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Abstract

Most analyses of manipulation of voting schemes
have adopted two assumptions that greatly di-
minish their practical import. First, it is usually
assumed that the manipulators have full knowl-
edge of the votes of the nonmanipulating agents.
Second, analysis tends to focus on the probabil-
ity of manipulation rather than its impact on the
social choice objective (e.g., social welfare). We
relax both of these assumptions by analyzing op-
timal Bayesian manipulation strategies when the
manipulators have only partial probabilistic in-
formation about nonmanipulator votes, and as-
sessing the expected loss in social welfare (in the
broad sense of the term). We present a gen-
eral optimization framework for the derivation
of optimal manipulation strategies given arbi-
trary voting rules and distributions over prefer-
ences. We theoretically and empirically analyze
the optimal manipulability of some popular vot-
ing rules using distributions and real data sets
that go well beyond the common, but unrealis-
tic, impartial culture assumption. We also shed
light on the stark difference between the loss in
social welfare and the probability of manipula-
tion by showing that even when manipulation is
likely, impact to social welfare is slight (and often
negligible).

1 INTRODUCTION

The use of voting rules to aggregate preferences has
become a topic of intense study, and one of great im-
portance in ranking, recommender systems, resource
allocation, and other applications of social choice to
computational systems. One of the most challenging
topics in computational social choice is the study of
manipulation: given a voting rule, there is usually
some set of voter preferences such that one or more
voters can obtain a more desirable outcome by misre-
porting their preferences. Indeed, except under very
stringent assumptions, voting rules that are not ma-
nipulable do not exist [18, 33]. An important line
of research, initiated by Bartholdi et al. [2, 3], shows

that it can be computationally difficult to manipulate
certain rules. However, since worst-case complexity
is not itself a significant barrier to manipulation, re-
cent attention has focused on theoretical and empir-
ical demonstration that manipulation is often, or on
average, tractable for certain stylized preference dis-
tributions [11, 31, 16, 35].

While our understanding of manipulation has im-
proved immensely, some significant deficiencies remain
in the state of the art. First, analysis of manipulation
is often confined to cases in which the manipulators
have complete knowledge of the preferences of sincere
voters. While there are reasons for this, such analyses
offer too pessimistic a picture of manipulability, since
manipulators rarely have access to such information.

The main contribution of our work is a framework
for analyzing optimal Bayesian manipulation strate-
gies under realistic knowledge assumptions, namely,
manipulators with partial, probabilistic knowledge of
voter preferences. Since success of a manipulation is
generally uncertain, the optimal strategy simply max-
imizes the odds of success. This depends critically on
the voting rule, the number of voters, and the pref-
erence distribution—as a result, general analytical re-
sults are difficult to obtain. We instead present an em-
pirical methodology that, assuming only the ability to
sample vote profiles from the preference distribution,
allows one to compute an optimal manipulation strat-
egy. We illustrate this methodology on several prefer-
ence distributions (including real-world data). We also
derive sample complexity bounds that provide quality
guarantees on the resulting strategies. This framework
provides the ability to analyze the manipulability of
most voting rules under any probabilistic knowledge
assumptions—arbitrary priors, posteriors conditioned
on available evidence, even the special case of complete
knowledge—requiring only that the preference distri-
bution be sampleable.

While the computational framework is general, we also
analytically derive optimal manipulation strategies for



the k-approval rule (and the Borda rule in a limited
fashion) under standard impartial (and anonymous)
culture assumptions. However, since impartial culture
is rare in practice [32], these results are primarily of
theoretical interest.

A second deficiency of current manipulation analyses
pertains to the emphasis on success probability. We
adopt a decision-theoretic perspective that provides a
more nuanced picture of manipulability of various vot-
ing rules. Intuitively, the more preferred an alternative
is to the sincere voters, the more likely it is that ma-
nipulators can succeed in causing the alternative to be
selected. As such, probability of manipulation does
not tell the whole story, since alternatives with higher
success probability cause less societal dissatisfaction.
To this end, we interpret the “score” associated with
specific alternatives under a given voting rule as an
explicit social choice objective—i.e., a social welfare
function in the broad sense of the term—and propose
analyzing rules in this light. We recognize that vot-
ing protocols are often applied in settings where max-
imizing (some form of) social welfare is not the main
objective; but we argue below that this perspective
is natural in many applications, and our methodology
applies to measures of social welfare different from the
“score” used by the voting rule itself.

Along these lines, we derive theoretical bounds on the
impact of manipulation on social welfare for the spe-
cial case of positional scoring rules. More importantly,
while distribution-dependent analytical results are dif-
ficult to obtain, we can exploit our ability to iden-
tify optimal manipulation strategies: by sampling vote
profiles from the distribution, computing the loss in
welfare under the optimal manipulation strategy, and
averaging the results, we can readily determine the
expected impact on welfare for any specific distribu-
tion. Our empirical results show that manipulation for
certain rules, under realistic knowledge assumptions,
generally causes little damage.

2 BACKGROUND

We briefly review relevant background; see [17, 9] for
further detail on (computational) social choice.

2.1 VOTING RULES

We assume a set of n voters N = {1, . . . , n} and a
set of m alternatives A = {a1, . . . , am}. A voter i’s
preferences are represented by a ranking or permuta-
tion vi over A. If vi(a) is the rank of a in vi, we say
i prefers aj to ak, if vi(aj) < vi(ak). We refer to vi
as i’s vote. A preference profile is a collection of votes
v = (v1, . . . , vn). Let V be the set of all such profiles.

A voting rule r : V → A selects a “winner” given a
preference profile. Common voting rules include plu-
rality, approval, Borda, single transferable vote (STV)
and many others. We will use positional scoring rules
frequently in the sequel. Let α = (α1, . . . , αm) be
a non-negative positional scoring vector, where αi ≥
αi+1 for all i ≥ 1. Intuitively, a earns score αi for ev-
ery vote that places it in position i, and the alternative
with the greatest total score wins.1 More formally, let
the m × m positional summary matrix (PSM) X for
profile v have entry Xij equal to the number of votes
that rank ai in position j. Then the score sα(ai;v)
of ai is the i-th entry of Xα′. Several important rules
can be defined using positional scores: plurality by
(1, 0, . . . , 0); k-approval by (1, 1, . . . , 0, 0), with k 1s;
and Borda by (m− 1,m− 2, . . . , 0).

Many voting rules—not just positional rules, but rules
such as maximin, Copeland, Bucklin, Kemeny, and
many others—explicitly score all alternatives, assign-
ing a score s(a,v) that defines some measure of the
quality of alternative a given a profile v, then choos-
ing the alternative with maximum score. This can be
viewed as implicitly defining a social choice objective
that is optimized by the voting rule, or more broadly
as a social welfare function, that expresses some “soci-
etal utility” for each alternative.2 While this interpre-
tation may not be valid in all contexts, we will refer
to s(a,v) as the social welfare of a under rule r for
voters with preferences v, and write this as SW (a,v)
to emphasize this view. We discuss this further below.

2.2 MANIPULATION

By manipulation we refer to a coalition of one or more
voters obtaining a more desirable outcome by misre-
porting their preferences. Indeed, except under very
stringent conditions (e.g., single-peaked preferences),
the classic Gibbard-Sattherwaite theorem shows that
no scheme is immune to manipulation [18, 33]. In
other words, there is some preference profile for which
at least one voter can obtain a better outcome by
misreporting. In the remainder of the paper, we fo-
cus on constructive manipulation, in which a coalition
attempts to cause a single “preferred” candidate to
win. We emphasize however that the general prin-
ciples underlying our approach apply equally well to
other forms of manipulation such as destructive ma-
nipulation or utility maximization (see below).

1In Sec. 3, we assume that tie-breaking works against
the desired alternative of the manipulators.

2We we use the term “social welfare” in its broadest
sense, referring to any means of ranking social outcomes.
Specifically, we do not assume its more restricted defini-
tion, commonly used in mechanism design, as “sum of in-
dividual voter utilities.”



Whether manipulation is a problem in practice de-
pends on: how likely such manipulable preference pro-
files are; whether manipulators can detect the exis-
tence such a profile; and whether computing a suit-
able misreport is feasible. On this third point, the pi-
oneering work of Bartholdi et al. [2, 3] demonstrated
that, even given full knowledge of a profile, computing
a suitable manipulation is computationally intractable
for certain voting rules. This in turn led to the detailed
computational analysis of many voting rules (e.g., the
Borda rule [13, 4]). Of course, worst-case complexity
results offer little comfort if “difficult profiles” are un-
likely to arise in practice. Recent work suggests that
common voting rules are in fact frequently manipu-
lable, by studying heuristic algorithms that provide
theoretical guarantees [31, 41, 39], identifying proper-
ties of voting rules that make them easy to manipulate
in the typical case [11, 16, 40], and investigating (both
theoretically and empirically) the relation between the
number of manipulators and the probability of manip-
ulation [30, 38, 35] (see [15] for an overview).

Analyses demonstrating ease of manipulation tend to
suffer from two key drawbacks. First, they exclu-
sively analyze manipulation assuming the manipulat-
ing coalition has full knowledge of the vote profile.
While results showing that manipulation is difficult
can be justified on these grounds, claiming easiness
of manipulation has less practical import if the coali-
tion is assumed to have unreasonable access to the
preferences of sincere voters.3 One exception consid-
ers manipulators who know only that the vote profile
lies within some set [12], but unfortunately this work
only analyzes the rather weak notion of dominating
manipulations. Social choice research on manipula-
tion under probabilistic knowledge is mostly negative
in nature [23], or restricted to a single manipulator [1].

A second weakness of many analyses of probability of
manipulation (which do assume complete information
on the part of the manipulator) is their reliance on spe-
cific stylized models such as impartial culture (where
every ranking in equally likely) [16, 40]. Much em-
pirical work also considers very stylized distributions
such as impartial culture, Polya’s urn, and Condorcet
(or Mallows) distributions. Some work does consider
sub-sampling from real voting data, though with rela-
tively small numbers of votes [36].

2.3 PROBABILISTIC RANKING MODELS

Probabilistic analysis of manipulation—including our
Bayesian manipulation problem—requires some prob-

3This is implicit in [10], which shows that hardness
of full-information manipulation implies hardness under
probabilistic information.

abilistic model of voter preferences. By far the most
common model in social choice is impartial culture
(IC), which assumes the preference of any voter is
drawn from the uniform distribution over the set of
permutations of alternatives [32]. A related model is
the impartial anonymous culture (IAC) model in which
each voting situation is equally likely [32].4 Several
other models (bipolar, urn, etc.) are considered in
both theoretical and empirical social choice research.

Probabilistic models of rankings are widely consid-
ered in statistics, econometrics and machine learning
as well, including models such as Mallows φ-model,
Plackett-Luce, and mixtures thereof [25]. We use the
Mallows φ-model [24] in Sec. 6, which is parameterized
by a reference ranking σ and a dispersion φ ∈ (0, 1],
with P (r) = 1

Zφ
d(r,σ), where r is any ranking, d is

Kendall’s τ -distance, and Z is a normalizing constant.
When φ = 1, this model is exactly the impartial cul-
ture model studied widely in social choice—as such it
offers considerable modelling flexibility. However, mix-
tures of Mallows models offer even greater flexibility,
allowing (with enough mixture components) accurate
modelling of any distribution over preferences. As a
consequence, Mallows models, and mixtures thereof,
have attracted considerable attention in the machine
learning community [27, 8, 20, 26, 21]. We investigate
these models empirically below.

3 OPTIMAL BAYESIAN
MANIPULATION

We now consider how a manipulating coalition should
act given probabilistic knowledge of the preferences of
the sincere voters. We first formally define our setting,
then present several analytical results. Finally, we
present a general, sample-based optimization frame-
work for computing optimal manipulation strategies
and provide sample complexity results for positional
scoring rules and k-approval.

3.1 THE MODEL

We make the standard assumption that voters are par-
titioned into n sincere voters, who provide their true
rankings to a voting mechanism or rule r, and a coali-
tion of c manipulators. We assume the manipulators
have a desired alternative d ∈ A, and w.l.o.g. we as-
sume A = {a1, . . . , am−1, d}. We make no assumptions
about the manipulators’ specific preferences, only that
they desire to cast their votes so as to maximize the
probability of d winning under r. A vote profile can be
partitioned as v = (vn,vc), where vn reflects the true

4A voting situation simply counts the number of voters
who hold each possible ranking of the alternatives.



preferences of the n sincere voters and vc the reported
preferences of the c manipulators.

In contrast to most models, we assume the coalition
has only probabilistic knowledge of sincere voter pref-
erence: a distribution P reflects these beliefs, where
P (vn) is the coalition’s degree of belief that the sin-
cere voters will report vn. We refer to the problem
facing the coalition as a Bayesian manipulation prob-
lem. Manipulator beliefs can take any form: a simple
prior based on a standard preference distributions; a
mixture model reflecting beliefs about different voter
“types;” or a posterior formed by conditioning on ev-
idence the coalition obtains about voter preferences
(e.g., through polling, subterfuge, or other means).
This latter indeed seems to be the most likely fashion
in which manipulation will proceed in practice. Fi-
nally, the standard full knowledge assumption is cap-
tured by a point distribution that places probability 1
on the actual vote profile. We sometimes refer to P
as a distribution over individual preferences, which in-
duces a distribution over profiles by taking the product
distribution Pn.

The coalition’s goal is to cast a collective vote vc that
maximizes the chance of d winning:

argmax
vc

∑
vn: r(vn,vc)=d

P (vn).

We refer to this vc as an optimal Bayesian manipula-
tion strategy. For most standard voting rules, this is
equivalent to maximizing the probability of manipula-
tion, which is the above sum restricted to profiles vn
such that r(vn) 6= d.

While we focus on constructive manipulation, our gen-
eral framework can be applied directly to any reason-
able objective on the part of the manipulating coali-
tion. Plausible objectives include: destructive manip-
ulation, which attempts to prevent a specific candidate
from winning; safe manipulation, where a coalitional
voter is unsure whether his coalitional colleagues will
vote as planned [34, 19]; or utility maximization, which
attempts to maximize (expected) utility over possible
winning candidates. Notice that constructive manipu-
lation can be interpreted as utility maximization with
a 0-1 utility for the desired candidate d winning.

3.2 ANALYTICAL RESULTS

Our aim is to determine optimal manipulation strate-
gies given any probabilistic beliefs that the coalition
might hold, for arbitrary voting rules. Given this gen-
eral goal, tight analytical results and bounds are in-
feasible, a point to which we return below. We do pro-
vide here two results for optimal manipulation under
impartial (and impartial anonymous) culture. Since

this style of analysis under partial information is rare,
these results suggest the form that further results (e.g.,
for additional rules and more general distributions)
might take. However, as argued elsewhere [32], this
preference model is patently unrealistic, so we view
these results as being largely of theoretical interest.
Indeed, the difficulty in obtaining decent analytical
results even for simple voting rules under very styl-
ized distributions strongly argues for a more general
computational approach to manipulation optimization
that can be applied broadly—an approach we develop
in the next section.

We begin with an analysis of the k-approval rule.
When sincere votes are drawn from the uniform distri-
bution over rankings, each alternative will obtain the
same number of approvals in expectation. Intuitively,
the coalition should cast its votes so that each approves
d, and all alternatives apart from d receive the same
number of approvals from the coalition (plus/minus 1
if c(k−1) is not divisible by m−1): we refer to this as
the balanced strategy. Indeed, this strategy is optimal:

Theorem 1. The balanced manipulation strategy is
optimal for k-approval under IC and IAC.5

Things are somewhat more complex for the Borda rule,
and we provide results only for the case of three can-
didates under IC and IAC. Apart from the balanced
strategy, we use a near-balanced strategy, where the
coalition’s total approval score for d is c, and the scores
for the two candidates apart from d differ by at most
2.

Theorem 2. Let A = {x, y, d} be a set of three al-
ternatives, assume c is even. Then the either the bal-
anced strategy or the near-balanced strategy is the op-
timal manipulation strategy for Borda under both IC
and IAC. Furthermore, the balanced strategy is opti-
mal if either: (i) n is even and c + 2 is divisible by
four; or (ii) n is odd and c is divisible by four.

4 A GENERAL OPTIMIZATION
FRAMEWORK

Analytical derivation of optimal Bayesian manipula-
tion strategies is difficult; and even for a fixed voting
rule, it is not viable for the range of beliefs that manip-
ulators might possess about the voter preferences. For
this reason, we develop a general optimization frame-
work that can be used to estimate optimal strategies
empirically given only the ability to sample vote pro-
files from the belief distribution. The model will allow
direct estimation of the probability of manipulation

5The nontrivial proofs of the results in this section can
be found in the appendix of a longer version of this paper;
see: http://www.cs.toronto.edu/∼cebly/papers.html.



(and social cost, see below). The model can be adapted
to most voting rules, but we focus our development us-
ing positional scoring rules for ease of exposition.

The main idea is straightforward. Suppose we have
a sample of T vote profiles from preference distribu-
tion P . For each vote profile, a given manipulation
will either succeed or not; so we construct an opti-
mization problem, usually in the form of a mixed-
integer program (MIP), that constructs the manipu-
lation that succeeds on the greatest number of sam-
pled profiles. If enough samples are used, this ap-
proximately maximizes the probability of d winning,
or equivalently, the probability of successful manipu-
lation by the coalition. The formulation of the opti-
mization problem—including the means by which one
summarizes a sampled vote profile and formulates the
objective—depends critically on the voting rule being
used. We illustrate the method by formulating the
problem for positional scoring rules.

Assume a positional scoring rule using score vector
α. A sampled vote profile can be summarized by a
(summary) score vector s = (s1, . . . , sm), where si is
the total score of ai in that profile; hence we will treat
a profile and its score vector interchangeably. Assume
T sampled profiles S = {s1, . . . , sT }. A manipulation
strategy vc can be represented by a PSM X, where Xij

denotes the number manipulators who rank candidate
ai in jth position. The total score of each candidate
for a given profile s is then s + Xα′.

This strategy representation simplifies the formulation
of the optimization problem significantly (by avoid-
ing search over of all possible collections of rankings).
Moreover, it is not difficult to recover a set of manipu-
lator votes vc that induce any such X, using properties
of perfect matchings on c-regular bipartite graphs:

Lemma 3. A matrix X is the PSM for some manipu-
lation strategy vc iff X ∈ Nm×m≥0 and X1 = X′1 = c1.

Our aim then reduces to finding a PSM X satisfy-
ing the above properties such that Xα′ maximizes
the probability of manipulation. We can recover the
optimal manipulation strategy v∗c (i.e., a set of c
votes) in polynomial time using an algorithm to find
c edge-disjoint perfect matchings in a c-regular bipar-
tite graph. Specifically, we construct a bipartite graph
with candidates forming one set of nodes and “vote
positions” forming the second set. We connect these
two sets of nodes with a multi-set of edges, with ex-
actly Xij (duplicate) edges connecting candidate i to
position j. We find a perfect matching in this graph
to determine one manipulator vote, remove the cor-
responding edges, and repeat the process (decreasing
each row and column sum by one at each iteration).

We formulate the problem of finding an (approxi-

mately) optimal Bayesian manipulation strategy as a
MIP which constructs a PSM X maximizing the num-
ber of sampled profiles in S on which d wins. We
assume, for ease of exposition only, that α has in-
tegral entries. First note that in any optimal strat-
egy, Xd1 = c and Xdj = 0 for all j > 1, which im-
plies Xi1 = 0 for all ai 6= d. Otherwise we require
Xij ∈ {0, . . . , c} and row and column sum constraints:

m∑
j=2

Xij = c ∀ai 6= d,

m∑
i=1
i 6=d

Xij = c ∀j > 1.

We use variables Iti ∈ [0, 1] for all t ≤ T, i 6= d, where
Iti = 1 iff candidate ai’s total score with manipulators
is strictly less than d’s total score, constrained as:

std + cα1 − sti −
m∑
j=2

Xijαj ≥

α1(n+ c)(Iti − 1) + 1 ∀t, ai 6= d. (1)

The left-hand side of Eq. (1) is the score difference
between d and ai, bounded (strictly) from below by
−α1(n+ c). If it is less than 0, then Iti < 1; otherwise,
Iti is unconstrained by Eq. (1), and will take value 1
(due to the maximization objective below). Finally,
we use variables It ∈ {0, 1} to indicate whether d wins
under X on profile st, requiring:∑

ai 6=d

Iti ≥ (m− 1)It ∀t. (2)

If d’s score is less than that of some ai, then the sum in
Eq. (2) is smaller than m−1, forcing It = 0 (otherwise
the maximization objective will force it to 1). We use
the following natural maximization objective:

max
I,X

T∑
t=1

It. (3)

If d wins in sample s prior to manipulation (see below),
d still wins after manipulator votes are counted, but
we do not consider this to be “successful manipula-
tion.” Thus, the estimated probability of manipulation
(distinct from the probability of d winning) is the MIP
objective value less the number of profiles in S where
d would have won anyway.

The MIP can be simplified greatly. First notice that d
cannot win, even with manipulation, in profile st if:

std + cα1 ≤ cαm + max
i
sti. (4)

Any such profiles—and all corresponding variables and
constraints—can be pruned from the MIP. Similarly,
we can prune any profile where d wins regardless of
the manipulation. This occurs when d wins without
manipulator votes or is very close to winning:

std + cα1 > cα2 + max
i
sti. (5)



This pruning can greatly reduce the size of the MIP
in practice, indeed, in expectation by a factor equal
to the probability P that a random profile satisfies
condition (4) or (5). The MIP has at most a total of
(T +2)m−2 constraints, (m−1)2+T integer variables
and T (m − 1) continuous variables, where T is the
number of non-pruned profiles.

While pruning has a tremendous practical impact, the
optimal Bayesian manipulation problem for scoring
rules remains NP-hard: this follows from the NP-
hardness of Borda manipulation with a known profile
[13, 4], and the observation that a single known profile
corresponds to a special case of our problem.6

The remaining question has to do with sample com-
plexity: in order to have confidence in our estimate,
how many samples T should we use? Specifically, if
we set a PAC target, obtaining an ε-accurate estimate
of the probability of d winning with confidence 1− δ,
the required number of samples depends on the VC
dimension Dα of the class of boolean-valued functions
over vote profiles (or more generally the corresponding
score vectors s = (s1, . . . , sm)):

Fα = {s 7→ 1[d unique max of Xα′ + s] | ∀X}.

Using known results [14], on counting |Fα| one obtains
supαDα ∈ O(cm ln(cm) + c2). Standard sample com-
plexity results then apply directly:

Proposition 4. There exists a constant C > 0 such
that if T ≥ C(cm ln(cm) + c2 + ln(1/δ))/ε2 then for
any distribution P , with probability 1− δ over sample
S of size T , we have q̂ ≤ q∗+ ε, where q∗ is the proba-
bility of manipulation of the best strategy, and q̂ is the
probability of manipulation given the optimal solution
to the MIP.

For specific positional rules, the sample complexity
may be smaller. For example, using standard results
on compositions of integers, k-approval gives rise to a
VC dimension of Dkappr ≤ log2

(
m+ck−1
ck−1

)
, giving the

following sample complexity result:

Proposition 5. If T ≥ 256(2 log2

(
m+ck−1
ck−1

)
+

ln(4/δ))/ε2 then for any P , with probability 1− δ over
sample S of size T , we have q̂ ≤ q∗ + ε, where q∗ is
the probability of manipulation under the best strategy
for k-approval and q̂ is the probability of manipulation
given the optimal solution to the MIP for k-approval.

Furthermore, tighter results could be obtained with
specific knowledge or constraints on the distribution

6A partial LP relaxation of the MIP may be valuable
in practice: allowing entries of X to be continuous on [0, 1]
provides an upper bound on (optimal Bayesian) success
probability. Our computational experiments did not re-
quire this approximation, but it may be useful for larger
problems.

P . Of course, such sample complexity results are con-
servative, and in practice good predictions can be real-
ized with far fewer samples. Note also that this sample
complexity is only indirectly related to the complexity
of the MIP, due to the pruning of (typically, a great
many) sampled profiles.

5 IMPACT OF MANIPULATION
ON SOCIAL WELFARE

As discussed above, characterizing the impact of a
manipulating coalition’s action solely in terms of its
probability of succeeding can sometimes be misleading.
This is especially true when one moves away from po-
litical domains—where a utility-theoretic interpreta-
tion of voting may run afoul of policy, process and fair-
ness considerations—into other settings where voting
is used, such as resource allocation, consumer group
recommendations, hiring decisions, and team decision
making [7]. In such domains, it is often natural to
consider the utility that a group member (“voter”) de-
rives from the choice or decision that is made for the
group as a whole. However, even in “classical” voting
situations, most voting protocols are defined using an
explicit score, social choice objective, or social welfare
function; as such, analyzing the expected loss in this
objective due to (optimal) manipulation is a reason-
able approach to characterizing the manipulability of
different voting rules.

Intuitively, manipulation is more likely to succeed
when the desired candidate d is “closer to winning”
under a specific voting rule (in the absence of manipu-
lation) than if the candidate is “further from winning.”
In a (very loose) sense, if candidates that are “closer
to winning” are those that are generally ranked more
highly by group members, this means that such candi-
dates are generally more desirable. As a consequence,
social welfare for alternative d must be close to that
of the optimal (non-manipulated) alternative if d has
a reasonable chance of winning, which in turn means
that the damage, or loss in social welfare, caused by
manipulation will itself be limited. In this section
we formalize this intuition and provide some simple
bounds on such damage. We investigate this empiri-
cally in the next section.

Assume a voting rule r based on some social welfare
measure SW (a,v) over alternatives a and (reported)
preference profiles v; hence r(v) ∈ argmaxa SW (a,v).
As above, we partition the vote profile: v = (vn,vc).
We are interested in the loss in social welfare, or regret,
imposed on the honest voters by a manipulation, so



define this to be:

R(vn,vc) = SW (r(vn),vn)− SW (r(v),vn).7 (6)

The expected regret of a specific manipulation, given
distribution P over preference profiles vn, is then:

ER(P,vc) = E
vn∼P

[R(vn,vc)] . (7)

Notice that any social welfare function SW that de-
termines the quality of a candidate a given the sin-
cere vote profile vn can be used in Eq. 6; we need not
commit to using r’s scoring function itself. However,
assessing loss does require the use of some measure
of societal utility or welfare. If one is concerned only
with whether the “true winner” is selected, then prob-
ability of manipulation, as discussed above, is the only
sensible measure.

We illustrate the our framework by deriving several
bounds on loss due to manipulation using positional
scoring rules to measure social welfare.8 We can derive
theoretical bounds on expected regret for positional
scoring rules. First, notice that expected regret can
be bounded for arbitrary distributions:

Proposition 6. Let r be a positional scoring rule with
score vector α. Then for any distribution P , and any
optimal manipulation strategy vc w.r.t. P , we have

ER(P,vc) < c[(α1 − αm)P (r(vn) 6= d ∧ r(v) = d)

+ (α2 − αm)P (r(vn) 6= r(v) ∧ r(v) 6= d)]. (8)

Intuitively, this follows by considering the maximum
increase in score the manipulating coalition can cause
for d relative to an alternative a that would have won
without the manipulators.

Proof of Prop. 6. Consider any vn. Clearly, d is
ranked first by all votes in vc. Case 1: if d wins in
vn then d also wins on v. Case 2: if ai wins in vn
but d wins on v then SW (ai) + αmc ≤ SW (ai) +
SW (ai,vc) < SW (d) + α1c implying R(vn,vc) <

7We assume a voting rule and welfare measure that can
accept variable numbers of voters, as is typical.

8One reason to consider positional scoring rules like
Borda in analyzing impact on social welfare is the tight
connection between scoring rules and social welfare maxi-
mization in its narrow sense (i.e., sum of individual utili-
ties). In models where we desire to maximize sum of util-
ities relative to some underlying utility profile, voting is
a relatively simple and low-cost way (i.e., with minimal
communication) of eliciting partial preference information
from voters. Analysis of the distortion of utilities induced
by restricting voters to expressing ordinal rankings shows
that, with carefully crafted positional rules, one can come
close to maximizing (this form of) social welfare [37, 29, 6].
Borda scoring, in particular, seems especially robust in this
sense.

c(α1 − αm). Case 3: if ai wins in vn and aj 6= ai wins
in vc then SW (ai) + αmc ≤ SW (ai) + SW (ai,vc) ≤
SW (aj) +α2c implying R(vn,vc) ≤ c(α2−αm). Case
4: if r(vn) = r(vc) then regret is zero. Summing 2
and 3 gives the upper bound on expected regret.

The proposition applies when P reflects full knowledge
of vn as well; and while this P -dependent bound will
be crude for some P , it is in fact tight in the worst-case
(which includes full knowledge distributions):

Proposition 7. Suppose α1 + · · · + αm = M , m − 1
divides c and n− c ≥ 0 is even. Then

sup
n,c,α

sup
P
ER(P,vc) = cM. (9)

Proof. The upper bound on the LHS follows from the
RHS of Eq. 8 since it is at most c(α1 − αm) ≤ cM .
For the lower bound on the LHS, let P be a point
mass on {vn}: in vn, the first c votes rank a1 first
and the remaining alternatives a2, . . . , am−1, p in such
a way that the number of times any is ranked i-th
(i ≥ 2) is c/(m−1). Of the remaining n−c votes, half
rank a1 first and d second, and half do the opposite
(the remaining candidates are ranked in any manner).
Thus SW (a1)−SW (d) = (α1− α2+···+αm

m−1 )c. Let α2 =
δ + ξ and αi = δ, for some δ, ξ > 0, for all i ≥ 3. One
optimal strategy vc is to always place d first and a1
last, resulting in a score difference of c(α1 − αm) =
c(α1− δ) which is strictly larger than the above social
welfare difference of c(α1 − δ − ξ/(m− 1)) within vn.
Hence vc causes d to win, inducing regret of c(M −
(m−1)δ−ξm/(m−1)), which can be made arbitrarily
close to cM using a small enough δ, ξ.

We can obtain a tighter bound than that offered by
Prop. 6 if, for a given P and r, we know the opti-
mal manipulation strategy. For instance, exploiting
Thm. 1 we obtain:

Proposition 8. Consider the k-approval rule, where
SW (a,vn) is the approval score of a. Let P be impar-
tial culture. Then

ER(vn,BAL) ≤
[⌈
ck

m

⌉
− 1

]
· [P (r(vn) 6= d ∧ r(v) = d)

+ P (r(vn) 6= r(v) ∧ r(v) 6= d)]. (10)

Proof. Consider any vn. We use a case analysis similar
to that in Prop. 6. Case 1 applies directly. For case 3,
ai must have received one more veto vote than aj from
the manipulators, and thus SW (ai)−SW (aj) ≤ 1. For
case 2, BAL implies that SW (ai)−

⌈
ck
m

⌉
+ 1 ≤ SW (p)

(ai might have received bck/mc veto votes, but the
bound holds in any case). Thus SW (ai) − SW (d) ≤
d ckm e − 1. Case 4 also applies directly. Summing cases
2 and 3 gives the required inequality.
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Fig. 1: Probability of manipulation and expected nor-
malized regret for Irish election data.

We can also exploit our empirical optimization frame-
work to assess the expected regret. While deriv-
ing optimal manipulation strategies is analytically in-
tractable in general, we can exploit the ability to em-
pirically determine (approximately) optimal Bayesian
strategies to great effect. Given a collection of samples,
we can—in the same MIP used to compute the opti-
mal strategy—measure expected regret empirically.9

Sample complexity results related to those above can
be derived (we omit details). Notice the ability to ac-
curately estimate the behavior of the manipulators is
critical to being able to estimate expected regret.

6 EMPIRICAL EVALUATION

We experiment with several common preference distri-
butions, as well as real voting data, to test the effec-
tiveness of our approach. We are primaily interested
in: (a) determining the computational effectiveness of
our empirical framework for computing optimal ma-
nipulation strategies when manipulators have incom-
plete knowledge; and (b) measuring both the proba-
bility of manipulation and expected regret caused by
manipulation in some prototypical scenarios. We focus
on Mallows models, and mixtures of Mallows models,
because of their flexibility and ability to represent a
wide class of preferences (including impartial culture).

9Pruning of samples must be less aggressive when esti-
mating regret, since damage may be caused by manipula-
tion even in profiles where d cannot win.

However, it should be clear that our framework is not
limited to such models. Space precludes a systematic
investigation of multiple voting rules, so we focus here
on the Borda rule.

Our first set of experiments uses 2002 Irish electoral
data from the Dublin West constituency, with 9 candi-
dates and 29, 989 ballots of top-t form, of which 3800
are complete rankings.10 We learn a Mallows mix-
ture with three components (using the techniques of
[21]) using a subsample of 3000 random (not necessar-
ily complete) ballots: this represents a prior that ma-
nipulators might develop with intense surveying. We
fix c = 10 manipulators and vary the number of sincere
voters n ∈ {100, 200, . . . , 1000}. The MIP is solved us-
ing 500 random profiles sampled from the learned Mal-
lows mixture, which provides the manipulators with an
approximately optimal strategy, as well as predicted
probability of success and expected regret. We test
the predictions by simulating the manipulators’ strat-
egy on the real data set, drawing 1000 random profiles
(of the appropriate size n) from the set of 3800 full
rankings to estimate true probability of manipulation
and expected regret (normalized by SW (r(vn),vn)).
Since manipulability varies greatly with the “expected
rank” of a candidate, we show results for the candi-
dates whose expected ranks in the learned model are
first, second, and fifth (below this, probability of ma-
nipulation is extremely small).

Fig. 1 shows that the probability of manipulation is in
fact quite high when d is the first- or second-ranked
candidate (in expectation), but is much smaller when
d is the fifth-ranked. Not surprisingly, probabilities
gradually drop as n grows. The predicted probabil-
ities based on the learned model are reasonably ac-
curate, but of course have some error due to to im-
perfect model fit. Despite the high probability of ma-
nipulation, the second plot shows that expected re-
gret (normalized to show percentage loss) is in fact
extremely small. Indeed, maximal (average) loss in so-
cial welfare is just over 3%, when d is candidate 2 and
n = 100, which means means nearly 10% of the vot-
ers are manipulators. Expected regret drops rapidly
with increasing n. Notice that success probability and
expected regret are greatest when the manipulators’
desired candidate has expected rank 1 or 2: while the
odds of 1 winning are higher than 2, 1 is also more
likely to win without manipulator intervention.

Our second set of experiments use Mallows models over
six alternatives with different variance φ (recall that
with φ = 1, Mallows is exactly IC). The reference rank-
ing is σ = 123456 (i.e., alternative 1 is most preferred,
2 next most, etc.). We fix c = 10 and vary n from 100

10See www.dublincountyreturningofficer.com.



φ d n:100 200 300 400 500 600

.6
1 .03 .00 0 0 0 0
2 .46 .06 .00 0 0 0

.8
1 .19 .09 .05 .03 .01 .01
2 .68 .41 .25 .13 .08 .05
3 .41 .07 .01 0 0 0

1 * .46 .34 .26 .21 .17 .17
φ d n:100 200 300 400 500

.6
1 5.3E-4 1.7E-5 0 0 0
2 3.2E-2 2.1E-3 7.1E-5 0 0

.8
1 5.5E-3 1.7E-3 8.0E-4 2.2E-4 7.5E-5
2 4.0E-2 1.4E-2 6.0E-3 2.5E-3 1.3E-3
3 9.6E-3 7.6E-4 7.4E-5 1.4E-5 1.2E-5

1 * 1.9E-2 7.1E-3 3.6E-3 2.5E-3 1.5E-3

Fig. 2: Prob. of manipulation (top) and expected nor-
malized regret (bottom), Mallows models.

sec. n:100 200 300 400 500 600

avg 28.67 0.35 0.20 0.18 0.06 0.07
max 205.64 2.56 1.17 1.16 0.12 0.15

sec. d φ:0.5 0.6 0.7 0.8 0.9 1

avg
2 0.02 0.04 0.02 0.02 .05

2.44
4 0.02 0.03 0.02 0.02 0.14

max
2 0.03 0.15 0.03 0.07 0.14

30.22
4 0.03 0.08 0.05 0.04 1.16

Fig. 3: MIP solution times for Dublin (top) and Mal-
lows (bottom) on an 8-core 2.66GHz/core machine.

to 1000 as above. Results in Fig. 2 show manipula-
tion probability and expected regret as we vary φ and
consider desired alternatives 1, 2 and 3.11 While ma-
nipulation probability is high for these near-top alter-
natives (when n is small), expected regret (normalized
in percentage terms) is negligible, with a maximum of
4%, and then only when the distribution is close to
impartial culture (φ = 0.8) and n = 100 (nearly 10%
manipulators). As above, when manipulators want
d = 2, expected regret is highest. Of some inter-
est is the connection to both theoretical and empirical
work that shows phase transitions often occur when
the number of manipulators is roughly the square root
of the number of sincere voters: any less makes manip-
ulation very unlikely, while any more makes manipula-
tion likely. While most of this work analyzes complete
information settings, our results above show that with
realistic preference distributions—even with restricted
knowledge on the part of manipulators—the probabil-
ity of manipulation is sometimes quite significant with
far fewer manipulators than suggested by past work.
Despite this, expected regret remains relatively small.

Fig. 3 shows the average and maximum running times
of the MIP required to compute the optimal manip-
ulation for the problems described above. As can be
seen, even with a large number of sampled profiles, the
MIP can be solved quickly across a range of problem
sizes and distributions.

11Under IC (i.e., when φ = 1), alternatives are proba-
bilistically indistinguishable, so we show one row only.

7 CONCLUDING REMARKS

Our primary contribution is an empirical framework
for the computation of optimal manipulation strate-
gies when manipulators have incomplete information
about voter preferences. This is an important method-
ology for the analysis of the manipulability of voting
rules in realistic circumstances, without the need to
restrict the analysis to specific voting rules or pri-
ors. Our experiments indicate that our algorithms are
quite tractable. Furthermore, our results suggest that
manipulation may not be as serious a problem as is
commonly believed when realistic informational mod-
els are used, or when the quality of the outcome, rather
than societal justice, is the main objective. Our em-
pirical results, which exploit several innovations intro-
duced in this paper, demonstrate this in the case of
Borda voting; but our approach is easily adapted to
different types of manipulation under different scoring
rules, and can be applied to any “utility-based” voting
rule with appropriate formulation of the optimization
problem. Thus, our approach provides a compelling
framework for the comparison of voting rules.

One nonstandard aspect of our approach is the use
of the score under a voting rule as a proxy for social
welfare. A similar regret-based approach is taken in
preference elicitation [22]; and it is implicit in work
on approximating voting rules [28, 5], which assumes
that approximating the score also gives an approxima-
tion to the desirability of an alternative. One strong
argument in favor of this view is that scores of certain
voting rules, such as Borda, are provably good proxies
for utilitarian social welfare when utilities are drawn
from specific distributions [37]. That said, our frame-
work can be used, in principle, to analyze any measure
of impact or loss.

Our work suggests a number of interesting future di-
rections. Of course, we must study additional voting
rules, social welfare measures, and manipulator objec-
tives within our framework to further demonstrate its
viability. While our results suggest that incomplete
knowledge limits the ability of a manipulating coali-
tion to impact the results of an election, our frame-
work can also be used to directly study the relation-
ship between the “amount of information” (e.g., us-
ing entropy or equivalent sample size metrics) and the
probability of manipulation. Finally, interesting com-
putational questions arise within our approach: e.g.,
deriving tighter complexity results for optimal ma-
nipulation given a collection of vote profiles; or de-
riving simpler classes of manipulation policies (e.g.,
uncertainty-sensitive variants of the balanced manip-
ulation strategy) that can be more readily optimized
by a manipulating coalition.
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