optimized
percentile mechanism has an expected cost that is 3.1% better

7Du is uniform on [0, 10]. Dg is Gaussian N (0, 2). Dgm is
a Gaussian mixture with 3 components: N (−4, 4) (weight 0.4),
N (0, 1) (weight 0.45), andN (5, 2) (weight 0.15).
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Figure 4: Optimized Percentiles for (a) 2D: Uniform, (b) 2D: Gaussian, (c) 2D: Gaussian mixture, and (d) 4D.

than the Bayesian model with n = 101 agents; but the perfor-
mance gaps grows to 27.9% with n = 21 agents. In addition,
we see that the agent-facility ratio also matters (i.e., when
there are more facilities, the percentile mechanism tends to
exhibit a greater performance gap).

These results are not surprising in this i.i.d. setting: indeed
simple law-of-large-numbers arguments suggest that no elic-
itation of ideal points is needed at all for optimal placement
given a sufficiently large population.8 However, our frame-
work does not require this i.i.d. assumption—preferences can
be arbitrarily correlated. In such a case, Bayesian optimiza-
tion can work extremely poorly. For example, consider 1-
D, 2-facility problem in which a latent variable V correlates
preferences: if V is true, ideal points are drawn from a Gaus-
sian N (µ1, σ); otherwise, they are drawn from N (µ2, σ).
If each realization of V is equally likely, optimal Bayesian
placement selects facilities at each of µ1 and µ2. By contrast,
the optimal percentile mechanism is a simple function of σ,
and will place facilities around the mean of the single “true”
Gaussian, greatly improving social cost.

Multi-dimensional mechanisms
We also experimented with two additional problems. 2D is
a (2, 3)-problem where agents have L2 preferences, captur-
ing, say, the placement of three public projects like libraries,
or warehouses. 4D is a (4, 2)-problem with L1 preferences,
which might model the selection of 2 products for launch,
each with four attributes that predict consumer demand.9

For the problem 2D we show the expected placement of
facilities given the selected percentiles in Fig. 4(a)-(c), for
both SC and ML, for each of the three distributions. (Ac-
tual facility placement will shift to match the reported type
profile in each instance.) Placement for SC tends to be dis-
tributed appropriately, while ML places two facilities ad-
jacent to one another. For 4D, we measure performance
rather than visualizing locations. Fig. 4(d) compares ex-
pected SC and ML of our optimized percentile mechanisms
to those using true optimal facility placements: the per-
centile mechanisms are always optimal for ML;10 and for SC ,

8Thanks to Lirong Xia for this observation.
9For 2D, Du is uniform over [0, 10] in each dimension. Dg is

normal with mean µ = [3, 2] and covariance Σ = [2, 1]I. Dgm

is a 2 component mixture: N ([−2,−1], [2, 1]I) (weight 0.3) and
N ([0, 2], [1, 3]I) (weight 0.7). For 4D, Du is uniform over [0, 10]
in each dimension. Dg is N ([3, 2, 1, 2], [2, 3, 4, 1]I). Dgm is a
2 component mixture: N ([2, 1, 0, 1], [4, 6, 8, 5]I) (weight 0.4) and
N ([1, 2, 1, 0], [7, 4, 5, 8]I) (weight 0.6).

10This is because the mechanism locates two facilities at almost
the same position, and achieves optimal maximum load. However,

placements using our optimized strategy-proof mechanisms
are only 1.77%-4.66% worse than the corresponding non-
strategy-proof optimal placements. This strongly suggests
that percentile mechanisms, optimized using priors over pref-
erences, are well-suited to multi-dimensional, single-peaked
domains. The improvement of optimized percentile mecha-
nisms over Bayesian optimization (see columns 2D and 4D
in Table 2) exhibits trends similar to those in the 1D case.

5 Conclusions and Future Research
Our percentile mechanisms for multi-dimensional, multi-
facility location problems, are strategy-proof for single-
peaked preferences, but at the same time admit considerable
flexibility in optimization. While worst-case approximation
ratios seem discouraging, sample-based optimization that ex-
ploits priors over preferences allows strong performance w.r.t.
one’s social objectives. Indeed, our mechanisms give solu-
tions that are, in practice, extremely close to the optimum
attainable with exact knowledge of agent preferences.

This work is just a starting point for the design of optimized
mechanisms for single-peaked domains, and can be extended
in several ways, including: mechanisms for more specific
classes of single-peaked preferences (e.g., quadratic [Bor-
der and Jordan, 1983] or symmetric single-peaked [Massó
and Moreno de Barreda, 2011]); and other social objectives,
including those that combine various desiderata (e.g., SC
and ML), and those that trade off facility cost with benefit
(e.g., new facilities may decrease social cost, but their ex-
pense must be factored in [Lu and Boutilier, 2011]). Further
development of optimization methods for percentile mecha-
nisms (e.g., our MIP or MIQCP formulations) are needed to
make our approach more scalable; preliminary experiments
with local search techniques are very promising in this re-
spect. Sample complexity results—theoretical bounds on the
number of sampled profiles needed by our technique to en-
sure near-optimal results with high probability—are also of
interest. Finally, incremental (or multi-stage) mechanisms
that trade off social cost, communication costs, and agent
privacy [Sandholm et al., 2007; Feigenbaum et al., 2010;
Sui and Boutilier, 2011] would be extremely valuable.
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this is not always possible for three or more facilities.
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nio Stacchetti. Generalized median voter schemes and
committees. J. Economic Theory, 61(2):262–289, 1993.
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