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Abstract

Many traditional solution approaches to relationally specified decision-theoretic planning
problems (e.g., those stated in the probabilistic planning domain description language, or
PPDDL) ground the specification with respect to a specific instantiation of domain ob-
jects and apply a solution approach directly to the resulting ground Markov decision pro-
cess (MDP). Unfortunately, the space and time complexity of these grounded solution ap-
proaches are polynomial in the number of domain objects and exponential in the predicate
arity and the number of nested quantifiers in the relational problem specification. An alter-
native to grounding a relational planning problem is to tackle the problem directly at the
relational level. In this article, we propose one such approach that translates an expressive
subset of the PPDDL representation to a first-order MDP (FOMDP) specification and then
derives a domain-independent policy without grounding at any intermediate step. However,
such generality does not come without its own set of challenges—the purpose of this ar-
ticle is to explore practical solution techniques for solving FOMDPs. To demonstrate the
applicability of our techniques, we present proof-of-concept resultsof our first-order ap-
proximate linear programming (FOALP) planner on problems from the probabilistic track
of the ICAPS 2004 and 2006 International Planning Competitions.
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1 Introduction

There has been an extensive line of research over the years aimed at exploiting
structure in order to compactly represent and efficiently solve decision-theoretic
planning problems modeled as Markov decision processes (MDPs) (Boutilier et al.,
1999). While traditional approaches from operations research typically use enumer-
ated state and action models (Puterman, 1994), these have proved impractical for
large-scale AI planning tasks where the number of distinct states in a model can
easily exceed the limits of primary and secondary storage onmodern computers.

Fortunately, many MDPs can be compactly described by using afactored state and
action representation and exploiting various independences in the reward and tran-
sition functions (Boutilier et al., 1999). The independencies and regularities laid
bare by such representations can often be exploited in exactand approximate so-
lution methods as well. Such techniques have permitted the practical solution of
MDPs that would not have been possible using enumerated state and action mod-
els (Dearden and Boutilier, 1997; Hoey et al., 1999; St-Aubinet al., 2000; Guestrin
et al., 2002).

However, factored representations are only one type of structure that can be ex-
ploited in the representation of MDPs. Many MDPs can be described abstractly in
terms of classes of domain objects and relations between those domain objects that
may change over time. For example, a logistics problem specified in the probabilis-
tic planning domain description language (PPDDL) (Younes et al., 2005) may refer
to domain objects such as boxes, trucks, and cities. If the objective is to deliver
all boxes to their assigned destination cities then the locations of these boxes and
trucks may change as a result of actions taken in pursuit of this objective. Since ac-
tion templates such as loading or unloading a box are likely to apply generically to
domain objects and can be specified independently of any ground domain instanti-
ation (e.g., 4 trucks, 5 boxes, and 9 cities), this permits compact MDP descriptions
by exploiting the existence of domain objects, relations over these objects, and the
ability to express objectives and action effects using quantification.

Unfortunately, while relational specifications such as PPDDL permit very compact,
domain-independent descriptions of a variety of MDPs, thiscompactness does not
translate directly to effective solutions of the underlying planning problems. For
example, one approach to solving a relational decision-theoretic planning problem
might first construct sets of state variables and actions forall possible ground in-
stantiations of each relation and action with respect to a specific domain (e.g., 4
trucks, 5 boxes, and 9 cities). Then this approach might apply known solution tech-
niques to this ground factored representation of an MDP. Unfortunately, such an
approach is domain-specific; and the size of the ground MDP grows polynomially
in the number of domain objects, and exponentially in the predicate arity and the
number of nested quantifiers in the problem specification. For sufficiently large do-
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mains and complex relational MDP specifications, groundingmay not be a viable
option.

An alternative approach to grounding is to apply a solution approach directly at
the relational level. In this article, we discuss one such technique that translates
an expressive subset of the relational PPDDL representation to afirst-order MDP
(FOMDP) (Boutilier et al., 2001) specification. A symbolic policy maythen be
derived with respect to this FOMDP, resulting in a domain-independent solution
that exploits a purely lifted version of the Bellman equations and avoids grounding
at any intermediate step. This stands in contrast to alternate first-order approaches
discussed in Section 6.2 that induce symbolic representations of the solution from
samples of the Bellman equation in ground problem instances.

Unfortunately, the use of first-order logical languages to describe our FOMDP spec-
ification and solution introduces the need for computationally expensive logical
simplification and theorem proving. While this means that exact solutions are not
tractable for many FOMDPs, there is often a high degree of regularity and struc-
ture present in many FOMDPs that can be exploited by the approximate (heuristic)
solution techniques proposed in this article. To this end, this article continues the
tradition of exploiting structure to find effective solutions for large MDPs.

After providing a review of MDPs and relevant solution techniques in Section 2
and the FOMDP formalism and its solution via symbolic dynamic programming
(Boutilier et al., 2001) in Section 3, we make the following contributions to the
practical solution of FOMDPs:

(1) Section 3.2.2: We show how to translate a subset of PPDDL problems includ-
ing universal and conditional effects to FOMDPs.

(2) Section 4.1: We show how to exploit the logical structureof reward, value, and
transition functions using first-order extensions of algebraic decision diagrams
(ADDs) (Bahar et al., 1993) for use in both exact and approximate FOMDP
solutions.

(3) Section 4.2: We apply additive decomposition techniques to universal reward
specifications in a manner that leads to efficient solutions for our FOMDP
representation and reasonable empirical performance on example problems.

(4) Section 5.3: We show how to generalize the approximate linear programming
technique for MDPs (Schweitzer and Seidmann, 1985; de Farias and Roy,
2003; Guestrin et al., 2002) to the case of FOMDPs by casting the optimiza-
tion problem in terms of a first-order linear program.

(5) Section 5.4: We define a linear program (LP) with first-order constraints and
provide a constraint generation algorithm that utilitizesa relational general-
ization of variable elimination (Zhang and Poole, 1996) to exploit constraint
structure in the efficient solution of thisfirst-order LP (FOLP).

To demonstrate the efficacy of our techniques, we present proof-of-concept results
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of our first-order approximate linear programming (FOALP)planner on problems
from the probabilistic track of the ICAPS 2004 and 2006 International Planning
Competitions in Section 5.6. Following this, we discuss a number of related first-
order decision-theoretic planning approaches and discussthe relative advantages
and disadvantages of each in Section 6. We conclude with a discussion of possible
extensions to our techniques in Section 7.

2 Markov Decision Processes

Markov decision processes (MDPs) were first introduced and developed in the
fields of operations research and economics (Bellman, 1957; Shapley, 1953; Howard,
1960). The MDP has since been adopted as a model for decision-theoretic planning
with fully observable state in the field of artificial intelligence (Bertsekas, 1987;
Bertsekas and Tsitsiklis, 1996; Boutilier et al., 1999) and assuch provides the for-
mal underpinning for the framework that we describe in this article. In this sec-
tion, we describe various algorithmic approaches for making optimal sequential
decisions in MDPs that we later generalize to the case of first-order MDPs. The
following presentation derives from Puterman (1994).

2.1 The MDP model and Optimality Criteria

Formally, a finite state and action MDP is specified by a tuple〈S,A, T ,R, h, γ〉.
S is a set of distinct states. An agent in an MDP can effect changes to its state by
executing actions from the setA. We base our initial presentation in this section on
finite state and action MDPs; but in much of what follows, we will assume an infi-
nite, discrete state and action space. The standard techniques for MDPs discussed
here can be generalized to countable or continuous state andaction spaces (Puter-
man, 1994).

The transition functionT is a family of probability distributionsT (s, a, s′) =
P (s′|a, s), which denotes the probability that the world transitions from s ∈ S
to s′ ∈ S when actiona ∈ A was executed. This representation enforces the
Markov property: the distribution over statesst+1 at timet + 1 is independent of
any previous statest−i and actionat−i, i ≥ 1, givenst andat.

The preferences of the agent are encoded in a reward functionR : S × A →
R. In addition to specifying single-step preferences, the agent must also specify
how it trades off reward over the horizonh of remaining decision stages. In this
article, we focus on the expected sum of discounted accumulated reward over an
infinite horizon (h = ∞) since this is most compatible with the (approximate)
linear programming approach that we adopt later. In the calculation of discounted
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accumulated reward, we discount rewardst time steps into the future by a discount
factorγt whereγ ∈ [0, 1]. Throughout this article, we assumeγ < 1. The use of
γ < 1 allows one to model the notion that an immediate rewardr is worth more
than the equivalent reward delayed one or more time steps in the future. Practically,
γ < 1 is required to ensure that the total expected reward is bounded in the case of
infinite horizon MDPs.

A stationary policy takes the formπ : S → A, with π(s) denoting the action to be
executed in states. Thevalueof policy π is the expected sum of discounted future
rewards over horizonh given thatπ is executed. Its value function is given by:

Vπ(s) = Eπ

[

h
∑

t=0

γt · rt

∣

∣

∣

∣

s0 = s

]

. (1)

wherert is a reward obtained at timet, γ is a discount factor as defined above, and
s0 is the initial starting state.

A greedy policyπV with respect to a value functionV is simply any policy that
takes an action in each state that maximizes expected value with respect toV ,
defined as follows:

πV (s) = arg max
a∈A







R(s, a) + γ
∑

s′∈S

P (s′|s, a)V (s′)







(2)

Thus, from any value function, we can derive a correspondinggreedy policy that
represents the best action choice with respect to that valueestimation.

An optimal policyπ∗ in an infinite horizon MDP maximizes the value function for
all states. An optimal policyπ∗ is any greedy policy with respect to the optimal
value functionV ∗ and likewise the optimal value function is the value of an op-
timal policy,Vπ∗(s) = V ∗(s). We note thatV ∗ satisfies the following fixed-point
equality:

V ∗(s) = max
a







R(s, a) + γ
∑

s′∈S

T (s, a, s′) · V ∗(s′)







. (3)

FindingV ∗ constitutes finding anexact solutionto an MDP. Throughout the article,
we use the termsolutionmore loosely to denote some attempt at approximatingV ∗,
whether the approximation guarantees error bounds or is simply heuristic.

2.2 MDP Solution Algorithms

In this section we describe several exact and approximate solution techniques for
MDPs that we later extend to the first-order case.
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2.2.1 Value iteration

We begin our discussion of MDP solutions by providing two equations that form
the basis of the stochastic dynamic programming algorithmsused to solve MDPs.

We defineV 0
π (s) = R(s, π(s)) and then inductively define thet-stage-to-go value

functionfor a policyπ as follows:

V t
π(s) = R(s, π(s)) + γ

∑

s′∈S

T (s, π(s), s′) · V t−1
π (s′) (4)

Based on this definition, Bellman’sprinciple of optimality(Bellman, 1957) estab-
lishes the following relationship between the optimal value function at staget and
the optimal value function at the previous staget− 1:

V t(s) = max
a∈A







R(s, a) + γ
∑

s′∈S

T (s, π(s), s′) · V t−1(s′)







(5)

The computation ofV t from V t−1 via this relationship is referred to as aBellman
backup. Thevalue iterationalgorithm consists of repeatedly performing Bellman
backups to compute theset-stage-to-go value functions.

We note that the Bellman backup is often rewritten in the following two steps to
separate out the backup of a value function through a single action and the maxi-
mization of this value over all actions:

Qt(s, a) = R(s, a) + γ ·
∑

s′∈S

T (s, a, s′) · V t−1(s′) (6)

V t(s) = max
a∈A

{

Qt(s, a)
}

(7)

Puterman (1994) shows that terminating once the following Bellman error condi-
tion is met

max
s

|V t(s) − V t−1(s)| <
ǫ(1 − γ)

2γ
(8)

guarantees that the estimated value functionV t is ǫ-optimalover an infinite horizon,
that is, its value is withinǫ of the optimal value:maxs |V

t(s) − V ∗(s)| < ǫ.

We note that the value iteration approach requires time polynomial in the backup
depthd and the number of states and actions, i.e.,O(|S|2 · |A| · d). Puterman (1994)
provides a proof that value iteration converges linearly.
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2.2.2 Linear programming

An MDP can also be solved using the following linear program (LP):

Variables: V (s), ∀s ∈ S

Minimize:
∑

s∈S

V (s)

Subject to: 0 ≥ R(s, a) + γ
∑

s′∈S

P (s′|s, a)V (s′) − V (s); ∀s ∈ S, ∀a ∈ A (9)

Puterman (1994) provides a proof that the solution to this LPis the optimal value
function for an MDP.

2.2.3 Approximate Linear Programming

One general and popular approximate solution technique forMDPs is that of linear-
value function approximation (Schweitzer and Seidmann, 1985; Tsitsiklis and Van
Roy, 1996; Koller and Parr, 1999, 2000; Schuurmans and Patrascu, 2001; Guestrin
et al., 2002). Representing value functions as a linear combination of basis func-
tions has many convenient computational properties, many of which will become
evident as we incorporate relational structure in our MDP model. However, perhaps
one of the most useful properties is that linear value function representations lead
to MDP solutions requiring optimization with respect to linear objectives and linear
constraints—that can be formulated as LPs.

In ann-state MDP, the exact value function can be specified as a vector in R
n. This

vector can be approximated by a value functionṼ~w that is a linear combination of
k fixed basis functions (orn-vectors), denotedbi(s):

Ṽ~w(s) =
k
∑

i=1

wi · bi(s) (10)

The linear subspace spanned by the basis set will generally not include the true
value function, but one can use projection methods to minimize some error mea-
sure between the true value function and the linear combination of basis functions.
The basis functions themselves can be specified by domain experts, constructed or
learned in an automated fashion (e.g., Poupart et al. (2002); Mahadevan (2005)).
We will consider first-order methods for automated basis function construction in
Section 5 and related work in Section 6.

Approximate linear programming (ALP)is simply an extension of the linear pro-
gramming solution of MDPs to the case where the value function is approximated.
In a linear value function representation, the objective and constraints will be linear
in the weights being optimized, leading to a direct LP formulation. Consequently,
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we arrive at the following variant of the previous exact LP solution:

Variables: ~w

Minimize:
∑

s∈S

Ṽ~w(s)

Subject to: 0 ≥ R(s) + γ
∑

s′∈S

P (s′|s, a)Ṽ~w(s′) − Ṽ~w(s); ∀s ∈ S, ∀a ∈ A (11)

2.3 Selecting an MDP Solution Approach

The choice of whether to use a linear programming or dynamic programming so-
lution to MDPs is not always clear. Linear programming offers a simple one-shot
solution, but it relies on efficient LP solvers. Dynamic programming is straight-
forward to implement, but may require a large number of iterations to converge.
However, the choice of exact vs. approximate is almost invariably determined by
the size of the state space. For sufficiently large state spaces, approximate solution
techniques are the only viable option. But this last statement depends critically on
how one measures the size of the state space.

Despite their promise, the exact and approximate solution techniques discussed
above must represent the value function (and policy, if required) as vectors or func-
tions over an explicitly enumerated state (and action) space. This is simply not
feasible for large-scale AI planning problems. Fortunately, there are many repre-
sentations (e.g., factored or relational) well suited to decision-theoretic planning
that do not require explicit state or action enumeration in either the problem repre-
sentation or the solution. To this end, we will be concerned with the exploitation of
relational planning structure for the remainder of this article.

3 First-order MDPs

Given that relational representations seem natural for planning problems, it makes
sense to attempt to exploit this relational structure at a first-order level without re-
sorting to grounding. This is precisely the idea behind the first-order MDP model
(FOMDP) and its symbolic dynamic programming solution (Boutilier et al., 2001),
which we review in this section. For the remainder of this article, when we refer to
a FOMDP without further qualification, we refer to the specific formalization pre-
sented in Boutilier et al. (2001), although there are other possible first-order MDP
formalizations and associated solution approaches (we discuss these alternatives in
Section 6). The reader already familiar with the motivations for FOMDPs and the
presentation and notation in Boutilier et al. (2001) may wishto skip this section
and proceed directly to the main contributions of this article in Sections 4 and 5.
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Berlin

Moscow

Fig. 1. An example BOXWORLD problem. Trucks may drive along solid lines and planes
may fly along dashed lines. The goal in this instance is to get all boxes in Paris(indicated
by the star).

3.1 Motivation

Before we introduce FOMDPs and their solution, we begin with the basics of re-
lational planning problem specifications and motivate the need for exploiting this
structure at a lifted first-order level rather than at a ground propositional level.

3.1.1 Relational Planning Specifications

We assume basic familiarity with unsorted first-order logicwith equality. While we
use a sorted notation for specifying object types of variables and predicate slots,
we assume this sort information is compiled into an unsortedlogical form where
∀Sort : c φ(c) is rewritten as∀c. Sort(c) ⊃ φ(c) and likewise∃Sort : c φ(c) is
rewritten as∃c. Sort(c) ∧ φ(c). Assuming these transformations, we draw on the
logical notation and semantics for unsorted first-order logic given in Brachman and
Levesque (2004). Specifically:

• Predicate Symbols:We assume a set of predicatesPi of each arity0 ≤ i ≤ m

for some finite maximumm. We assume “=”∈ P2 with its usual interpretation.
• Function Symbols:We assume a set of function symbolsfj of each arity0 ≤
j ≤ n for some finite maximumn.

In addition, we use a few notational conventions. All predicates (including unary
predicates denoting domain object classes) are capitalized and all variables and
constants are lowercased. We denote the types of predicate arguments using the
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notationφ(Sort1, . . . , Sortk) for some predicate of arityk. 1

We can view many decision-theoretic planning problems as consisting of classes of
domain objects and the changing relations that hold betweenthose objects at dif-
ferent points in time. For example, in the BOXWORLD logistics problem (Veloso,
1992) illustrated in Figure 1, we have four classes of domainobjects:Box , City ,
Truck , andPlane. For the relations that hold between them, we haveBoxIn(Box ,

City), BoxOnTruck(Box ,Truck), TruckIn(Truck ,City), PlaneIn(Plane,City),
BoxOnPlane(Box ,Plane)). In this framework, generic action templates such as
loading or unloading a box from a truck or plane or driving trucks and flying planes
between cities are likely to apply generically to domain objects and thus the plan-
ning problem can be specified independently of any ground domain instantiation.

One recent language for representing relational probabilistic planning problems is
PPDDL (Younes et al., 2005). At its core, PPDDL is a probabilistic extension of
a subset of PDDL conforming to the deterministic ADL planning language (Ped-
nault, 1989); ADL, in turn, introduced universal and conditional effects into the
STRIPS representation (Fikes and Nilsson, 1971). To see the compactness of a re-
lational representation, we provide a (P)PDDL representation of the BOXWORLD

problem in Figure 2 where for simplicity, we omit thePlane class of objects and
associated actions and relations and abbreviateBoxOnTruck(Box : b,Truck : t)
asBoxOn(Box : b,Truck : t).

General PPDDL specifications can be more compact for some problems than the
PPDDL subset we refer to in this article. For example, in general PPDDL, universal
and conditional effects and probabilities can be arbitrarily nested, thus allowing for
exponentially more compact representations of probabilistic action effects than can
be achieved with probabilities only at the top-level of effects (Rintanen, 2003). In
addition, there are some general PPDDL specifications thatcannotbe translated to
the PPDDL subset described here. If the general PPDDL specification uses proba-
bilistic effectsnested underuniversal effects (e.g., each box falls off a truck with
some independent probability), it is generally impossibleto translate such a prob-
lem to the restricted PPDDL subset used here because it requires an indefinitely
factored transition probability model that cannot be expressed with finite probabil-
ity specifications restricted to the top level of effects. While we do not discuss such
model-expressivity here, we refer the reader to Sanner and Boutilier (2007) and
Chapter 6 of Sanner (2008) for a treatment of such issues in first-order MDPs.

While the meaning of the PPDDL representation in Figure 2 is intended to be rel-
atively straightforward, there are a few important points that should be explained.
First, we assume that actions can be executed in all states sowe do not encode
explicit preconditions. While this assumption is not necessary, it does not have any
effect on the value of an optimal policy in a domain that already has anoop action

1 Logically, this requires a background theory axiom∀x1, . . . , xk φ(x1, . . . , xk) ⊃
∧k

1=1 Sort i(xi) for each predicateφ(Sort1, . . . ,Sortk).
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• Domain Object Types: Box , Truck , City

• Relational (S)tate Descriptors (with parameter sorts):
BoxIn(Box ,City), TruckIn(Truck ,City), BoxOn(Box ,Truck)

• (R)eward: if [∃Box : b.BoxIn(b, paris)] then 10 else 0

• (A)ctions (with parameter sorts) and (T )ransition Function:

· load(Box : b,Truck : t):
Effects (probability 0.9):

when [∃City : c.BoxIn(b, c) ∧ TruckIn(t, c)] then [BoxOn(b, t)]
∀City : c.when [BoxIn(b, c) ∧ TruckIn(t, c)] then [¬BoxIn(b, c)]

· unload(Box : b,Truck : t):
Effects (probability 0.9):

∀City : c.when [BoxOn(b, t) ∧ TruckIn(t, c)] then [BoxIn(b, c)]
when [∃City : c.BoxOn(b, t) ∧ TruckIn(t, c)] then [¬BoxOn(b, t)]

· drive(Truck : t,City : c):
Effects (probability 1.0)

when [∃City : c1.TruckIn(t, c1)] then [TruckIn(t, c)]
∀City : c1.when [TruckIn(t, c1)] then [¬TruckIn(t, c1)]

· noop
No effects.

Fig. 2. A PPDDL-style representation of a simple variant of the BOXWORLD problem. The
deterministic PDDL subset would exclude the probabilistic annotations of effects assuming
that all effects occur with probability 1.0.

and it helps simplify our later notation. When an action executes, each probabilistic
effect is realized independently according to the specifiedprobability. For example,
theunload action realizes its effects only 90% of the time, whereas thedrive action
deterministically realizes its effects on each execution.

Probabilistic effects at the top-level of the effect specification consist of conjunc-
tions of effects. Each individual effect can beuniversalandconditional. Universal
effects denoted by universally quantified variables in thethen clause permit the ef-
fect to apply to an arbitrary number of objects not explicitly named in the action’s
parameter list. Conditional effects denoted bywhen can be arbitrary first-order for-
mulae specifying that the effects listed in thethen clause hold in the post-action
state if thewhen conditions hold in the pre-action state. When universally quanti-
fied variables are shared between thewhen/then clause pair, we refer to such effects
asuniversal conditional. We note that each individual effect is only allowed to men-
tion one positive or negative relation in thethen portion of the clause. A conjunc-
tion of then effects can be easily specified as multiple effects with the samewhen

condition. Disjunctive (i.e., non-deterministic) effects are prohibited in PPDDL.
For example, when theload(b, t) action is executed, its effects are realized with
probability 0.9. When these effects are realized, then for any city c that satisfies
BoxIn(b, c) ∧ TruckIn(t, c) in the pre-action state,BoxOn(b, t) ∧ ¬BoxIn(b, c)

11



• Domain Object Instantiation:

· Box = {box 1, box 2, box 3}, Truck = {truck1, truck2}, City =
{paris, berlin, rome}

• (S)tate-variable Atoms (i.e., binary state variables):

· BoxIn:
{BoxIn(box 1, paris),BoxIn(box 2, paris),BoxIn(box 3, paris),
BoxIn(box 1, berlin),BoxIn(box 2, berlin),BoxIn(box 3, berlin),
BoxIn(box 1, rome),BoxIn(box 2, rome),BoxIn(box 3, rome)}

· TruckIn:
{TruckIn(truck1, paris),TruckIn(truck1, berlin),TruckIn(truck1, rome),
TruckIn(truck2, paris),TruckIn(truck2, berlin),TruckIn(truck2, rome)}

· BoxOn:
{BoxOn(box 1, truck1),BoxOn(box 2, truck1),BoxOn(box 3, truck1),
BoxOn(box 1, truck2),BoxOn(box 2, truck2),BoxOn(box 3, truck2)}

• (A)ctions:

· load :
{load(box 1, truck1), load(box 2, truck1), load(box 3, truck1)
load(box 1, truck2), load(box 2, truck2)}, load(box 3, truck2)}

· unload :
{unload(box 1, truck1), unload(box 2, truck1), unload(box 3, truck1),
unload(box 1, truck2), unload(box 2, truck2)}, unload(box 3, truck2)}

· drive:
{drive(truck1, paris), drive(truck1, berlin), drive(truck1, rome)
drive(truck2, paris), drive(truck2, berlin), drive(truck2, rome)

• (T )ransition Function:
Follows directly from ground instantiation of PPDDL actions in Figure 2.

• (R)eward:
if [BoxIn(box 1, paris)∨BoxIn(box 2, paris)∨BoxIn(box 3, paris)] then 10 else 0

Fig. 3. One possible ground MDP instantiation of the BOXWORLD FOMDP.

will hold in the post-action state since both effects have equivalentwhen condi-
tions. When these effects are not realized on 10% of theload(b, t) executions, no
state changes occur and it is equivalent to anoop action.

One can easily see that this relationally specified domain-independent specifica-
tion allows very compact MDP specifications when compared toa correspond-
ing ground factored MDP representation. For example, consider instantiating the
PPDDL problem in Figure 2 to the ground factored MDP representation in Fig-
ure 3 where we assume a problem instance with a domain instantiation of three
boxes, three cities, and two trucks. While this is a triviallysmall domain instantia-
tion, we note that its factored MDP representation requires21 propositional atoms
corresponding to over two million distinct states and 18 distinct actions that can
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be executed in each state. And the reward, which uses existential quantification in
the relational PPDDL specification must be grounded to obtain the corresponding
factored MDP representation. Clearly, forn objects, the grounded factor for the for-
mula∃Box : b.BoxIn(b, paris) will contain |Box | state variables, but if the reward
were changed to∀City : c ∃Box : b.BoxIn(b, c), the ground reward representation
would contain|Box | · |City | state variables—thus implying a combinatorial growth
in the number of nested quantifiers.

In general, the number of ground atoms for a factored MDP representation will
scale linearly in the number of relations, exponentially inthe arity of each relation
(assuming more than one domain object), and polynomially inthe number of do-
main objects that fill each relation argument. To see this, let us assume for simplic-
ity that all object class instantiations havek instances. Then a single unary relation
would be represented byk ground atoms, a binary relation byk2 atoms, and an
n-ary relation bykn atoms. Similarly, the size of the grounding of any quantified
formula is exponential in the number of nested quantifiers, linear in the number of
relations, and exponential in the size of the domain object classes being quantified.
Assumingk instances for all object classes andq nested (non-vacuous) quantifiers
over formulae containingr relations, the resulting unsimplified ground representa-
tion of the formula would requirerkq ground atoms.

For sufficiently small predicate arities and levels of quantifier nesting (assuming
these remain constant for a problem as the domain size varies), the space require-
ments for representing a ground MDP may be acceptable. Thus,if we have adequate
space to permit the grounding of a relational MDP to obtain a factored MDPand
we have the time to find an optimal solution to this factored MDP, then grounding
gives us one approach to representing and solving relational MDPs for specific do-
main instances. However we note that while solving MDPs exactly is known to be
polynomial in the number of states (see Section 2.2.2), the number of states is ex-
ponential in the number of ground atoms in a factored representation. This is Bell-
man’s (1957) well-known curse of dimensionality and since the number of ground
atoms is at least linear in domain size, it implies that the exact solution methods
discussed previously require time at least exponential in the domain size. This pre-
cludes the general possibility of exact solutions to grounded relational MDPs for all
but the smallest domain sizes. While this suggests the use of approximation meth-
ods for solving grounded MDPs, there are useful lifted alternatives to representing
and solving relational MDPs that we discuss next.

3.1.2 Grounded vs. Lifted Solutions

In contrast to the grounded approach to representing relational MDPs as factored
MDPs, it is important to point out that no matter how many domain objects there
may be in an actual problem instance, the size of the PPDDL relational planning
problem specification in Figure 2 remains constant. Consequently, this invites the
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• if (∃b.BoxIn(b, paris))
then donoop (value = 100.00)

• else if(∃b∗, t∗.TruckIn(t∗, paris) ∧ BoxOn(b∗, t∗))
then dounload(b∗, t∗) (value = 89.0)

• else if(∃b, c, t∗.BoxOn(b, t∗) ∧ TruckIn(t, c)
then dodrive(t∗, paris) (value = 80.0)

• else if(∃b∗, c, t∗.BoxIn(b∗, c) ∧ TruckIn(t∗, c))
then doload(b∗, t∗) (value = 72.0)

• else if(∃b, c∗1, t
∗, c2.BoxIn(b, c∗1) ∧ TruckIn(t∗, c2))

then dodrive(t∗, c∗1) (value = 64.7)

• else donoop (value = 0.0)

Fig. 4. A decision-list representation of the expected discounted rewardvalue for an ex-
haustive partitioning of the state space in the BOXWORLD problem. The optimal action is
also shown for each partition where the optimal bindings of the action variables (denoted
by a *) correspond to any binding satisfying those variable names in the stateformula.

following question: if we can avoid a domain-dependent blowup in the representa-
tion of a relational MDP as in PPDDL, can we avoid a domain-dependent blowup
in its solution too? Although we have yet to discuss the specifics of how we might
find a domain independent solution to this PPDDL representation, in Figure 4 we
provide an optimal domain-independent value function and its corresponding pol-
icy for the relational PPDDL specification of the BOXWORLD problem in Figure 2
(using discount factorγ = 0.9).

The key features to note here are the state and action abstraction in the value and
policy representation that are afforded by the first-order specification and solution
of the problem. That is, this solution does not refer to any specific set of domain
objects, say justCity = {paris, berlin, rome}, but rather it provides a solution
for all possible domain object instantiations. And while the BOXWORLD problem
could not be represented as a grounded factored MDP for sufficiently large domain
instantiations, much less solved, a domain-independent solution to this particular
problem is quite simple and applies to domain instances of any size due to the power
of state and action abstraction afforded by the first-order logical representation.

Thus, an alternative idea to grounding a relational MDP specification and solving
it for a particular domain instance is to translate the PPDDLrelational specifica-
tion to a first-order MDP representation that is directly amenable to solutions via
lifted symbolic dynamic programming. This approach obtains a solution that ap-
plies universally to all possible domain instantiations and has a time complexity
that is independent of domain size. As we will see, the power of this lifted style
of solution is that it exploits the existence of domain objects, relations over these
objects, and the ability to express objectives and action effects using quantification.
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3.2 Situation Calculus Background

Before we present the first-order MDP (FOMDP) formalism, we discuss the ba-
sics of the situation calculus, which in turn provides the logical foundations for our
FOMDP representation. We begin by describing the necessarybackground material
from the situation calculus and Reiter’s default solution tothe frame problem (Re-
iter, 2001) required to understand FOMDPs. This includes a discussion of the basic
ingredients of the situation calculus formulation: actions, situations, and fluents
along with relevant axioms (e.g., unique names for actions and domain-specific
axioms). Next we introduce effect axioms and explain how these can be derived
from a PDDL specification. Then we show how effect axioms can be compiled into
the successor-state axioms that underly the default solution to the frame problem
of the situation calculus. We conclude by introducing the regression operatorRegr

that will prove crucial to our symbolic dynamic programmingsolution to first-order
MDPs.

3.2.1 Basic Ingredients

The situation calculus is a first-order language for axiomatizing dynamic worlds (Mc-
Carthy, 1963). Its basic language elements consist of actions, situations and fluents:

• Actions: Actions are first-order terms consisting of an action function symbol
and arguments. For example, an action for loading boxb on truckt in the running
BOXWORLD example is represented byload(b, t).

• Situations: A situation is a first-order term denoting a specific state. The initial
situation is usually denoted bys0 and subsequent situations resulting from action
executions are obtained by applying thedo function,do(a, s) representing the sit-
uation resulting from executing actiona in situations. For example, the situation
resulting from loading boxb on truckt in the initial situations0 and then driving
truck t to city c is given by the termdo(drive(t, c), do(load(b, t), s0)).

• Fluents: A fluent is a relation whose truth value varies from situation to situa-
tion. A fluent is simply a relation whose last argument is a situation term. For
example, imagine an initial states0 in which fluentBoxOn(b, t, s0) is false, but
fluentsTruckIn(t, c, s0) andBoxIn(b, c, s0) are true. Then under the semantics
of a deterministic version of theload(b, t) action (which we formally define in
a moment),BoxOn(b, t, do(load(b, t), s0)) holds. We do not consider functional
fluents in this exposition, but they are easily added to the language without ad-
verse computational side effects (Reiter, 2001).

3.2.2 From PDDL to a First-order Logic Domain Theory

To axiomatize a PDDL domain theory in first-order logic, we must first consider
how to describe the effects and non-effects of actions. We can begin by describing
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positive and negative effect axioms that characterize how fluents change as a result
of actions. Note that in the following presentation, all relations that can change
between states in PPDDL have been rewritten as fluents with anextra situation
term. In addition, we assume all axioms are implicitly universally quantified.

• Positive Effect Axioms: positive effect axioms state which actions can explicitly
make each fluent true; for example:

[∃c. a = load(b, t) ∧ BoxIn(b, c, s) ∧ TruckIn(t, c, s)] ⊃ BoxOn(b, t, do(a, s))

[∃t. a = unload(b, t) ∧ BoxOn(b, t, s) ∧ TruckIn(t, c, s)] ⊃ BoxIn(b, c, do(a, s))

[∃c1. a = drive(t, c) ∧ TruckIn(t, c1, s)] ⊃ TruckIn(t, c, do(a, s))

• Negative Effect Axioms: negative effect axioms state which actions can explicitly
make each fluent false; for example:

[∃c. a = unload(b, t) ∧ BoxOn(b, t, s) ∧ TruckIn(t, c, s)] ⊃ ¬BoxOn(b, t, do(a, s))]

[∃t. a = load(b, t) ∧ BoxIn(b, c, s) ∧ TruckIn(t, c, s)] ⊃ ¬BoxIn(b, c, do(a, s))]

[∃c. a = drive(t, c) ∧ TruckIn(t, c1, s)] ⊃ ¬TruckIn(t, c1, do(a, s))

In general, positive and negative effect axioms can be specified by considering all
of the ways in which each action can affect each fluent. Fortunately, these axioms
are easy to derive directly from the PDDL representation given in Figure 2. In fact,
one can verify that these effect axioms are simply syntacticrewrites of the PDDL
effects where we have made the following transformations:

(1) The action name from the PDDL effect is placed in an equality on the LHS of
the⊃.

(2) All universal quantifiers for universal effects are dropped as all unquantified
variables are assumed to be universally quantified in the effect axioms.

(3) Thewhen conditions of the PDDL effect are conjoined on the LHS of the⊃
with all fluents specified in terms of the situations.

(4) Thethen portion of the effect (which should be a single literal) is placed on
the RHS of the⊃ and is parameterized by the post-action situationdo(a, s).
Whether the literal is negated or non-negated respectively determines whether
the resulting axiom should be negative or positive.

(5) Any free variables appearing only on the LHS of the⊃ andnot appearing free
in the action term are explicitly existentially quantified in the LHS.

This takes care of specifyingwhat changes, however we have not provided any
axioms for specifyingwhat does not change, i.e., the so-calledframe axioms. Ob-
viously, if we want to prove anything useful in our theory, wehave to specify frame
axioms. Otherwise, we would never be able to infer the properties of a successor
or predecessor state for an action as simple as anoop. However, specifying exactly
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what does not change in acompactmanner has been an extremely difficult problem
to solve for the situation calculus—this is, of course, the infamousframe problem.

An especially elegant solution to theframe problemis that proposed by Reiter
(1991). In this solution, we specify all positive and negative effects for a fluent,
which conveniently, we have just done in our translation from PDDL above. We
use the following normal form for positive effect axioms where F is a fluent and
γ+

F (~x, a, s) represents a first-order formula that, if true ins, results inF (~x, do(a, s))
being true after actiona(~x) is executed in situations:

γ+
F (~x, a, s) ⊃ F (~x, do(a, s)) (12)

Likewise, we use the following normal form for negative effect axioms where
γ−F (~x, a, s) represents a first-order formula that if true ins, results inF (~x, do(a, s))
being false after actiona(~x) is executed in situations:

γ−F (~x, a, s) ⊃ ¬F (~x, do(a, s)) (13)

We note that the potential difference between our previous presentation of positive
and negative effect axioms and this normal form is that thereis exactlyonepositive
effect axiom for each positive fluent andonenegative effect axiom for each negative
fluent. This just happens to be the case in our example, but if it were otherwise, we
could use the simple logical equivalence

[(C1 ⊃ F ) ∧ (C2 ⊃ F )] ≡ [(C1 ∨ C2) ⊃ F ] , (14)

to rewrite any set of effect axioms derived from the PDDL subset of PPDDL into
this normal form.

Next, we need to add inunique name axiomsfor all pairs of distinct action names
A andB stating that

A(~x) 6= B(~y), (15)

and also that identical actions have identical arguments:

A(x1, . . . , xk) = A(y1, . . . , yk) ⊃ x1 = y1 ∧ . . . ∧ xk = yk (16)

From this normal form, unique names axioms, andexplanation closure axiomsthat
state these are the only effects that hold in our world model,Reiter showed that we
can buildsuccessor state axioms (SSAs)that compactly encode both the effect and
frame axioms for a fluent. The format of the successor state axiom for a fluentF is
as follows:

F (~x, do(a, s)) ≡ ΦF (~x, a, s)

≡ γ+
F (~x, a, s) ∨ F (~x, s) ∧ ¬γ−F (~x, a, s) (17)

17



For our running BOXWORLD example, we obtain the following SSAs:

BoxOn(b, t, do(a, s)) ≡ ΦBoxOn(b, t, a, s)

≡ [∃c. a = load(b, t) ∧ BoxIn(b, c, s) ∧ TruckIn(t, c, s)]

∨ BoxOn(b, t, s) ∧ ¬ [∃c. a = unload(b, t) ∧ BoxOn(b, t, s) ∧ TruckIn(t, c, s)]

BoxIn(b, c, do(a, s)) ≡ ΦBoxIn(b, c, a, s)

≡ [∃t. a = unload(b, t) ∧ BoxOn(b, t, s) ∧ TruckIn(t, c, s)]

∨ BoxIn(b, c, s) ∧ ¬ [∃t. a = load(b, t) ∧ BoxIn(b, c, s) ∧ TruckIn(t, c, s)]

TruckIn(t, c, do(a, s)) ≡ ΦTruckIn(t, c, a, s)

≡ [∃c1. a = drive(t, c) ∧ TruckIn(t, c1, s)]

∨ TruckIn(t, c, s) ∧ ¬ [∃c1. a = drive(t, c) ∧ TruckIn(t, c1, s)]

While the notation might seem a bit cumbersome, the meaning ofthe axioms is
quite intuitive. For example, the successor state axiom forBoxOn(b, t, ·) states that
a boxb is on a truckt after an actioniff the action loaded boxb on truckt or boxb
was already on truckt to begin with and the action did not unload it.

3.2.3 Regression

An important tool in the development of first-order MDPs is the ability to take a
first-order state descriptionψ and “backproject” it through a deterministic action
to see what conditions must have held prior to executing the action if ψ holds af-
ter executing the action. This is precisely the definition ofregression. Fortunately,
the SSAs lend themselves to a very natural specification definition of regression:
if we want to regress a fluentF (~x, do(a, s)) through an actiona, we need only re-
place the fluent with its equivalent pre-action formulaΦF (~x, a, s). In general, we
can inductively define a regression operatorRegr(·) for all first-order formulae as
follows (Reiter, 2001):

• Regr(F (~x, do(a, s))) = ΦF (~x, a, s)
• Regr(¬ψ) = ¬Regr(ψ)
• Regr(ψ1 ∧ ψ2) = Regr(ψ1) ∧Regr(ψ2)
• Regr((∃x)ψ) = (∃x)Regr(ψ)

Using the unique names assumption for actions and these regression rules, we can
perform regression on any first-order logic formula. For example, if

∃b.BoxIn(b, paris , do(unload(b∗, t∗), s))
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holds then we can use the regression operator to determine what must have held in
the pre-action situations. Following is a derivation using the above rules:

Regr(∃b.BoxIn(b, paris, do(unload(b∗, t∗), s)))

=∃b.Regr(BoxIn(b, paris, do(unload(b∗, t∗), s)))

=∃b.ΦBoxIn(b, paris, unload(b∗, t∗), s)

=∃b.
[

[∃t. unload(b∗, t∗) = unload(b, t) ∧ BoxOn(b, t, s) ∧ TruckIn(t, paris, s)]

∨ BoxIn(b, paris, s)

∧ ¬ [∃t. unload(b∗, t∗) = load(b, t) ∧ BoxIn(b, paris, s) ∧ TruckIn(t, paris, s)]
]

At this point, we can use the unique names axioms for actions to simplify, and ex-
ploit rules for distributing quantifiers and renaming variables with respect to equal-
ity to obtain the following equivalent representation:

= [∃b, t. b = b∗ ∧ t = t∗ ∧ BoxOn(b, t, s) ∧ TruckIn(t, paris , s)]

∨ ∃b.BoxIn(b, paris , s)

= [(∃b.b = b∗) ∧ (∃t.t = t∗) ∧ BoxOn(b∗, t∗, s) ∧ TruckIn(t∗, paris , s)]

∨ ∃b.BoxIn(b, paris , s)

We will assume throughout the rest of this article that all object domains are non-
empty.2 This leads to the following fully simplified form of the regression:

Regr(∃b.BoxIn(b, paris , do(unload(b∗, t∗), s))) (18)
= [BoxOn(b∗, t∗, s) ∧ TruckIn(t∗, paris , s)] ∨ ∃b.BoxIn(b, paris , s)

This final result is very intuitive: it states that if there exists a boxb in paris after
unloading some boxb∗ from some truckt∗, then either the truckt∗ was inparis, or
a box was inparis to begin with.

3.3 FOMDP Representation

Having defined the deterministic situation calculus translation of a simple PDDL
model, we use this as a building block to obtain a first-order MDP (FOMDP)
(Boutilier et al., 2001) from the restricted PPDDL syntax forrelational MDPs that
we introduced earlier. A FOMDP can be thought of as a universal MDP that ab-
stractly defines the state, action, transition, and reward tuple 〈S,A, T,R〉 for all
possible domain instantiations (i.e., an infinite number ofground MDPs). In this
subsection we formalize the building blocks of FOMDPs. We begin by introduc-
ing thecasenotation and operations and discuss the representation of the reward
and value function as case statements. Then we describe how stochastic actions are
represented by building on our previous situation calculusformalization. Once all

2 Logically, this requires a background theorem axiom for every object type Sort that
states∃o. Sort(o). With this, we can use the simplification(∃Sort : o. o = o∗) ⊃ ⊤.
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of these components are defined, we will have everything needed to generalize the
dynamic programming solution of MDPs from the ground case tothe lifted case of
symbolic dynamic programming for FOMDPs.

3.3.1 Case Representation of Rewards, Values, and Probabilities

We introduce two useful variants of acase notationalong with its logical definition
to allow first-order specifications of the rewards, probabilities, and values required
for FOMDPs:

(t = case[φ1, t1; · · · ;φn, tn]) ≡















t =

φ1 : t1

: : :

φn : tn















≡





∨

i≤n

{φi ∧ t = ti}



 (19)

Here theφi arestate formulaewhere fluents in these formulae do not contain the
term do and theti are terms. We note that in contrast to states, situations reflect
the entire history of action occurrences. However, the specification of our FOMDP
dynamics is Markovian and allows recovery of state properties from situation terms.
For this reason, we can always represent the situation term using the free variables
without loss of generality. Often theti will be numerical constants and theφi will
partition state space.

We emphasize that the case notation for a logical formula (whether in the syntactic
form t = case[φ1, t1; · · · ;φn, tn] or in the tabular form above) is simply a meta-
logical notation used as a compact representation of the logical formula itself. In the
meta-logical notation of cases, all formulaeφi, termsti and parameters of the case
statement such as the situation terms refer to symbols of the underlying logical
language. At a meta-logical level, a case statement may be viewed as a relation
since the case “partition” formulae may overlap and may not be exhaustive. Case
statements may be compared with (in)equalities and manipulated with arithmetic
operations to produce other case statements (all at a meta-logical level).

To illustrate this notation concretely, we represent our BOXWORLD FOMDP re-
ward functionR(s) from our PPDDL representation in Figure 2 as the following
rCase(s) statement that reflects the immediate reward obtained in situations:

rCase(s) =
∃b.BoxIn(b, paris , s) : 10

¬∃b.BoxIn(b, paris , s) : 0
(20)

For simplicity of presentation, we will assume the reward isnot action depen-
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dent, but such dependencies can be introduced without difficulty. Throughout the
text,R(s) will be used to represent a generic FOMDP reward case statement and
rCase(s) will refer to the specific reward function. Thus, for BOXWORLD, we
write R(s) = rCase(s) and whereverR(s) occurs, we can substitute the logical
formula forrCase(s).

Here we see that the first-order formulae in the case statement divide all possible
ground states into two regions of constant-value: when there exists a box inparis,
a reward of10 is achieved, otherwise a reward of0 is achieved. Likewise the value
functionV (s) that we derive through symbolic dynamic programming can be rep-
resented in exactly the same case format. Indeed,V 0(s) = R(s) in the first-order
version of value iteration.

The case representation can also be used to specify transition probabilities (as we
will see below). We first discuss the operations that can be performed on case state-
ments.

3.3.2 Case Operations

In this subsection we introduce various operations that canbe applied to case state-
ments providing both a formal logical definition and a graphical example that intu-
itively demonstrates the application of the case operation.

We begin by formally introducing the following binary⊗, ⊕, and⊖ operators on
case statements (Boutilier et al., 2001):

case[φi, ti : i ≤ n] ⊗ case[ψj , vj : j ≤ m] = case[φi ∧ ψj , ti · vj : i ≤ n, j ≤ m] (21)

case[φi, ti : i ≤ n] ⊕ case[ψj , vj : j ≤ m] = case[φi ∧ ψj , ti + vj : i ≤ n, j ≤ m] (22)

case[φi, ti : i ≤ n] ⊖ case[ψj , vj : j ≤ m] = case[φi ∧ ψj , ti − vj : i ≤ n, j ≤ m] (23)

Intuitively, to perform an operation on case statements, wesimply perform the
corresponding operation on the cross-product of all case partitions of the operands.
Letting eachφi andψj denote generic first-order formulae, we can perform the
“cross-sum”⊕ of case statements in the following manner:

φ1 : 10

φ2 : 20
⊕

ψ1 : 1

ψ2 : 2
=

φ1 ∧ ψ1 : 11

φ1 ∧ ψ2 : 12

φ2 ∧ ψ1 : 21

φ2 ∧ ψ2 : 22

Likewise, we can perform⊖, ⊗, andmax operations by, respectively, subtracting,
multiplying, or taking the max of partition values. Note that for a binary opera-
tion involving a scalar and a case statement, a scalar valueC may be viewed as

21



case[⊤, C] where⊤ is a tautology. We use the
⊕

and
⊗

operators to, respectively,
denote summations and products of multiple case operands.

It is important to note that some partitions resulting from the application of the⊕,
⊖, and⊗ operators may be inconsistent; if we can identify such inconsistency, we
simply discard such partitions. When the case partitions contain general first-order
logic formulae, inconsistency detection is undecidable. However, for the symbolic
dynamic programming algorithm discussed in this section, it is not required that all
inconsistent partitions be discarded; failing to do so simply results in a non-minimal
case representation that contains partitions not corresponding to any world state. In
practice, we rely on time-limited incomplete theorem proving for inconsistency
pruning.

We define a few additional operations on case statements, thefirst being the binary
∪ operation:

case[φi, ti : i ≤ n] ∪ case[ψj , vj : j ≤ m] = case[φ1, t1; · · · ;φn, tn;ψ1, v1; · · · ;ψm, vm]
(24)

In this operation we simply construct the union of the partitions from each of the
case statements; for example:

φ1 : 10

φ2 : 20
∪

ψ1 : 1

ψ2 : 2
=

φ1 : 10

φ2 : 20

ψ1 : 1

ψ2 : 2

Next we define two unary operations. The∃~x. case(~x) operation simply existen-
tially quantifies thecase(~x) statement. Sincecase(~x) is defined logically with a
disjunction, we can can distribute the∃~x inside the disjunction:

∃~x.















t =

φ1(~x) : t1

: : :

φn(~x) : tn















≡ ∃~x.
∨

i≤n

{φi(~x) ∧ t = ti}

≡
∨

i≤n

{∃~x. φi(~x) ∧ t = ti}

≡















t =

∃~x. φ1(~x) : t1

: : :

∃~x. φn(~x) : tn















(25)

Normally we assume an implicit “t =” for a case statement but show it above for
logical clarity.
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The second unary operation is denoted “casemax” (and not “max”) since it pro-
duces a case statement as opposed to a single numerical value. The result of casemax
is a case statement where the maximal possible value of its case argument is as-
signed to each region of state space in the resulting case statement. Assuming that
the case partitions are pre-sorted such thatti > ti+1 and all partitions of equal value
have been disjunctively merged we can formally define this operation as follows:

casemaxcase[φ1, t1; · · · ;φn, tn] = case[φi ∧
∧

j<i

¬φj, ti : i ≤ n] (26)

Following is a more intuitive graphical exposition of the same casemax operation:

casemax

φ1 : t1

φ2 : t2
... :

...

φn : tn

=

φ1 : t1

φ2 ∧ ¬φ1 : t2
... :

...

φn ∧ ¬φ1 ∧ ¬φ2 ∧ · · · ∧ ¬φn−1 : tn

One can easily verify that if the partitions are sorted from the highest valuet1 to
the lowesttn, then the highest value consistent with any state formula inthe input
case statement is assigned to the unique partition consistent with that state formu-
lae in the resulting case statement. (If theφi in the input are mutually exclusive,
then the casemax results in a case statement logically equivalent to the original.)
The application of casemax requires constructing new partition formulae, up ton
times the length of the original formulae for a case statement with n partitions.
Fortunately, the use of inconsistency detection discussedpreviously and first-order
ADDs (FOADD) that we introduce in the next section will mitigate the impact of
this blowup by respectively pruning inconsistent case partitions and simplifying the
representation of case formulae.

It is important to point out that all of the case operators arepurely symbolic in
that theti case partition values are not necessarily restricted to constant numerical
values, but can be arbitrary symbolic (possibly state-dependent) terms (Boutilier
et al., 2001). However, the casemax operator (as defined here) implicitly requires
an ordering on theti. We assume for the rest of this section that the case values are
numeric rather than symbolic, and apply the natural< operator for our ordering.

3.3.3 Stochastic Actions and Transition Probabilities

To state the FOMDP transition function for an action, stochastic “agent” actions
are decomposed into acollectionof deterministic actions, each corresponding to a
possible outcome of the stochastic action. We then use a casestatement to specify
a distribution according to which “Nature” may choose a deterministic action from
this set whenever the stochastic action is executed. As a consequence we need only
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formulate SSAs using the deterministicNature’s choices(Bacchus et al., 1995;
Poole, 1997; Boutilier et al., 2000; Reiter, 2001), thus obviating the need for a
special treatment of stochastic actions in SSAs.

Letting A(~x) be a stochastic action with Nature’s choices (i.e., deterministic ac-
tions)n1(~x), · · · , nk(~x), we represent the probability ofni(~x) givenA(~x) is ex-
ecuted ins by P (nj(~x), A(~x), s). Continuing with the translation of our simple
PPDDL example, we note that theload(b, t) action has one set of effects that occurs
with probability 0.9. We use the deterministic actionloadS (b, t) to denote the suc-
cessful occurrence of these effects, and we let the deterministic actionloadF (b, t)
denote the failure of these effects to execute. To do this, wemust redefine our
SSAs from the previous PDDL case: nowload(b, t) is a stochastic action executed
by the agent withloadS (b, t) andloadF (b, t) being possible outcomes (i.e., deter-
ministic actions chosen by Nature). Similarly, we interpret the other two actions us-
ingunloadS (b, t)/unloadF (b, t) as the two deterministic outcomes forunload(b, t),
anddriveS (t, c)/driveF (t, c) as the two deterministic outcomes fordrive(t, c). For
completeness and correctness, we redefine our SSAs for BOXWORLD in terms of
these new deterministic actions for the BOXWORLD FOMDP:

BoxOn(b, t, do(a, s)) ≡ ΦBoxOn(b, t, a, s)

≡ [∃c. a = loadS (b, t) ∧ BoxIn(b, c, s) ∧ TruckIn(t, c, s)]

∨ BoxOn(b, t, s) ∧ ¬ [∃c. a = unloadS (b, t) ∧ BoxOn(b, t, s) ∧ TruckIn(t, c, s)]

BoxIn(b, c, do(a, s)) ≡ ΦBoxIn(b, c, a, s)

≡ [∃t. a = unloadS (b, t) ∧ BoxOn(b, t, s) ∧ TruckIn(t, c, s)]

∨ BoxIn(b, c, s) ∧ ¬ [∃t. a = loadS (b, t) ∧ BoxIn(b, c, s) ∧ TruckIn(t, c, s)]

TruckIn(t, c, do(a, s)) ≡ ΦTruckIn(t, c, a, s)

≡ [∃c1. a = driveS (t, c) ∧ TruckIn(t, c1, s)]

∨ TruckIn(t, c, s) ∧ ¬ [∃c1. a = driveS (t, c) ∧ TruckIn(t, c1, s)]

Here, we have simply replaced our previous deterministic action names from the
PDDL version with the deterministicsuccessversions of Nature’s choice actions
that we will use in our FOMDP. Note that since the “failure” versions of the actions
correspond to the “no effects” case, they obviously do not play any role in the SSAs.
The frame assumption present in the SSAs ensures that what was not explicitly
changed remains the same.

We can now specify a distributionP (nj(~x), A(~x), s) over Nature’s choice deter-
ministic outcome using case statements to specify familiesof distributions, where
the partitions in the case statements correspond to different classes of states and
stochastic action parameters on which the distributions are conditioned. We denote
specific instances ofP (nj(~x), A(~x), s) with the case statementpCase(nj(~x), A(~x), s)
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where⊤ is a tautology, for example:

pCase(loadS (b, t), load(b, t), s) = ⊤ : 0.9

pCase(loadF (b, t), load(b, t), s) = ⊤ : 0.1

pCase(unloadS (b, t), unload(b, t), s) = ⊤ : 0.9 (27)

pCase(unloadF (b, t), unload(b, t), s) = ⊤ : 0.1 (28)

pCase(driveS (b, t), drive(b, t), s) = ⊤ : 1.0

pCase(driveF (b, t), drive(b, t), s) = ⊤ : 0.0

The above axiomatization does not fully illustrate the power of the FOMDP rep-
resentation in that the probabilities are not state or action dependent, so we briefly
digress to demonstrate a slightly more interesting variant. Suppose that the success
of driving a truck to a city depends on whether the truck contains a boxb with
volatile material denoted by the predicateVolatile(b). Then we can specify the
family of distributions over Nature’s choices for this stochastic action as follows:

pCase( driveS (t, c), drive(t, c), s ) =
∃b.BoxOn(b, t, s) ∧ Volatile(b) : 0.9

¬(∃b.BoxOn(b, t, s) ∧ Volatile(b)) : 1.0

pCase( driveF (t, c), drive(t, c), s ) =
∃b.BoxOn(b, t, s) ∧ Volatile(b) : 0.1

¬(∃b.BoxOn(b, t, s) ∧ Volatile(b)) : 0.0

Here we see the transition probability ofdrive(t, c) can be easily conditioned on
state properties ofs and action parameterst andc.

It is important to note that the probabilities over all deterministic Nature’s choices
for a stochastic action sum to one:

k
⊕

j=1

P (nj(~x), A(~x), s) = ⊤ : 1 ; ∀~x, s

In addition, eachP (nj(~x), A(~x), s) should be a disjoint partitioning of state space
such that no two case partitions ambiguously assign multiple probabilities to the
same state. These two properties are crucial to having a well-defined probability
distribution over all possible deterministic action outcomes for every possible state.

For this last example, the second property can be easily verified:

pCase( driveS (t, c), drive(t, c), s ) ⊕ pCase( driveF (t, c), drive(t, c), s ) = ⊤ : 1
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3.4 Symbolic Dynamic Programming (SDP)

Symbolic dynamic programming (SDP) (Boutilier et al., 2001)is a dynamic pro-
gramming solution to FOMDPs that produces a logical case description of the op-
timal value function. This is achieved through the symbolicoperations of first-
order decision-theoretic regression and maximization that perform the traditional
dynamic programming Bellman backup at an abstract level without explicit enu-
meration of either the state or action spaces of the FOMDP. Among many possible
applications, the use of SDP leads directly to a domain-independent value iteration
solution to FOMDPs.

We will assume a constant numerical representation of values in order to explicitly
perform the casemax during SDP in this article. However, we note that an appro-
priate generalization of casemax (c.f., Chapter 6 of Sanner (2008)) along withRegr

of functional fluents (Reiter, 2001) allows the definitions covered here to apply to
general symbolic value representations using general terms rather than constants,
hence the original use of “symbolic” in the name of the SDP algorithm.

3.4.1 First-order Decision-theoretic Regression

Suppose we are given a value functionV (s). The first-order decision-theoretic re-
gression (FODTR) (Boutilier et al., 2001) of this value function through an action
A(~x) yields a case statement containing the logical descriptionof states and values
that would give rise toV (s) after doing actionA(~x). This is analogous to classical
goal regression, the key difference being that actionA(~x) is stochastic. In MDP
terms, the result of FODTR roughly corresponds to a Q-function (albeit one with
free variables for the action parameters), which corresponds to the first half of a
Bellman backup operation given in Equation 6.3

We define thefirst-order decision theoretic regression (FODTR)as the situation
calculus analog of Equation 6 where we note that different successor states only
arise through different Nature’s choice deterministic actions:

FODTR[V (s), A(~x)] = R(s) ⊕ γ ·





k
⊕

j=1

{P (nj(~x), A(~x), s) ⊗ V (do(nj(~x), s))}





(29)

FODTR uses a meta-logical notation that takes as argumentsV (s) representing the
logical case statement for a value function with situation variables and a parame-

3 We do not use an action dependent rewardR(s,A(~x)), but could substitute it if needed.
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terized stochastic action termA(~x) with free variables~x. All subsequently defined
operations on case statements in this article will be definedanalogously.

The only problem with theFODTR[V (s), A(~x)] operation as currently defined is
that the formulaV (do(nj(~x), s)) refers not to the current situations, but to the
future situationdo(nj(~x), s), but this is easily remedied with regression:

FODTR[V (s), A(~x)] =

R(s) ⊕ γ·





k
⊕

j=1

{P (nj(~x), A(~x), s) ⊗ Regr(V (do(nj(~x), s)))}



 (30)

This is equivalent to theFODTR operation in Equation 29 since theRegr op-
eration preserves equivalence (by definition). Also on account of the equivalence
preserving properties ofRegr , we note that ifV (s) partitions the state space then
so must the resulting case statement forFODTR[V (s), A(~x)]. Thus, from a log-
ical description ofV (s) we can derive one for its decision-theoretic regression
FODTR[V (s), A(~x)]. This is key to avoiding state and action enumeration in dy-
namic programming.

We denote an instance of the value functionV (s) by the case statementvCase(s).
As defined previously, we also assume that the reward functionR(s) and instances
of Nature’s choice probabilitiesP (nj(~x), A(~x), s) are denoted byrCase(s) and
pCase(nj(~x), A(~x), s), respectively.

As an example, let us compute the FODTR forvCase(s) = rCase(s) through
the stochastic actionA(~x) = unload(b∗, t∗) whererCase(s) is the BOXWORLD

reward as previously defined in Equation 20. SincevCase(s) is logically defined,
we can push theRegr operator into the individualvCase(s) partitions as follows:

FODTR[vCase(s), unload(b∗, t∗)] = rCase(s) ⊕

γ





k
⊕

j=1







pCase(nj(~x), unload(b∗, t∗), s)

⊗
Regr(∃b.BoxIn(b, paris , do(nj(~x), s))) : 10

Regr(¬∃b.BoxIn(b, paris , do(nj(~x), s))) : 0

















Now, since the stochastic actionA(~x) = unload(b∗, t∗), we know that Nature’s
deterministic action choicesnj(~x) range overunloadS (b∗, t∗) andunloadF (b∗, t∗).
We now substitute thepCase definitions for the deterministic actionsunloadS (b∗, t∗)
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andunloadF (b∗, t∗) from Eqs. 27 and 28, respectively, obtaining:

FODTR[vCase(s), unload(b∗, t∗)] = rCase(s) ⊕

γ

















⊤ : 0.9 ⊗
Regr(∃b.BoxIn(b, paris , do(unloadS (b∗, t∗), s))) : 10

Regr(¬∃b.BoxIn(b, paris , do(unloadS (b∗, t∗), s))) : 0











⊕











⊤ : 0.1 ⊗
Regr(∃b.BoxIn(b, paris , do(unloadF (b∗, t∗)))) : 10

Regr(¬∃b.BoxIn(b, paris , do(unloadF (b∗, t∗)))) : 0

















We have already computedRegr(∃b.BoxIn(b, paris , do(unloadS (b∗, t∗)))) from
Equation 18 where the deterministicunload(b∗, t∗) from the PDDL case has been
renamed tounloadS (b∗, t∗). And by the properties ofRegr , we know thatRegr(¬φ)
= ¬Regr(φ) so we can easily obtain the regression of the negated partition in
rCase(s). It is important to note that ifrCase(s) partitioned the post-action state
space, theRegr operator preserves this partitioning in the pre-action state space.
We note that

Regr(φ(~x, do(unloadF (b∗, t∗)))) = φ(~x, s)

can be easily derived sinceunloadF (b∗, t∗) has no effects and is thus equivalent
to a noop action. Making these substitutions, explicitly multiplying in the action
probabilities and discount factorγ = 0.9, and explicitly writing outrCase(s), we
obtain the following (where, for readability, we use¬“ to denote the conjunction
of the negation ofall partitions above the given partition in the case statement):

FODTR[vCase(s),unload(b∗, t∗)] =
∃b.BoxIn(b, paris , s) : 10

¬“ : 0

⊕

[BoxOn(b∗, t∗, s) ∧ TruckIn(t∗, paris , s)]

∨∃b.BoxIn(b, paris , s) : 8.1

¬“ : 0

⊕
∃b.BoxIn(b, paris , s) : 0.9

¬“ : 0

Finally, explicitly carrying out the⊕’s and simplifying yields the final result:

FODTR[vCase(s), unload(b∗, t∗)]

=

∃b.BoxIn(b, paris , s) : 19.0

¬“ ∧ [BoxOn(b∗, t∗, s) ∧ TruckIn(t∗, paris , s)] : 8.1

¬“ : 0

(31)
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The case statement resulting from FODTR contains free variables for the action
parameters; in this caseA(~x) = unload(b∗, t∗) so the free parameters areb∗ andt∗.
This result is intuitive: it states that if a box was already in paris then we get reward
19 (10 for the current reward and 9 for the discounted 1-step reward). Otherwise, if
a box is not inparis in the current state, but boxb∗ was on truckt∗ in paris and the
action was specificallyunload(b∗, t∗), then we get an expected future reward of 8.1
taking into account the success probability of unloading the box and the discount
factor. Finally, if no box is inparis in the current state and we do not unload a box
then we get 0 total reward.

This case statement represents the value of taking stochastic actionunload(b∗, t∗)
and acting so as to obtain the value given byrCase(s) thereafter. However, what
we really need for symbolic dynamic programming is a logicaldescription of a Q-
function (recall Equation 6) that tells us the possible values that can be achieved
for any action instantiation ofb∗ andt∗. This leads us to the following definition
Q(A, s) of a first-order Q-function that makes use of the previously defined∃~x
unary case operator:

Qt(A, s) = ∃~x.FODTR[V t−1(s), A(~x)] (32)

We denote a specific instance ofQt(A, s) by the case statementqCaset(s, A). We
can think ofqCaset(s, A) as a logical description of the Q-function for actionA(~x)
indicating the values that could be achieved byany instantiation ofA(~x). By using
the first-order case representation of states as well as action quantification via the
∃~x operation, FODTR effectively achievesboth action and state abstraction.

Letting vCase0(s) = rCase(s), we can continue our running example to obtain a
Q-function description for actionunload where we have removed vacuous quan-
tifiers. Technically,qCase1(unload , s) would not be an exhaustive partitioning of
the state space in that the0 value partition from Equation 32 is not the same one im-
plied here from the¬“ because the partition formulae above it have been quantified.
However, throughout this article, we can exploit our assumption that all FOMDPs
have anoop action to assume that the minimum value for any state is0 (as opposed
to being undefined). Thus we can always show the final0 partition as¬“ to indi-
cate that any partitions not explicitly assigned a value by the above partitions are
assigned a default value0. Thus, we arrive at the following intuitive result:

qCase1(unload , s) = ∃b∗, t∗.FODTR[vCase0(s), unload(b∗, t∗)]

=

∃b.BoxIn(b, paris , s) : 19.0

∃b∗, t∗. [¬“ ∧ BoxOn(b∗, t∗, s) ∧ TruckIn(t∗, paris , s)] : 8.1

¬“ : 0

In words, this states if the box was already inparis then we get a discounted reward
of 19. Otherwise, if a box is not inparis in the current state, but thereexistssome

29



box on a truck inparis, then we could unload it to get an expected discounted
reward of 8.1. Finally, if there is no box on a truck to unload in paris and there is
no box already inparis then we get 0 expected discounted reward. It is instructive
to compare this description to the prior description of FODTR without existential
action quantification—the difference is subtle, but important for action abstraction.

3.4.2 Symbolic Maximization

At this point, we can decision-theoretically regress the value function through a
singlestochastic action to obtain a representation of its Q-function, but to com-
plete the dynamic programming (Bellman backup) step in the spirit of Equation 7
from Section 2, we need to know the maximum value that can be achieved by
anyaction. For example, in the BOXWORLD FOMDP, our possible action choices
areunload(b, t), load(b, t), anddrive(t, c) and our Q-function computations using
Equation 32 give usqCase1(unload , s), qCase1(load , s), andqCase1(drive, s). In
general, we will assume that we havem stochastic actions{A1(~x1), . . . , Am(~xm)}
and a corresponding set of Q-functions{qCaset(A1, s), . . . , qCaset(Am, s)} de-
rived from a common value functionvCaset−1(s).

We might try to obtain a case description of the value function vCaset(s) by sim-
ply applying the case∪ operator to merge all partitions of the Q-functions, i.e.,
qCaset(s, A1) ∪ . . . ∪ qCaset(s, Am). While this provides us with a description
of possible values, it is not a valuefunctionbecause the state spaces of each Q-
function may overlap, thus potentially assigning multiplevalues to the same under-
lying state. What we really want instead is to assign thehighestpossible value to
each portion of state space. Fortunately, this is quite easywith the casemax operator.
Thus we get the following equation for the symbolic maximization of Q-functions:

V t(s) = casemax
[

Qt(A1, s) ∪ . . . ∪Q
t(Am, s)

]

(33)

Recalling the way in which the casemax operation is computed from Equation 26,
every resulting instancevCaset(s) of the value functionV t(s) will have the fol-
lowing case statement format where value case partitionψj corresponds to valuevj

andvi > vi+1:

vCaset(s) =

ψ1 : v1

ψ2 ∧ ¬ψ1 : v2

... :
...

ψn ∧ ¬ψ1 ∧ ¬ψ2 ∧ · · · ∧ ¬ψn−1 : vn

This approach effectively gives us a decision-list representation of our value func-
tion (recall the optimal value function representation from Figure 4). Thus, to de-
termine the value for a state, we can simply traverse the listfrom highest to lowest
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value and take the value for the first case partition that is satisfied. The casemax
operation guarantees that this value function will be a disjoint partitioning of the
state space and our previous assumption that all actions areexecutable in all states
ensures that this value function exhaustively assigns a value to all possible states
(assumingvCaset−1 was exhaustive).

3.4.3 First-order Value Iteration

One should note that the SDP equations given here are exactlythe lifted versions
of the classical dynamic programming solution to MDPs givenpreviously in Equa-
tions 6 and 7 from Section 2. Since those equations were used in part to define a
value iteration algorithm, we can use the lifted versions todefine afirst-order value
iterationalgorithm whereǫ is our error tolerance:

(1) InitializeV 0(s) = R(s), t = 1.
(2) ComputeV t(s) givenV t−1(s) using Equations 32 and 33.
(3) If the following Bellman error inequality holds

‖V t(s) ⊖ V t−1(s)‖∞ ≤
ǫ(1 − γ)

2γ
(34)

then terminate and returnV t(s), otherwise go to step 2.

Here, we define‖V t(s)⊖ V t−1(s)‖∞ as the maximal absolute value of any consis-
tent partition in the case statement resulting fromV t(s) ⊖ V t−1(s).

For example, applying first-order value iteration to the 0-stage-to-go value function
(i.e., vCase0(s) = rCase(s), given previously in Equation 20) yields the follow-
ing simplified 1- and 2-stage-to-go value functions in the BOXWORLD problem
domain:

vCase1(s) =

∃b.BoxIn(b, paris, s) : 19.0

¬“ ∧ ∃b, t.TruckIn(t, paris, s) ∧ BoxOn(b, t, s) : 8.1

¬“ : 0.0

vCase2(s) =

∃b.BoxIn(b, paris, s) : 26.1

¬“ ∧ ∃b, t.TruckIn(t, paris, s) ∧ BoxOn(b, t, s) : 15.4

¬“ ∧ ∃b, c, t.BoxOn(b, t, s) ∧ TruckIn(t, c, s) : 7.3

¬“ : 0.0

After sufficient iterations of first-order value iteration,thet-stage-to-go value func-
tion converges, giving the optimal value function (and as wederive in a moment,
an optimal policy) from Figure 4.
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Boutilier et al. (2001) provide a proof that SDP and thus everystep of value itera-
tion produces a correct logical description of the value function. From this, we can
lift the error bounds from the ground MDP case in Equation 8 toshow domain-
independent error bounds on the first-order abstracted value estimate:

Corollary 3.4.1 LetV ∗(s) be the optimal value function for a FOMDP. Terminat-
ing according to the criteria given in Step 3 of first-order value iteration guarantees
‖V t(s) − V ∗(s)‖∞ < ǫ for anydomain instantation (even infinite) of the FOMDP.

More generally, as a direct result of this corollary, we can derive domain-independent
error bounds for the first-order representation of the valuefunction produced byany
first-order MDP algorithm (see Section 6 for other first-order algorithms).

Corollary 3.4.2 Let V̂ (s) be an arbitrary first-order case representation of a value
function. LetV̂ ′(s) be the result of applying Equations 32 and 33 toV̂ (s) for a
FOMDP. Let ǫ = 2

1−γ
‖V̂ ′(s) ⊖ V̂ (s)‖∞. Then‖V̂ (s) − V ∗(s)‖∞ < ǫ for any

domain instantiation of the FOMDP.

The difference ofγ between the bounds of Corollaries 3.4.1 and 3.4.2 occurs be-
cause the former refers to a bound onV t(s), while the latter refers to a bound on
V̂ (s) = V t−1(s) and value iteration is known to contract the error byγ on each
iteration.

3.4.4 Policy Representation

Given a value function, it is important to be able to derive a first-order greedy
policy representation from it, just as we did in the ground case in Section 2. This
policy can then be used to directly determine actions to apply when acting in a
ground instantiation of the FOMDP, or it can be used to define first-order versions
of (approximate) policy iteration (Sanner and Boutilier, 2006).

Fortunately, given a value functionV (s), it is easy to derive a greedy policy from it.
Assuming we havem parameterized actions{A1(~x), . . . , Am(~x)}, we can formally
derive the policyπ(s)[·] using the· to denote the value representation from which
the policy is derived as follows (taking into account a few modifications to the case
operators that we discuss in a moment):

π(s)[V (s)] = casemax(
⋃

i=1...m

∃~x.FODTR[V (s), Ai(~x)]) (35)

We often refer to a specific instance ofπ(s) with the case statementπCase(s).
For bookkeeping, we require that each partition〈φ, t〉 in ∃~x FODTR[V (s), Ai(~x)]
maintain a mapping to the actionAi that generated it, which we denote as〈φ, t〉 →
Ai. Then, given a particular world states, we can evaluateπCase(s) to determine
which maximal policy partition〈φ, t〉 → Ai is satisfied bys and thus, which action
Ai should be applied. If we retrieve the bindings of the existentially quantified

32



action variables∃~x in that satisfying policy partition, we can easily determine the
parameterization of actionAi that should apply according to the policy.

To make this concrete, we derive a simple greedy policy for the BOXWORLD

FOMDP assuming the value functionV (s) = rCase(s) and that we only have
two actionsunload(b∗, t∗) andnoop. Noting that we have already computed
FODTR[rCase(s), unload(b∗, t∗)] in Equation 31 and thatFODTR[rCase(s), noop]
will just be rCase(s) with 10 replaced by19, we obtain the following policy:

πCase[rCase(s)]

= casemax({∃b∗, t∗.FODTR[rCase(s), unload(b∗, t∗)]}

∪ {FODTR[rCase(s),noop]})

=

∃b.BoxIn(b, paris, s) : 19.0 −→ noop

¬“ ∧ [∃b∗, t∗.BoxOn(b∗, t∗, s) ∧ TruckIn(t∗, paris, s)] : 8.1 −→ unload(b∗, t∗)

¬“ : 0 −→ noop

For a more interesting policy, we refer the reader back to theoptimal value function
and policy for BOXWORLD given in Figure 4.

Technically, we note that there may be an infinite number of actions that can be
applied since there are an infinite number of ground instantiations ofunload(b∗, t∗)
depending on the domain instantiation. Thus, this policy representation manages to
compactlyrepresent the selection of an optimal action amongst an infinite set.

4 Practical FOMDP Solution Techniques

The last section reviewed a symbolic dynamic programming (SDP) algorithm the-
oretically capable of producing anǫ-optimal value function for a FOMDP that does
not require theorem proving to detect inconsistent case partitions or logical simpli-
fication to maintain compact representations of case partition formulae. However,
in practice, both theorem proving and simplification are needed to control the rep-
resentational blowup of the value function occurring at each step of value iteration.

To this end, the first half of this section introduces a practical first-order exten-
sion of the algebraic decision diagram (ADD) (Bahar et al., 1993) data structure,
the first-order ADD (FOADD), for maintaining case statements in a simplified,
non-redundant format that facilitates theorem proving forinconsistency detection.
We show how FOADDs can be used to exploit structure in SDP for FOMDPs
in much the same manner that ADDs have been used to exploit structure in dy-
namic programming for MDPs (Hoey et al., 1999). We conclude with an illustra-
tive empirical results demonstrating that FOADDs enable anautomated solution
to basic FOMDPs. We will discuss related work on first-order decision diagrams
(FODDs) (Wang et al., 2008), also applied to FOMDPs, in Section 6.
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In the second half, we introduce an additive decomposition approach for approx-
imately solving FOMDPs with universal reward specifications. This approach is
motivated in part by previous decomposition methods and enables the application
of FOMDP solution techniques to a reward specification that otherwise renders
SDP solution approaches intractable.

4.1 Representation and Solution with First-order ADDs

An algbraic decision diagram(ADD) (Bahar et al., 1993) is a data structure for
compactly representing a function fromBn → R using a directed acyclic graph.
ADDs have been used to compactly model transition functions, rewards, and value
functions in factored MDPs (Boutilier et al., 1999). Moreover, value iteration de-
fined in terms of ADD operations has yielded substantial improvements in time and
space complexity over enumerated state representations (Hoey et al., 1999).

To extend these ideas to the first-order framework, we define methods for breaking
down first-order case partition formulae into their booleanpropositional compo-
nents and create a compactfirst-order ADD(FOADD) representation of case state-
ments. Then we can apply known ADD algorithms to perform the⊗,⊕, and⊖ case
operations. Once we have shown how to do this, we end with a discussion of the
practical use of FOADDs and a small example of a FOADD application to SDP.

4.1.1 FOADD Construction and Operations

The first aspect of FOADDs concerns how to construct them automatically from a
case representation. Since ADDs are propositional, we needsome method of find-
ing propositional structure in first-order formulae. We cando this by permuting
quantifers at the same level of nesting (e.g.,[∃x, y.φ] ≡ [∃y, x.φ]) and by distribut-
ing quantifiers as deeply into case formulae as possible using the following rewrite
rule templates (⋄ indicates variables other than those explicitly quantified):

[∃x.A(x, ⋄) ∨B(x, ⋄)] −→ [(∃x.A(x, ⋄)) ∨ (∃x.B(x, ⋄))] (36)
[∀x.A(x, ⋄) ∧B(x, ⋄)] −→ [(∀x.A(x, ⋄)) ∧ (∀x.B(x, ⋄))] (37)

[∃x.A(x, ⋄) ∧B(⋄)] −→ [(∃x.A(x, ⋄)) ∧ (B(⋄))] (38)
[∀x.A(x, ⋄) ∨B(⋄)] −→ [(∀x.A(x, ⋄)) ∨ (B(⋄))] (39)

We also perform equality simplification using the non-emptydomain assumption
with the following two rules:

[∃x. x = y ∧ A(x, ⋄)] −→ A(y, ⋄) (40)
[∀x. x 6= y ∨ A(x, ⋄)] −→ A(y, ⋄) (41)

34



bb

aa

1 0

case   =

(a) Given case statement:

0
1

case =
¬ ”

Var ⇔⇔⇔⇔ FOL Formula Var

b
a

∃x.[A(x) ∨ ∀y.A(x) ∧ B(x) ∧ ¬A(y)]

[∃x.A(x)] ∨ ( [∃x.A(x) ∧ B(x)] ∧ [∀y.¬A(y)] )

≡ [∃x.A(x)]
≡ [∃x.A(x) ∧ B(x)]

1

aa

0
=First-order CSI!

(b) Push down quantifiers, expose propositional structure:

(c) Convert to first-order (A)ADD:

[∃x.A(x)] ∨ [∃x.A(x) ∧ B(x) ∧ ∀y.¬A(y)]

a ∨ (b ∧ ¬a)
0
1

case =
¬ ”

Fig. 5. An example conversion from a case statement to a compact FOADD representation
demonstrating first-order CSI.

The first rule is fairly straightforward while the second rule follows simply from
the negation of the first rule with renaming.

In practice, we iteratively apply simplification rules (40),(41) followed by rewrite
rules (36)–(39) working from the innermost to the outermostquantifiers until no
more rewrites can be applied. While other orders may give different (potentially
smaller) results, we find that this deterministic approach is generally sufficient to
expose most propositional structure in first-order formulae.

We provide the following example application of these rewrite and simplification
rules to demonstrate their power:

∃x, z. [x = y ∧ A(x, ⋄) ∧B(y, z)]

≡ ∃x. [x = y ∧ A(x, ⋄) ∧ (∃z. B(y, z))] [Apply rewrite rule (38) forz]

≡ (∃x. x = y ∧ A(x, ⋄)) ∧ (∃z. B(y, z)) [Apply rewrite rule (38) forx]

≡ A(y, ⋄) ∧ (∃z. B(y, z)) [Apply simplification rule (40) forx]

To build a FOADD, we first apply these rules to expose the propositional structure
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of a first-order formula. Consider the example in Figure 5(a,b); we start with

∃x.[A(x) ∨ ∀y.A(x) ∧B(x) ∧ ¬A(y)] (42)

and apply rewrite rule (39) fory followed by (36) forx to obtain

[∃x.A(x)] ∨ ([∃x.A(x) ∧B(x)] ∧ [∀y.¬A(y)]). (43)

Once we have pushed quantifiers as far down as possible, we extract the proposi-
tional structure of the formula by considering propositional connectives over quan-
tified formulae as follows:

∃x.A(x) ∨

(

[∃x.A(x) ∧B(x)] ∧ ∀y.¬A(y)

)

(44)

Each of these boxes represents a formula that we cannot further decompose into
propositional components. Consequently, we treat each of these boxed formulae
as propositions. To do this, we maintain a table of mappings from propositional
variablesp, naming each first-order formula, to first-order formulaeψ: {p → ψ}.
To convert a new formulaφ in a case statement to a propositional variable, we
examine each formula-to-proposition mapping in our table.If φ ≡ ψ for someψ
in the table, we return its corresponding propositionp; if φ ≡ ¬ψ, we return¬p;
otherwise, we add a new proposition labelq and add the mappingq → φ to our
table and returnq. In our example, having built the table shown in Figure 5(b),we
can convert the formula to its propositional counterpart:

a ∨ (b ∧ ¬a) (45)

At this point, we can build an ADD from a case statement whose formulae are
purely propositional. What makes this ADD first-order is the additional proposition
to first-order formula mapping that gives each proposition afirst-order definition.
Standard ADDs can exploitcontext-specific independence (CSI)(Boutilier et al.,
1996) (i.e., where the value of a function is independent of an input variable given
the assignment to other variables). There is, however, an additional form of CSI
that we can exploit in FOADDs—first-order CSI. This first-order CSI follows from
the structured and potentially overlapping nature of the propositional variables. For
instance, in our example,¬a ⊃ ¬b, so as we traverse its FOADD representation, we
can force the decision node forb in the context ofa. This is shown in Figure 5(c).

The options for detecting first-order CSI include:

(a) Do not perform any first-order CSI detection at all.
(b) Maintain information about all pairwise implications in the propositional map-

ping table and detect just this pairwise first-order CSI during the application
of FOADD operations.
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(c) Perform full simplification for all decision nodes in thecontext of the con-
junction of all decisions made for parent nodes during all operations on the
FOADD.

Obviously (a) requires no additional computation, but can give rise to FOADDs
with potentially dead paths. In contrast, (c) requires substantial computation in re-
turn for extensive simplication. In practice, we find (b) to offer the most reasonable
tradeoff between computation and simplification; time-limited theorem proving, al-
though incomplete, suffices to identify many pairwise node implications that lead
to substantial first-order CSI pruning. It is trivial to extend the ADD algorithm to
do this additional consistency check in the presence of parent decisions when per-
forming the standard ADDApply andReduce operations. However, if (b) or (c) are
used, it is not sound to reorder the ADD nodes since the first-order context of these
prunings may change and thus may no longer be valid after nodereordering.

Once we convert a case statement to an FOADD, we can apply the⊗, ⊕, and⊖
case operations to FOADDs by making direct use of the ADDApply operations of
multiplication, addition, and subtraction (Bahar et al., 1993). We can reuse standard
ADD operations for FOADDs since they are just ADDs with augmented variable
definitions in the propositional mapping table. Thus, the only practical difference
between ADD and FOADD operations is that these augmented variable definitions
may lead to additional pruning of structure due to first-order CSI.

In general, FOADDs may be treated as ADDs, except for the requirement to consult
the propositional mapping table in the following circumstances:

(1) when constructing a FOADD;
(2) when converting a FOADD back to a case representation or evaluating a

ground state; or
(3) when exploiting first-order CSI using method (b) or (c) above, we may consult

this table during the ADDReduce andApply procedures.

4.1.2 Practical Considerations

Replacing case statements with FOADDs in the representationand solution of
FOMDPs has the potential to exploit a great deal of structurethat naturally oc-
curs in these representations. First, the disjunctive nature of positive effects in the
regression of FOMDP formulae introduces a number of disjunctions during the ap-
plication of algorithms such as SDP. Second, the existential quantification of the
action variables in these formulae introduce existential quantifiers that can be dis-
tributed through the disjunctions introduced byRegr . Consequently, every SDP
step introduces structure that can be directly exploited bythe previously described
methods for exposing propositional structure of first-order formulae. As such, our
approach to representing FOADDs is well-suited to FOMDPs aswe demonstrate
below with a small example.
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However, if we were to define a complete SDP algorithm for FOMDPs that only
uses FOADDs, we would need to define special unary FOADD operations such as
Regr , casemax, and∃~x used in the SDP algorithm. WhileRegr can be easily de-
fined (note that a FOADD is just a compact representation of a case statement and
thusRegr can still be applied), it changes the logical meaning of the FOADD nodes
since they have a first-order definition. In general, maintaining a canonical repre-
sentation after performingRegr on a FOADD requires expensive node reordering
operations. The application of∃~x and casemax also generally require expensive
node reordering operations. For these reasons, we do not apply Regr , casemax, or
∃~x to FOADDs in practice, instead opting for a pragmatic use of FOADDs that
exploits their strengths.4

The primary advantage of FOADDs is the provision of efficientbinary operations
and formula simplification through the breakdown of propositional structure and
the elimination of redundancy that occurs during their construction. In doing this
simplification, FOADDs remove a lot of burden from the theorem prover, which
must otherwise detect inconsistency with highly redundantrepresentations. Thus,
in our SDP algorithms, we use FOADDs where they are most useful and efficient—
binary operations and logical simplification—and revert tothe case representation
to perform the unary operations ofRegr , casemax, and∃~x that can be expensive
due to the need for internal node rotations. This approach leads to a viable SDP
algorithm, to which we now turn.

4.1.3 Symbolic Dynamic Programming with FOADDs

The use of FOADDs in the somewhat hybrid manner discussed above allows the
development of a practical SDP algorithm.

We have implemented a fully automated first-order value iteration algorithm and
tested it on several examples to develop a sense of its effectiveness. One problem
tested is the running BOXWORLD FOMDP example. The FOADDs for the reward,
optimal value function and policy are given in Figure 6. For the variable ordering,
we simply maintain the order of formulae as they were added tothe variable map-
ping table in the FOADD during the SDP algorithm. We use the Vampire theorem
prover (Riazanov and Voronkov, 2002) for detecting equivalence and inconsistency.
The total running time for this solution until convergence within tolerance 1e-4 was
15.7s on a 2Ghz Pentium with 2Gb of RAM. Unsurprisingly, the final FOADD for
this problem gives exactly the decision list structure thatwe would expect for the
BOXWORLD problem as shown in Figure 4.

We have also used our FOADD value iteration algorithm to solve other variants

4 While we do not discussRegr , casemax, and∃~x for FOADDs further here, the reader
is referred to Sanner (2008) for additional information on how one might perform these
operations efficiently.
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Fig. 6. An example FOADD representation of the reward in BOXWORLD and the FOADD
representation of the optimal value function and policy for this domain.

of the BOXWORLD problem, including the version given in Boutilier et al. (2001)
with an extra fluent forRain(s) and action probabilities conditioned on this fluent.
We also used a BOXWORLD reward with the following structure:

R(s) =

∃b.BoxIn(b, paris , s) ∧ TypeA(b) : 10

¬“ ∧ ∃b.BoxIn(b, paris , s) ∧ ¬TypeA(b) : 5

¬“ : 0

(46)

Here in addition to theRain(s) fluent, we have also added a non-fluent predicate
TypeA(b) to distinguish types of boxes and varying rewards for each type of box.
The FOADDs for these solutions are too large to display, but we note that after a
small number of steps of value iteration, the value functionFOADD stopped grow-
ing indicating that all relevant state partitions had been identified. Value iteration
continued with this quiesced FOADD until all values at the leaves converged. The
respective solution times to convergence within tolerance1e-4 for these more com-
plex problems were 70.4s and 489s on a 2Ghz Pentium with 2Gb ofRAM. For
comparison, the ReBel algorithm (Kersting et al., 2004) produced the same solu-
tion for the first FOMDP variant with theRain(s) fluent in<6s on a 3.1Ghz ma-
chine. ReBel’s specialization for a less expressive subset ofFOMDPs (still captur-
ing BOXWORLD, however) results in a substantial performance edge. We discuss
differences between ReBel and the work in this article in Section 6.
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There appear to be at least two general criteria for problem domains to demon-
strate finitely-sized optimal value functions with the current case representation as
occurred in these examples: (1) the non-zero reward case partitions must be ex-
istentially quantified and (2) the FOMDP dynamics must not introduce transitive
structure that cannot be finitely bounded by domain axioms. As this last require-
ment is vague, we provide an example. In the BOXWORLD problem covered in
this section, we implicitly assume that all cities are accessible from each other
via thedrive action. If instead we had some underlying road topology indicated
by Conn(City : c1,City : c2) that restricted thedrive action and we did not
know this topology in terms of prior knowledge specified as domain axioms, then
the SDP algorithm would likely need to generate representations for all possible
topologies, thus likely leading to a value function of infinite “size.” Infinite-sized
value functions can also occur when condition (1) is violated as we discuss in the
next subsection. We discuss potential research directionsto mitigate these observed
deficiencies of the case representation in Section 7.1.

Unfortunately, the FOADD solution approach has failed to scale to more complex
problems used in the planning community (particularly problems from the ICAPS
2004 and 2006 International Planning Competitions) since they typically use more
complex rewards, including those with universal quantifiers. Whereas problems
with existentially quantified rewards may exhibit a finite-size optimal value func-
tion, this is rarely the case with universal rewards. Thus additional techniques are
required to handle this problem, as we discuss next.

4.2 Decomposing Universal Rewards

In first-order domains, we are often faced withuniversal reward expressionsthat
assign some positive value to the world states satisfying a formula of the general
form ∀y φ(y, s), and 0 otherwise. For instance, in our BOXWORLD problem, we
may define a reward as havingall boxesb at their assigned destination cityc given
by Dst(b, c):

R(s) =
∀b, c.Dst(b, c) ⊃ BoxIn(b, c, s) : 1

¬“ : 0
(47)

One difficulty with such rewards is that our case statements provide a piecewise-
constant representation of the value function. However, with universal rewards, the
value function typically depends on thenumberof domain objects of interest. In
our example, value at a state depends on the number of boxes not at their proper
destination (since this can impact the minimum number of steps it will take to
obtain the reward). So at-stage-to-go value function in this case would have the
following characteristic structure (where we use English in place of first-order logic
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for readability):

V t(s) = =

∀b, c.Dst(b, c) ⊃ BoxIn(b, c, s) : 1

One box not at destination : γ

Two boxes not at destination :γ2

... :
...

t− 1 boxes not at destination :γt−1

Obviously, since there aret distinct values in an optimalt-stage-to-go value func-
tion, the piecewise-constant case representation requires a minimum oft case par-
titions to represent this value function. And when we combine these counting dy-
namics with other interacting processes in the FOMDP, we often see an uncon-
trollable combinatorial blowup in the number of case partitions of value functions
for FOMDPs with universally defined rewards. As noted by Gretton and Thiebaux
(2004), effectively handling universally quantified rewards is one of the most press-
ing issues in the practical solution of FOMDPs.

To address this problem we adopt a decompositional approach, motivated in part by
techniques for additive rewards in MDPs (Boutilier et al., 1997; Singh and Cohn,
1998; Meuleau et al., 1998; Poupart et al., 2002). We divide our solution into off-
line and on-line components where the on-line component requires a finite-domain
assumption in order to execute the policy.

4.2.1 Offline Generic Goal Solution

Intuitively, given a goal-oriented reward that assigns positive reward if∀~y G(~y, s)
is satisfied, and zero otherwise, we can decompose it into a set of ground goals
{G(~y1), . . . , G( ~yn)} for all possible~yj in a ground domain of interest. If we reach
a state where all ground goals are true, then we have satisfied∀y G(y, s).

Of course, our methods solve FOMDPs without knowledge of thespecific domain,
so the set of ground goals that will be faced at run-time is unknown. Thus, in the
offline FOMDP solution, we assume agenericground goalG(~y∗) for a “generic”
object vector~y∗. Assuming that our universal reward takes an implicative form as
it does in our reworked BOXWORLD example, the conditions in the antecedent
(Dst(b, c)) indicate the goal objects of interest (all pairs〈b, c〉 satisfyingDst(b, c))
and the consequent of the implication indicates the specificgoal G(~y, s) to be
achieved for these objects (BoxIn(b, c, s)).

It is easy to construct a generic instance of a reward function RG(~y∗)(s) given a
single goal. In our BOXWORLD example we would introduce the distinguished
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constantsb∗ andc∗ to denote our goal objects of interestG(b∗, c∗):

rCaseG(b∗,c∗)(s) =
BoxIn(b∗, c∗, s) : 1

¬BoxIn(b∗, c∗, s) : 0
(48)

Given this simple reward, it is easy to derive a value function VG(~y∗)(s) for this
FOMDP using SDP or the approximate FOMDP solution algorithms that we in-
troduce in subsequent sections.VG(~y∗)(s) and its corresponding policy assume that
~y∗ is the only object vector of interest satisfying relevant type constraints and goal
preconditions in the domain. In our running BOXWORLD example, the optimal
vCaseG(b∗,c∗)(s) would look very similar to Figure 4 (or 6) with some differences
owing to the fact that our reward is defined in terms of constants b∗ andc∗ rather
than existentially quantified variablesb andc.

We next derive Q-functions for each actionAi(~x) from the value functionVG(~y∗)(s)
for the “generic” domain:

QG(~y∗)(Ai, s) = ∃~x.FODTR[VG(~y∗)(s), Ai(~x)] (49)

For our running BOXWORLD example, we would deriveqCaseG(b∗,c∗)(Ai, s) for
Ai ∈ {unload , load , drive}.

4.2.2 Online Policy Evaluation

With the offline solution (i.e., Q-function for each action)of a generic goal FOMDP
in hand, we address the online problem of action selection for a specific domain in-
stantiation given at run-time. We assume a set of ground goals{G(~y1), . . . , G( ~yn)}
corresponding to a specific finite domain given at run-time. If we assume that
(typed) domain objects are treated uniformly in the uninstantiated FOMDP, as is
the case in many logistics and planning problems, then we obtain the Q-function
for any goalG(~yj) by replacing all ground terms~y∗ in qCaseG(~y∗)(Ai, s) with the
respective terms~yj to obtainqCaseG( ~yj)

(Ai, s).

Returning to our running example, from the value functionvCaseG(b∗,c∗)(s) we
derived a Q-functionqCaseG(~y∗)(Ai, s) for each actionAi. If at run-time, we are
given the three goalsDst(b1, paris), Dst(b2, berlin), andDst(b3, rome), then we
would substitute these goals into our Q-functions to obtainthree goal-specific Q-
functions for each actionAi:

{qCaseG(b1,paris)(Ai, s), qCaseG(b2,berlin)(Ai, s), qCaseG(b3,rome)(Ai, s)} (50)

Action selection requires finding an action that maximizes value with respect to the
original universal reward. Following (Boutilier et al., 1997; Meuleau et al., 1998),
we do this by treating thesum of the Q-valuesof any action in the subgoal MDPs as
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Algorithm 1: EvalPolicy({qCaseG(~y∗)(·, ·)}, {G(~y1), . . . , G( ~yn)}, s) →Ai(~c)

input : (1) For each action templateAi(~x) a set of (non-disjoint) Q-functions
qCaseG(~y∗)(Ai, s) for a specific ground instantiation~y∗ of a goalG.
(2) A set ofn unsatisfied goals{G(~y1), . . . , G( ~yn)} to achieve.
(3) A ground states to find the best action for.

output : The optimal ground actionAi(~c) to execute with respect to the
given state and additive decomposition of unsatisfied goals:Ai(~c) =
arg maxi,~c

∑n
j=1 qCaseG( ~yj)(Ai(~c), s)

begin

// In hash tableh, entries map ground actions to corresponding value:A(~x) → v.
Initialize empty hash tableh;

// Now, compute additive values for all matching ground actions
foreach (actionAi) do

foreach (goalG(~yj)) do
Replace all occurrences of~y∗ in qCaseG(~y∗)(Ai, s) with ~yj ;

foreach (case partition〈∃~xφ(~x), t〉 ∈ qCaseG( ~yj)(Ai, s)) do
foreach (ground binding~x = ~c satisfying∃~xφ(~x)) do

if (Ai(~c) → v is already inh for somev) then
Updateh to containAi(~c) →

(

v + t
n

)

;

else
Updateh to containAi(~c) →

t
n

;

// Assumeh tracks its maximal entry:Ai(~c) → v.
Return the maximalAi(~c) from h;

end

a measure of its Q-value in the joint (original) MDP. Specifically, we assume that
each goal contributes uniformly and additively to the reward, so the Q-function
for an entire set of ground goals{G(~y1), . . . , G( ~yn)} determined by our domain
instantiation is just

∑n
j=1

1
n
qCaseG( ~yj)

(Ai, s). Action selection (at run-time) in any
ground state is realized by choosing the action with maximumadditive Q-value.
Naturally, we do not want to explicitly create the joint Q-function, but instead use
an efficient “scoring” technique that evaluates potentially useful actions by iterating
through the individual Q-functions as described in Algorithm 1.

While this additive and uniform decomposition may not be appropriate for all do-
mains with goal-oriented universal rewards (and certainlyoffers no performance
guarantees on account of its heuristic nature), we have found it to provide reason-
able results for domains such as BOXWORLD as we empirically demonstrate in
the next section. While our approach only currently handles rewards with univer-
sal quantifiers, this reflects the form of many planning problems. Nonetheless, this
technique could be extended for more complex universal rewards, the general open
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question being how to assign credit among the constituents of such a reward.

5 Linear-value Approximation for FOMDPs

Perhaps the greatest difficulty with the symbolic dynamic programming (SDP) ap-
proach and practical extensions discussed in the last section is that the size of the
value function case representation grows polynomially on each iteration and thus
exponentially in terms of the number of iterations.5 Similar growth can occur for
the first-order formulae representing the state partitionsthemselves. Once these for-
mulae become too large to practically detect equivalence orinconsistency, all hope
of obtaining a compact representation of the value functionis lost as the number of
partitions in the case representation grow unboundedly with no practical means for
simplification or pruning. Indeed, the SDP approaches above, using both FOADDs
and universal reward decomposition, are incapable of producing value functions
and policies competitive with other planners from the ICAPS 2004 and 2006 Inter-
national Probabilistic Planning Competitions (Littman andYounes, 2004; Gerevini
et al., 2006).

Given that approximate solution techniques such as linear value approximation
(Guestrin et al., 2002; Schuurmans and Patrascu, 2001; de Farias and Roy, 2003)
have allowed MDP solutions to scale far beyond the limits of exact algorithms, at
the same time offering reasonable error guarantees, this suggests generalizing lin-
ear value approximation techniques to FOMDPs. In this section, we generalize the
LP methods for ground MDPs, discussed in Section 2, to the first-order case. This
reduces the task of solving an FOMDP to that of obtaining goodweights for a set of
basis functions that approximates the optimal value function. This requires the gen-
eralization of linear programs to handle first-order constraints and further requires
efficient extensions of solution methods such as constraintgeneration and variable
elimination in cost networks to exploit the first-order structure of these constraints.

To develop a completely automated linear-value approximation approach to FOMDPs
we must address the issue of automatic basis function construction; to do this, we
adapt techniques proposed by Gretton and Thiebaux (2004). With appropriate do-
main axioms defining legal states, our techniques provide fully first-order, non-
grounded solutions to FOMDPs derived from PPDDL and can compete with plan-
ners from the ICAPS 2004 and ICAPS 2006 International Probabilistic Planning
Competitions.

5 In the worst case, a single case operation can yield a quadratic blowup in the number of
case partitions in terms of the maximum number of case partitions in its operands.
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5.1 Benefits of Linear-value Approximation

Linear-value approximation for FOMDPs is attractive for several reasons:

• Given that much of the computation in linear value approximation reduces to
solving LPs, this reduces the algorithm design space to the setup and solution of
linear programs.

• Since the size of linear-value approximations is fixed, it can be used to moder-
ate the complexity of the resulting solution algorithm. This leads to a flexible
solution approach that trades off approximation accuracy and computation.

• Linear value approximation does not require extensive logical simplification in
practice, just weight projections that make use of a theoremprover. This is a
tremendous advantage over exact techniques that require substantial simplifica-
tion in order to maintain a compact representation.

• Linear value approximation have yielded reasonable empirical performance for
ground and factored MDPs, suggesting promise for its application to FOMDPs.

• If we do not use additive reward decomposition techniques ofSection 4.2 (which
approximate the FOMDP model), then we can derive domain-independent error
bounds on our resulting value function using Corollary 3.4.2.

5.2 First-order Linear-value Representation

We represent a value function as a weighted sum ofk first-order basis functions,
denotedbi(s), each ideally containing asmall number of formulae that provide a
first-order abstraction of state space:

V (s) =
k
⊕

i=1

wi · bi(s) (51)

Throughout this section, we assume that each individual basis function bi(s) is
represented by a case statement that is an exhaustive and disjoint partitioning of
state space. This property will be useful when we define the backup operators next.
However, two basis functions may assign non-zero values to overlapping regions of
state space; in fact this can be quite useful for representing additively decomposable
values.

Such a linear value function representation can often provide a reasonable approx-
imation of the exact value function, especially given the additive structure inherent
in many real-world problems. For example, as argued in previous sections, many
planning problems have additive reward functions or multiple goals, both of which
lend themselves to approximation via linearly additive basis functions. Unlike ex-
act solution methods where value functions can grow exponentially in size during
the solution process and must be logically simplified, here we maintain the value
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function in a compact form that requires no simplification, just discovery of good
weights.

As an example, consider approximation of the value functionfor our BOXWORLD

FOMDP from the last section, using the following basis functions (we refer to
specific instances ofbi(s) asbCase i(s)):

bCase1(s) =
∃b.BoxIn(b, paris , s) : 1

¬“ : 0

bCase2(s) =
∃b, t.BoxOn(b, t, s) : 1

¬“ : 0
(52)

bCase3(s) =
∃b, t.TruckIn(t, paris , s) ∧ BoxOn(b, t, s) : 1

¬“ : 0

Then each instance ofV (s) (denoted byvCase(s)) has the form:

vCase(s) =[w1 · bCase1(s)] ⊕ [w2 · bCase2(s)] ⊕ [w3 · bCase3(s)] (53)

Each basis function is relatively small and represents a portion of state space to
which we would expect to assign some positive value in order to approximate the
BOXWORLD value function.

5.2.1 Backup Operators

Suppose we are given a value functionV (s). Backing up this value function through
an actionA(~x) yields a case statement containing the logical descriptionof states
that would give rise toV (s) after doing actionA(~x), as well as the values thus
obtained.

However, due to the free variables in actionA(~x), there are in fact two types of
backups that we can perform. The first,BA(~x)[·], regresses a value function through
an action and produces a case statement withfree variablesfor the action parame-
ters. The second,BA[·], existentially quantifies over the free variables~x in BA(~x)[·].
Thus, the application ofBA[·] results in a case description of the regressed value
function indicating the values that could be achieved byany instantiation ofA(~x)
in the pre-action state.

The definition ofBA(~x)[·] is almost the same as thefirst-order decision theoretic
regression(FODTR) operator from Equation 30, except that we do not explicitly
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add in the reward. Slightly modifying our definitions from Section 3.3.3, we let
n1(~x), . . . , nq(~x) be the set of Nature’s deterministic actions for stochasticaction
A(~x). Then we defineBA(~x)[·] as follows:

BA(~x)[V (s)]

= γ [
q
⊕

j=1

{P (nj(~x), A(~x), s) ⊗ Regr(V (do(nj(~x), s)))}] (54)

DefiningBA(~x)[·] in this way without the reward makes it a linear operator. Thus, if
we apply this operator to our linear-value function representation, it distributes to
each first-order basis function:

BA(~x)[V (s)] = BA(~x)

[

k
⊕

i=1

wi · bi(s)

]

=
k
⊕

i=1

wi ·B
A(~x) [bi(s)] (55)

Having definedBA(~x)[·], we now use it to defineBA[·]: 6

BA[V (s)] = ∃~x.
{

BA(~x)[V (s)]
}

(56)

Unfortunately, if we applyBA[·] to our linear-value function representation, we see
thatBA[·] is not necessarily linear:

BA[V (s)] = BA

[

k
⊕

i=1

wi · bi(s)

]

= ∃~x.

{

k
⊕

i=1

wi ·B
A(~x) [bi(s)]

}

(57)

The difficulty is that the existential quantification ofBA[·] jointly constrains the
backup of all basis functions that contain the existentially quantified variable as a
free variable.

These problems can be mitigated, however. We begin with a fewdefinitions.

Definition 5.2.1 We say that a deterministic actionnj(~x) affectsa fluentF if there
is a positive or negative effect axiom that containsa = nj(~x) in the body of the
axiom andF in the head (c.f., Section 3.2.2). We say that a stochastic actionA(~x)
affects a fluentF if at least one of Nature’s choicesnj(~x) for A(~x) affectsF . Fi-
nally, a formulaφ is affected bya stochastic actionA(~x) iff φ contains a fluent
affected byA(~x). Since a case statement is defined as a logical formula, this defi-
nition extends to case statements in the obvious way.

6 For simplicity, we assume that the reward is independent of the action arguments ~x,
allowing us to exclude the reward from the∃~x operation ofBA. If required, such depen-
dencies could be added with appropriate adjustments to our definitions.
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Property 5.2.2 When a basis function case statementbi(s) is affected by a stochas-
tic actionA(~x), BA(~x)[bi(s)] will contain the action arguments~x as free variables.
The inverse of this property is also true: if a stochastic actionA(~x) does not affect
a basis functionbi(s), BA(~x)[bi(s)] will not contain the action arguments as free
variables.

To exploit this property, we letI+
A denote the set of indicesi for basis functionsbi(s)

that are affected by an actionA(~x) (so that for alli ∈ I+
A , BA(~x)[bi(s)] contains at

least one of the free variables~x). Likewise, we letI−A denote the set of indices of
basis functionsbi(s) not affected by an action (so that for alli ∈ I−A , BA(~x)[bi(s)]
contains none of the free variables~x). We can exploit the fact that the∃~x is vacuous
for case statements not containing free variables~x and remove these terms from the
scope of the∃~x quantification. This yields the following form forBA:

BA

[

⊕

i

wibi(s)

]

=







⊕

i∈I−
A

wiB
A(~x) [bi(s)]





⊕ ∃~x.







⊕

i∈I+

A

wiB
A(~x) [bi(s)]







(58)

Consequently, if no fluent occurs in more than a few basis functions and no action
affects more than a few fluents then we can reasonably expect the result of apply-
ing BA to retain some additive structure. The first property can be controlled by
the appropriate design of basis functions. The second is true of typical planning
domains.

As a concrete example to demonstrate the backup operators and the exploitation of
additive structure, let us computeBdrive [·] for our previously specified linear-value
function from Equation 53:

Bdrive [vCase(s)] = ∃t∗, c∗ Bdrive(t∗,c∗)[vCase(s)] (59)

= ∃t∗, c∗ Bdrive(t∗,c∗)[w1 · bCase1(s) ⊕ w2 · bCase2(s) ⊕ w3 · bCase3(s)]

= ∃t∗, c∗
{

w1 ·B
drive(t∗,c∗)[bCase1(s)] ⊕ w2 ·B

drive(t∗,c∗)[bCase2(s)]

⊕w3 ·B
drive(t∗,c∗)[bCase3(s)]

}

= ∃t∗, c∗







w1 ·
∃b.BoxIn(b, paris, s) : 0.9

¬“ : 0
⊕ w2 ·

∃b, t.BoxOn(b, t, s) : 0.9

¬“ : 0

⊕w3 ·

∃b, t. [t = t∗ ∧ c∗ = paris ∧ ∃c1TruckIn(t, c1, s)]

∨TruckIn(t, paris, s)] ∧ BoxOn(b, t, s) : 0.9

¬“ : 0



















Here, we note that the first and second basis functions are notaffected by the
drive(t∗, c∗) action and thus their backup through this action is equivalent to a
backup through anoop. Since the third basis function is affected by the action
drive(t∗, c∗) and this introduces the action parameterst∗ andc∗ into the result of its
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backup, we can push the quantifiers in to just this third case statement:

Bdrive [vCase(s)] = ∃t∗, c∗. Bdrive(t∗,c∗)[vCase(s)]

=w1 ·
∃b.BoxIn(b, paris, s) : 0.9

¬“ : 0
⊕ w2 ·

∃b, t.BoxOn(b, t, s) : 0.9

¬“ : 0

⊕ w3 · ∃t∗, c∗



















∃b, t. [t = t∗ ∧ c∗ = paris ∧ ∃c1TruckIn(t, c1, s)]

∨TruckIn(t, paris, s)] ∧ BoxOn(b, t, s) : 0.9

¬“ : 0



















Finally, we carry out the explicit∃t∗, c∗ operation on the third case statement where
we distribute the quantifiers inside the case partitions andsimplify. This allows us
to remove the∃t∗, c∗ by rewriting equalities and exploiting the non-empty domain
assumption:

Bdrive [vCase(s)] = ∃t∗, c∗. Bdrive(t∗,c∗)[vCase(s)] (60)

=w1 ·
∃b.BoxIn(b, paris, s) : 0.9

¬“ : 0
⊕ w2 ·

∃b, t.BoxOn(b, t, s) : 0.9

¬“ : 0

⊕ w3 ·
∃b, t. [(∃c1.TruckIn(t, c1, s)) ∨ TruckIn(t, paris, s)] ∧ BoxOn(b, t, s) : 0.9

¬“ : 0

This example demonstrates best case performance forBA[·], where an action only
affects one basis function thus allowing the other basis functions to be removed
from the scope of the∃~x operator. Then the∃~x operator can be easily applied
to a single case statement without incurring a representational blowup that would
otherwise occur if the∃~x ranged over a sum of case statements and the explicit
“cross-sum”⊕ was required.

Of course, in many cases, more than one basis function will beaffected by an
action. For example, if we had computedBunload [vCase(s)], all three basis func-
tions would have been affected by the action and we would havehad to explicitly
compute the “cross-sum”⊕ of the backups of all three basis functions. While this
effectively counteracts many of the benefits of linear-value approximation since ad-
ditive structure can no longer be exploited, we will see thatby generating our basis
functions in a restricted manner, we can often manage to avoid computing the ex-
plicit ⊕, even whenall basis functions are affected by an action. We will discuss
this further when we discuss basis function generation.

5.3 First-order Approximate Linear Programming

We now generalize the approximate linear programming (ALP)approach for MDPs
(see Equation 11) to first-order MDPs. If we simply substitute appropriate notation,
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we arrive at the following formulation of first-order ALP (FOALP):

Variables: wi ; ∀i ≤ k

Minimize:
∑

s

k
⊕

i=1

wi · bi(s)

Subject to: 0 ≥ R(s) ⊕BA

[

k
⊕

i=1

wi · bi(s)

]

⊖
k
⊕

i=1

wi · bi(s) ; ∀ A, s (61)

As with ALP, our variables are the weights of our basis functions and our objec-
tive is to minimize the sum of values over all statess. We have one constraint
for each stochastic actionA (e.g., in BOXWORLD, A ∈ {unload , load , drive})
and each states. One advantage of FOALP over SDP is that it does not require a
casemax, thus avoiding the representational blowup incurred by this step in SDP.7

Unfortunately, while the objective and constraints in ALP for a ground MDP range
over a finite number of states, this direct generalization tothe FOALP approach for
FOMDPs requires dealing with infinitely (or indefinitely) many statess.

Since we are summing over infinitely many states in the FOALP objective, it is
ill-defined. Thus, we redefine the FOALP objective in a mannerthat preserves the
intention of the original approximate linear programming solution for MDPs. In
ALP (see Equation 11), the objective equally weights each state and minimizes the
sum of the value function over all states. However, if we lookat the case partitions
〈φi(s), ti〉 of each basis functionbi(s) case statement, each case partition serves as
an aggregate representation of ground states assigned equal value. Consequently,
rather than count ground states in our FOALP objective—of which there will gen-
erally be an infinite number per partition—we suppose that each basis function
partition is chosen because it represented a potentially useful partitioning of state
space, and thus weight each case partition equally. Consequently, we rewrite the
FOALP objective as follows:

∑

s

k
⊕

i=1

wi · bi(s) =
k
⊕

i=1

wi

∑

s

bi(s) ∼
k
⊕

i=1

wi

∑

〈φj ,tj〉∈bi

tj

|bi|

We use|bi| to indicate the number of partitions in theith basis function. This ap-
proach can be seen as aggregating states within a basis function partition into one
abstract state and then weighting each abstract state uniformly in importance. For
the case of 0-1 indicator basis functions as in Equation 52, this yields a simple
objective of

∑k
i=1wi. Of course, this solution requires approximating the original

objective and thus FOALP does not represent an exact generalization of the ground
ALP approach to the first-order case. Nonetheless, we show that this approximation
still leads to reasonable results in our empirical evaluation.

7 The reasons for this are the same as for the lack of amax in the ground case as discussed
in Section 2.2.3.
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With the issue of the infinite objective resolved, this leaves us with one final problem—
the infinite number of constraints (i.e., one for every states). Fortunately, we can
work around this since case statements are finite. Since the valueti for each case
partition 〈φi(s), ti〉 is constant over all situations satisfying theφi(s), we can ex-
plicitly sum over thecase i(s) statements in each constraint to yield a single case
statement representation of the constraints. The key observation here is that the fi-
nite number of constraints represented in the single “flattened” case statement hold
iff the original infinite set of constraints in Equation 61 hold.

To understand this, consider the constraints for thedrive action in FOALP, substi-
tuting our previously defined basis functionsbCase i(s) from Equation 52 forbi(s),
the results of theBdrive operator for these basis functions from Equation 60, and
the reward definition for BOXWORLD given byrCase(s) in Equation 20 forR(s).
We substitute all of these directly into the constraint of the form in Equation 61
above to obtain:

0 ≥
∃b.BoxIn(b, paris, s) : 10

¬“ : 0
⊕ w1 ·

∃b.BoxIn(b, paris, s) : 0.9

¬“ : 0

⊕w2 ·
∃b, t.BoxOn(b, t, s) : 0.9

¬“ : 0

⊕w3 ·
∃b, t. [(∃c1.TruckIn(t, c1, s)) ∨ TruckIn(t, paris, s)] ∧ BoxOn(b, t, s) : 0.9

¬“ : 0

⊖ w1 ·
∃b.BoxIn(b, paris, s) : 1

¬“ : 0
⊖ w2 ·

∃b, t.BoxOn(b, t, s) : 1

¬“ : 0

⊖ w3 ·
∃b, t.TruckIn(t, paris, s) ∧ BoxOn(b, t, s) : 1

¬“ : 0
; ∀ s (62)

Next we perform an explicit⊕ and⊖ for some of the case statements, simplify the
resulting partitions, and distribute the weights into the partition values:

0 ≥
∃b.BoxIn(b, paris , s) : 10 − 0.1 · w1

¬“ : 0
⊕

∃b, t.BoxOn(b, t, s) : −0.1 · w2

¬“ : 0

⊕

∃b, t.TruckIn(t, paris, s) ∧ BoxOn(b, t, s) : −0.1 · w3

¬“ ∧ ∃b, t, c1.TruckIn(t, c1, s) ∧ BoxOn(b, t, s) : 0.9 · w3

¬“ : 0

; ∀ s

(63)

To maintain our representation in a compact and perspicuousform, we define the
following propositional renamings for the first-order formulae in these case state-

51



ments:8

φ1(s) ≡ ∃b.BoxIn(b, paris , s)

φ2(s) ≡ ∃b, t.BoxOn(b, t, s)

φ3(s) ≡ ∃b, t.TruckIn(t, paris , s) ∧ BoxOn(b, t, s)

φ4(s) ≡ ∃b, t, c1.TruckIn(t, c1, s) ∧ BoxOn(b, t, s)

Finally, we fully expand the⊕ to obtain an explicit representation ofall FOALP
constraints for thedrive action in our BOXWORLD example:

φ1(s) ∧ φ2(s) ∧ φ3(s) : 0 ≥ 10 − 0.1 · w1 + −0.1 · w2 + −0.1 · w3

φ1(s) ∧ φ2(s) ∧ ¬φ3(s) ∧ φ4(s) : 0 ≥ 10 − 0.1 · w1 + −0.1 · w2 + 0.9 · w3

φ1(s) ∧ φ2(s) ∧ ¬φ3(s) ∧ ¬φ4(s) : 0 ≥ 10 − 0.1 · w1 + −0.1 · w2

φ1(s) ∧ ¬φ2(s) ∧ φ3(s) : 0 ≥ 10 − 0.1 · w1 + −0.1 · w3

φ1(s) ∧ ¬φ2(s) ∧ ¬φ3(s) ∧ φ4(s) : 0 ≥ 10 − 0.1 · w1 + 0.9 · w3

φ1(s) ∧ ¬φ2(s) ∧ ¬φ3(s) ∧ ¬φ4(s) : 0 ≥ 10 − 0.1 · w1 + −0.1 · w2

¬φ1(s) ∧ φ2(s) ∧ φ3(s) : 0 ≥ −0.1 · w2 + −0.1 · w3

¬φ1(s) ∧ φ2(s) ∧ ¬φ3(s) ∧ φ4(s) : 0 ≥ −0.1 · w2 + 0.9 · w3

¬φ1(s) ∧ φ2(s) ∧ ¬φ3(s) ∧ ¬φ4(s) : 0 ≥ −0.1 · w2

¬φ1(s) ∧ ¬φ2(s) ∧ φ3(s) : 0 ≥ −0.1 · w3

¬φ1(s) ∧ ¬φ2(s) ∧ ¬φ3(s) ∧ φ4(s) : 0 ≥ 0.9 · w3

¬φ1(s) ∧ ¬φ2(s) ∧ ¬φ3(s) ∧ ¬φ4(s) : 0 ≥ 0

; ∀ s

(64)

Here, if we had detected that any partition formula had been inconsistent, we would
have removed it and the corresponding constraint.

While we note that technically there are an infinite number of constraints (one for
every possible states), there are only a finite number ofdistinctconstraints. In fact,
the case representation conveniently partitions the statespace into regions with
the same constraint. Thus, to solve the FOALP problem, we could enumerate all
consistent constraints for every action and then directly solve the resulting LP. In
addition to the above constraints for thedrive action in BOXWORLD, this approach
would require us to carry out a similar procedure for theunload , load , andnoop

actions; however, once we did this, we would have all of the constraints necessary
for solving the FOALP first-order linear program specification.

8 One will note that the renaming of first-order formulae with “propositional” variables is
in the same spirit as FOADDs. Consequently, we note that FOADDs prove to be an efficient
method for representing and performing operations on the constraints thatoccur in FOALP.
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However, as the number of basis functions increases, the number of constraints can
grow exponentially in the number of case statements in the constraint. To tackle
this problem, we examine the underlying optimization problem in the next section.

5.4 First-order Linear Programs

We can restate the FOALP problem as the optimal solution to a generalfirst-order
linear program(FOLP) for which we provide a generic solution. A FOLP is noth-
ing more than a standard linear program where the constraints are written in terms
of a sum of case statements whose case partition values may bespecified as lin-
ear combinations of the weights. Efficiently solving FOLPs poses a number of
difficulties—and we tackle these difficulties next.

5.4.1 General Formulation

A FOLP is specified as follows:

Variables:w1, . . . , wk ;

Minimize:
k
∑

i=1

ciwi

Subject to:0 ≥ case1,1(~w, s) ⊕ . . .⊕ case1,l(1)(~w, s) ; ∀ s (65)
:

0 ≥ casem,1(~w, s) ⊕ . . .⊕ casem,l(n)(~w, s) ; ∀ s

Thek variables~w = 〈w1, . . . , wk〉 and objective weights~c = 〈c1, . . . , ck〉 are de-
fined as in a typical LP, the main difference being the form of the constraints. Here
we havem different constraints of varying lengthl(j) (i.e., the number of case
statements in constraintj, 1 ≤ j ≤ n). We allow theti in each partition〈φi, ti〉
of case(~w, s) to be linearly dependent on the weights~w (e.g.,ti = 3w1 + 2w2).
We note that the first-order LP for FOALP can be cast in this general form. As
previously discussed in our FOALP example, we could simply compute the ex-
plicit “cross-sum”⊕ to flatten out each constraintj into a single case statement
as in Equation 64. However, this could be inefficient as it scales exponentially in
the number of summed case statements. Fortunately, we can extend constraint gen-
eration methods used in factored MDPs (Schuurmans and Patrascu, 2001) to the
first-order case as we show next.

5.4.2 First-order Cost Network Maximization

In the constraint generation approach to solving a FOLP, themost important op-
eration is to find a most-violated constraint given a currentsolution (i.e., setting
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Algorithm 2: FOMax (C, 〈R1 . . . Rn〉) −→ 〈S, v〉

input : (1) A setC = {case1, . . . , casen}.
(2) An ordering〈R1 . . . Rn〉 of all relations inC.

output : (1) The maximum valuev achievable.
(2) A setS = {〈φi, ti〉 ∈ casei} for i = 1 . . . n s.t.v = t1 + . . .+ tn.

begin
// ConvertC into CNF
for (i = 1 . . . n) do

foreach (〈φi, ti〉 ∈ casei(s)) do
Convertφi to a set of CNF formulae.

foreach (relationR ∈ 〈R1 . . . Rn〉 (in order))do
// DivideC into two sets of cases based on whether they containR

C+
R := {casei|casei ∈ C ∧ ∃j.(〈φj , tj〉 ∈ casei) ∧ φj contains relationR}

C−
R := C \ C+

R

// Build explicit “cross-sum”⊕ of its cases & convert to CNF
case+

R :=
⊕

casei∈C+

R
casei

foreach (〈φj , tj〉 ∈ case+
R) do

Convertφj to CNF.

foreach (〈φj , tj〉 ∈ case+
R in order from highest to lowest value)do

Resolve all clauses inφj on relationR until quiescence or inference limit.
// All resolvents onR derived so further resolution on these clauses
// cannot lead to the empty clause — thus clauses can be removed
Remove all clauses inφj containingR
// Remove inconsistent partitions (i.e., those containing empty clause)
if (∅ ∈ φj) then

Remove〈φj , tj〉 from case+
R and continue with next〈φj , tj〉.

// Removeθ-subsumed partitions that are dominated
foreach (〈φi, ti〉 ∈ case+

R whereti > tj) do
if (φj �θ φi) then

Remove〈φj , tj〉 from case+
R and continue with next〈φj , tj〉.

C := {case+
R} ∪ C

−
R

v := 0; S := ∅
foreach (maximal value partition〈φj , tj〉 of eachcase ∈ C) do

v := v + tj ; S := S ∪ all partitions from inputC contributing to〈φj , tj〉

Return〈v, S〉.

end

of weights ~w). In this section, we formulate this problem as maximization over a
first-order generalization of a cost network (Dechter, 1999) represented as follows:

0 ≥ max
s

[case1(~w, s) ⊕ . . .⊕ casen(~w, s)] (66)
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The use ofmaxs indicates that we are only interested in the single value (and
corresponding case partitions contributing to this value)that maximizes the RHS.
casemax would be less efficient here since it would exhaustively enumerateall val-
ues and constraints when we only require the single maximal value and constraint.

To determine themaxs with this form of the constraints, we define theFOMax

algorithm (see Algorithm 2) to carry out this computation. It is similar tovariable
elimination(Zhang and Poole, 1994) orbucket elimination(Dechter, 1999) (which
makes a stronger connection to resolution), except that we use a simple ordered ver-
sion of first-order resolution in place of propositional ordered resolution. Thus, we
term this generalized variable elimination technique usedby FOMax to berelation
elimination.

Ostensibly, relation elimination and the technique offirst-order variable elimina-
tion (FOVE) (Poole, 2003; de Salvo Braz et al., 2005; de Salvo Braz etal., 2006)
appear similar since they both deal with lifted versions of variable elimination.
However, they fundamentally apply to different problems: FOVE does not permit
quantified formulae in its representation, while relational elimination permits full
first-order logic in its representation; furthermore, FOVEpermits the representation
of indefinite products and sums whereas relation elimination only permits finite
products and sums. Here we require full first-order logic, but not indefinite prod-
ucts or sums. While it is beyond the scope of this article to delve into a detailed dis-
cussion, we note that both relation elimination and FOVE canbe combined when
required; this occurs, for example, in FOALP approaches to factored FOMDP so-
lutions (c.f., Sanner and Boutilier (2007) and Chapter 6 of Sanner (2008)).

We provide a concrete example ofFOMax and relation elimination in Figure 7.
Relation elimination proceeds analogously to variable elimination, except that we
choose a relationR to eliminate at every step rather than a propositional variable.
Elimination order can affect the time and space requirements ofFOMax since elim-
inatingR requires the “cross-sum”⊕ of all case statements containingR, incurring
a polynomial blowup in the number of case statements being summed. In practice,
we greedily eliminate the relationR at each step that minimizes this representa-
tional blowup, although this is not guaranteed to provide anoptimal order.

On any elimination step ofFOMax , once all of the case statements containingR

have been explicitly “cross-summed,” the next step is to determine whether any
case partitions are inconsistent (via resolution) orθ-subsumed and dominated in
value (using the generalizedθ subsumption operator�θ (Buntine, 1988) with re-
spect to our background theory, similar to the approach usedby ReBeL (Kersting
et al., 2004)); in both cases, these partitions may be removed since they will never
contribute to the maximally consistent partition. Once allrelations have been elim-
inated, maximal case partitions and their values extractedfrom the remaining sum
of case statements are used to generate the maximal value (and case partitions con-
tributing to this value).
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We note that the ordered resolution strategy we use inFOMax is not refutation-
complete: it may loop indefinitely at an intermediate relation elimination step be-
fore finding a latter relation with which to resolve a contradiction. This is an un-
avoidable consequence of the fact that refutation resolution for general first-order
theories is semi-decidable. From a practical standpoint, it is necessary to bound the
number of resolutions performed at each relation elimination step (100 clauses per
elimination step in our experiments) to prevent non-termination ofFOMax due to
an infinite number of resolutions. This incomplete theorem proving approach may
generate unnecessary constraints corresponding to unsatisfiable regions of state
space; while these constraints serve to overconstrain the set of feasible solutions,
this has not led to infeasibility problems in practice. Furthermore, we often omit
the generalizedθ-subsumption test�θ since the savings from this simplification
does not outweigh its computational cost. This does not affect completeness since
simplification is not required for inconsistency detection.

Finally, we remark that if the resolution procedure does finitely terminate before
the inference limit is reached on every step ofFOMax , then the conjunction of
case partition formulae returned byFOMax is guaranteed to be satisfiable as a
consequence of the completeness of refutation resolution.Research on decidable
resolution procedures for expressive subsets of first-order logic (Motik, 2006) may
pave the way for stronger completeness guarantees forFOMax in future work.

5.4.3 First-Order Constraint Generation

We can use theFOMax algorithm to find the maximal constraint violation when we
have constraints of the form in Equation 66. This allows us todefine the following
first-order constraint generation algorithm where we have specified some solution
toleranceǫ:

(1) Initialize LP withi = 0, ~wi = ~0, and empty constraint set.
(2) For each constraint in the cost-network form of Equation66, find the maxi-

mally violated constraintC (if one exists) using theFOMax algorithm applied
to the constraint instantiated with~wi.

(3) If C ’s constraint violation is larger thanǫ, addC to the LP constraint set,
otherwise return~wi as solution.

(4) Solve LP with new constraints to obtain~wi+1, goto step 2

In first-order constraint generation, we initialize our LP with an initial setting of
weights, but no constraints. Note that the initial weights~w0 = ~0 will violate at least
one constraint in a FOMDP with non-zero reward. Then we alternate between gen-
erating constraints based on maximal constraint violations at the current solution
and re-solving the LP with these additional constraints. This process repeats until
no constraints are violated and we have found the optimal solution. In practice, this
approach typically generatesfar fewer constraints than the full exhaustive enumer-
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Suppose we are given the following hypothetical constraint specification fora first-order linear program:

0 ≥ max
s

(

∀b, c. Dst(b, c) ⊃ BoxIn(b, c, s) : 10

¬“ : 0
⊕

∃b, c. Dst(b, c) ∧ ¬BoxIn(b, c, s) : w1

¬“ : −w1

⊕
∃t, c.TruckIn(t, c, s) : w2

¬“ : 0

)

Assume our last LP solution gavew1 = 2 andw2 = 1. We can compute the most violated constraint (if one exists) by evaluating the weights in the
constraint and applyingFOMax . We begin by converting all first-order formulae to CNF wherec1, . . . , c6 are Skolemized constants. Formulae
are negated prior to Skolemization and once in CNF are only resolved with each other (i.e., never negated).

0 ≥ max
s

(

{¬Dst(b, c) ∨ BoxIn(b, c, s)} : 10

{Dst(c1, c2),¬BoxIn(c1, c2, s)} : 0
⊕

{Dst(c3, c4),¬BoxIn(c3, c4, s)} : 2

{¬Dst(b, c) ∨ BoxIn(b, c, s)} : −2
⊕

{TruckIn(c5, c6, s)} : 1

{¬TruckIn(t, c, s)} : 0

)

Assume elimination orderBoxIn,Dst ,TruckIn. First we eliminateBoxIn: we take the cross-sum⊕ of case statements containingBoxIn,
repeatedly resolve clauses in each partition onBoxIn until quiescence, and remove all clauses containingBoxIn (indicated by struck-out text):

0 ≥ max
s

(

{¬Dst(b, c) ∨ BoxIn(b, c, s),Dst(c3, c4), ¬BoxIn(c3, c4, s),¬Dst(c3, c4), ∅ } : 12

{ ¬Dst(b, c) ∨ BoxIn(b, c, s)} : 8

{Dst(c1, c2),Dst(c3, c4), ¬BoxIn(c1, c2, s), ¬BoxIn(c3, c4, s) } : 2

{¬Dst(b, c) ∨ BoxIn(b, c, s),Dst(c1, c2), ¬BoxIn(c1, c2, s), ∅ } : −2

⊕
{TruckIn(c5, c6, s)} : 1

{¬TruckIn(t, c, s)} : 0

)

Because the partitions valued12 and−2 contain the empty clause∅ (i.e., they are inconsistent), we can remove them. And because the partition
of value8 dominates the partition of value2 (i.e.,2 < 8 and the empty clause set of the value8 partition trivially θ-subsumes the clauses of the
value2 partition), we can remove it as well. This yields the following simplified result:

0 ≥ max
s

(

{ } : 8 ⊕
{TruckIn(c5, c6, s)} : 1

{¬TruckIn(t, c, s)} : 0

)

From here it is obvious that theDst elimination step will have no effect and theTruckIn elimination step will yield a maximal consistent
partition with value9. Since this is a positive value and thus a violation of the original constraint, we can generate the new linear constraint
0 ≥ 10 + −w1 + w2 based on the original constituent partitions that led to this maximal constraintviolation.

Fig. 7. An example use of FOMAX to find the maximally violated constraint during first-order constraint generation.
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ation approach given by Equation 64. To provide intuitions for this, we refer back
to the example of finding the most violated constraint in Figure 7.

Using first-order constraint generation, we now have a solution to the first-order
LP from Equation 65, thus providing a general solution for FOALP. At this point,
the only step for FOALP that we have not automated is the generation of basis
functions, which we discuss next.

5.5 Automatic Generation of Basis Functions

The effective use of linear approximations requires a “good” set of basis functions,
one that spans a space containing a good approximation to thetrue value func-
tion. Previous work has addressed the issue of basis function generation in ground
MDPs (Patrascu et al., 2002; Mahadevan, 2005), while other work has addressed
the inductive generation of first-order features or basis functions from sampled ex-
perience (Yoon et al., 2005; Wu and Givan, 2007). Here we consider a deductive
first-order basis function generation method that draws on the work of Gretton and
Thiebaux (2004). Specifically, they use regressions of the reward as candidate basis
functions for learning a value function. This technique hasallowed them to generate
fully or t-stage-to-go optimal policies for a range of BLOCKSWORLD problems.

We leverage a similar approach for generating candidate basis functions using re-
gression, except that rather than use these candidate basisfunctions to learn a value
function, we fit their weights without sampling or groundingby using FOALP. Al-
gorithm 3 provides an overview of our basis function generation algorithm. The
motivation for this approach is as follows: if some portion of state spaceφ has
valuev > τ in an existing approximate value function for some nontrivial thresh-
old τ , then this suggests that states that can reach this region (i.e., found by Regr(φ)
through some deterministic action) should also have reasonable value. However,
since we have already assigned value toφ, we want the new basis function to focus
on the area of state space not covered byφ; thus we negateφ and conjoin it with
Regr(φ).

As a small example, given the initialweightedbasis functionbCase1(s) = w1 ·
rCase(s) from BOXWORLD,

bCase1(s) = w1 ·
∃b.BoxIn(b, paris, s) : 10

¬“ : 0
, (67)

we derive the following weighted basis function frombCase1(s) when considering
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Algorithm 3: BasisGen(FOMDP, τ, n) −→ B

input : (1) A FOMDP specification.
(2) a value thresholdτ
(3) an iteration limitn

output : A setB of basis functionsbCasei(s) and corresponding weightswi.
begin

// Note:rCase(s) may be a sum of cases, so we can start with many basis functions.
B := {rCase(s)}
for (i = 1 . . . n) do

foreach (bCasei(s) ∈ B) do
foreach (〈φi(s), ti〉 ∈ bCasei(s)) do

foreach (deterministic actionnj(~x)) do

B := B ∪
¬φi ∧ ∃~x Regr(φi(do(nj(~x), s))) : 1

¬“ : 0

Solve for the weights~w using FOALP.
foreach (bCasei(s) ∈ B) do

if (wi < τ ) then
DiscardbCasei(s) fromB and ensure it is not regenerated.

if (no new basis functions generated on this iteration)then
ReturnB, ~w.

ReturnB, ~w.
end

deterministic actionAi = unloadS (b∗, t∗) during basis function generation:

bCase2(s) = (68)

w2 ·
¬[∃b.BoxIn(b, paris, s)] ∧ [∃c.BoxOn(b∗, t∗, s) ∧ TruckIn(t∗, paris, s)] : 1

¬“ : 0

If one examines the form of these two basis functions, the inherent “orthogonality”
between the new basis functions and the ones from which they were derived allows
for significant computational optimizations. For example,since the top partition of
bCase1(s) takes the formφ1 and the top partition ofbCase2(s) takes the form¬φ1∧
φ2, these two partitions are mutually exclusive and could never jointly contribute to
the value of a state. Thus, when two basis functions are orthogonal in this manner,
we can efficiently perform an explicit “cross-sum”⊕ on them to obtain a single
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compactcase statement representing both weighted basis functions:

bCase1,2(s) = bCase1(s) ⊕ bCase2(s) (69)

=

∃b.BoxIn(b, paris, s) : w1 · 10

¬[∃b.BoxIn(b, paris, s)] ∧ [∃c.BoxOn(b∗, t∗, s) ∧ TruckIn(t∗, paris, s)] : w2

¬“ : 0

This style of basis function generation also has many computational advantages for
FOALP. To see this, we return to our original discussion concerning the fact that
theBA[·] operator as defined in Equation 58 will not be able to preserveadditive
structure when all basis functions in the linear-value function representation are
affected by the stochastic actionA(~x). Recalling Property 5.2.2, if all basis func-
tions are affected byA(~x), then the backupBA[·] of a sum of basis functions will
require their explicit “cross-sum” since they will all havefree variables~x causing
them to be summed with∃~x is applied. However, in the best case, if the explicit
“cross-sum” was already pre-computed for orthogonal basisfunctions by merging
them, then this blowup will not occur.

Of course, since different actions generate different non-orthogonal basis functions
from the same “parent” basis function, it will not generallyhold that all basis func-
tions are pairwise orthogonal to each other. Nonetheless, if we can exploit the mu-
tual orthogonality ofsubsetsof the basis functions to efficiently carry-out their
explicit “cross-sum”, then we can still achieve an exponential time speedup relative
to the worst-case of theBA[·] operator that requires the explicit computation of the
“cross-sum”. To see how subsets of basis functions can be efficiently summed, we
refer back to Equation 69, which provides an example sum of two orthogonal ba-
sis functions. In general, any mutually orthogonal subset of basis functions can be
merged in this way.

As a consequence, we can exploit properties of orthogonal basis function gener-
ation in FOALP to mitigate exponential space and time scaling in the number of
basis functions, where worst-case exponential scaling arises at various points due
to the need to explicitly compute the “cross-sum” of the linear-value representation.
While we do not claim this method of basis function generationwill be appropriate
for all domains, we will demonstrate that it works reasonably well for the stochastic
planning problems evaluated in the next section.

5.6 Empirical Results

We evaluated FOALP on PPDDL planning problems from the ICAPS 2004 (Littman
and Younes, 2004) and ICAPS 2006 (Gerevini et al., 2006) International Probabilis-
tic Planning Competitions (IPPC). We divide the discussion ofresults according to
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each competition in order to reflect the differences in the competition setup, the
data collected, and the specific planners that entered each competition.

We used the Vampire theorem prover and the CPLEX 9.0 LP solver9 in our FOALP
implementation and appliedBasisGen (Algorithm 3) to our FOMDP translation
of these PPDDL domains, generated as described in Section 3.2.2. We additively
decomposed universal rewards using the technique described in Section 4.2; we
note that doing so prevents us from obtaining any approximation guarantees on the
solution generated by FOALP.

We provided FOALP with additional background theory axiomsthat were not en-
coded in the PPDDL source: if a fluent was intended to have functional arguments
in PPDDL (PPDDL does not make provisions for specifying thisproperty explic-
itly), we provide a background axiom stating this. So, for example, in our running
BOXWORLD example, we would provide the following functional constraint ax-
ioms:

∀b, c1, c2, s. BoxIn(b, c1, s) ∧ BoxIn(b, c2, s) ⊃ c1 = c2

∀t, c1, c2, s. TruckIn(t, c1, s) ∧ TruckIn(t, c2, s) ⊃ c1 = c2

∀b, t1, t2, s. BoxOn(b, t1, s) ∧ BoxOn(b, t2, s) ⊃ t1 = t2

In words, these axioms state that a box can only be in one city,a truck can only
be in one city, and a box can only be on one truck. Any search-based or inductive
planner that is given an initial state respecting these constraints (which was always
the case in the competition instances) would never have to consider such erroneous
states violating these constraints since they are unreachable from non-erroneous
states satisfying these constraints. However, FOALP has noinitial state knowledge
in its offline solution phase and will produce extremely poorly approximated value
functions if it cannot rule out such erroneous states as being inconsistent.

The need for these constraints may be viewed as a major drawback of the FOALP
approach and was the reason that, although FOALP entered theICAPS 2006 Prob-
abilistic Planning Competition, it did not compete on 6 of the10 problem domains
(since these 6 problem domains were released at the start of the competition and
rules prevented the planners from being modified beyond thispoint). On the other
hand, we note that functional constraints on fluents represent a minimal type of
problem knowledge often easily encoded by the person specifying a PPDDL prob-
lem; the constraints for BOXWORLD are a good example. As an aid to future non-
grounding planners, we recommend that the capability to specify functional con-
straints on fluents be incorporated in future versions of thePPDDL specification. If
such constraints are known to hold on all initial states, automated techniques based
on reachability analysis could also be used to prove such constraints hold as well.

In the following sections, we present proof-of-concept results comparing FOALP

9 http://www.ilog.com/products/cplex/
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Problem Competing Probabilistic Planners

NMRDPP mGPT Humans Classy FF-Replan FOALP

bx c10 b5 438 184 419 376 425 433

bx c10 b10 376 0 317 0 346 366

bx c10 b15 0 – 129 0 279 0

bw b5 495 494 494 495 494 494

bw b11 479 466 480 480 481 480

bw b15 468 397 469 468 0 470

bw b18 352 – 462 0 0 464

bw b21 286 – 456 455 459 456

Fig. 8. Cumulative reward of 5 planning systems and FOALP (100 run avg.)on the BOX-
WORLD and BLOCKSWORLD probabilistic planning problems from the ICAPS 2004 IPPC
(– indicates no data). BOXWORLD problems are indicated by a prefix ofbx and followed
by the number of citiesc and boxesb used in the domain. BLOCKSWORLD problems are
indicated by a prefix ofbw and followed by the number of blocksb used in the domain.

to other planners across a sampling of problems where FOALP has been able to
generate policies for IPPC problems.

5.6.1 ICAPS 2004 Probabilistic Planning Competition Problems

We applied FOALP to the BOXWORLD logistics and BLOCKSWORLD probabilis-
tic planning problems from the ICAPS 2004 IPPC (Littman and Younes, 2004). In
the BOXWORLD logistics problem, the domain objects consist of trucks, planes,
boxes, and cities. The number of boxes and cities varied in each problem instance,
but there were always 5 trucks and 5 planes. Trucks and planesare restricted to
particular routes between cities in a problem instance-specific manner. The goal in
BOXWORLD was to deliver all boxes to their destination cities and there were costs
associated with each action. The transition functions allowed for trucks and planes
to stochastically end up in destinations other than that intended by the execution of
their respective drive and fly actions. BLOCKSWORLD is just a stochastic version
of the standard domain where blocks are moved between the table and other stacks
of blocks to form a goal configuration. In this version, a block may be dropped with
some probability while picking it up or placing it on a stack.

We stopped our offline basis function generation algorithm after iteration 7 in
BasisGen (Algorithm 3) taking less than 2 hours for both problems on a 2Ghz Pen-
tium with 2Gb of RAM; iteration 8 could not complete due to memory constraints.
We note that if we were not using the “orthogonal” basis function generation de-
scribed in Section 5.5, we would not get past iteration 2 of basis function generation
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(the system does not terminate within 10 hours at iteration 3); thus, these optimiza-
tions have substantially increased the number of basis functions for which FOALP
is a viable solution option.

We compared FOALP to the three other top-performing planners on these prob-
lems: NMRDPP is a temporal logic planner with human-coded control knowl-
edge (Thiebaux et al., 2006);mGPTis an RTDP-based planner (Bonet and Geffner,
2004); (Purdue-)Humansis a human-coded planner,Classyis an inductive first-
order policy iteration planner, andFF-Replan(Yoon et al., 2004) (2004 version) is
a deterministic replanner based on FF (Hoffmann and Nebel, 2001). Results for all
of these planners are given in Table 8.

Since FOALP was only able to complete 7 iterations of basis function generation,
this effectively limits the lookahead horizon of our basis functions to 7 steps. A
lookahead of 8 would be required to properly plan in the final BOXWORLD prob-
lem instance and thus FOALP failed on this instance. It is important to note that in
comparing FOALP to the other planners, NMRDPP and Humans usedhand-coded
control knowledge. FF-Replan was a very efficient search-based deterministic plan-
ner that had a significant advantage because near-optimal policies in these specific
goal-oriented problems can be obtained by assuming that thehighest probability ac-
tion effects occur deterministically and making use of classical search-based plan-
ning techniques. The only autonomousfully stochasticplanners were mGPT and
Classy (itself an inductive first-order planning approach),and FOALP performs
comparably to both of these planners and outperforms them bya considerable mar-
gin on some problem instances.

5.6.2 ICAPS 2006 Probabilistic Planning Competition Problems

We now present results for FOALP on three problem domains from the ICAPS 2006
IPPC (Gerevini et al., 2006): BLOCKSWORLD, TIREWORLD, and ELEVATORS. 10

In BLOCKSWORLD, there are blocks and a table and the goal is to stack and unstack
blocks from each other in an effort to achieve a goal configuration of the blocks
with respect to the table. TIREWORLD is a relatively simple problem where the
goal is to drive from a goal city to a destination city, while being able to pick up a
spare tire in some cities. One stochastic outcome of drivingbetween cities is that
a tire may go flat and can only be fixed when a spare tire is present. Thus, routes
with cities that contain spare tires are preferred to other routes that do not. Finally,
ELEVATORS is a problem with a grid-like state space. The horizontal dimension of

10 In the ICAPS 2006 IPPC, FOALP ran on the three problems reported hereas well as
EXPLODING-BLOCKSWORLD (not reported here). We do not report the EXPLODING-
BLOCKSWORLD results since the competition version of the FOALP planner was restricted
to use only the BLOCKSWORLD subset of the EXPLODING-BLOCKSWORLD problem de-
scription. In this section, we only show results for problems where FOALP was able to
generate a policy for the full problem description.
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Fig. 9. A boxplot of performance of four planners on 15 instances of the TIREWORLD prob-
lem domain from the probabilistic track of the ICAPS 2006 IPPC. sfDP did notproduce
results for this problem; all other planners reported results for all instances.

the grid corresponds to positions on a floor and the vertical dimension corresponds
to different floors. There may be elevators at each position that can move vertically
between floors. An agent can occupy one position on one floor and can move left
or right between positions or can move into or out of an elevator if it is at the
appropriate floor or position. Any elevator can be moved up ordown independently
of whether the agent resides in it. There can be gates at certain positions, which
probabilistically teleport the agent back to the start position of floor 1, position 1.
Finally, there are a number of coins at different known positions and the goal is for
the agent to retrieve them all.

In all of the following results,BasisGen (Algorithm 3) was run for a four-hour
fixed time limit on a 2Ghz Pentium with 2Gb of RAM to generate solutions for
successively larger sets of basis functions. At the four-hour mark, we halted the so-
lution process and used the largest (most recent) set of basis functions and weights
for which FOALP had successfully terminated. Since the offline solution time of 4
hours can be amortized over an indefinite number of instancesfor a given problem,
we do not report this in the online policy evaluation times inthe following results.

In Figures 9, 10, and 11, we provide data for FOALP and competing planners that
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Fig. 10. A boxplot of performance of three planners on 15 instances ofthe ELEVATORS

problem domain from the probabilistic track of the ICAPS 2006 IPPC. sfDP and Paragraph
did not produce results for these problems; FF-Replan and FPG did not report results for 2
and 3 problem instances, respectively.

specifies the number of problem instances solved, the onlinesolution generation
time, and the average number of actions required to reach thegoal in each success-
ful problem. We compare to the following planners that entered the competition11 :
(1) FPG (Buffet and Aberdeen, 2006), which uses policy gradient search in a fac-
tored representation of the Q-functions; (2)sfDP (Teichteil and Fabiani, 2006),
which uses ADD-based dynamic programming (Hoey et al., 1999) with reachabil-
ity constraints based on initial state knowledge; (3)Paragraph(Little, 2006), which
uses a probabilistic extension of Graphplan (Blum and Furst,1995) for probabilis-
tic planning; (4)FF-Replan(Yoon et al., 2007) (2006 version) is a deterministic
replanner based on FF (Hoffmann and Nebel, 2001). We note that all planners in
this competition aside from FOALP are ground planners in that they use a proposi-
tional representation of a PPDDL problem for a specific domain instantiation.

The results vary by problem, so we explain each in turn. In TIREWORLD, FOALP’s
policy allowed it to solve most problems although its policywas suboptimal in the
number of actions and % problems solved in comparison to FF-Replan. In this case,

11 Not all planners ran on all of the problems in the competition. Furthermore, some plan-
ners did not provide results on all problem instances, this is noted for each result plot.
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Fig. 11. A boxplot of performance of four planners on 15 instances ofthe BLOCKSWORLD

problem domain from the probabilistic track of the ICAPS 2006 IPPC. Paragraph did not
produce results for these problems; FF-Replan, FPG, and sfDP did notreport results for 1,
5, and 10 problem instances, respectively.

it appears that the approximation inherent in the FOALP approach fared poorly in
comparison to a deterministic replanner like FF-Replan thatcould perform nearly
optimally on this problem. FOALP’s slow policy evaluation on this problem is due
to the transitive nature of the road connection topology andthe lack of optimization
in FOALP’s logical policy evaluator. In ELEVATORS, the top three planners includ-
ing FOALP all performed comparably with the deterministic replanner performing
consistently faster than the others, again due to the suitability of this domain for
deterministic replanning and the relative speed of that approach. The goals in this
domain are highly decomposable and FOALP thus benefited substantially from
its additive goal decomposition approach. In BLOCKSWORLD, FOALP shows the
best performance, solving more problems, taking less time on the hard instances
(FPG did not report results for the 5 hardest instances, thusskewing its results),
and reaching the goal with the fewer actions (sfDP did not report results for the
10 hardest instances, thus skewing its results). In this case, FOALP’s performance
owes to two advantages: (1) first-order abstraction in BLOCKSWORLD consider-
ably helps the system avoid much of the combinatorial complexity that the ground
planners face, and (2) the additive goal decomposition, although not optimal for all
BLOCKSWORLD problems, performed very well on these problem instances.
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5.6.3 Summary of Results

In summary, the first-order representation of FOALP seems tooffer robust perfor-
mance across a range of domain instance sizes and problems. However, as discussed
at the end of Section 4.1.3, the case representation used by FOALP is a limiting
factor in its performance due to its inability to exploit value structure in problems
requiring reasoning about universal rewards (for which suboptimal additive reward
decomposition techniques were used) or transitive reachability (for which the defi-
ciency is quite clear from the TIREWORLD results). We discuss potential research
directions to mitigate these observed deficiencies in Section 7.1.

6 Related Work

In this section, we review work related to that presented in this article across
two important dimensions: deductive first-order decision-theoretic planners based
on symbolic dynamic programming (SDP), and inductive lifted decision-theoretic
planners based on learning first-order representations of value functions, control
knowledge, or policies from grounded domain instantiations.

6.1 Variants of Symbolic Dynamic Programming

There have been a variety of alternative exact approaches tosolving relationally
specified MDPs without grounding in the spirit of SDP. Each ofthese approaches
apply an SDP-like algorithm to their own first-order MDP representation. Like
SDP, these algorithms all have guarantees on domain-independent error bounds
for the value functions they produce and can produce exact domain-independent
value functions when they exist. However, all of these approaches are restricted to
solve less expressive variants of relational MDPs than SDP as we describe below.

First-order value iteration (FOVIA) (Karabaev and Skvortsova, 2005; Ḧolldobler
et al., 2006) and the Relational Bellman algorithm (ReBel) (Kersting et al., 2004)
are value iteration algorithms that solve a restricted subclass of relational MDPs,
most notably disallowing combineduniversal conditionaleffects (as defined in
Section 3.1.1). Since universal conditional effects are a powerful planning for-
malism underlying the ADL extension to STRIPS, it can be argued that this is a
significant limitation of these alternate SDP approaches. Both have provided fully
automated proof-of-concept results; we were able to directly compare SDP with
FOADDs and ReBel on the BOXWORLD problem in Section 4.1.3. ReBel’s spe-
cialization for a less expressive subset of FOMDPs (still capturing BOXWORLD,
however) results in a substantial performance edge for thisproblem although both
produce the same, exact solution. Results for ReBel and FOVIA are not available
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for the specific versions of the planning competition domains that we examined in
Section 5.

First-order decision diagrams (FODDs) (Wang et al., 2008) have been introduced to
compactly represent case statements and to permit efficientapplication of symbolic
dynamic programming operations to another restricted class of relational MDPs via
value iteration (Wang et al., 2007) and policy iteration (Wang and Khardon, 2007).

Since FODDs are very similar in spirit to the FOADDs we definedin Section 4.1,
we enumerate some of the major differences between these twoformalisms:

(1) FODDs disallow explicit universal quantification. Thisprevents FODDs from
being applied to relational MDPs with universal preconditions or alternating
quantifiers in their effects, although importantly, theycan handle universal
conditional effects.

(2) Unlike FOADDs, which are maintained in a canonical form,FODDs are main-
tained in a sorted format, but are not guaranteed to be in a canonical form. As
such, they rely on a range of simplification rules to maintaincompact rep-
resentations. This approach has the advantage that some diagrams without a
strict order can be exponentially more compact than diagrams with a strict
order (Wang et al., 2007). However, rather than having a well-defined sim-
plification algorithm leading to a canonical form, simplification in FODDs is
somewhat open-ended and heuristic.

(3) There is no need to reorder internal decision nodes afterRegr in FODDs in or-
der to maintain a canonical form. In this way,Regr is more efficient in FODDs
than in FOADDs. This results in value and policy iteration algorithms that can
be performed completely in terms of FODDs, unlike the current FOADD rep-
resentation.

(4) FODDs assume an implicit semantics where the maximal value is assumed
for all instantiations of the free variables, thus precluding the need to perform
explicit ∃x and casemax. In FOADDs, such operations would need to be per-
formed explicitly. As such, the use of FODDs can lead to very compact rep-
resentations for decision-theoretic planning, but this semantics may interfere
with extensions of FODDs to handle universally quantified formulae.

Consequently, FODDs represent an interesting alternative in the design space of
data structures for the compact representation of case statements. Nonetheless, the
major limitation with respect to the work we present in this article is their limi-
tations w.r.t. representing some forms of universal quantification. Ideally the best
approach would be to combine the advantages of FOADDs with those of FODDs.
This is a non-trivial problem, however, and an interesting future research direction.
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6.2 Alternative Lifted Approaches to Decision-theoretic Planning

There are many alternative approaches to first-order decision-theoretic planning
that reason inductively about sample domain instances and sample trajectories to
produce lifted value functions or policies. This stands as an alternative to reason-
ing symbolically about actions and rewards directly at a first-order level without
grounding as done in this article.

In one class of approaches, sampled experience from grounded domain instantia-
tions is used to directly induce relational representations of value or Q-functions in
a reinforcement learning approach. This can be done with pure reinforcement learn-
ing using relational decision or regression trees to learn avalue or Q-function (Dze-
roski et al., 2001), combining this with supervised guidance (Driessens and Dze-
roski, 2002), or using Gaussian processes and graph kernelsover relational struc-
tures to learn a value or Q-function (Gartner et al., 2006).

A second approach uses experience sampled from ground domain instantiations
to induce first-order policy representations. In one version, policies can be learned
directly from sampled experience trajectories generated using other planners (Yoon
et al., 2002). In a different vein, policies can be learned inan approximate policy
iteration framework (Yoon et al., 2006) that combines trajectory sampling with
policy updates derived from these trajectories. In this approach, sample experience
trajectories can be generated using planning heuristics (Fern et al., 2003) and/or
random walks on problem sizes that are adaptively scaled as planner performance
improves (Fern et al., 2004).

A third inductive approach (that could also be used in conjunction with FOALP)
allows first-order features to be learned from experience rather than symbolically
deriving them directly from the relational MDP specification as described in Sec-
tion 5.5. In one approach, heuristic control knowledge represented in a first-order
taxonomic syntax can be learned from solution trajectorieson a given problem (Yoon
et al., 2005). In another recent approach, relational basisfunctions can be learned
from sampled trajectories and then used in an approximate value iteration frame-
work (Wu and Givan, 2007).

Since the approaches in this subsection also produce first-order value functions or
policies, it is important to compare and contrast them with the symbolic deductive
approach we adopt. In this approach, ouridealobjectives are threefold:

(1) Obtaining domain-independent exact or bounded approximate solutions where
possible while exploiting natural relational and first-order planning structure.

(2) Avoiding potential pitfalls of value functions and policies specific to biases
from (small) sampled domain instantiations.

(3) Avoiding an intractable representational blowup by grounding in the solution
algorithm.
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In practice, the approaches advocated in this article are unable to effectively achieve
objective (1): the heuristics (such as universal reward decomposition from Sec-
tion 4.2) required to apply our techniques to planning competition problems pre-
vent the derivation of bounds. Objective (2) may be met in practice, although the
approximations required for practical applications introduce their own representa-
tional biases. Finally, objective (3) may also be satisfied in practice, although the
domain-independent approach introduces its own representational blowup by ef-
fectively planning for every possible domain instantiation.

In comparison, inductive first-order approaches outlined above share a goal similar
to (1) in exploiting natural relational planning structurein a domain-independent
manner, but cannot claim to support (2) since they must sample. Theoretical com-
plexity results by Khardon (1999a,b) indicate that (3) is indeed possible to achieve
for inductive approaches in some settings. We further note that in practice, the bias
and computational complexity inherent in sampling a small set of possible ground
domain instantiations of an MDP is not generally problematic since policies that
work on one domain instantiation often generalize to similar or larger domains
given an appropriate representation language (Yoon et al.,2006).

So we may then ask: which first-order approach is better, inductive or deductive?12

Empirically, recent results (Wu and Givan, 2007) show that inductive first-order
approaches outperform FOALP. Is this the final answer? Hopefully not; but clearly
there is still a great deal of work to be done in order to make first-order deduc-
tive approaches fully competitive with recent state-of-the-art first-order inductive
approaches. Perhaps even more promising though is the potential to combine ad-
vances among both approaches; Gretton and Thiebaux (2004) do this in work that
combines inductive logic programming with first-order decision-theoretic regres-
sion, showing that optimal policies can be induced from few training samples if
using deductive methods to generate candidate policy structure. Such approaches
offer the hope of combining the best of both worlds while sharing the goal of ex-
ploiting first-order structure in relational decision-theoretic planning problems.

7 Future Directions and Concluding Remarks

In this article, we have motivated the need to exploit relational structure in decision-
theoretic planning problems. To this end, we have provided athorough review of

12 To clarify, we use the term inductive to refer to any algorithm with an inductive com-
ponent. However, it should be noted that all of the inductive approaches mentioned above
incorporate some form of deduction by sampling from the Bellman equations then using
induction to obtain a symbolic representation from these samples. In contrastthe SDP and
FOALP approaches advocated in this article can be viewed as pure symbolicdeduction
since they deduce their value representations from a lifted version of the Bellman equation.
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the FOMDP representation of Boutilier et al. (2001) and showed how to trans-
late an expressive subset of PPDDL to this particular FOMDP representation. We
reviewed the solution of FOMDPs via symbolic dynamic programming and con-
tributed additional practical solution techniques based on the use of first-order
ADDs (FOADDs), additive value decomposition of universal rewards, and first-
order approximate linear programming (FOALP). Combining all of these ideas, we
have provided proof-of-concept results from the probabilistic track of the ICAPS
2004 and 2006 International Planning Competitions.

We outline some interesting directions for future work, andoffer some concluding
remarks on decision-theoretic planning in the framework ofFOMDPs.

7.1 Future Directions

There are a number of open issues raised by our work that meritfurther exploration.
We enumerate a few of them:

(1) An interesting approach for the practical application of FOMDPs to decision-
theoretic planning is to combine their approximate offline solution with on-
line methods for enhancing their performance. We need only look at the range
of successful planners used in planning competitions for ideas. Perhaps one
of the most useful approaches would be to use offline methods for solving
FOMDPs to generate a first-order approximated value function. Then we could
use such a value function as a heuristic seed for online search methods such
as RTDP (Barto et al., 1993; Dearden and Boutilier, 1997). Another approach
would be to consider domain-specific control knowledge encoded as temporal
logic constraints as in TLPlan (Bacchus and Kabanza, 2000), program con-
straints as in Golog (Levesque et al., 1997) (both TLPlan andGolog are deter-
ministic planners) or decision-theoretic extensions suchas DT-Golog (Boutilier
et al., 2000). We discuss the use of program constraints further in a moment.

(2) We did not explore approximate extensions of value iteration for FOMDPs.
Given the success of the APRICODD planner (St-Aubin et al., 2000) that
performs approximate value iteration using ADDs, this approach is quite ap-
pealing for first-order approximate value iteration using FOADDs. When the
FOADD representing the value function becomes too large, wecan simply
prune out nodes in the FOADD in an effort to reduce the size of the value
function while minimizing the approximation error.

(3) One promising use of FOMDPs is at the highest level of an abstraction hierar-
chy for agent-based decision-theoretic planning. Deardenand Boutilier (1997)
demonstrate that an MDP model can be approximated to a structure that is
efficiently solvable and that error bounds can be obtained onthe resulting op-
timal policy in the abstracted model with respect to the optimal policy in the
non-abstracted version. If we lift such results to FOMDPs, then this offers a
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very appealing paradigm for their use: we can approximate a general FOMDP
model to a level that we know we can solve efficiently while obtaining er-
ror bounds on the performance of the optimal policy in this approximated
model. Or, further afield, we can use a solution to this approximated model
as guidance for other more computationally expensive algorithms like ground
heuristic search or as seed values (Dearden and Boutilier, 1997) or shaped re-
wards (Ng et al., 1999) for value iteration in the non-abstracted MDP model.

In addition to these immediate open problems posed by our techniques, we have
only touched on the surface of FOMDPs and the vast array of stochastic decision
processes and symbolic solution methods that are possible.There remain a number
of promising directions for the exploitation of structure in relationally-specified
decision-theoretic planning problems that we briefly describe here:

(1) One of the original goals in the FOMDP and symbolic dynamic programming
frameworks (Boutilier et al., 2001) was to allow for very general symbolic
representations. While most current FOMDP research has assumed a constant
numerical representation of the values in case statement partitions, there are
many situations where we might obtain non-constant values in our case state-
ments, e.g., compactly representing value functions in FOMDPs with univer-
sal rewards that depend on the count of objects satisfying a property in a given
situation, or in the context of modeling continuous state properties, perhaps
combined with discrete state properties in a first-order generalization ofhy-
brid MDPs (Hauskrecht and Kveton, 2004; Guestrin et al., 2004). However,
as the case statement is generalized to handle non-constantnumerical repre-
sentations, case operators like the casemax must be appropriately generalized
to efficiently handle such value representations (see Section 6.2.3 of Sanner
(2008) for one example of such a casemax generalization). Furthermore, the-
orem provers must also be capable of reasoning about counting properties or
(constrained) continuous variables in such symbolic case statement enhance-
ments in order to detect the inconsistency of state partitions.

(2) In many FOMDPs there is an element of underlying topological graph struc-
ture. For example, in logistics planning, this graph structure may involve the
accessibility of different cities via roads and flight routes. Currently, this graph
structure is not exploited by our solution methods. Yet its regularity, if known
a priori, could likely be exploitable by solution methods that could“compile”
out this graph structure. This approach would be far more advantageous than
relying on the first-order case representation to extract relevant graph prop-
erties using the cumbersome specification of transitively composed relations
(i.e.,∃c1, c2.Road(c1, c2) ∧ ∃c3.Road(c2, c3) ∧ ∃c4.Road(c3, c4) ∧ . . .).

(3) We often have a predefined set of constraints on the behavior of an agent and
we need to optimize the agent’s policy with respect to those constraints. If we
can specify the program constraints in the form of a Golog program (Levesque
et al., 1997), then we can generalize the hierarchy of abstract machines (HAM)
architecture (Parr and Russell, 1998; Andre and Russell, 2001) to the case of
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solving FOMDPs with respect to Golog program constraints. Such a solu-
tion would permit the (approximately) optimal execution ofan incompletely
specified program over all possible domain-instantiations. Various approaches
in the decision-theoretic DT-Golog framework (Boutilier etal., 2000; Ferrein
et al., 2003) have provided an initial investigation into these ideas.

The above suggestions are but a few of the many possible extensions to the work
presented in this article and first-order decision-theoretic planning in general.

7.2 Concluding Remarks

For a few years immediately succeeding the publication of the symbolic dynamic
programming solution (Boutilier et al., 2001) to relationally specified MDPs, this
domain-independent non-grounding approach was disparaged as being unrealistic
for practical applications due to the complexity of value functions or due to the need
for logical simplification and theorem proving (Yoon et al.,2002; Gardiol and Kael-
bling, 2004; Guestrin et al., 2003). While these are all in fact significant obstacles to
be overcome in the practical application of first-order MDPsto decision-theoretic
planning, this article has aimed to show that these obstacles are not insurmountable.
It has provided a substantial step in the direction of demonstrating that with careful
attention paid to the first-order representation and algorithms specifically designed
to exploit that representation, non-grounded lifted solutions are viable in practice as
we demonstrated with our proof-of-concept results from theICAPS 2004 and 2006
International Planning Competitions. Our hope is that this article lays the foun-
dations for further exploration of these non-grounding approaches and permits the
integration of these ideas with other lines of research in decision-theoretic planning.
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