
Regret-based Optimization and Preference Elicitation for Stackelberg Security
Games with Uncertainty

Thanh H. Nguyen1, Amulya Yadav1, Bo An2, Milind Tambe1, Craig Boutilier3
1University of Southern California, Los Angeles, CA 90089

{thanhhng, amulyaya, tambe}@usc.edu
2Nanyang Technological University, Singapore 639798

boan@ntu.edu.sg
3University of Toronto, Canada M5S 3H5

cebly@cs.toronto.edu

Abstract

Stackelberg security games (SSGs) have been deployed in a
number of real-world domains. One key challenge in these
applications is the assessment of attacker payoffs, which may
not be perfectly known. Previous work has studied SSGs
with uncertain payoffs modeled by interval uncertainty and
provided maximin-based robust solutions. In contrast, in this
work we propose the use of the less conservative minimax
regret decision criterion for such payoff-uncertain SSGs and
present the first algorithms for computing minimax regret for
SSGs. We also address the challenge of preference elicitation,
using minimax regret to develop the first elicitation strategies
for SSGs. Experimental results validate the effectiveness of
our approaches.

Introduction
Defender-attacker Stackelberg security games (SSGs) pro-
vide a practical game-theoretic model for security resource
allocation (Conitzer 2012; Basilico et al. 2009; Yin and
Tambe 2012) and have found application in a number of
real-world domains (Tambe 2011; Shieh et al. 2012). How-
ever, one recognized area of weakness and potential imped-
iment to their future deployment is attacker payoff uncer-
tainty (Jain et al. 2013).

Equilibrium strategies for defenders can be extremely
sensitive to these payoffs, yet they can be extremely difficult
to assess, requiring security experts to evaluate the potential
impact on lives, property, and economic activity associated
with specific attacks on particular targets. Even with this ef-
fort, this assessment is generally characterized by significant
uncertainty.

Recently, optimization techniques have been developed
for solving these payoff-uncertain SSGs. One key approach
uses Bayesian game models, which require a prior distribu-
tion over possible attacker payoffs (Kiekintveld et al. 2011;
Yin and Tambe 2012). Unfortunately, in many cases, par-
ticularly in counter-terrorism—the major application area of
SSGs—assessing a probabilistic prior can be nearly as dif-
ficult as assessing payoffs themselves. Therefore, a second
major approach is to use strict uncertainty, where defender
payoffs are known but attacker payoffs are assumed only to
lie within some interval with no distributional information.
Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

For these Strict Uncertainty Payoff games (SPACs), robust
optimization methods have been developed using the max-
imin decision criterion, in which a defender chooses a strat-
egy that maximizes her worst-case utility over possible pay-
off realizations (Kiekintveld et al. 2013). In this paper, we
will use this SPAC model of SSGs.

Our first contribution is the development of robust opti-
mization methods for SPACs that rely on the minimax re-
gret decision criterion (Savage 1972; Kouvelis and Yu 1997;
Boutilier et al. 2006). Minimax regret focuses on the loss
with respect to decision quality over possible payoff realiza-
tions, making decisions with the tightest possible optimality
guarantees. Maximin, on the other hand, tends to be overly
conservative by trying to protect against worst-case payoff
realizations without considering the degree to which the de-
fender’s actions actually impact her utility relative to the op-
timal action under full information (Kouvelis and Yu 1997).
Minimax regret is arguably a more appropriate robustness
measure for dealing with uncertainty, especially for guar-
anteeing that decisions have high quality (i.e., are close to
optimal). Indeed, minimax regret has not yet been available
to (security) policy makers—this work makes it a viable cri-
terion for generating new, less conservative, candidate de-
fensive strategies. Unfortunately, operationalizing minimax
regret involves complex, non-convex optimization for which
efficient algorithms do not exist. We thus develop novel,
efficient algorithms for approximating minimax regret, and
offer experimental results showing that high solution quality
can be attained quickly.

Our second contribution is a payoff elicitation procedure
that can be used to optimize the defender’s efforts in as-
sessing payoffs, allowing reduction in the uncertainty of
those parameters that most improve decision quality. This
is yet another reason to use minimax regret as our robust-
ness criterion—it has been proven to be a very effective
driver of elicitation in several domains (Boutilier et al. 2004;
Regan and Boutilier 2009). We propose and evaluate several
payoff elicitation strategies.

Background and Related Work
Stackelberg Security Games. In SSGs, a defender allo-
cates m resources to protect a set of T targets from an at-
tacker who will attack one of the targets. A defender mixed
strategy is a vector x = (x)1≤t≤T , with 0 ≤ xt ≤ 1 and

∑
t xt ≤m, where xt denotes the probability of protecting

t (Kiekintveld et al. 2009). Let X = {x : 0 ≤ xt ≤ 1,
∑
t xt

≤m} be the set of feasible defender strategies. The defender
first commits to a mixed strategy, after which the attacker
observes the defender strategy and then attacks a target.

If the attacker attacks t, he receives a rewardRat if the tar-
get is unprotected, and a penalty P at < Rat if it is protected.
Conversely, the defender receives a penalty P dt in the former
case and a reward Rdt > P dt in the latter. Given a defender
strategy x and the attacked target t, the expected utilities of
the adversary and the defender, respectively, are:

Uat (xt, R
a
t , P

a
t) = Rat (1− xt) + P at xt; (1)

Udt (xt, R
d
t , P

d
t) = Rdtxt + P dt (1− xt). (2)

Let Ra = {Rat }t and P a = {P at }t be the the set of at-
tacker rewards/penalties at all targets. The attacker’s attack
set A(x, Ra, P a), given defender strategy x, contains the tar-
gets that give him the highest utility:

A(x, Ra, P a)={t :Uat (xt, Rat , P at)≥Uat′(xt′, Rat′, P at′),∀t′} (3)

The defender’s aim is to choose a strategy x that maximizes
her own payoff v(x, Ra, P a):

v(x, Ra, P a) = maxt∈A(x,Ra,Pa) U
d
t (xt, R

d
t , P

d
t). (4)

As in other work in the literature and justified elsewhere, we
assume that the attacker breaks ties in favor of the defender
(Von Stengel and Zamir 2004). Given a defender’s strategy
x and an adversary’s payoff (Ra, P a), we call target t a key
target if t is the attacked target within the attack set, i.e.,
t = argmaxt′∈A(x,Ra,Pa) U

d
t′(xt′ , R

d
t′ , P

d
t′). Thus, if t is the

key target, then v(x, Ra, P a) = Udt (xt, R
d
t , P

d
t).

Attacker Payoff Uncertainty. We focus on SPACs (Kiek-
intveld et al. 2013; Yin et al. 2011) where the defender lacks
the data to precisely estimate attacker payoffs. We assume
that attacker payoffs are known only to lie within specific
intervals: for each t, we have Rat ∈ Irt = [Ramin(t), R

a
max(t)]

and P at ∈ Ipt =[P amin(t), P
a
max(t)]. Let I= {(Irt, I

p
t)}t denote

the set of payoff intervals.
Robust Optimization. Robust optimization in SPACs to
date has focused on maximin: the defender chooses a strat-
egy to maximize her worst case utility, over all possible
realizations of attacker payoffs, assuming the attacker re-
sponds optimally under that realization (Kiekintveld et al.
2013; Aghassi and Bertsimas 2006). While minimax re-
gret has been successfully used in various domains (Salo and
Hamalainen 2001; Boutilier et al. 2006; Hyafil and Boutilier
2004; Renou and Schlag 2010) and has proven very effec-
tive for preference elicitation (Braziunas and Boutilier 2010;
Boutilier 2013), it has not been applied in SPACs.

Solving SPACs using Minimax Regret
We now formulate the minimax regret solution for SPACs
and discuss several methods for its computation.

Minimax Regret
Definition 1. Given uncertainty interval I, the max regret of
defender strategy x ∈ X is:

MR(x, I) = max
(Ra,Pa)∈I

max
x′∈X

(
v(x′, Ra, P a)−v(x, Ra, P a)

)
(5)

Targets Def. rew. Def. pen. Adv. rew. Adv. pen.
1 -6 -7 [0, 10] [-4,0]
2 5 -6 [0, 10] [-4,0]
3 3 -5 [0, 10] [-4,0]

Table 1: A 3-target, 1-resource SPAC.

Given payoff uncertainty I, max regret evaluates the qual-
ity of strategy x, under the worst-case realization of the pay-
off in I, by measuring the worst-case loss in defender utility
of using x rather than the optimal strategy x′ given that re-
alization. To guard against this loss in utility, the defender
can adopt the strategy that minimizes this max regret:
Definition 2. The minimax regret (MMR) of interval I is:

MMR(I) = minx∈X MR(x, I). (6)

A minimax optimal strategy is any x that minimizes Eq. 6.
Such a strategy has the strongest optimality guarantee given
uncertainty I. Table 1 shows why MMR might be more
valuable than maximin. The optimal defender strategy un-
der maximin is [1.0, 0.0, 0.0]: it allocates all resources to
the most vulnerable target 1, simply because it has the low-
est reward/penalty, despite the fact that defending target 1
provides little benefit. Maximin also leaves targets 2 and
3 unprotected, and has a max regret of 11. By contrast,
MMR diversifies the defender strategy to minimize utility
loss over all payoff realizations. The minimax optimal strat-
egy is [0.34, 0.44, 0.22] which has max regret 6.2.

Computing Minimax Regret
We note that MMR can be formulated as follows:

minx∈X θ (7)

s.t. θ≥v(x′, Ra, P a)− v(x, Ra, P a), ∀x′∈X, (Ra, P a)∈I

Unfortunately, since X and I are continuous, the set of con-
straints is infinite; and the problem is non-convex, making
MMR computation difficult. One practical approach to op-
timization with large constraint sets is constraint sampling
(De Farias and Van Roy 2004), coupled with constraint gen-
eration (Boutilier et al. 2006). The key idea is to sam-
ple a subset of constraints and gradually expand this set
by adding violated constraints to the relaxed problem un-
til convergence to the optimal solution. MIRAGE (MInimax
Regret Algorithm using constraint GEneration), see Alg. 1,
begins by sampling pairs (x, (Ra, P a)) of defender strate-
gies and attacker payoffs uniformly from X and I to ob-
tain a finite set S of sampled constraints. It then solves the
corresponding relaxed optimization program Eq. 7—using
the bCISM algorithm—whose optimal solution (lb,x∗) pro-
vides a lower bound (lb) on true MMR. Then constraint
generation is applied to determine violated constraints (if
any). This uses the ALARM algorithm, which computes
MR(x∗, I). This provides an upper bound (ub) on true
MMR. If ub > lb, ALARM’s solution provides us with the
maximally violated constraint (see line 5), which is added to
S. If ub = lb, then x∗ is the minimax optimal strategy and
lb = ub = MMR(I).1

1While constraint generation can be used by itself, generating
violated constraints is computationally intensive. Initializing with
some randomly sampled constraints offers better performance.

Algorithm 1: Constraint-generation (MIRAGE)
1 Initialize S=φ, ub =∞, lb = 0 ;
2 Randomly generate (x′, Ra, P a), S=S∪{x′, (Ra, P a)};
3 while ub > lb do
4 Call bCISM to compute relaxed MMR w.r.t S. Let x∗ be

its optimal solution with objective value lb;
5 Call ALARM to compute MR(x∗, I). Let (x′∗, Ra,∗, P a,∗)

be its optimal solution with objective value ub;
6 S = S ∪ {x′,∗, Ra,∗, P a,∗};
7 return (lb,x∗);

We now detail the two main steps of MIRAGE. The first
step, corresponding to line (4) of MIRAGE, solves a relaxed
version of Eq. 7. This relaxed problem can be formulated as
a mixed integer linear program (MILP) as follows:

minx,q,r,θ θ (8)

θ ≥ v(x′j , Ra,j , P a,j)−Udt (xt, Rdt , P dt)−(1−qjt)M, ∀j, t (9)

Uat (xt, R
a,j
t , P a,jt) + (1− qjt)M ≥ r

j , ∀j, t (10)

rj ≥ Uat (xt, Ra,jt , P a,jt), ∀j, t (11)∑
t
xt ≤ m, xt ∈ [0, 1], ∀t (12)∑
t
qjt = 1, qjt ∈ {0, 1}, ∀j, t (13)

rj ∈ R, ∀j. (14)

Here the index j ranges over sampled/generated constraints
(x′

j
, (Ra,j, P a,j)) in S, index t ranges over targets and M is

a large positive constant. Constraints (10-11) ensure that if
t is the key target (i.e., qtj = 1) for the jth instance of Ra,j

and P a,j , then Uat (xt, R
a,j
t , P a,jt)≥Uat′(xt′, R

a,j
t′ , P

a,j
t′) ∀t′.

Constraint (9) requires that if qjt = 1, then θ ≥ v(x′
j
,

Ra,j , P a,j)−Udt (xt, Rdt , P dt).
We dub this mCISM (MILP for Computing dIScretized

MMR), Unfortunately, mCISM becomes quite slow as S
grows. As an alternative, we introduce a binary-search
based algorithm (bCISM) which searches defender utility
space to find the optimal solution in polynomial time. Intu-
itively, we search for a strategy x that satisfies constraints (9-
14), where θ is computed using binary search. Specifically,
given θ, we compute the defender’s minimum coverage at
each target s.t. θ≥v(x′j, Ra,j, P a,j)− v(x, Ra,j, P a,j) is sat-
isfied for all (x′j , (Ra,j , P a,j)) ∈ S, and then test if x ∈ X
(i.e., is the strategy feasible).

Let θj = −θ+ v(x′j , Ra,j , P a,j) for the jth constraint in
S. We require θj ≤ v(x, Ra,j , P a,j) for all j ∈ S, with x
is computed by Alg. 2. Alg. 2 iterates through two levels of
problem decomposition to find x. First, it finds cj,tk , the min-
imum defender coverage at each target k for the jth instance
such that t is the key target and θj ≤ v(x, Ra,j , P a,j). We
iterate over all possible key targets t to find corresponding
cj,tk . Based on these cj,tk , we then compute the minimum
defender coverage at target k, denoted xjk (k ≤ T), which
satisfies the constraint θj ≤ v(xj , Ra,j , P a,j) w.r.t. the jth

instance only (lines (4-10)). The resulting {xjk}k for all
j ≤ |S| are then combined to compute x (line 11), as we
elaborate below.

Algorithm 2: Compute minimum coverage given θ

1 Initialize lbt = 0, xjt = +∞ ∀j, t;
2 while true do
3 for j = 1 to |S| do
4 for t = 1 to T do
5 cj,tt = max{lbt, θ

j−Pd
t

Rd
t−P

d
t
};

6 if cj,tt > 1 then continue;
7 foreach k 6= t do

8 cj,tk = max{lbt,
Ua

t (c
j
t ,R

a,j
t ,P

a,j
t)−Ra,j

k

P
a,j
k
−Ra,j

k

};

9 xjk = min{xjk, c
j,t
k };

10 xjt = min{xjt , c
j,t
t };

11 Set x = {xt : xt = maxj x
j
t}t;

12 if x /∈ X then return false;
13 else if v(x, Ra,j , P a,j) ≥ θj ∀j then return x;
14 else lbt = xt;

We now explain lines (4-10). Note that if t is the
key target of the jth instance, then v(xj , Ra,j , P a,j) =

Udt (x
j
t , R

d
t , P

d
t). Here the algorithm goes through all tar-

gets t that could potentially be the key target for the jth in-
stance to compute cj,tk . Specifically, if t is the key target, as

Udt (c
j,t
t , R

d
t , P

d
t) ≥ θj , we have cj,tt ≥ max{lbt, θ

j−Pd
t

Rd
t−Pd

t
},

where lbt is the lower bound for the defender’s coverage at
t (line 5). This lower bound is updated in each iteration of
the while loop. In addition, for any other target k, it fol-
lows that Uak (c

j,t
k , R

a,j
k , P a,jk) ≤ Uat (c

j,t
t , R

a,j
t , P a,jt) which

means cj,tk ≥ max{lbk,
Ua

t (cj,tt ,Ra,j
t ,Pa,j

t)−Ra,j
k

Pa,j
k −Ra,j

k

}. Thus, the

higher cj,tt , the smaller Uat (c
j,t
t , R

a,j
t , P a,jt) and therefore,

the higher cj,tk for all k. The minimum coverage for target t

is then cj,tt = max{lbt, θ
j−Pd

t

Rd
t−Pd

t
} and for any other target k

is cj,tk = max{lbk,
Ua

t (cj,tt ,Ra,j
t ,Pa,j

t)−Ra,j
k

Pa,j
k −Ra,j

k

}.

Proposition 3. Given constraint j, suppose x is a feasi-
ble strategy s.t. θj ≤ v(x, Ra,j , P a,j) with key target t and
lower bound xk ≥ lbk,∀k. Then xk ≥ cj,tk ,∀k. 2

Proposition 4. For any constraint j, if cj,tk > cj,t
′

k for some
target k, then cj,ti ≥ c

j,t′

i for all targets i.

Prop. 3 implies that if xk < cj,tk for some k, x is not feasi-
ble given that t is the key target and θj ≤ v(x, Ra,j , P a,j).
In other words, cj,tk is a lower bound on all xk satisfy-
ing this condition. Prop. 4 implies that for any pair of
key targets t and t′, cj,tk ≥ cj,t

′

k for all targets k, or vice
versa. Taken together, the minimum defender coverages
are xjk = mint c

j,t
k , ∀k. As strategy x must satisfy θj ≤

v(x, Ra,j , P a,j) for all j ∈ S, xt ≥ xjt , ∀t. Therefore,
xt ≥ maxj x

j
t , ∀t (line 11).

2Proofs of all results and additional algo-
rithm details can be found in an online appendix:
http://teamcore.usc.edu/people/thanhhng/Papers/appendix2.pdf.

Since this minimum coverage xt may be infeasible (i.e.,
x 6∈ X), we test feasibility (line (12)). Furthermore, it may
not be feasible w.r.t. θ as it may now violate the constraints
for the chosen key targets in S. Thus, we check (line (13))
for violations that give an objective value less than θ. If so,
we update the lower bound on xt (line (14)). We repeat until
the constraint x ∈ X is violated or a feasible solution is
found. bCISM thus determines if some feasible x satisfies
θ ≥ v(x′, Ra, P a) − v(x, Ra, P a) for all (x′, (Ra, P a)) ∈
S. bCISM is guaranteed to provide a δ-optimal solution to
MMR, where δ is the binary-search termination threshold.

Computing Max Regret
The second sub-problem of MIRAGE is computation of
MR(x, I). This is accomplished with ALARM (Approx-
imate Linearization Algorithm for Reckoning Max re-
gret). Given Eq. 5, MR(x, I) requires computing the
strategy x′ and attacker payoff (Ra, P a) that maximize
the loss of x. However, value of v(x′, Ra, P a) =
maxt∈A(x′,Ra,Pa) U

d
t (x
′
t, R

d
t , P

d
t) depends on the attack set

A(x′, Ra, P a), which in turn is determined by the attacker’s
utility at each target t—Uat (x

′
t, R

a
t , P

a
t)=R

a
t (1−x′t)+P at x′t.

This is a non-convex function of variables x′t and (Rat , P
a
t),

making max regret a non-convex optimization problem. To
speed up computation, we now develop a linearization.

Both v(x′, Ra, P a) and v(x, Ra, P a) are dictated by the
key targets, which depend on (Ra, P a) ∈ I and x′ ∈ X. We
partition (I,X) into T 2 subsets such that each pair of targets
t, t′ are the key targets within a particular subset. We then
search over all pairs of possible key targets (t′, t) to compute
max regret. Specifically, given key targets (t′, t), max regret
can be reformulated as follows:

max
(Ra,Pa)∈I,x′∈X

Udt′(x
′
t′ , R

d
t′ , P

d
t′)− Udt (xt, Rdt , P dt) (15)

s.t. Uat′(x
′
t′ , R

a
t′ , P

a
t′)≥Uak (x′k, Rak, P ak), ∀k 6= t, t′ (16)

Uat (xt, R
a
t , P

a
t)≥Uak (xk, Rak, P ak), k∈N(t)\{t, t′} (17)

Uat (xt, R
a
t, P

a
t)≥Uak (xk, Rak, P ak)+ε, k /∈N(t)∪{t, t′} (18)

Uat′(x
′
t′ , R

a
t′ , P

a
t′)≥Uat (x′t, Rat , P at) (19)

Uat (xt, R
a
t , P

a
t)≥Uat′(xt′ , Rat′ , P at′) if t′ ∈ N(t) (20)

Uat (xt, R
a
t , P

a
t)≥Uat′(xt′ , Rat′ , P at′) + ε if t′ /∈ N(t) (21)

where N(t) = {k : Udt (xt, R
d
t , P

d
t) ≥ Udk (xk, R

d
k, P

d
k)} is

the set of targets at which the defender utility is lower than
the utility at t, and ε is a small positive constant. We sep-
arate constraints for key and non-key targets for exposi-
tory purposes. Constraints (17, 18, 20, 21) ensure that t
is the key target w.r.t. x, while ε ensures the strict inequal-
ity Uat (xt, Rat , P at) > Uak (xk, R

a
k, P

a
k) when Udt (xt, Rdt , P dt) <

Udk (xk, R
d
k, P

d
k) (or when k /∈ N(t)); otherwise, the attacker

will attack k instead of t (by tie-breaking). We do allow vio-
lation of the tie-breaking constraint for the key target t′ w.r.t.
x′ for each sub-problem (15-21). Searching over all possi-
ble key targets t′ guarantees the final solution will satisfy the
tie-breaking assumption.

Note that (Rak, P
a
k) and x′ are involved in computing

Uak (x
′
k, R

a
k, P

a
k) which makes this utility function non-

convex (constraints (16–19)). We could solve the MR prob-

lem (Eq. 15) using existing commercial solvers for non-
convex optimization (e.g., Knitro): (a) solve a non-convex
program for every combination of key targets (Multi-NLP);
or (b) formulate it as a mixed integer non-linear program
(MINLP, see Appendix). However, these perform poorly, as
we show below. Hence we use binary search to linearize
these non-convex constraints to approximate MR (noting
that they can be linearized if x′t′ and x′t are known).

Problem 5. (ALARM binary search decision problem)
Given a value θ, and t′, t as key targets: are there
(Ra, P a) ∈ I and x′ ∈ X satisfying (16–21), such that
Udt′(x

′
t′ , R

d
t′ , P

d
t′)− Udt (xt, Rdt , P dt) ≥ θ?

Proposition 6. If Problem 5 has a feasible solution, then
the following solution is feasible: Rak = Ramin(k) and
P ak = P amin(k), ∀k 6= t, t′; and x′t′ = x′min(t

′) =

max{0, θ+U
d
t (xt,R

d
t,P

d
t)−Pd

t′

Rd
t′−P

d
t′

}.

Thus, by replacing (Rak, P
a
k) with (Ramin(k), P

a
min(k)), for

all k 6= t, t′ and x′t′ with x′min(t
′), we are left with one

non-convex constraint (19). We circumvent this non-convex
constraint by converting Problem 5 into the following opti-
mization with a non-convex objective:

max
{x′

k}k6=t′,R
a
t,P

a
t ,R

a
t′,P

a
t′

Uat′(x
′
t′, R

a
t′, P

a
t′)−Uat (x′t, Rat, P at) (22)

s.t. updated (16–18, 20–21) (23)

Intuitively, constraint (19) is translated into the objec-
tive (22), maintaining other constraints with their updates
(Ramin(k), P

a
min(k)) and x′min(t

′).

Proposition 7. If the optimum of (22) is no less than zero,
Problem 5 has a feasible solution; otherwise it is infeasible.

As the objective (22) remains non-convex, and direct non-
convex methods are inefficient, we apply the following lin-
earization:

Proposition 8. If x′t is fixed, then the {x′k}k6=t′,t which min-
imizes maxk6=t,t′ U

a
k (x
′
k, R

a
k, P

a
k) are optimal for (22).

Recall that our variables areRat , P
a
t , R

a
t′ , P

a
t′ and x′k (k 6=

t′). Given a value of x′t, by Prop. 8 we can apply ORIGAMI
(Kiekintveld et al. 2009) to compute x′k for all k 6= t, t′

to minimize maxk 6=t,t′ U
a
k (x
′
k, R

a
k, P

a
k). The remaining vari-

ables are Rat , P
a
t , R

a
t′ , P

a
t′ . Starting with an initial value

x′t and the corresponding x′k for all k 6= t, t′ computed
by ORIGAMI, our local search, see Alg. 3, gradually up-
dates (Rat , P

a
t , R

a
t′ , P

a
t′) and x′k 6=t′ to find a local optimum

of Eq. (22). In Alg. 3, obj ∗ and obj ∗∗ are the optimal objec-
tive values of Eq. (22) given x′k 6=t′ and (Rat , P

a
t , R

a
t′ , P

a
t′)
∗,

respectively. By fixing either x′k 6=t′ or (Rat , P
a
t , R

a
t′ , P

a
t′),

Eq. (22) becomes a linear program, allowing one to read-
ily obtain a locally optimal solution. Our experiments show
that randomly initializing x′t even just five times typically
suffices to find a global optimum.

Payoff Elicitation
Typically, defenders employ the services of expert risk ana-
lysts to assess the attacker payoffs at specific targets (Shieh

Algorithm 3: Local search
1 Initialize x′t, δ = inf;
2 Compute x′k 6=t,t′ which minimize max

k 6=t,t′
Uak (x

′
k, R

a
k, P

a
k)

using ORIGAMI;
3 while δ > 0 do
4 Given x′k 6=t′ , solve (22-23) to obtain obj ∗ and

(Rat , P
a
t , R

a
t′ , P

a
t′)
∗;

5 Given (Rat , P
a
t , R

a
t′ , P

a
t′)
∗, solve (22-23) to obtain obj ∗∗

and x′k 6=t′ ;
6 δ = obj ∗∗ − obj ∗;

7 return (obj ∗∗, (Rat , P
a
t , R

a
t′ , P

a
t′)
∗, x′k 6=t′ ;

et al. 2012). While our MMR methods offer robust deci-
sions in the face of payoff uncertainty, the resulting max
regret level may be too large in certain cases. Thus we de-
velop an interactive process whereby the defender can re-
duce her uncertainty w.r.t. attacker payoffs by querying the
expert, at some cost, for additional information about these
payoffs. Note however that reducing uncertainty for its own
sake often fails to improve max regret (Boutilier et al. 2006;
Braziunas and Boutilier 2010); attention must be focused on
those payoffs that actually influence decisions. We develop
preference elicitation strategies driven by MMR that focus
on “relevant” uncertainty. Generally, queries and payoff as-
sessment continue until MMR reaches an acceptable level or
some budget limit is met.

We consider bound queries, widely used in preference
elicitation (Boutilier et al. 2006; French 1986), in which an
expert is asked whether the attacker reward/penalty at some
target t is greater than some value p. For example, if the re-
ward interval at target t is [0, 10], we can ask if the reward
is greater than 5. A positive (negative) response increases
the lower bound to 5 (decreases the upper bound to 5). We
assume each query qt is associated with a single target t,
and queries both the reward Rat and penalty P at terms at the
midpoints of their corresponding intervals Irt and Ipt (since
assessment of a target generally provides information about
both). Thus each query has four possible responses. Query
costs may vary with the target.

Since reducing uncertainty at different targets impacts
max regret differently, and we may have a fixed budget,
queries must be chosen effectively. Alg. 4 outlines our elic-
itation procedure. We now describe three heuristic query
selection strategies.
Myopic strategy. We compute the average regret reduction
over the four possible responses to each query (target) and
query the target with the greatest average reduction.
Approximate strategy. The Myopic strategy may be com-
putationally inefficient as it relies on exact computation of
MMR for all 4T query responses. This strategy uses bCISM
to approximate MMR, but otherwise mimics Myopic.
Optimistic/pessimistic strategy. To maximize regret, at-
tacker payoffs are set within uncertainty intervals to in-
duce the attacker to select targets that cause greatest de-
fender loss: let the MMR solution set attacker payoffs to
be (R

a
, P

a
). If a query at target t obtains a response that

makes the attacker’s (say) rewardR
a

t infeasible (by respond-

Algorithm 4: Preference elicitation
1 Initialize totalcost = 0, regret =∞;
2 while totalcost < budget or regret > thres do
3 Find the best target t∗ using an elicitation strategy;
4 Ask a bound query regarding payoff of target t∗;
5 Update uncertainty interval Inew;
6 Update totalcost, recompute MMR;

ing with the half interval of Irt not containing R
a

t) max re-
gret may be reduced significantly. Our optimistic heuristic
evaluates queries by assuming optimistically that each query
response will rule out the current “regret-inducing” payoffs
at that target, and selects the query that, assuming this re-
sponse, offers the greatest MMR reduction. Our pessimistic
strategy is analogous. We combine the Optimistic and Pes-
simistic strategies with the Approximate strategy by replac-
ing the exact MMR computation with the approximation
bCISM, thereby increasing their computational efficiency.
We call these strategies Opt-Approx and Pess-Approx.

Experimental Evaluation
We evaluate the runtime and solution quality of our algo-
rithms on games generated using GAMUT.3 All experiments
were run on a 2.83GHz Intel processor with 4GB of RAM,
using CPLEX 12.3 for LP/MILPs and KNITRO 8.0.0.z for
nonlinear optimization. We set the covariance value r ∈
[0.0, 1.0] with step size λ = 0.2 to control the correlation of
attacker and defender rewards. Upper and lower bounds for
payoff intervals are generated randomly from [−14,−1] for
penalties and [1, 14] for rewards, with the difference between
the upper and lower bound (i.e., interval size) exactly 2 (this
gives payoff uncertainty of roughly 30%). All results are av-
eraged over 120 instances (20 games per covariance value)
and use eight defender resources unless otherwise specified.
All comparison results with our algorithms are statistically
significant under bootstrap-t (α = 0.05).

60 80 100
#Targets
20 60 100 140

#Targets

bCISM-10 bCISM-25
bCISM-40 mCISM

0

20

40

60

80

100

120

20 60 100 140

R
u

n
ti

m
e(

in
 s

ec
s)

#Targets

bCISM-10

bCISM-25

bCISM-40

mCISM

(a) Runtime

20 40 60 80 100
 #Targets

Multi NLP
NAME-1
NAME-10
NAME-20
MINLP

0

0.5

1

1.5

20 60 100 140

So
lu

ti
o

n
 Q

u
al

it
y

#Targets

bCISM-10 bCISM-25
bCISM-40 mCISM

(b) Solution quality

Figure 1: Evaluating discretized MMR algorithms

Evaluating MMR Algorithms We first evaluate our al-
gorithms for discretized MMR. Fig. 1(a) shows runtimes
of bCISM with 10, 25 and 40 initial samples from S, and
mCISM with 10 samples. bCISM is roughly 68 times faster
than mCISM (60 targets), and is rather insensitive to the
number of initial samples. Fig. 1(b) plots solution quality;
bCISM’s solutions are within 0.01% of the mCISM’s op-
tima. Thus, the computational efficiency of bCISM comes
at low cost in terms of solution quality.

3See http://gamut.stanford.edu/.

0

100

200

300

400

20 40 60 80 100

R
u

n
ti

m
e

(i
n

 s
e

cs
)

#Targets

Multi NLP

ALARM-1

ALARM-10

ALARM-20

MINLP

(a) Runtime

6

6.5

7

7.5

8

8.5

20 40 60 80 100

M
ax

 R
eg

re
t

 #Targets

Multi NLP
ALARM-1
ALARM-10
ALARM-20
MINLP

(b) Solution quality

Figure 2: Evaluating algorithms for computing MR

We next evaluate our three MR algorithms, ALARM
(with 1, 10 and 20 samples of x′t), MINLP, and Multi-NLP.
Fig. 2(a) shows that MINLP and Multi-NLP’s runtimes in-
crease exponentially with the number of targets. All in-
stances of ALARM run approximately 100 (resp., 30) times
faster than MINLP (resp., Multi-NLP) with 100 targets.
Fig. 2(b) plots their relative solution quality and shows that
ALARM, despite its exponential speedup, has at most a 1%
(avg.) loss in solution quality vs. MINLP and Multi-NLP.

#Targets

3.3

0

500

1000

1500

2000

2500

10 20 30 40

R
u

n
ti

m
e(

in
 s

ec
o

n
d

s)

Number of Targets

3000 Samples

100 Samples

(a) MIRAGE runtime

#Iterations

0

100

200

300

400

1 4 8 12 15

R
u

n
ti

m
e

(i
n

 s
e

cs
)

#Iterations

10 Target
20 Target
30 target
40 Target

(b) Runtime with iterations

2.5

2.7

2.9

3.1

3.3

1 4 8 12 16 20

M
in

im
ax

 R
e

gr
e

t

#Iterations

MIRAGE LB-40 MIRAGE UB-40

MIRAGE LB-20 MIRAGE UB-20

(c) MIRAGE convergence

2.5

2.7

2.9

3.1

3.3

0 100 200 300 400

M
in

im
ax

 R
eg

re
t

Runtime(in secs)

20 Targets

30 Targets

40 Targets

(d) MMR-runtime tradeoff

Figure 3: Evaluating MIRAGE properties

Since bCISM and ALARM handily outperform the other
algorithms, we now evaluate MIRAGE only using bCISM
and ALARM as its relaxed-MMR and MR subroutines.
Fig. 3(a) plots MIRAGE runtimes, as number of targets
varies, with either 100 and 3000 samples (constraints) added
at each iteration. With 50 targets (not shown), MIRAGE
takes about 10mins., and converges after 15 iterations. With
100 samples, MIRAGE takes longer to converge (about 6
times slower than with 3000); and runtime increases roughly
by a factor of 14 with every 5 targets. Fig. 3(b) shows MI-
RAGE’s runtime with the number of iterations (10 to 40
targets), while Fig. 3(c) shows progress of its MMR upper
and lower bounds (20 and 40 targets). This demonstrates a
promising anytime profile, allowing early termination with
high quality solutions. For instance, Fig. 3(c) shows, with
20 targets, that 9 iterations offers a solution within 5% of
minimax optimality. Fig. 3(d) shows the tradeoff between
runtime and (upper bound on) MMR (20 and 40 targets) up
to convergence, confirming the positive anytime profile.

Evaluating Payoff Elicitation Strategies We analyze the
performance of the three elicitation strategies described

0
1
2
3
4
5
6
7
8

1 4 8 12 16

M
in

im
a

x
 R

e
g

re
t

Elicitation Round

 Myopic-S Random-S Opt-Approx-S

 Pess-Approx-S Random-L Opt-Approx-L

 Pess-Approx-L

(a) Solution quality

0
200
400
600
800

1000
1200
1400

1 4 8 12 15

R
u

n
ti

m
e

(i
n

 s
e

c
s
)

Elicitation Round

 Myopic-S Random-S Opt-Approx-S

 Pess-Approx-S Random-L Opt-Approx-L

 Pess-Approx-L

(b) Runtime

Figure 4: Evaluating payoff elicitation strategies

above—Myopic, Opt-Approx and Pess-Approx—as well as
a Random strategy (with target queries chosen at random,
but eliciting at midpoints as above). We test on small prob-
lems with five targets (Random-S, etc.) and large prob-
lems with 20 targets (Random-L, etc.). Fig. 4(a) shows
how MMR decreases as we ask queries using the differ-
ent strategies. We see that Myopic is the most effective
strategy, followed by Opt-Approx, Pess-Approx, and Ran-
dom, which performs worst. Fig. 4(b) plots cumulative
runtime of the elicitation process using our different strate-
gies. Fig. 4(b) shows that Myopic is about 20 times slower
than the other strategies. Opt-Approx is not much slower
(1.08 times) than Random, while Pess-Approx is 1.24 times
slower than Random. We use five-target games primarily to
compare Myopic to the other methods; with 20 targets, My-
opic is intractable and cannot be evaluated. With five targets,
the strategies (unsurprisingly) do not vary much in elicita-
tion performance. However, with 20 targets, Opt-Approx
reduces MMR significantly faster than Random or Pess-
Approx. Given its computational effectiveness, it seems to
be a reasonable choice for payoff elicitation. However, all
strategies point to tradeoffs that, depending on the task at
hand and available budget, may make any of them viable.

Summary

Despite significant applications of SSGs for protecting ma-
jor critical infrastructure, research on robustness in SSGs
has, to date, focused only on one concept, maximin over
interval uncertainty of payoffs. This approach unfortunately
leads to extremely conservative security allocations. To rem-
edy this shortcoming, we have proposed the use of MMR as
a decision criterion for payoff-uncertain SSGs and presents
efficient algorithms for computing MMR for such games.
Furthermore, we have addressed, for the first time, the chal-
lenge of preference elicitation in SSGs, providing novel
regret-based solution strategies. Experimental results vali-
date the effectiveness of our approaches w.r.t. both compu-
tational and informational efficiency.

Acknowledgements: This research was supported by MURI Grant
W911NF-11-1-0332, by CREATE under grant number 2010-ST-
061-RE0001. Boutilier was supported by NSERC and An was sup-
ported by MOE AcRF Tier 1 grant RG33/13.

References
Aghassi, M., and Bertsimas, D. 2006. Robust game theory.
Mathematical Programming 107(1-2):231–273.
Basilico, N.; Gatti, N.; and Amigoni, F. 2009. Leader-
follower strategies for robotic patrolling in environments
with arbitrary topologies. In AAMAS.
Boutilier, C.; Patrascu, R.; Poupart, P.; and Schuurmans, D.
2006. Constraint-based optimization and utility elicitation
using the minimax decision criterion. Artificial Intelligence
170(8):686–713.
Boutilier, C.; Sandholm, T.; and Shields, R. 2004. Eliciting
bid taker non-price preferences in (combinatorial) auctions.
In AAAI, 204–211.
Boutilier, C. 2013. Computational decision support: Regret-
based models for optimization and preference elicitation.
Braziunas, D., and Boutilier, C. 2010. Assessing regret-
based preference elicitation with the utpref recommendation
system. In Proceedings of the 11th ACM conference on Elec-
tronic commerce, 219–228. ACM.
Conitzer, V. 2012. Computing game-theoretic solutions and
applications to security. In AAAI.
De Farias, D. P., and Van Roy, B. 2004. On constraint sam-
pling in the linear programming approach to approximate
dynamic programming. Mathematics of operations research
29(3):462–478.
French, S. 1986. Decision theory: an introduction to the
mathematics of rationality. Halsted Press.
Hyafil, N., and Boutilier, C. 2004. Regret minimizing equi-
libria and mechanisms for games with strict type uncertainty.
In Proceedings of the 20th conference on Uncertainty in ar-
tificial intelligence, 268–277. AUAI Press.
Jain, M.; An, B.; and Tambe, M. 2013. Security games ap-
plied to real-world: Research contributions and challenges.
In Moving Target Defense II. Springer. 15–39.
Kiekintveld, C.; Jain, M.; Tsai, J.; Pita, J.; Ordóñez, F.; and
Tambe, M. 2009. Computing optimal randomized resource
allocations for massive security games. In The Eighth Inter-
national Conference on Autonomous Agents and Multiagent
Systems.
Kiekintveld, C.; Islam, T.; and Kreinovich, V. 2013. Secu-
rity games with interval uncertainty. In AAMAS.
Kiekintveld, C.; Marecki, J.; and Tambe, M. 2011. Approx-
imation methods for infinite bayesian stackelberg games:
modeling distributional payoff uncertainty. In AAMAS.
Kouvelis, P., and Yu, G. 1997. Robust discrete optimization
and its applications, volume 14. Springer.
Regan, K., and Boutilier, C. 2009. Regret-based reward
elicitation for markov decision processes. In Proceedings
of the Twenty-Fifth Conference on Uncertainty in Artificial
Intelligence, 444–451. AUAI Press.
Renou, L., and Schlag, K. H. 2010. Minimax regret
and strategic uncertainty. Journal of Economic Theory
145(1):264–286.

Salo, A. A., and Hamalainen, R. P. 2001. Preference ra-
tios in multiattribute evaluation (prime)-elicitation and de-
cision procedures under incomplete information. Systems,
Man and Cybernetics, Part A: Systems and Humans, IEEE
Transactions on 31(6):533–545.
Savage, L. 1972. The foundations of statistics. DoverPubli-
cations. com.
Shieh, E.; An, B.; Yang, R.; Tambe, M.; Baldwin, C.; Di-
Renzo, J.; Maule, B.; and Meyer, G. 2012. Protect: A
deployed game theoretic system to protect the ports of the
united states. In International Conference on Autonomous
Agents and Multiagent Systems (AAMAS).
Tambe, M. 2011. Security and Game Theory: Algorithms,
Deployed Systems, Lessons Learned. Cambridge University
Press.
Von Stengel, B., and Zamir, S. 2004. Leadership with com-
mitment to mixed strategies.
Yin, Z., and Tambe, M. 2012. A unified method for handling
discrete and continuous uncertainty in bayesian stackelberg
games. In AAMAS.
Yin, Z.; Jain, M.; Tambe, M.; and Ordóñez, F. 2011. Risk-
averse strategies for security games with execution and ob-
servational uncertainty. In AAAI.

