
Approximately Stable Pricing for Coordinated Purchasing of Electricity

Andrew Perrault and Craig Boutilier⇤
Department of Computer Science

University of Toronto
{perrault, cebly}@cs.toronto.edu

Abstract
Matching markets are often used in exchange set-
tings (e.g., supply chain) to increase economic ef-
ficiency while respecting certain global constraints
on outcomes. We investigate their application to
pricing and cost sharing in group purchasing of
electricity in smart grid settings. The task is com-
plicated by the complexities of producer cost func-
tions due to constraints on generation from dif-
ferent sources (they are sufficiently complex that
welfare-optimal matchings are not usually in equi-
librium). We develop two novel cost sharing
schemes: one based on Shapley values that is “fair,”
but computationally intensive; and one that cap-
tures many of the essential properties of Shapley
pricing, but scales to large numbers of consumers.
Empirical results show these schemes achieve a
high degree of stability in practice and can be made
more stable by sacrificing small amounts (< 2%)
of social welfare.

1 Introduction
Coordinating the group purchase and consumption of elec-
tricity can offer significant benefits in terms of economic ef-
ficiency, predictability, and fairness. These benefits emerge
for several reasons: i) Consumers who are able to shift their
loads from periods of high consumption can be compensated
by others for the inconvenience or discomfort of doing so,
with the resulting flatter demand profiles reducing overall cost
of generation. ii) The formation of groups of consumers can
increase competition by transferring large numbers of con-
sumers between providers.1 iii) Group purchasing can result
in prices that are more responsive to market conditions, de-
creasing the ability of generators to exercise market power
[Rassenti et al., 2003]. iv) Groups can predict aggregate con-
sumption levels more reliably and incentivize their members
to consume at predicted levels [Robu et al., 2014]. To facil-
itate group-level coordination, the tools of cooperative game

⇤Currently on leave at Google, Inc., Mountain View.
1Group purchasing has been explored as a method of increas-

ing electricity market competition, as in The Big Switch is a UK
program where 30,000 households agreed to have their demand auc-
tioned collectively to the lowest-bidding provider.

theory can be used to determine mutually acceptable cost
sharing among users in a group.

The smart grid, particularly smart meters, makes it possi-
ble to analyze electricity consumption on an individual level,
which is important for coordination. However, electricity
markets are difficult to optimize and to price due to their
size and complexity. Furthermore, reasonable properties of
pricing functions in this market setting are not well under-
stood. Producers have complex cost functions that depend
on: minimum and maximum production levels; multiple lay-
ers of generation with different costs; and ramp constraints
that constrain production adjustments over time. In addition,
consumers have variable preferences, and may be willing to
trade off cost for comfort/convenience and shift their loads.

These attributes pose challenges from a game theoretic-
perspective. Efficient outcomes under realistic modeling as-
sumptions, as we will show, do not support stability from a
coalitional perspective (e.g., core) or from a purely strategic
perspective (e.g., Nash equilibrium); indeed, we will show
that Nash equilibria can have arbitrarily lower quality than
the best solution out of equilibrium. Thus, there is a natural
tradeoff between stability and social welfare. We explore this
tradeoff using two different cost sharing schemes, one based
on Shapley values, and the other based on a new notion of
similarity-based envy freeness. We show that small sacrifices
in social welfare can provide large gains in stability. Fur-
thermore, our similarity-based envy-free cost sharing scheme,
while not as conceptually simple as Shapley, achieves greater
stability and has significantly better computational properties.

Our contributions are: First, we develop a tractable market
model for matching consumers to producers while reflecting
many of the complexities of electricity production and con-
sumption. Second, we explore the stability properties of this
model under various cost sharing schemes. Finally, we de-
velop two payment algorithms that exhibit high stability and
fairness, while allowing tradeoffs between social welfare and
stability to be made. In Sec. 2, we describe our basic mar-
ket model and related work. Sec. 3 addresses stability in our
model and describes our two payment models. Experimental
results in Sec. 4 demonstrate their efficacy.

2 Setting
Let N be a set of n consumers and let M be a set of m elec-
tricity producers that each control a set of generation facili-
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Figure 1: Our market model. The demand profiles chosen by the
consumers depend on the prices charged by the producers. Each
producer has a posted price function, which is not shown here.

ties. We assume T time periods, representing, for example,
the hours in a day or week. Each consumer i has a non-empty
set of demand profiles ⇧i, where each profile ⇡ 2 ⇧i ⇢ IR

T

reflects an “acceptable” consumption pattern (electricity use
per period in kilowatt-hours (kwh)) for i. Each consumer has
a valuation function Vi : ⇧i ! IR indicating her value (in
dollars) for each of her demand profiles (this captures pref-
erences for and potential flexibility in consumption). Such
profiles may be explicitly elicited or estimated using past con-
sumption data. This is an abstraction of reality, of course, be-
cause consumer’s valuations derive from the actions that use
the available electricity, not the electricity itself.

A matching µ maps each consumer i to a producer µ(i),
from whom she purchases electricity, and demand profile
µ

p(i) 2 ⇧i, indicating her consumption. In this matching,
i pays the price per unit posted by producer µ(i), which may
depend on the aggregate demand of all agents matched to
µ(i). (We discuss pricing and cost sharing further below).
We include a null producer which represents any consumer’s
best outside option (i.e., not participating in the market); the
value i being matched to null is ✓i (we assume i’s profile is
chosen based on external factors). Fig. 1 shows a diagram of
an instance of the model with two producers and three con-
sumers, each with three demand profiles. The total demand
that is served by each producer is the sum of the demands
across the profiles chosen by the consumers that are matched
to that producer.

Each producer j has a price function Pj : IRT ! IR that
maps total demand in each time period to a price. We treat
Pj as exogenous—it represents j’s posted prices. We assume
that Pj captures the fundamental features of generation costs
(see next subsection), and that producers are not strategic, in-
stead they simply recover their costs.2 The null producer has
a fixed zero price (net values ✓i includes any price charged).

The social welfare (SW) of matching µ is the net utility
realized by all consumers acting on the demand profiles se-
lected by µ, i.e., the sum of the consumers’ valuation minus
the sum of the producers’ prices:3
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2This reflects the reality in many regulated markets, where pro-
ducers must make only a fixed percentage return on their costs.

3Note that we consider the producer’s profit to be part of the cost
of generating electricity.

Naturally, we’d like to maximize SW given user valuations
and producer price functions (as elaborated below). Given
the SW-optimal matching, our aim is to find a cost-sharing
scheme that ensures producer costs are recovered. In addi-
tion, we want the matching to be stable in the sense that no
consumer has an incentive to defect either by changing her
matched profile or by switching to a different producer (or
both). We turn to this in Sec. 3.

Optimization. Even for trivial producer price functions,
maximization of SW is NP-hard by reduction to the model
of Lu and Boutilier [2012], henceforth LB.4 Given the price
functions we consider below, SW maximization can be for-
mulated as a mixed integer program (MIP) in a straightfor-
ward way. The MIP can be solved by relaxing the binary
matching variables, leaving a number of binary variables pro-
portional to MT , and independent of the number of con-
sumers and profiles. As in many matching problems, most re-
laxed variables are integral at the optimal solution in practice
(just a few consumers may have their demand split across sev-
eral generators). It may be acceptable for such agents to have
contracts split across generators; otherwise, LP rounding may
be used. SW maximization can be solved for large instances,
since the number of producers (requiring integer variables) is
generally very small compared to the number of consumers.
We are able to solve instances with 5000 consumers, 2 pro-
ducers, 4 profiles and 24 time periods in less than 15 minutes
on a 12x2.6GHz, 32GB machine using CPLEX 12.51.

Producer Price Functions (PPFs). Deciding the optimal
output levels of a group of generation facilities in order to
meet system demand is complex and has been studied exten-
sively [Kirschen and Strbac, 2004]. We focus on three of its
most important features. i) Generation facilities have limited
ramp rate—the amount by which they can change their out-
put from one time period to the next. Ramp rates of differ-
ent generation facilities vary radically (e.g., demand tracking
plants such as natural gas can ramp up or down in half an
hour, whereas nuclear plants take days. ii) Different kinds
of generation have different variable costs (e.g., most renew-
ables have low variable cost, while natural gas has high vari-
able cost). iii) Finally, certain kinds of plants (e.g., coal) have
high costs when run below a certain level—it imposes consid-
erable wear on the components. Shutting down these plants
also incurs costs. To capture these features, we model each
producer as follows. It has a base layer that has low genera-
tion costs, but has a low ramp rate, and is expensive to take
below a certain level of generation in any time period (the
minimum economic generation level (MEGL)). It also has a
tracking layer that can be adjusted rapidly or shut off entirely,
but has high generation costs and limited capacity.

We provide a brief overview of the form of PFFs that we
use below. The online appendix contains a complete specifi-
cation as well as its formulation within a MIP. For producer

4LB can be simulated in our model by assuming a different time
period for each agent and having each agent demand one unit of
power in that period. While we do not allow consumer preferences
over producers, these can be represented in the producer price func-
tions. The LB model is NP-hard via reduction to Knapsack.



j’s base layer, let c(l)j be the price per kwh, d(l)+j be the capac-
ity (kwh), d(l)�j be the MEGL (kwh), and rj be the maximum
ramp rate between periods (kwh). Let sj be the shutdown
cost (in dollars) that is incurred when demand is reduced be-
low the MEGL. Let c(h)j be the price of the tracking layer per
kwh and d

(h)+
j be its capacity (kwh).

• If demand is smooth and does not exceed the maximum
base layer capacity or fall short of the MEGL, only base
layer costs are incurred. Formally, if demand in every
period is in the interval [d(l)�j , d

(l)+
j ], and the largest

period-to-period change in demand does not exceed rj ,
the unit price is c(l)j . Demand that exceeds the base layer
capacity will be met using the tracking layer, if capac-
ity is available, at a price c

(h)
j . In Fig. 2a, the total cost

to meet demand in the first time period is c(l)j d

(h)+
j plus

c

(h)
j times the amount of demand that exceeds d(h)+j .

• A shutdown cost is charged if demand in a period is less
than the MEGL and the demand in the previous period
was greater than the MEGL. If demand in the previous
period is greater than d

(l)�
j and demand in the current

period is less than d

(l)�
j , the shutdown cost of sj is

charged. In Fig. 2a, a shutdown occurs in the second
period.

• If there is a large increase in demand between two pe-
riods, the first rj units of the increase are met using the
base layer at price c

(l)
j , and the remaining units of the

increase are met using the tracking layer at price c

(h)
j .

Fig. 2b shows the ramp costs that are incurred at time
t + 1 given a moderate demand at time t. Note that
the base or tracking layer may have insufficient capac-
ity, which would result in a demand profile that cannot
be served, i.e., it has infinite cost.

• If there is a large decrease in demand from period to pe-
riod, an additional fee of c(h)j � c

(l)
j per unit of decrease

exceeding rj is charged, which represents the cost of
meeting the necessary amount of the previous period’s
demand using the tracking layer. Fig. 2c shows the ramp
costs incurred at time t+ 1 given a high demand at time
t.

Our PPFs have the Markov property: the price paid in any
period depends only on demand in that period and in the pre-
vious one, which makes them easy to compute. It is also
gives a lower bound on the cost of meeting the demand by
optimizing base and tracking layer production levels in each
time period. Every cost incurred in the price function must be
also be incurred by any solution that satisfies the generation
constraints, but the price function may underestimate costs
(e.g., it assumes that base layer ramping can be performed
within two time periods). Our general approach for optimiz-
ing social welfare and stability can be applied to a variety of
PPFs—the form of the PPF may be application-dependent.

Related Work. Assignment games and matching mar-
kets have been extensively studied using different stability

concepts and pricing models [Shapley and Shubik, 1971;
Gale and Shapley, 1962; Demange et al., 1986]. Research
in real-world markets has largely focused on revenue maxi-
mization for monopolistic sellers, though strategic aspects are
sometimes considered. The literature on group buying, sum-
marized in [Anand and Aron, 2003; Chen and Roma, 2010],
considers the value of offering discounts to groups of buyers
who purchase items in bulk. Several group buying models are
similar to ours.

Our work extends that of Lu and Boutilier [2012], who fo-
cus on a more restrictive model of buyer preferences (unit de-
mand, only the supplier affects utility) and seller price func-
tions (volume discounts). Similarly to them, we focus on the
strategic behavior of buyers and treat seller prices as exoge-
nous (strategic behavior of sellers was later investigated by
Meir et al. [2014]). Two similar group buying models are
those of Anand and Aron [2003] and Chen et al. [2007]. Both
have seller prices that are affected by the amount purchased,
but neither allow for sufficiently complex price functions to
model electricity generation. Anand and Aron focuses on
a single vendor and does not consider buyer coordination,
while Chen et al. uses a multi-stage auction mechanism.

In the AI literature, the process of finding a group of fully
cooperative buyers an optimal seller has been studied [Sarne
and Kraus, 2005; Manisterski et al., 2008]. In the context of
electricity, group purchasing has been suggested as a way of
reducing seller uncertainty about stochastic buyer demands
[Robu et al., 2014], an aspect which we do not consider here.

3 Cost Sharing and Stability Concepts
Finding a SW-optimal matching is relatively straightforward,
although somewhat involved due to the complexities of the
producer price functions. More difficult is the question of
appropriate cost sharing among the group of consumers. By
coordinating demand to maximize social welfare, some con-
sumers sacrifice their own utility for the benefit of the group
and thus should be compensated. Various notions of stabil-
ity can be used for this purpose. Given some cost sharing
scheme, stability measures the incentive for any consumer to
defect, i.e., change their profile or producer. Of course, defin-
ing the stability of a cost sharing scheme, requires that defec-
tions themselves be priced, i.e., what does a consumer pay if
they change their matching. We approach the issue of defec-
tion pricing from two perspectives: a marginal cost defection
model, where a producer accepts any defector who pays the
marginal cost they impose by defecting; and an envy-free de-
fection model where a defector pays the same as any other
consumer original matched to that producer with a similar
profile.

Other than stability and budget-balance (i.e., all produc-
ers’ costs are paid), there are several other desiderata of a
cost sharing scheme. A matching is envy-free if no consumer
would prefer the matched pair of any other consumer. This
notion requires some generalization in our model (as we dis-
cuss below). A scheme should be transparent: it should be
clear why a consumer is paying what they are, and what they
can do to change what they pay. It should be deterministic
and easy to describe so that outcomes do not appear arbitrary.
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Figure 2: Diagrams showing how the various components of the producer price function are calculated.

We also desire computational scalability. Finally, we would
like the ability to sacrifice SW to achieve these properties, es-
pecially stability, in a controllable way. History shows that
stability in particular is an essential component of successful
matching mechanisms [Roth, 2002].

First, we analyze cost sharing under the marginal-cost de-
fection model and find that stability is difficult to achieve.
Second, we present two cost-sharing schemes under the envy-
free defection model that achieve many of our desiderata.

Cost Sharing under the Marginal-Cost Defection Model.
One difficulty in defining the cost/price of a defection is

that the cost imposed by a consumer on a producer depends
on those already matched to that producer. We address this
with two cost sharing schemes below. Here we begin by con-
sidering marginal cost payments—where a consumer defect-
ing to a new producer (or changing profile) pays the marginal
cost imposed on the new producer—and its stability proper-
ties.

Ideally, we would like payments to be core stable [Shapley
and Shubik, 1971], wherein no group of consumers can ben-
efit by defecting. Core stability is not always achievable in
this game: since LB can be reduced to our model, their proof
that the core may be empty (under much simpler producer
cost functions) applies to our model as well. Core stability is
a very strong notion that is hard to attain without sacrificing
SW. Fortunately, achieving it is not critical in practice if large
groups of consumers cannot effectively discover, communi-
cate and coordinate their actions.

A weaker, but more practical concept is Nash stability
[Nash, 1950], which accounts for defections by single con-
sumers. It is informative to examine the pure Nash equilibria
(NE) with the worst and best SW. The ratio of optimal SW to
the SW of the worst NE is the (pure) price of anarchy (PoA)
[Koutsoupias and Papadimitriou, 1999], and to that of the best
NE is the (pure) price of stability (PoS) [Schulz and Moses,
2003]. PoS is usually more appropriate when a centralized
mechanism constructs the matching.

Tab. 1 shows our results for the PoS and PoA under pro-
ducer price functions with various combinations of model
features. We see that, under marginal-cost defection pricing,
capacity constraints plus either ramp constraints or shutdown
constraints are sufficient to ensure the non-existence of (pure)

NE. We sketch two proofs here—full versions are in the ap-
pendix.
Theorem 1. There is no cost sharing scheme that achieves a
price of stability better than 1 when producer price functions
may have capacity constraints and ramp constraints.

Proof. Consider an instance with two consumers, two pro-
ducers and a single time period. Each consumer has a single
demand profile of 1 with value 2 and outside option value 0.
Producer m1 has an MEGL of 1.5, base layer cost 1, shut-
down cost 1 and large base layer capacity. Producer m2 has
no MEGL, base layer cost 0.75 and base layer capacity 1.
This instance has no pure NE. There are three feasible match-
ings. First, we can match both consumers to m1: total cost is
2, so one of the consumers pays at least 1. This consumer has
incentive to defect to m2 to pay 0.75. The other matchings
have one consumer matched to m1 and the other to m2. Be-
cause the shutdown cost is removed when the m2-consumer
moves to m1, the net cost she imposes by defecting is 0. Thus,
the consumer who is matched to m1 must pay the entire cost
imposed on both agents for the assignment to be stable, which
is 3 > 2, making defection to the null producer attractive.
Thus, no matching is stable.

Theorem 2. There is a cost sharing scheme that achieves a
price of stability of 1 when producer price functions have only
tracking layers and capacity constraints.

Proof. Consider the SW-optimal matching µ and suppose
each producer charges each matched consumer the average
price per unit times the number of units she consumes. By
way of contradiction, suppose consumer n1 benefits by de-
fecting to m using profile ⇡. Let the matching after defection
be µ

0. Let pµ(n1) and p

0
µ(n1)

be the average price per unit for
µ(n1) before and after n1’s departure, respectively. When n1

defects, the average unit cost for demand on µ(n1) decreases
because some demand that was previously met with the track-
ing layer may be met with the base layer. Thus p

0
µ(n1)


pµ(n1). Since n1 defected, V (µp(n1)) � |µp(n1)|pµ(n1) 
V (⇡) � Cm(µ0�1(m)) + Cm(µ�1(m)). These inequalities
can be rearranged to show that social welfare before the de-
fection is less than the social welfare after, which is a contra-
diction. Note: the argument can be extended to group defec-



w/ capacity
constraints

w/o capacity
constraintsFeature

Shutdown costs PoS = 1 ?
Ramp constraints PoS = 1 PoS=?, PoA = 1
Tracking layer PoS = 1, PoA = 1 N/A
Base layer only PoS = 1, PoA = 1 PoA = 1

Table 1: Table of stability results for combinations of producer
price function features under the marginal cost defection model.

tions (to show strong Nash stability), and still applies in the
absence of a tracking layer.

While the best NE may be arbitrarily worse than the SW-
optimal matching, one might hope that the optimal matching
is close to a NE in practice. We have found find this is gener-
ally not the case, but we do not focus on that question in this
paper. Since marginal cost defection pricing fails to induce
stability, we consider two cost sharing schemes that assume
“envy-free” defection pricing, in which a defector is treated
no differently than a consumer who was originally matched to
that producer. Envy-free defection pricing assumes that while
producers are free to make offers to any consumer, they can-
not offer a deal to a potential defector that they do not offer
to other consumers. This assumption is realistic in a setting
with many small consumers.

Shapley-Like Payments.
Since the underlying problem is a cooperative game, one

natural approach to cost sharing is to use the Shapley value
[Shapley, 1953]. We consider the group of consumers
matched to a single producer to be a coalition. The Shapley
value charges each agent the average marginal cost (or ben-
efit) they contribute to their coalition over all possible join
orders. Formally, the Shapley value of consumer n0 matched
to producer m0 under µ is:

s(n0) = ↵

X

S2µ

�1(m0)\{n0}

P

m0(demµ

(S[{n0}))�P

m0(demµ

(S))

where ↵ is a normalization constant (number of permuta-
tions) and demµ(x) is the total demand of the set x of con-
sumers when using the profiles assigned under µ. Our setting
is atypical because some join orders induce demand profiles
that cannot be feasibly served (e.g., due to ramp or capacity
constraints), which is not accounted for in the standard defini-
tion of the Shapley value; to deal with this, we impose a large
cost when joining a coalition causes infeasibility. Since all
costs must be recovered, we normalize the payments so that
the total paid by consumers matched to a producer j equals
the total charged by j.

Shapley values provide a conceptually simple approach to
cost sharing that captures price functions well and is “fair.”
However, it is computationally intractable: #P-complete in
general [Deng and Papadimitriou, 1994] and difficult to ap-
proximate [Fatima et al., 2008]. To overcome this, we sam-
ple permutations to approximate Shapley costs. In addition,
Shapley payments do not explictly aim for stability, and in-
deed, we’ll see they are not inherently stable. Hence, we al-
low Shapley values to be adjusted ±10% within each gener-
ator to increase stability, though even this modification does
not admit stability. Ideally, we desire to sacrifice some SW to

improve stability (indeed, find matchings on the Pareto fron-
tier of SW and degree of stability). This is difficult, how-
ever, because we can’t efficiently maximize stability: pro-
ducer price functions are far from concave and do not admit
good concave upper bounds.

However, we find that sampling the matchings with high
SW allows us to gain a significant amount of stability with-
out losing much SW.5 We sample matchings in two ways:
through exclusions and cuts. Both use the well-known lin-
ear constraint that precludes a particular assignment of binary
variables {X0 = x0, X1 = x1, . . . , Xn = xn} from being
selected by an optimization:

X

i:xi=1

X

i

�
X

i:xi=0

X

i


X

i2[n]

x

i

� 1

The MIP formulation of the SW-maximization contains two
types of binary variables: the matching variables yi,j,k that in-
dicate that consumer i is matched to producer j and is using
profile k and the support variables of the PPFs, such as I(SC)

j,t l
which indicates whether producer j incurred a shutdown cost
at time period t. The exclusions method focuses on matching
variables only: each iteration is the standard SW maximiza-
tion plus constraints that exclude the settings of the matching
variables corresponding to the matchings found in previous
iterations. The cuts method requires that both the matching
variables and the support variables are different than the val-
ues used in previously found matchings. Note that the be-
havior of the cuts method is highly dependent on the form
of the PPFs and may not be applicable to all PPFs whereas
exclusions can be applied in any matching setting. Cuts re-
quire a more drastic change to the matching, decreasing SW
by a larger amount, but sampling more diverse areas of the
matching space. These two methods are compared below.

Similarity-Based Envy-Free Payments.
The standard notion of envy-freeness, that no agent would

prefer to receive the outcome that any other agent received,
is too weak in our setting. Since demand profiles are real-
valued vectors, they are generally unique in that no two con-
sumers share an identical profile. To handle this, we con-
sider a generalization, similarity-based envy-freeness (SBEF),
where vectors that are “close” (we use L2-distance) are priced
identically (on a per-unit basis). Specifically, we use a clus-
tering algorithm to partition the demand profiles, and con-
strain the unit price for any profile in a given partition to be
equal. Our experimental model uses 24 1hr. time periods.
While we could use demand in each period as the feature-
vector for clustering, we instead use higher level features: the
average and standard deviation of the demand across all pe-
riods; the global maximum and minimum demands, and the
gap between them; and the average and standard deviation of
demand in 6-hour windows. These high-level features blur
the boundaries between partitions, which could be mislead-
ingly granular if demand profiles were used directly. For in-
stance, with demand profiles, we might distinguish two par-
titions based on consuming more or less than x units from

5The same techniques can be used to enumerate matchings when
searching for approximate NEs with high social welfare.



1–2PM, which might lead consumers to respond to these spe-
cific features (e.g., by shifting some tasks from 1–2PM to 12–
1PM). Such specific responses are unlikely to have a large ef-
fect on generation cost, especially if other consumers behave
likewise. By using abstract features, consumer responses tend
to have a greater effect on generation cost.

We consider Ward clustering [Ward Jr, 1963], which
groups similar profiles quite well and induces stable pay-
ments, while maintaining a high degree of scalability. But
it constructs partition boundaries that are difficult to commu-
nicate. To address this, we approximate the resulting clus-
ters by building a bounded-depth decision tree (using CART
[Breiman et al., 1984]) with with easily understandable parti-
tion boundaries based on a small number of features, without
sacrificing much stability. In general, the choice of partition-
ing scheme should support the desiderata for price functions.
In summary, the procedure we use for calculating SBEF pay-
ments is as follows: (1) partition demand profiles using Ward
clustering on high-level feature vectors of the demand pro-
files; (2) approximate the resulting clusters with a decision
tree; (3) find a matching that maximizes stability, subject to
(i) recovering all costs, and (ii) requiring a fixed unit price for
profiles in any given partition. The procedure takes polyno-
mial time and is very fast in practice.

SBEF ensures that consumers are indifferent as to which
producer they are matched.
Observation 1. Assume two or more generators. Suppose we
have a matching µ and a set of SBEF payments p. If at least
one profile in each partition is assigned to each generator
and the maximum incentive to defect is 0, all generators must
offer the same unit price in each partition.

If this were not the case, some consumer would be matched
to a a more expensive generator given her profile. This con-
sumer would have an incentive to defect that is at least equal
to the (positive) difference between the costs of two genera-
tors for that profile.

The price differences between “adjacent” partitions will be
“reasonable” if there are enough consumers with demand pro-
files in multiple partitions. When a consumer has demand
profiles in two partitions, stability puts pressure on the dif-
ference in price between two partitions to be small w.r.t. the
difference in their valuations. The SBEF price procedure is
somewhat more conceptually complex than Shapley-like pay-
ments, but it is much more computationally efficient and it
addresses envy-freeness more directly than Shapley. While
the Shapley payments within a coalition may be intuitively
fair, the assignment of similar profiles to particular producers
by SW optimization may be somewhat arbitrary and result
in payments that are far from envy-free. We see below that
SBEF payments achieve much better stability in practice than
Shapley.

4 Experiments
To test our algorithms, we use a model of the US residen-
tial energy market. Building characteristics are based on the
2011 Buildings Energy Data Book [D&R International, Ltd.,
2012]. The building thermal model, which includes temper-
ature, solar radiation and a miscellaneous factor, is derived

Figure 3: Max and average incentive to defect for maximally-stable
matchings using Shapley-like payments. The corresponding social
welfare is shown in Fig. 4.

Figure 4: Social welfare for maximally stable matchings using
Shapley-like payments.

from [Huang et al., 1999]. Roughly, we independently sam-
ple square footage and insulation level from known US dis-
tributions. Using appliance surveys, we randomly generate
appliances and load events for each appliance. We then cal-
culate air conditioner loads for a variety of target interior tem-
peratures. External conditions are those of July 10, 2010 in
San Antonio, Texas: since most home electricity use is due to
air conditioning, hot summer days stress generation heavily
and induce larger incentives for consumers who are willing
to alter their behavior.

In all experiments, we use 50 consumers, 2 producers, 4
profiles per consumer, 24 time periods, and run 50 trials for
each experiment. We use a small number of consumers be-
cause Shapley values are expensive to compute.6 In this set-
ting, the SW-optimal matching has a mean SW of $837.5 with
std. dev. of $138.8, or around $16.75 per consumer.

Shapley-Like Payments. Figs. 3 and 4 show results using
Shapley payments. Each trial requires about 1hr. of compu-
tation, almost all of which is to approximate Shapley values.
We sample 30 random join orders, a number which was de-

6We are able to optimize SW and find SBEF payments for
instances with 2500 consumers, 2 producers, 4 profiles per con-
sumer, 24 time periods in 30 minutes on average. Scalability
could be increased further by: i) using a simpler clustering algo-
rithm and ii) compressing the optimization by grouping similar con-
sumers/demand profiles together.



Avg.
12-6pm

Std.
dev.

Std. dev.
12-6pm Max

Gini
importance 0.46 0.32 0.14 0.034

Table 2: Table of stability results for combinations of producer
price function features under the marginal cost defection model.

termined empirically to induce convergence. Initial maximum
(over consumers) incentive to defect (MItD) is $17.6 on av-
erage (std. dev. $16.4). After 14 iterations, mean MItD was
$7.8 with cuts (44% of the original) and $13.9 with exclu-
sions (79% of the original). Cuts decreased MItD faster than
exclusions—after two cuts, MItD decreased to $13.8. on av-
erage, a greater reduction than 14 exclusions. (Standard devi-
ations are large because they include the variation among in-
stances.) Using a paired t-test, the difference between MItD
using cuts vs. exclusions is statistically significant after 2 it-
erations (p < 0.05).

Since the MItD is primarily influenced by large agents, the
average incentive to defect is also shown on Fig. 3. For con-
sumers with a positive incentive, the mean decreased from
$2.81 to $2.57 with exclusions (91.3% of the original) and to
$1.52 with cuts (54% of the original), correlating with the de-
creases in MItD, but showing a less dramatic drop when cuts
are used. The percentage of agents with positive incentive in-
creased slightly after 14 iterations, from 50% to 52.6% with
exclusions and 50.3% with cuts. This appears to be a spurious
consequence of the enumeration process.

Exclusions reduced SW by less on average than cuts. The
% of max SW under exclusions had a mean of 99.9% after
14 iterations, while cuts had a mean of 98.6%. Since exclu-
sions enumerate every matching, exclusions enumerate those
returned by cuts, but they are much slower—the first cut has
greater effect than 14 exclusions.

Similarity-Based Envy-Free Payments. Fig. 5 shows the
effect of using different numbers of partitions and decision
tree depth within SBEF payments on mean MItD. Each trial
takes only a few seconds (in stark contrast to Shapley). It
is important to note that these results all use the SW opti-
mal matching—since stability is so high, we do not explore
the trade-off between stability and SW (though cuts and ex-
clusions could be used here, as above). We see that SBEF
payments are highly stable under all tested conditions. Sta-
bility increases with the number of partitions: mean MItD is
$1.76 with two partitions (std. dev. $2.03) and $0.71 with nine
(std. dev. $1.21). Having more partitions tends to reduce po-
tential “envy-freeness” as fewer consumers are in each. The
figure also suggests that a minimum tree depth is needed for
the decision-tree approximation to be as stable as the original
partitioning: from one level for two partitions, up to four lev-
els for six or more partitions. Mean incentive for customers
with a positive defection incentive increases slightly with the
number of partitions: $0.21 with 2 partitions and $0.24 with 9
partitions. The number of customers with positive defection
incentive decreased from 34% with 2 partitions to 24% with
9.

We use Gini importance to assess the feature importance in
the partition-approximating decision trees. Tab. 2 shows the

Figure 5: Stability of different numbers of partitions and decision
tree depths approximating those partitions.

four most important features across all instances with four
partitions and a decision tree of depth 3. Because tempera-
tures peak in the afternoon, the fact that afternoon consump-
tion is the most important determinant of production price
makes sense. While this cost sharing scheme resembles time-
of-use pricing, the features that affect overall cost change on
the fly, dynamically reflecting their impact on generation cost.

5 Conclusion
We have presented a market model for matching electricity
producers and consumers, which can be tractably optimized
for a large number of consumers. The model allows for con-
sumers to present multiple demand profiles, which allows the
matching mechanism to offer discounts to consumers if they
are willing to shift demand in a way that reduces production
costs. We showed that Nash-stable matchings may not exist in
settings with realistic producer price functions and presented
two alternate cost sharing schemes, which we tested on syn-
thetic residential energy preference data.

One major question that our system does not address is
how to elicit demand profiles from consumers. Direct survey-
ing may be subject to strategic manipulation. While historical
data can be used to learn utilities through revealed preference,
the static nature of most pricing systems means that it is dif-
ficult to learn about behavior outside of standard conditions.

The efficient computational properties of SBEF payments
could make it useful in other mechanism design domains. Be-
yond allowing for approximate envy-freeness in domains that
lack that a natural extension of that concept, type-space com-
pression may be useful when there are too many different pro-
files to reason about efficiently. In this domain, the question
of whether compression schemes can be made sensitive to the
goals of the mechanism is an interesting one.
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