
SLATEQ: A Tractable Decomposition for Reinforcement Learning with
Recommendation Sets

Eugene Ie1∗† , Vihan Jain1† , Jing Wang1† ,
Sanmit Narvekar2‡ , Ritesh Agarwal1 , Rui Wu1 , Heng-Tze Cheng1 ,

Tushar Chandra1 and Craig Boutilier1∗
1Google Research, 2Department of Computer Science, University of Texas at Austin

{eugeneie,cboutilier}@google.com

Abstract
Reinforcement learning (RL) methods for recommender
systems optimize recommendations for long-term user
engagement. However, since users are often presented
with slates of multiple items—which may have inter-
acting effects on user choice—methods are required to
deal with the combinatorics of the RL action space.
We develop SLATEQ, a decomposition of value-based
temporal-difference and Q-learning that renders RL
tractable with slates. Under mild assumptions on user
choice behavior, we show that the long-term value (LTV)
of a slate can be decomposed into a tractable function
of its component item-wise LTVs. We demonstrate our
methods in simulation, and validate the scalability and
effectiveness of decomposed TD-learning on YouTube.

1 Introduction
Practical recommender systems largely focus on myopic
prediction—estimating a user’s immediate response to a
recommendation—without considering the long-term impact
on subsequent user behavior. This can be limiting: modeling
a recommendation’s stochastic impact on the future affords
opportunities to trade off user engagement in the near-term
for longer-term benefit (e.g., by probing a user’s interests, or
improving satisfaction). As a result, recommender systems
research has increasingly turned to the sequential nature of
user behavior using temporal models, such as hidden Markov
models and recurrent neural networks [Rendle et al., 2010;
Wu et al., 2017], and long-term planning using reinforce-
ment learning (RL) techniques (e.g., [Gauci et al., 2018;
Choi et al., 2018; Zhao et al., 2018]). However, RL for rec-
ommendation has largely been confined to restricted domains
due to the complexities of deploying such models at scale.

One challenge in many recommenders is that multiple
items are recommended to a user simultaneously, sometimes
called a recommendation slate. This induces an RL problem
with a large combinatorial action space. Recent approaches
to RL with such combinatorial actions [Sunehag et al., 2015;
Metz et al., 2017] make inroads into this problem, but are
∗Contact Authors
†Authors Contributed Equally
‡Work done while at Google LLC

unable to scale to problems of the size encountered in large,
real-world recommenders, in part because of their generality.
In this work, we develop a new slate decomposition technique
called SLATEQ that estimates the long-term value (LTV) of a
slate of items by directly using the estimated LTV of the indi-
vidual items on the slate. This decomposition takes advantage
of the specifics of user choice behavior, but makes minimal
assumptions about user choice.

Specifically, we first show how the SLATEQ decomposition
can be incorporated into temporal difference (TD) learning al-
gorithms, such as SARSA and Q-learning, so that LTVs can
be learned at the level of individual items despite the fact that
items are always presented to users in slates. This is critical
for both generalization and exploration efficiency. We then
turn to optimization, i.e., constructing slates that maximize
LTV, a required component of policy improvement (e.g., in
Q-learning) at training time, and for selecting optimal slates
at serving time. Despite the combinatorial (and fractional) na-
ture of the underlying optimization problem, we show that it
can be solved in polynomial-time by a two-step reduction to
a linear program (LP). We also show that simple top-k and
greedy approximations, while having no theoretical guaran-
tees, work well in practice.

Finally, we demonstrate our approach with both offline
simulation experiments and an online live experiment on the
YouTube video recommendation system. We show that our
techniques are scalable and offer significant improvements
in user engagement over myopic recommendations. The live
experiment also demonstrates how our methodology sup-
ports the relatively straightforward deployment of TD and
RL methods that build on the learning infrastructure of extant
myopic systems. Further details can be found in an expanded,
related article [Ie et al., 2019].

2 Related Work
Recommender systems have typically relied on collabora-
tive filtering (CF) techniques [Konstan et al., 1997; Breese
et al., 1998; Salakhutdinov and Mnih, 2007]. These ex-
ploit user feedback on a subset of items (either explicit,
e.g., ratings, or implicit, e.g., consumption) to directly es-
timate user preferences for unseen items. Increasingly, rec-
ommenders have moved beyond explicit preference predic-
tion to capture more nuanced aspects of user behavior, for in-
stance, how they respond to specific recommendations, such

as pCTR (predicted click-through rate), degree of engage-
ment (e.g., dwell/watch/listen time), ratings, social behavior
(e.g., comments, sharing), etc. [van den Oord et al., 2013;
Covington et al., 2016; Cheng et al., 2016].

Early attempts to formulate recommendation as an RL
problem include an MDP model for shopping recommenda-
tion [Shani et al., 2005] and Q-learning for page navigation
[Taghipour et al., 2007]), but were limited to very small-scale
settings (100s of items, few thousands of users). More re-
cently, biclustering has been combined with RL algorithms
[Choi et al., 2018], while several commercial applications are
reported in [Gauci et al., 2018; Chen et al., 2019], the lat-
ter developing a scalable, off-policy policy-gradient approach
(though it does not compute explict LTVs or model slate ef-
fects). Zhao et al. [2018] consider actor-critic-based RL in
slate recommendation, tested in simulation on an e-commerce
data set. While similar in motivation to our approach, it does
not explicitly address action-space combinatorics.

Accounting for slates in recommenders is common [Desh-
pande and Karypis, 2004; Viappiani & Boutilier, 2010; Le
and Lauw, 2017] and introduces interesting modeling ques-
tions and computational issues due to the combinatorics of
slates themselves. Swaminathan et al. [2017] develop off-
policy evaluation and optimization with inverse propensity
scores for slate interactions, while Jiang et al. [2019] use of
VAEs to model the item distribution and generate slates.

Constructing optimal recommendation slates generally de-
pends on user choice behavior. Choice modeling is widely
studied in econometrics, psychology, statistics, operations re-
search and marketing [Louviere et al., 2000]. Probably the
most common models of user choice are the multinomial logit
(MNL) model and its extensions. For instance, the conditional
logit (CL) model is justified under specific independence and
extreme value assumptions [McFadden, 1974]. The MNL and
CL models are instances of a more general conditional choice
format we use below, in which a user i selects item j ∈ Awith
unnormalized probability v(xij), where v is some function of
a user-item feature vector xij :

P (j|A) = v(xij)∑
`∈A v(xi`)

. (1)

In the case of CL, v(xij) = eτu(xij), where u is a utility
function. Such models are used to capture consumer choice
or other user behavior in various domains. Cascade models
[Joachims, 2002; Craswell et al., 2008] have proven popular
as a means of explaining user browsing behavior through (or-
dered) lists of recommendations, search results, etc., and are
especially effective at capturing positional bias.

Designing tractable RL approaches for combinatorial ac-
tions—of which slate recommendations are an example—is
itself quite challenging. Sequential DQN [Metz et al., 2017]
decomposes k-dimensional actions into a sequence of atomic
actions, but trades off the exponential size of the action space
with a corresponding exponential increase in the size of the
state space. Slate MDPs [Sunehag et al., 2015] model slates
of primitive actions, and use DQN to learn the value of item
slates, and a greedy procedure to construct slates. However,
these approaches either require that primitive actions can be
executed in isolation (which is not feasible in slate recom-
menders), or that one maintains an explicit Q-function over

slates (hence, failing to address the combinatorics of repre-
sentation, exploration and generalization).

3 An MDP Model for Slate Recommendation
In this section, we develop a Markov decision process (MDP)
model for content recommendation with slates. We consider a
recommender charged with presenting a slate to a user, from
which the user selects zero or more items for consumption
(e.g., listening to selected music tracks). Once items are con-
sumed, the user can return for additional slate recommenda-
tions or terminate the session. The user’s response to an item
may have multiple dimensions, e.g., degree of engagement
(such as consumption time), quality of that engagement, sub-
sequent engagement beyond the recommender’s direct con-
trol, rating feedback, sharing behavior, etc. We treat degree
of engagement as the reward without loss of generality.

Session optimization can be modeled as a MDP with states
S , actionsA, reward functionR and transition kernel P , with
discount factor γ. The key components are:

(i) States S reflect user state, capturing both (relatively
static) user features (e.g., demographics, interests) and
relevant user history or past behavior (e.g., past recom-
mendations, items consumed, degree of engagement).

(ii) Actions A are possible recommendation slates. We as-
sume a fixed catalog of items I, so actions are subsets
A ⊆ I s.t. |A| = k, where k is the slate size.

(iii) Transition probability P (s′|s,A) reflects the probability
of the state becoming s′ when action A is taken at s.

(iv) Reward R(s,A) is the expected reward of a slate, which
measures the expected degree of user engagement with
items on slate A.

A (stationary, deterministic) policy π : S → A dictates
the action to be taken at any state. Its value function V π and
action-value (or Q-) function, Qπ are given by:

V π(s) = R(s, π(s)) + γ
∑
s′∈S

P (s′|s, π(s))V π(s′), (2)

Qπ(s,A) = R(s,A) + γ
∑
s′∈S

P (s′|s,A)V π(s′). (3)

The optimal policy π∗ maximizes expected value V (s) uni-
formly over S , and its value—the optimal value function
V ∗—is given by the fixed point of the Bellman equation:

V ∗(s) = max
A∈A

R(s,A) + γ
∑
s′∈S

P (s′|s,A)V ∗(s′). (4)

Q∗(s,A) = R(s,A) + γ
∑
s′∈S

P (s′|s,A)V ∗(s′). (5)

The optimal policy satisfies π∗(s) = argmaxA∈AQ
∗(s,A).

When transition and reward models are provided, optimal
policies and value functions can be computed using a va-
riety of methods [Puterman, 1994], though generally these
require approximation in large state/action problems. With
sampled data, RL methods such as TD-learning SARSA and
Q-learning can be used (see Sutton & Barto [1998] for an
overview). Given observed transitions and rewards as training

data of the form (s,A, r, s′, A′), the Q-function is updated as
one of (where α(t) is a learning rate):

Q(t)(s,A)

←α(t)[r+γQ(t−1)(s′, A′)]+(1−α(t))Q(t−1)(s,A); (6)

←α(t)[r+max
A′

γQ(t−1)(s′,A′)]+(1−α(t))Q(t−1)(s,A). (7)

SARSA, Eq. (6), is on-policy and estimates the value of the
data generating policy π, i.e., the TD-prediction problem on
state-action pairs.1 However, if the policy has sufficient ex-
ploration or other forms of stochasticity (as is common in
large recommenders), acting greedily w.r.t. Qπ , and using the
data so-generated to train a newQ-function, will implement a
policy improvement step, and with repetition will converge to
the optimal Q-function. Q-learning, Eq. (7), is off-policy and
directly estimates the optimal Q-function. Unlike SARSA, Q-
learning requires that one compute optimal slates A′ at train-
ing time, not just at serving time.

4 SLATEQ: Slate Decomposition for RL
One key challenge in the formulation above is the combina-
torial nature of the action space, consisting of all

(|I|
k

)
· k!

(ordered) k-sets over I. This poses two difficulties for RL.
First, the sheer size of the action space makes sufficient ex-
ploration impractical; and generalization of Q-values across
slates is challenging without some compressed representa-
tion. Second, is the combinatorial optimization problem of
finding a slate with maximum Q-value. Without structural as-
sumptions or approximations, this problem cannot meet the
real-time latency requirements of production recommender
systems (often on the order of tens of milliseconds).

We make two assumptions about the interplay between sys-
tem dynamics and user choice behavior to develop SLATEQ,
a model that allows the Q-value of a slate to be decomposed
into a combination of the item-wise Q-values of its constituent
items. We first develop the decomposition itself, then show
how it can make slate optimization tractable.

4.1 Slate Decomposition of Q-values
We treat selection of no item from the slate as the selection
of the null item ⊥, which is an (implicit) item on every slate.
We first specify two assumptions about user choice behavior
of items from slates that allow the SLATEQ decomposition.

• Single choice (SC): A user consumes a single item from
each slate (which may be the null item ⊥).

• Reward/transition dependence on selection (RTDS):
The realized reward (user engagement) R(s,A) de-
pends (perhaps stochastically) only on the item i ∈ A
consumed by the user. Similarly, the state transition
P (s′|s,A) depends only on the consumed i ∈ A.

Assumption SC implies that users select only singletons B ⊆
Awhere |B| = 1. This hold in the conditional choice (includ-
ing CL) and cascade models described in Sec. 2. While lim-
iting in some settings, in our application (see Sec. 6), users

1SARSA is often used to refer to the on-policy control method
that includes making policy improvement steps. We use it simply to
refer to the TD-method based on SARSA updates as in Eq. (6).

consume one content item at a time. Returning to the slate
for a second item is a separate event (with a new state).2
The RTDS assumption is realistic in many recommenders,
especially w.r.t. immediate reward. The transition assumption
holds in recommenders where it is a user’s direct interaction
with items that drives user utility, overall satisfaction, new in-
terests, etc. But it may be treated as a simplifying assumption
in other recommenders where unconsumed slate impressions
themselves create, say, future curiosity. RTDS allows us to
express rewards and state transitions as follows:

R(s,A) =
∑
i∈A

P (i|s,A)R(s, i), (8)

P (s′|s,A) =
∑
i∈A

P (i|s,A)P (s′|s, i). (9)

Our decomposition of (on-policy) Q-functions for a fixed
data-generating policy π relies on an item-wise auxiliary
function Q

π
(s, i), which represents the LTV of a user con-

suming an item i, i.e., the LTV of i conditional on it being
clicked/selected. Under RTDS, this function is independent
of the slate A from which i was selected. We define:

Q
π
(s, i) = R(s, i) + γ

∑
s′∈S

P (s′|s, i)V π(s′). (10)

We immediately have, using SC:

Proposition 1. Qπ(s,A) =
∑
i∈A P (i|s,A)Q

π
(s, i).

Proof.

Qπ(s,A) = R(s,A) + γ
∑
s′∈S

P (s′|s,A)V π(s′) (11)

=
∑
i∈A

P (i|s,A)R(s, i)

+ γ
∑
i∈A

P (i|s,A)
∑
s′∈S

P (s′|s, i)V π(s′) (12)

=
∑
i∈A

P (i|s,A)[R(s, i)+γ
∑
s′∈S

P (s′|s, i)V π(s′)]

=
∑
i∈A

P (i|s,A)Qπ(s, i). (13)

Here Eq. (12) follows immediately from SC and RTDS and
Eq. (13) follows from the definition of Q

π
.

This simple result gives a complete decomposition of slate
Q-values into Q-values for individual items. Hence, the com-
binatorial challenges disappear if we can learn Q

π
(s, i) us-

ing TD methods. Fortunately, a simple Q-update fits the bill.
Given a consumed item i at s with observed reward r, a tran-
sition to s′, and next slate π(s′) = A′, we update Q

π
as:

Q
π
(s, i)←α(r + γ

∑
j∈A′

P (j|s′, A′)Qπ(s′, j)) (14)

+(1− α)Qπ(s, i).

Notice that this update assumes knowledge of the user choice
model P (i|s,A). Models such as MNL, CL, and cascade are

2Our decomposition can be extended readily to accurately model
user selection of multiple items by assuming conditional indepen-
dence of item-choice probabilities given A.

easily learned from user response data, independent of LTV.
Indeed, most recommenders use models that predict click-
through rates (CTR) for items while ignoring slate interac-
tions. We can use the scores or logits of an existing pCTR
model, v, as a proxy for relative appeal of items to the user in
state s in any of our models.

Our decomposed SLATEQ update facilitates more com-
pact Q-value models, using items as action inputs rather
than slates. This in turn allows for greater generalization and
data efficiency. Critically, while SLATEQ learns item-level Q-
values, it can be shown to converge to the correct slate Q-
values under standard assumptions:

Proposition 2. Under standard assumptions on learning rate
schedules and exploring starts [Sutton and Barto, 1998], and
the assumptions on user choice probabilities, state transi-
tions, and rewards stated in the text above, SLATEQ—using
update (14) and definition of slate value (13)—will converge
to the true slate Q-functionQπ(s,A) and support greedy pol-
icy improvement of π.

Proof. (Brief sketch.) Standard proofs of convergence for
TD(0) apply directly forQπ , except for the introduction of the
direct expectation over user choices, i.e.,

∑
j∈A′ P (j|s′, A′),

rather than samples. But the explicit expectation does not
impact convergence (see, e.g., analysis of expected SARSA
[Van Seijen et al., 2009]). W.r.t. exploration, if the choice
model allows some item j to have P (j|s,A) = 0 for any slate
A with π(s) > 0 in some state s, item j at s won’t be sam-
pled under π (this is problematic for learningQπ , not estimat-
ing V π). Thus exploration must account for the choice model
(e.g., by sampling all slates, or by configuring exploratory
slates that ensure each j is sampled). For most choice mod-
els, all items have non-zero choice probability, so standard
action-level exploration conditions apply.

Modifying Eq. (10) to obtain Q(s, i)—the optimal (off-
policy) conditional-on-click item-wise Q-function—requires
only the replacement of V π(s′) with V ∗(s′). Likewise, ex-
tending the decomposed update Eq. (14) to full Q-learning
needs only to introduce the usual maximization:

Q(s, i)←α(r + γmax
A′∈A

∑
j∈A′

P (j|s′, A′)Q(s′, j)) (15)

+(1− α)Q(s, i).

Analogs of Props. 1 and 2 easily extend to this case.

4.2 Slate Optimization of Q-values
We now address the combinatorial LTV slate optimization
problem, i.e., finding a slate with maximum expected Q-value
from A, the space of all

(|I|
k

)
· k! possible (ordered) k-sets

over I, given a specific choice model. This is required during
training with Q-learning, and serving time when executing
the induced greedy policy w.r.t. any Q-function (including
when engaging in policy improvement with SARSA). Here
we focus on the general conditional choice model (Eq. (1), of
which CL and MNL are special cases). In this model, the or-
dering of items in a slate does not impact choice probabilities,
so the action space consists of

(|I|
k

)
(unordered) k-sets.

Exact Optimization. We can formulate the LTV slate opti-
mization problem as follows:

max
A⊆I
|A|=k

∑
i∈A

P (i|s,A)Q(s, i). (16)

Under general conditional choice Eq. (1), including MNL
and CL, we can express this as a fractional mixed-integer pro-
gram (MIP), with binary variables xi ∈ {0, 1} for each item
i ∈ I indicating whether i occurs in slate A:

max
∑
i∈I

xiv(s, i)Q(s, i)

v(s,⊥) +
∑
j xjv(s, j)

(17)

s.t.
∑
i∈I

xi = k; xi ∈ {0, 1}, ∀i ∈ I. (18)

This is a simplified variant of a classic product-line (or as-
sortment) optimization problem [Chen and Hausman, 2000;
Schön, 2010]. It can be shown that the binary indicators can
be relaxed (see, e.g., Chen & Hausman [2000]) to obtain the
following fractional linear program (LP):

max
∑
i∈I

xiv(s, i)Q(s, i)

v(s,⊥) +
∑
j xjv(s, j)

(19)

s.t.
∑
i∈I

xi = k; 0 ≤ xi ≤ 1, ∀i ∈ I. (20)

The constraint matrix in this relaxed problem is totally uni-
modular, so the optimal solution is integral and standard non-
linear optimization methods can be used. However, since it is
a fractional LP, it is directly amenable to the Charnes-Cooper
[1962] transformation and can be recast directly as a (non-
fractional) LP. To do so, we introduce an additional variable t
that (implicitly) represents the (inverse) choice weight of the
selected items t = (v(s,⊥) +

∑
j xjv(s, j))

−1, and auxil-
iary variables yi that represent the products xi · (v(s,⊥) +∑
j xjv(s, j))

−1, giving the following LP:

max
∑
i

yiv(s, i)Q(s, i) (21)

s.t. tv(s,⊥) +
∑
i

yiv(s, i) = 1 (22)

t ≥ 0;
∑
i

yi ≤ kt. (23)

The optimal solution (y∗, t∗) to this LP yields the optimal xi
assignment in the fractional LP Eq. (19) via xi = y∗i /t

∗. This
in turn gives the optimal slate in the original fractional MIP
Eq. (17): item i is on the slate if y∗i > 0. Hence:

Observation 3. LTV slate optimization, Eq. (16), under the
general conditional choice model, Eq. (1), and fixed slate size
k, is solvable in polynomial-time in the number of items |I|.

Thus full Q-learning with slates using the SLATEQ de-
composition imposes at most a small polytime overhead rela-
tive to item-wise Q-learning despite its combinatorial nature.
Moreover, production systems typically restrict the items to
be ranked using a separate retrieval policy, so the set of items
in the LP is usually much smaller than the complete set I.

Top-k and Greedy Optimization. While the exact maxi-
mization of slates under the conditional choice model can be
accomplished in polytime using Q and the item-score func-
tion v, we may wish to avoid solving an LP at serving time. A
natural heuristic for constructing a slate is to simply add the
k items with the highest score: in this case, we insert items
into the slate in decreasing order of their “unnormalized ex-
pected LTV” v(s, i)Q(s, i). We call this top-k optimization.
This incurs only an O(log(I)) overhead relative to the O(I)
time required for maximization with item-wise Q-learning.

Top-k is limited since, when considering the item to add
to the Lth slot (for 1 < L ≤ k), item scores are not up-
dated to reflect the previous L − 1 items already added to
the slate. Greedy optimization, instead of scoring each item
ab initio, updates item scores w.r.t. the current partial slate.
Specifically, given A′ = {i(1), . . . i(L−1)} of size L− 1 < k,
the Lth item is that with maximum marginal value:

argmax
i6∈A′

v(s, i)Q(s, i) +
∑
`<L v(s, i(`))Q(s, i(`))

v(s, i) + v(s,⊥) +
∑
`<L v(s, i(`))

.

We compare top-k and greedy optimizations with the LP so-
lution in our offline simulation experiments below.

Under general conditional choice, neither top-k nor greedy
find the optimal slate, per the following counterexample:

Item Score (v(s, i)) Q-value
Null 1 0
a 2 0.8

b1, b2 1 1

The null item is always on the slate. Items b1, b2 are identical
w.r.t. their behavior. We have V ({a}) = 1.6/3, greater than
V ({bi}) = 1/2. Both top-k and greedy will place a on the
slate first. However, V ({a, bi}) = 2.6/4, whereas the optimal
slate {b1, b2} is valued at 2/3. So for slate size k = 2, neither
top-k nor greedy find the optimal slate.

It is not hard to show that the expected value of a slate,
when viewed as a set function, is neither submodular nor
monotone, which prevents the application of standard anal-
yses of greedy algorithm [Nemhauser et al., 1978; Feige,
1998]. Moreover, we can show that top-k can perform arbi-
trarily poorly in general.

Observation 4. The approximation ratio of the top-k algo-
rithm for slate construction is unbounded.

The following example demonstrates this.
Item Score (v(s, i)) Q-value
⊥ ε 0
a ε 1
b 1 ε

Suppose we have k = 1. Top-k scores item b higher than a,
creating the slate with value V ({b}) = ε/(1 + ε), while the
optimal slate has value V ({a}) = 1/2.

Algorithm Variants. With multiple slate optimization
methods at our disposal, many variants of our RL algo-
rithms exist depending on the optimization method used dur-
ing training and serving. Given a trained SLATEQ model, we
can apply that model to serve users using either top-k, greedy
or the LP-based optimal method to generate recommended

slates. Below we use the designations TS, GS, or OS to de-
note these serving protocols, respectively. These designations
apply equally to (off-policy) Q-learned models, (on-policy)
SARSA models, and even (non-RL) myopic models.3

During Q-learning, slate optimization is also required at
training time to compute the maximum successor-state Q-
value (Eq. 15). This can also use either of the three opti-
mization methods, which we designate by TT, GT, and OT,
respectively. This designation is not applicable when training
a myopic model or SARSA (since it is on-policy). Thus for
example, QL-OT-OS (resp., QL-OT-TS) refers to Q-learning
with optimal training and optimal (resp., top-k) serving, while
MYOP-GS refers to myopic recommendation with greedy
serving. In our experiments we consider two other baselines:
Random, which recommends random slates from the feasible
set; and full-slate Q-learning (FSQ), which is a standard, non-
decomposed Q-learning method that treats each slate atomi-
cally (i.e., holistically) as a single action. The latter is a useful
baseline to test whether the SLATEQ decomposition provides
leverage for generalization and exploration.

Other Choice Models. SLATEQ is not limited to the choice
models (e.g., CL) used above; but the optimization problem
varies with the specific model. We discuss additional models
(e.g., cascade) in the expanded paper [Ie et al., 2019].

5 Empirical Evaluation: Simulation
We assess the SLATEQ decomposition in a large-scale, live
traffic experiment in Sec. 6. In this section we evaluate the
quality of SLATEQ on simulated problems using some of
the algorithms above. We construct a simulation environment
since most public datasets (e.g., MovieLens [Harper & Kon-
stan, 2016]) are point-wise, static, and not designed for eval-
uating multi-step user-recommender interactions. Simulation
for evaluating RL is useful even when live experiments are
viable, since evaluation on live traffic is expensive and can
introduce uncontrollable confounding effects.

The simulated environment works as follows (please see
the expanded, related article [Ie et al., 2019] for a more de-
tailed description). We have a set of documents D represent-
ing content items to be recommended, each reflecting a mix-
ture of topics T . Each d ∈ D is a topic vector d ∈ [0, 1]|T |; in
our experiments, each d has only a single topic T (d). Docu-
ments are drawn from distribution PD. Documents also have
an (unobservable) inherent quality Ld, drawn randomly from
N (µT (d), σ

2), where µt is a topic-specific mean quality for
any t ∈ T (hence topics vary in average quality). Users
u ∈ U are characterized in part by their interests in topics,
ranging from −1 (completely uninterested) to 1 (fully inter-
ested), hence are represented by u ∈ [−1, 1]|T |, drawn from
prior PU . User u’s interest in document d is given by the dot
product I(u, d) = ud.

At each interaction, m candidate documents are drawn
from PD, from which a slate of size k is selected for rec-
ommendation. A user chooses one item from the slate using
a simple conditional model per Eq. (1): di chosen with prob-
ability I(u, di)/

∑
j≤k I(u, dj). A user’s satisfaction S(u, d)

3A myopic model is equivalent to a Q-learned model with γ = 0.

with a selected/consumed d is a function f(I(u, d), Ld) of u’s
interest and d’s quality. We use a simple convex combination
S(u, d) = αI(u, d) + (1− α)Ld.

Each u has an initial (unobservable) budget Bu of time
to engage with content during a session. Each chosen d re-
duces u’s budget, with a session ending once Bu reaches
0. The budget decreases by a fixed c (which can vary per
item if desired) less a bonus that increases with S(u, d); thus,
more satisfying items decrease the time remaining in a ses-
sion at a slower rate. When u consumes d, her interest in
topic T (d) is nudged stochastically, biased toward increas-
ing her interest, but with some chance of it decreasing. Thus,
this recommender faces a short-term/long-term tradeoff be-
tween nudging a user’s interests toward topics that tend to
have higher quality at the expense of short-term consumption
of user budget. Our learning algorithms use the Dopamine
framework [Castro et al., 2018]. Each strategy is evaluated
over 5000 simulated users for statistical significance. All re-
sults are within a 95% confidence interval.
Myopic vs. Non-myopic Recommendations: We first test
the quality of (non-myopic) LTV policies learned using
SLATEQ to optimize engagement (γ = 1), using a selection
of the SLATEQ algorithms (SARSA vs. Q-learning, different
slate optimizations for training/serving). We compare these to
myopic scoring (MYOP) (γ = 0), which optimizes only for
immediate reward, as well as a Random policy. The following
table compares several key metrics:

Strategy Avg. Return (%) Avg. Quality (%)
Random 159.2 -0.5929

MYOP-TS 166.3 (4.46%) -0.5428 (8.45%)
MYOP-GS 166.3 (4.46%) -0.5475 (7.66%)

SARSA-TS 168.4 (5.78%) -0.4908 (17.22%)
SARSA-GS 172.1 (8.10%) -0.3876 (34.63%)

QL-TT-TS 168.4 (5.78%) -0.4931 (16.83%)
QL-GT-GS 172.9 (8.61%) -0.3772 (36.38%)
QL-OT-TS 169.0 (6.16%) -0.4905 (17.27%)
QL-OT-GS 173.8 (9.17%) -0.3408 (42.52%)
QL-OT-OS 174.6 (9.67%) -0.3056 (48.46%)

The LTV methods (SARSA and Q-learning) using SLATEQ
offer overall improvements in average return per user ses-
sion (percentage improvements relative to Random are shown
in parentheses). For instance, relative to the random base-
line, QL-OT-GS provides a 105.6% greater improvement than
MYOP-GS. The LTV methods all learn to recommend doc-
uments of much higher quality than MYOP. This results in
a positive impact on overall session length, which explains
the improved return per user. We also see that LP-based
slate optimization during training (OT) provides improve-
ments over top-k and greedy optimization (TT, GT) in Q-
learning when comparing similar serving regimes (e.g., QL-
OT-GS vs. QL-GT-GS, and QL-OT-TS vs. QL-TT-TS). Op-
timal serving (OS) also shows consistent improvement over
top-k and greedy serving—and greedy serving (GS) improves
significantly over top-k serving (TS)—when compared under
the same training regime. We note that the combination of
optimal training and top-k or greedy serving performs well,
and is especially useful when serving latency constraints are
tight, since optimal training is generally done offline.

Finally, optimizing using Q-learning gives better results
than on-policy SARSA (i.e., one-step improvement) under
comparable training and serving regimes. But SARSA itself

has significantly higher returns than MYOP, demonstrating
the value of on-policy RL for recommender systems. Indeed,
repeatedly serving-then-training (with some exploration) us-
ing SARSA would implement natural, continual policy im-
provement. These results demonstrate, in this simple syn-
thetic recommender system environment, that using RL to
plan long-term interactions can provide significant value in
terms of overall engagement.
SLATEQ vs. Holistic Optimization: Next we compare the
quality of policies learned using the SLATEQ decomposition
to FSQ, the non-decomposed Q-learning method that treats
each slate atomically as a single action. We set |T | = 20,m =
10, k = 3 so that we can enumerate all

(
10
3

)
slates for FSQ

maximization. Note that the Q-function for FSQ requires rep-
resentation of all

(
20
3

)
= 1140 slates as actions, which can

impede both exploration and generalization. For SLATEQ we
test only SARSA-GS. The following table shows our results:

Avg. Return (%) Avg. Quality (%) Avg. pCTR
Random 160.6 -0.6097 0.5800

FSQ 164.2 (2.24%) -0.5072 (16.81%) 0.5661 (-2.38%)
SARSA-GS 170.7 (6.29%) -0.5340 (12.41%) 0.7078 (22.06%)

While FSQ, an off-policy Q-learning method, is guaran-
teed to converge to the optimal slate policy in theory with
sufficient exploration, we see that, even when using an on-
policy method like SARSA, SLATEQ methods perform sig-
nificantly better, offering a 180% greater improvement over
Random than FSQ (despite using no additional model itera-
tions for policy improvement). This is due to the fact that FSQ
must learn Q-values for 1140 distinct slates, making it diffi-
cult to explore and generalize.4 These results demonstrate the
considerable value of the SLATEQ decomposition.

Improved representations could help FSQ generalize bet-
ter, but the approach is inherently unscalable, while SLATEQ
suffers from no such limitations (see Sec. 6). Interestingly,
FSQ does converge quickly to a policy that offers recommen-
dations of greater average quality than SLATEQ, but fails to
make a suitable tradeoff with user interest.
Robustness to User Choice: We test the robustness of
SLATEQ to changes in the choice model. Instead of the as-
sumed choice model above, users select items from the slate
using a simple cascade model (e.g., [Joachims, 2002]), where
items on the slate are inspected from top-to-bottom with a
position-specific probability, and consumed with probabil-
ity proportional to I(u, d) if inspected. If not consumed, the
next item is inspected, etc. Though users act in this fashion,
SLATEQ is trained (and served) assuming the original choice
model. The following table shows the results:

Strategy Avg. Return (%) Avg. Quality (%)
Random 159.9 -0.5976

MYOP-TS 163.6 (2.31%) -0.5100 (14.66%)
SARSA-TS 166.8 (4.32%) -0.4171 (30.20%)
QL-TT-TS 166.5 (4.13%) -0.4227 (29.27%)
QL-OT-TS 167.5 (4.75%) -0.3985 (33.32%)
QL-OT-OS 167.6 (4.82%) -0.3903 (34.69%)

SLATEQ continues to outperform MYOP, even when the
choice model does not accurately reflect the true environ-
ment, demonstrating its relative robustness. SLATEQ can be
adapted to other choice models, but since any choice model

4FSQ also takes roughly 6X the training time of SLATEQ over
the same number of events.

will be only an approximation of true user behavior, this form
of robustness is important.

Notice that QL-TT and SARSA have inverted relative per-
formance compared to the experiments above. This is due to
the fact that Q-learning exploits the (incorrect) choice model
to optimize during training, while SARSA, being on-policy,
only uses the choice model to compute expectations at serv-
ing time. This suggests that an on-policy control method like
SARSA (with continual policy improvement) may be more
robust than Q-learning in some settings.

6 Empirical Evaluation: Live Experiments
We tested SLATEQ (SARSA-TS specifically) on YouTube
withO(109) users andO(108) items in its corpus. The system
is typical of practical recommenders (e.g., [Covington et al.,
2016]), with two main components. A candidate generator
retrieves a small subset (hundreds) of items from a large cor-
pus that best match a user context. A ranker scores/ranks can-
didates using a DNN with both user context and item features.
It optimizes a combination of several objectives (e.g., clicks,
expected engagement, etc.). The extant recommender’s pol-
icy is myopic, scoring items for the slate using their immedi-
ate (predicted) expected engagement.

In our experiment, we replace the myopic engagement
measure with an LTV estimate in the ranker’s scoring func-
tion. We retain other predictions and incorporate them into
candidate scoring as in the myopic model. Our non-myopic
recommender maximizes cumulative expected engagement,
with user trajectories capped at N days. Since homepage
visits can be spaced arbitrarily in time, we use time-based
rather than event-based discounting to handle credit assign-
ment across large time gaps. Our model extends the myopic
ranker to a multi-task feedforward deep network that learns
Q(s, i), the predicted long-term engagement of item i (con-
ditional on being clicked) in state s, as well as v(s, i) (for
pCTR computation). Our model uses the same state and item
features as the myopic model to ensure a reliable compari-
son. The model is trained using TensorFlow in a distributed
training setup [Abadi et al., 2015] using stochastic gradient
descent. We train on-policy over pairs of consecutive start
page visits, with LTV labels computed using Eq. (14), and
use top-k optimization for both training and serving—i.e., we
test SARSA-TS. The existing myopic recommender (base-
line) also builds slates similarly (i.e., MYOP-TS).

We experimented with live traffic for three weeks, treating
a small, but statistically significant, fraction of users to rec-
ommendations generated by our LTV (SARSA-TS) model.
The control is a highly-optimized production machine learn-
ing model that optimizes for immediate engagement (MYOP-
TS). Fig. 1 shows the percentage increase in aggregate user
engagement using LTV over the course of the experiment
relative to the control, and indicates that our model outper-
formed the baseline on the key metric under consideration,
consistently and significantly. Fig. 2 shows the change in dis-
tribution of cumulative engagement originating from items at
different positions in the slate. The results show that the users
under treatment have more engaging sessions (larger LTVs)
from items ranked higher in the slate compared to users in the

day 1
day 3

day 5
day 7

day 9
day 11

day 13
day 15

day 17
day 19

day 21

0.2

0.4

0.6

0.8

1.0

1.2

%
 c

ha
ng

e
in

 a
gg

re
ga

te
d

us
er

 e
ng

ag
em

en
t r

el
at

iv
e

to
 c

on
tro

l

Figure 1: Increase in user engagement over the baseline. Data points
are statistically significant and within 95% confidence intervals.

Figure 2: Percentage change in long-term user engagement vs. con-
trol (y-axis) across positions in the slate (x-axis). Top 3 positions
account for approximately 95% of engagement.

control group, which suggests that greedy slate optimization
performs reasonably in this domain.

7 Conclusion
We developed SLATEQ, a novel decomposition technique for
slate-based RL that allows for effective TD and Q-learning
using LTV estimates for individual items. It makes rela-
tively innocuous assumptions, appropriate for many recom-
mender settings, and supports tractable optimization. Our re-
sults show SLATEQ to be robust and scalable to large-scale
commercial recommender systems like YouTube; they also
demonstrate that LTV estimation can improve user engage-
ment significantly in practice. There are a variety of future di-
rections that suggest themselves. While SLATEQ makes only
mild assumptions, our methodology can be extended by re-
laxing these further. Applying SLATEQ to other choice mod-
els [Ie et al., 2019], further improving scalability, and releas-
ing our simulation environment to the research community
are ongoing directions.
Acknowledgments. Thanks to Larry Lansing for system
optimization and the reviewers for helpful feedback.

References
[Abadi et al., 2015] M. Abadi, A. Agarwal, et al. Tensor-

Flow: Large-scale machine learning on heterogeneous sys-
tems, 2015. Software available from tensorflow.org.

[Breese et al., 1998] J. Breese, D. Heckerman, and C. Kadie.
Empirical analysis of predictive algorithms for collabora-
tive filtering. UAI-98, 43–52, Madison, WI, 1998.

[Castro et al., 2018] P. Castro, S. Moitra, C. Gelada, S. Ku-
mar, M. Bellemare. Dopamine: A research framework
for deep reinforcement learning. arXiv:1812.06110
[cs.LG], 2018.

[Charnes and Cooper, 1962] A. Charnes and W. Cooper.
Programming with linear fractional functionals. Naval
Res. Log. Qrt., 9(3-4):181–186, 1962.

[Chen and Hausman, 2000] K. Chen and W. Hausman.
Mathematical properties of the optimal product line selec-
tion problem using choice-based conjoint analysis. Mgmt.
Sci., 46(2):327–332, 2000.

[Chen et al., 2019] M. Chen, A. Beutel, P. Covington,
S. Jain, F. Belletti, E. Chi. Top-k off-policy correction for a
REINFORCE recommender system. WSDM-19, 456–464.

[Cheng et al., 2016] H. Cheng, L. Koc, et al. Wide & deep
learning for recommender systems. Deep Learn. for Rec.
Sys. Workshop, 7–10, Boston, 2016.

[Choi et al., 2018] S. Choi, H. Ha, U. Hwang, C. Kim,
J. Ha, and S. Yoon. Reinforcement learning-based
recommender system using biclustering technique.
arXiv:1801.05532 [cs.IR], 2018.

[Covington et al., 2016] P. Covington, J. Adams, and E. Sar-
gin. Deep neural networks for YouTube recommendations.
RecSys-16, 191–198, Boston, 2016.

[Craswell et al., 2008] N. Craswell, O. Zoeter, M. Taylor,
and B. Ramsey. An experimental comparison of click
position-bias models. WSDM-08, 87–94, 2008.

[Deshpande and Karypis, 2004] M. Deshpande and G.
Karypis. Item-based top-n recommendation algorithms.
ACM TOIS, 22(1):143–177, 2004.

[Feige, 1998] U. Feige. A threshold of ln(n) for approximat-
ing set cover. JACM, 45(4):634–652, 1998.

[Gauci et al., 2018] J. Gauci, E. Conti, et al. Horizon: Face-
book’s open source applied reinforcement learning plat-
form. arXiv:1811.00260 [cs.LG], 2018.

[Harper & Konstan, 2016] F. Harper, J. Konstan. The Movie-
Lens datasets: history & context. ACM TIIS, 5:1-19, 2016.

[Ie et al., 2019] E. Ie, V. Jain, J. Wang, S. Narvekar, R. Agar-
wal, R. Wu, H.-Tze Cheng, M. Lustman, V. Gatto, P. Cov-
ington, J. McFadden, T. Chandra, and C. Boutilier. Re-
inforcement learning for slate-based recommender sys-
tems: A tractable decomposition and practical methodol-
ogy. arXiv:1905.12767 [cs.LG], 2019.

[Jiang et al., 2019] R. Jiang, S. Gowal, T. Mann, and D.
Rezende. Beyond greedy ranking: Slate optimization via
list-CVAE. ICLR-19, New Orleans, 2019.

[Joachims, 2002] T. Joachims. Optimizing search engines
using clickthrough data. KDD-02, 133–142, 2002.

[Konstan et al., 1997] J. Konstan, B. Miller, D. Maltz, J. Her-
locker, L. Gordon, J. Riedl. GroupLens: Applying collab-
orative filtering to Usenet news. CACM, 40:77–87, 1997.

[Le and Lauw, 2017] D. Le and H. Lauw. Indexable
Bayesian personalized ranking for efficient top-k recom-
mendation. CIKM-17, 1389–1398, 2017.

[Louviere et al., 2000] J. Louviere, D. Hensher, and J. Swait.
Stated Choice Methods: Analysis and Application. Cam-
bridge Univ. Press, 2000.

[McFadden, 1974] D. McFadden. Conditional logit analysis
of qualitative choice behavior. In P. Zarembka, ed., Fron-
tiers in Econometrics, 105–142. Academic Press, 1974.

[Metz et al., 2017] L. Metz, J. Ibarz, N. Jaitly, and J. David-
son. Discrete sequential prediction of continuous actions
for deep RL. arXiv:1705.05035 [cs.LG], 2017.

[Nemhauser et al., 1978] G. Nemhauser, L. Wolsey, and M.
Fisher. An analysis of approximations for maximizing
submodular set functions. Math. Prog., 14:265–294, 1978.

[Puterman, 1994] M. Puterman. Markov Decision Pro-
cesses: Discrete Stochastic Dynamic Programming. 1994.

[Rendle et al., 2010] S. Rendle, C. Freudenthaler, L.
Schmidt-Thieme. Factorizing personalized Markov chains
for next-basket recommendation. WWW10, 811-820.

[Salakhutdinov and Mnih, 2007] R. Salakhutdinov and A.
Mnih. Probabilistic matrix factorization. NIPS-07, 1257–
1264, Vancouver, 2007.

[Schön, 2010] C. Schön. On the optimal product line se-
lection problem with price discrimination. Mgmt. Sci.,
56(5):896–902, 2010.

[Shani et al., 2005] G. Shani, D. Heckerman, and R. Braf-
man. An MDP-based recommender system. JMLR,
6:1265–1295, 2005.

[Sunehag et al., 2015] P. Sunehag, R. Evans, G. Dulac-
Arnold, Y. Zwols, D. Visentin, and B. Coppin. Deep re-
inforcement learning with attention for slate Markov de-
cision processes with high-dimensional states and actions.
arXiv:1512.01124 [cs.AI], 2015.

[Sutton and Barto, 1998] R. Sutton, A. Barto. Reinforcement
Learning: An Introduction. MIT Press, 1998.

[Swaminathan et al., 2017] A. Swaminathan, A. Krishna-
murthy, A. Agarwal, M. Dudik, J. Langford, D. Jose, and I.
Zitouni. Off-policy evaluation for slate recommendation.
NIPS-17, 3632–3642, Long Beach, CA, 2017.

[Taghipour et al., 2007] N. Taghipour, A. Kardan,
S. Ghidary. Usage-based web recommendations: A
reinforcement learning approach. RecSys-07, 113–120.

[van den Oord et al., 2013] A. van den Oord, S. Dieleman,
and B. Schrauwen. Deep content-based music recommen-
dation. NIPS-13, 2643–2651, Lake Tahoe, NV, 2013.

[Van Seijen et al., 2009] H. Van Seijen, H. Van Hasselt, S.
Whiteson, and M. Wiering. A theoretical and empirical
analysis of expected SARSA. IEEE Symp. Adap. Dyn.
Prog. and RL, 177–184, 2009.

[Viappiani & Boutilier, 2010] P. Viappiani, C. Boutilier. Op-
timal Bayesian recommendation sets and myopically opti-
mal choice query sets. NIPS, 2352-2360, 2010.

[Wu et al., 2017] C. Wu, A. Ahmed, A. Beutel, A. Smola,
and H. Jing. Recurrent recommender networks. WSDM-
17, 495–503, Cambridge, UK, 2017.

[Zhao et al., 2018] X. Zhao, L. Xia, L. Zhang, Z. Ding, D.
Yin, J. Tang. Deep reinforcement learning for page-wise
recommendations. RecSys-18, 95–103, Vancouver, 2018.

	Introduction
	Related Work
	An MDP Model for Slate Recommendation
	SlateQ: Slate Decomposition for RL
	Slate Decomposition of Q-values
	Slate Optimization of Q-values

	Empirical Evaluation: Simulation
	Empirical Evaluation: Live Experiments
	Conclusion

