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ABSTRACT
One of the fundamental problems in the theory of social
choice is aggregating the rankings of a set of agents (or vot-
ers) into a consensus ranking. Rank aggregation has found
application in a variety of computational contexts. How-
ever, the goal of constructing a consensus ranking rather
than, say, a single outcome (or winner) is often left unjus-
tified, calling into question the suitability of classical rank
aggregation methods. We introduce a novel model which of-
fers a decision-theoretic motivation for constructing a con-
sensus ranking. Our unavailable candidate model assumes
that a consensus choice must be made, but that candidates
may become unavailable after voters express their prefer-
ences. Roughly speaking, a consensus ranking serves as a
compact, easily communicable representation of a decision
policy that can be used to make choices in the face of un-
certain candidate availability. We use this model to define
a principled aggregation method that minimizes expected
voter dissatisfaction with the chosen candidate. We give
exact and approximation algorithms for computing optimal
rankings and provide computational evidence for the effec-
tiveness of a simple greedy scheme. We also describe strong
connections to popular voting protocols such as the plural-
ity rule and the Kemeny consensus, showing specifically that
Kemeny produces optimal rankings in the unavailable can-
didate model under certain conditions.

Categories and Subject Descriptors
F.2.0 [Analysis of Algorithms and Problem Complex-
ity]: General; I.2.6 [Artificial Intelligence]: Learning; J.4
[Social and Behavioral Sciences]: Economics
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Algorithms, Economics, Theory
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1. INTRODUCTION
Social choice theory is concerned with the problem of ag-

gregating preferences of individual agents over some decision
or outcome space to determine a suitable consensus outcome.
Arrow [3] famously considered the problem of aggregating
rankings of outcomes (or candidates) by agents (or voters)
to produce a consensus ranking rather than a single choice
(or winner). Since this time, the problem of rank aggre-
gation has attracted considerable attention in social choice
and popular aggregation schemes like the Kemeny consensus
[15] have found wide application in computational contexts
(e.g., web ranking). Rank aggregation methods have a key
advantage over simple voting schemes like plurality. By tak-
ing rankings as input rather than single votes, they allow
voters to express their relative preferences for candidates,
which can arguably play a reasonable role in determining a
winner (e.g., the Borda count does just this). However, the
need to produce a consensus ranking as output of a social
choice scheme is typically less well-motivated. Despite this,
a variety of models take this approach, for instance, the Ke-
meny consensus, which produces a ranking that minimizes
the sum of pairwise candidate disagreements between the
input rankings and the output ranking. In a social choice
context, the need to produce a consensus ranking rather
than an outcome is often left unspecified and unjustified.
Consider the popular Kemeny consensus: if the goal is to
produce a single winner, why should one produce a rank-
ing? If this ranking is used merely to produce a winner,
why should pairwise disagreements across the entire rank-
ing of each voter be minimized?

Of course, there are a variety of rank aggregation settings
where the decision space explicitly requires a ranking. For
example, if each “voter” is expressing a noisy assessment of
some underlying objective ranking (e.g. quality of sports
teams), under certain assumptions the Kemeny consensus
provides a maximum likelihood estimate of the underlying
ranking [25, 20]. Of course, this justification is applies more
to settings where some underlying “true” ranking exists than
to those in which genuinely distinct preferences are to be ag-
gregated. In other circumstances, we might wish to find not
a single winner, but a slate of k candidates for k positions.
We could imagine using the top k candidates produced by
some consensus ranking process, but existing rank aggre-
gation schemes (e.g., Kemeny) may not be appropriate for
this problem. In web search, one might want to rank results
to minimize average effort to find the relevant results [5, 10,
14]; but again it is unclear why social choice models are suit-



able. Instead, a model that explicitly considers search costs
and probability of relevance would be more appropriate [22].

More generally, we argue that the decision criterion for
which aggregation is being implemented should directly in-
fluence the process by which one aggregates rankings. To
this end, we propose a new model that motivates the out-
put of a consensus ranking in preference aggregation. Our
unavailable candidate model supposes that any candidate
may be rendered unavailable with a certain probability, and
the output ranking determines a decision (or “winner”) by
selecting the best available candidate. In our model, the op-
timal aggregate ranking minimizes the expected voter dis-
satisfaction with the selected candidate. To illustrate, con-
sider an organization interviewing a number of candidates
for an open position. Members of the hiring committee sub-
mit their preference orderings; however, there is a chance
any candidate may accept a different job, so the commit-
tee must be prepared to select a candidate from any subset
of available candidates. A ranking—where the top-ranked
available candidate is chosen—provides us with a compact,
easily interpretable policy for selection.

In this paper, we develop this model formally. Our model
gives rise to an objective function over rankings that has
some nice properties. Computationally, we conjecture the
optimization of the consensus ranking to be NP-hard and
give an integer programming (IP) formulation of the ranking
optimization problem. We also provide a polytime approx-
imation scheme (PTAS) as well as more practical greedy
heuristics that exploit the structure and properties of our
objective function; empirical results suggest that the greedy
methods provide excellent approximations. We also show
interesting connections to the Kemeny and plurality voting
rules. For example, we show that an optimal ranking corre-
sponds to a Kemeny consensus under certain assumptions,
but that in general a Kemeny consensus can produce twice
as many expected “disagreements” as the optimal ranking.
Nevertheless, our model gives intuitions as to why a Kemeny
consensus can be useful from a decision-theoretic perspec-
tive at least in certain cases. We also discuss some directions
for future research, including how this model can be used to
support personalization in a learning setting, and suggest-
ing alternative, decision-theoretically motivated approaches
to rank aggregation.

We emphasize that the unavailable candidate model is just
one of a number of decision models that justifies the output
of consensus rankings. Others, corresponding to the some of
the applications mentioned above, will give rise to different
aggregation algorithms and analysis, in some case, justify-
ing the use of classical social choice schemes, but in others,
requiring new preference aggregation methods.

2. PRELIMINARIES
We introduce the basic social choice setup and discuss

relevant background concepts before presenting our model
in the next section (for further background, see [12, 24]).
We assume a set of candidates C = {c1, . . . , cm} and voters
N = {1, 2, . . . , n}. Let ΓC be the set of bijections of the
form r : C → {1, . . . ,m}, i.e., the set of permutations or
rankings of C, mapping candidates to rank positions. For
convenience, we often write a ranking r as a sequence, e.g.,
r = bcad meaning r(b) = 1, r(c) = 2, etc.

Candidates can represent any outcome space over which
the voters have preferences (e.g., political candidates, restau-

rants, building designs, public projects, etc.) and for which
a single collective choice must be made. Voter `’s prefer-
ences are represented by ranking v` ∈ ΓC , where ` prefers ci
to cj iff v`(ci) < v`(cj). We refer to voter rankings as votes,
and a collection of votes V = (v1, ..., vn) ∈ ΓnC as a prefer-
ence profile. Abusing notation, we write v \S to refer to the
restriction of a vote or ranking v to candidates not in S ⊆ C
(similarly for V \ S). Our aim is to choose a candidate or
winner from C that implements some social choice function
f : ΓnC → C, where f reflects some social desiderata (e.g.,
maximizing happiness, fairness, etc.). In many social choice
models, however, a rank aggregation function f : ΓnC → ΓC
is used which aggregates preference profile V into a consen-
sus ranking f(V ). This ranking can be used to produce a
winner by taking the top-ranked candidate.

For winner determination, plurality is the simplest and
most popular scheme: every voter submits a single candi-
date (not a ranking) and the candidate with the most votes
wins (various tie-breaking schemes can be adopted). How-
ever, plurality fails to account for a voter’s relative prefer-
ences for any candidate other than its top ranked (assuming
sincere voting). Other schemes such as the Borda count
or single transferable vote take full rankings as input and
produce a winner in a way that is sensitive to relative pref-
erences. Among schemes that produce consensus rankings,
the Kemeny consensus [15] is especially popular. Let 1 be
the indicator function.

Definition 1. Let r, v be rankings, and r = r1 · · · rm. The
Kendall-Tau metric is τ(r, v) =

P
i<j 1[v(ri) > v(rj)]. The

Kemeny cost of a ranking r with respect to votes V =
(v1, . . . , vn) is κ(r, V ) =

Pn
`=1 τ(r, v`). The Kemeny con-

sensus is a ranking that minimizes the Kemeny cost.

Intuitively, τ(r, v) measures the number of pairwise disagree-
ments (or inversions of candidate ordering) between an out-
put ranking r and a vote v, and the Kemeny consensus min-
imizes the sum of such disagreements over all votes. Con-
siderable work on computational social choice has focused
on the Kemeny aggregation rule. It is NP-hard to compute
[4, 10] but can be heuristically approximated in the context
of web meta-search using local search and Markov chains
[10]. A polytime approximation scheme (PTAS) is provided
in [16], and approximation algorithms for the extension of
Kemeny to partial rankings are given in [1]. Practical ap-
proaches for exact computation have also been explored [6].

Under certain assumptions the Kemeny consensus pro-
vides a maximum likelihood estimate of an underlying objec-
tive ranking [25, 20] (other such interpretations of common
voting rules also exist [8, 7]). This perspective is common in
the statistics and psychology literature, where various prob-
abilistic models of ranked data have been proposed (e.g.,
Mallows, Luce-Plackett), along with methods for parameter
estimation [11] and compact representations of distributions
on permutations [9]. This view of estimating an objective
ranking from noisy estimates is appropriate for certain ap-
plications, such as multi-class ensemble learning, where each
classifier’s ranking of labels can be combined [18, 17]. How-
ever, this motivation seems difficult to reconcile with the
problem of social choice or consensus decision making for
users with genuinely distinct preferences. Rank aggrega-
tion also has some interesting connections to the literature
on rank learning. For example, Cohen et al. [5] focus on
learning a preference function over all item pairs while given



comparisons only between some of the items, and compute
an item ranking that is most consistent with the learned
preference function. This can be seen as aggregation where
the comparisons come from different users and the learned
ranking aggregates these preferences. In settings where we
have little information of any single user’s preferences (e.g.,
recommender systems), preferences of “similar” users can be
aggregated to leverage sparse data to facilitate better learn-
ing. This is roughly the idea behind, say, label ranking [14].

3. THE UNAVAILABLE CANDIDATE MODEL
While rank aggregation methods like Kemeny can be used

to determine winners, a consensus ranking is not needed for
this purpose. While a consensus ranking can be used for
other purposes, as argued above, the decision criterion and
how the ranking will be used should motivate the aggregation
method adopted. This is rarely done in the application of
models from social choice to specific domains.

We now present a model that explicitly articulates one
possible use of a consensus ranking. The unavailable candi-
date model has the usual goal of producing a winner from a
set of candidates C, but once voter preferences are articu-
lated, some of the candidates may become unavailable. For
example, voters may be hiring committee members rank-
ing job candidates that have just been interviewed. It is
not known until an offer is extended whether a candidate
will accept. Constructing a ranking of candidates allows the
committee to move down the list as offers are refused to find
the highest-ranked available candidate. In this sense, the
consensus ranking acts as a policy that determines what to
do under a wide variety of contingencies. We formalize this
model and describe one natural criterion for optimization of
rankings in such a model.

Let C be a set of candidates and V a preference profile.

Definition 2. A policy is a mapping W : 2C → C ∪ {⊥},
where W (S) ∈ S for all S 6= ∅ and W (∅) = ⊥. An aggrega-
tion function under candidate uncertainty maps preferences
profiles V into policies WV .

Policies are commonly known as choice functions [2]. A
policy determines a winner for any set S ⊆ C of available
candidates and is useful when the set of potential candidates
C is known prior to “voting” but the set of available candi-
dates S is not.1 Preference aggregation in such a setting
requires the construction of just such a policy for any inputs
V . To measure the quality of a policy, we assume a proba-
bility distribution P over 2C , where P (S) is the probability
that S will be the set of available candidates. Drawing in-
tuitions from Kemeny, our aim is to determine a policy that
minimizes the expected number “disagreements” with voters
under distribution P . Let top(v, S) denote the top-ranked
element of S in ranking or vote v. A policy disagrees with
voter ` on S if W (S) 6= top(v`, S). The expected number of

1There are many other examples apart from job candidates
for which this model applies: e.g., high stakes applications
such as a building design or public projects, where feasibility
of potential designs is expensive and “availability” is deter-
mined only after preferences are expressed; or low stakes
settings such as selection of a restaurant for a group, where
desired restaurants may be full.

disagreements is given by:

D(W,V ) = E
S∼P

"
nX
`=1

1[W (S) 6= top(v`, S)]

#
. (1)

We can view this as expected total dissatisfaction, where a
voter is dissatisfied iff its top-ranked available candidate is
not chosen.2

We may restrict attention to a specific class of policies W
(see below). Given such a restriction, the optimal policy is:

W ∗WV = argmin
W∈W

D(W,V ) . (2)

An especially convenient class of policies are ranking policies
(denoted R). A ranking policy is specified by a ranking
r ∈ ΓC and selects the highest ranked candidate in r from
any available set S:

Definition 3. The ranking policy induced by r is Wr :
2C → C ∪ {⊥} where Wr(S) = top(r, S) for any S 6= ∅.

In this work we focus on ranking policies. This is an espe-
cially natural class of policies that has an intuitive appeal.
A ranking policy is specified fully by its “consensus” rank-
ing, and is thus easily interpretable, very compact and eas-
ily communicable, and can be implemented with only trivial
“online”computation. Of course, ranking policies are restric-
tive. Let W denote the class of all policies. It is not hard to
see that the optimal unrestricted policy w.r.t. Eq. (2) cor-
responds to plurality voting for each S ⊆ C: W ∗WV (S) =
argmaxc∈S |{` : c = top(v`, S)}|. And there exist V for

which the optimal ranking policy W ∗RV is worse than the
optimal unrestricted policy, i.e., D(W ∗RV , V ) > D(W ∗WV , V ).

Example 1. Let C = {a, b, c}, V = (abc, bca, cab) and
suppose each candidate is unavailable with probability p ∈
[0, 1). Any ranking in V induces an optimal ranking pol-
icy; so take r∗ = abc. The “plurality-based” optimal policy
W ∗WV has no more disagreements than Wr∗ for any avail-
able set S; and if S = {a, c} then r∗ selects a (two dis-
agreements) while W ∗WV selects c (one disagreement). Thus
D(Wr∗ , V ) > D(W ∗WV , V ) for any distribution with non-zero
probability on S = {a, c}.

Despite this, the optimal unrestricted, plurality-based pol-
icy does not provide an explicit sense of which candidates are
going to be chosen over others, nor does it admit a compact
representation of the explicit mapping in non-algorithmic
form from available candidates to a recommendation. A
ranking policy is simple in several respects: it can be com-
municated to and readily implemented by human decision
makers; it is also easy to understand. Finally, in some cir-
cumstances, a ranking may be needed to satisfy certain pro-
cedural, public policy, or legal requirements. For example,
in the National Resident Matching Program (see [23] for a
description), hospitals are required to submit a preference
ranking of candidates for residency positions representing
their preference over such candidates. Prospective residents
similarly submit preferences rankings over hospitals, and a
centralized matching algorithm (based on the Gale-Shapley
approach [13]) finds a stable matching upon which hospi-
tals base their offers. Since hospitals are institutions, their

2Other more nuanced notions of dissatisfaction can be in-
corporated into our model as discussed below. However we
focus on this binary notion of disagreement for simplicity.



preferences will often be determined by a committee and
generally represent the consensus preferences of a number
of interested parties. The availability of candidates is not
guaranteed (since residents may be matched to other hospi-
tals), and can be assessed (presumably subjectively by the
committee) in the form of the availability distribution P .
Hence the need for a policy. But critically the Gale-Shapley
matching algorithm requires that the hospital’s submitted
“policy” be in the form of a ranking.

As we see then, there are a variety of reasons to focus
attention on ranking policies, and we deal exclusively with
ranking policies in what follows.3 We write r for its induced
ranking policy Wr when no confusion will result. In the lit-
erature on individual and social choice, ranking policies are
referred to as rationalizable choice function [2]. However,
our motivation does not rely on the perspective that such
policies are somehow intrinsically preferred to arbitrary poli-
cies as being more “sensible” or “rational.” We simply view
them as more convenient in certain situations; so we adopt
the more neutral, descriptive term ranking policies.

The expected disagreement criterion in our model focuses
squarely on “winner disagreements” and not relative prefer-
ences. This is why the plurality-based policy is the opti-
mal unrestricted policy. Relative preferences for candidates
other than a voter’s top choice do influence the final ranking,
but only in assessing the quality of the outcome when their
top choice is unavailable. If a voter’s top choice is available,
then the disagreement objective does not depend on her
ranking of other candidates. For this reason the Condorcet
criterion will not be satisfied by our scheme (as we show be-
low). However, this is not a fundamental limitation of our
model. Our aim is to motivate the need to produce rankings
as output. We can modify our model to easily account for
different objectives, i.e., different notions of disagreement or
quality, relative to a given available candidate set S. For
example, Borda count could be used in Eq. (1) within the
expectation over available sets, or some Condorcet method,
or another measure of candidate quality that uses relative
preferences. While the precise details of our analysis and
algorithms below would change, the fundamental property
of our model—namely, the motivation for rankings as out-
put in the face of uncertain candidate availability—would
remain unchanged.

We investigate a relatively simple class of distributions
over available candidate sets in which each candidate is un-
available with identical, independent probability p ∈ [0, 1].4

Thus for S ⊆ C,

P (S) = pm−|S|(1− p)|S| . (3)

3An interesting question we leave unanswered: what is the
worst-case loss in disagreement (or any other form of dissat-
isfaction) associated with the restriction to ranking policies?
4Generalizations to different (but still independent) proba-
bilities pc for different c ∈ C is reasonably straightforward,
but we use this single parameter model to keep the notation
and exposition simple. We expect that correlated availabil-
ity can be handled effectively for certain classes of distribu-
tions P (e.g., those expressed with graphical models of small
size), but this is the subject of ongoing investigation. We
make no assumptions about the source of this probability: it
could be inferred from data, estimated by the aggregator, or
elicited from voters (which itself raises interesting questions
about elicitation protocols and incentives).

When p = 1, the optimization problem is trivial (all poli-
cies are equally good). Thus we consider p ∈ [0, 1) in the
sequel. (When p = 0, the problem reduces to plurality vot-
ing over the entire candidate set C.) With this model, we
can rewrite the expected number of disagreements, Eq. (1),
given a ranking r and unavailability probability p as:

Dp(r, V ) =

nX
`=1

E
S∼P

[1[top(r, S) 6= top(v`, S))]]

=

nX
`=1

X
S⊆C

Pr
S∼P

[top(r, S) 6= top(v`, S)]

=

nX
`=1

X
S⊆C

pm−|S|(1− p)|S|1[top(r, S) 6= top(v`, S))],

(4)

We simplify notation, using Dp(r, v) to denote Dp(r, (v)).
We now derive an explicit formula for the expected num-

ber of disagreements between any two rankings. For any
c ∈ C and rankings r, v, let t(c, r, v) denote the number of
candidates that are ranked above c in both r and v:

t(c, r, v) = |{c′ ∈ C : r(c′) < r(c), v(c′) < v(c)}|. (5)

For example, in Fig. 1, t(d, r, v) = 2 since only a and c
lie above d in both rankings. Given output ranking r and
vote v, intuitively r disagrees with v if it recommends an
available candidate, say d, which by definition must be the
top available candidate in r, but another available candidate
lies above d in v. Elements “counted” in t(d, r, v) do not
contribute to the expected disagreement count (since they
cannot be available if r recommends d), but the remaining
elements above d in v do). This leads us to:

Lemma 1. Let p ∈ [0, 1), C = {c1, . . . , cm} a set of can-
didates, r, v any two rankings. Then

Dp(r, v) =

mX
i=1

(1− p)pr(ci)−1
“

1− pv(ci)−t(ci,r,v)−1
”

(6)

Proof. An illustration of the term inside the summation
is provided in Fig. 1. Proofs of this and other results can be
found in an extended version of the paper.5

This result simplifies the objective function Eq. (4):

Corollary 2. For any r ∈ ΓC , V = (v1, . . . , vn) ∈ ΓnC ,
and p ∈ [0, 1), we have:

Dp(r, V )=

nX
`=1

mX
i=1

(1− p)pr(ci)−1
“
1−pv`(ci)−t(ci,r,v`)−1

”
(7)

The problem of deciding for a given d ≥ 0 whether there
exists an r ∈ ΓC such that Dp(r, V ) ≤ d is clearly in NP.
If p = 0 the problem reduces to placing the candidate with
greatest number of “first place” votes at the top of r (i.e.,
plurality); the order of the remaining candidates does not
affect the objective (see Sec. 5). We will also show below
that if p is allowed to depend on m and n and get arbi-
trarily close to 1, then any minimizer of Dp(r, V ) must also
be a Kemeny consensus (Theorem 13), which is known to
be NP-hard when n ≥ 4 is an even integer (the complexity
is not known for n = 3, 5, 7, . . .). For other circumstances,

5See www.cs.toronto.edu/∼cebly/papers.html
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Figure 1: Determining the probability that d is recom-

mended by r but a different candidate is preferred by

v. The probability that d is the best available in r is

p3(1− p), since a, b, c must be unavailable (p3) and d avail-

able (1 − p). Given this, the total probability of vote v

disagreeing with recommendation d is determined by ex-

amining candidates above d: the only disagreements are

with e (if available, with prob 1−p) or f (if available and

e not available, (1 − p)p), since a, c are not available if r

recommends d, and the availability of candidates below

d is immaterial.

however, the NP-hardness of Dp(r, V ) ≤ d is unclear. De-
spite its worst case complexity in many circumstances, we
explore practical approximations in the next section (both
a PTAS and two empirically effective greedy algorithms).
Before we address the optimization problem, we state some
basic properties of our objective function.

Definition 4. Let r = r1 · · · rm be a ranking. The expected
number of disagreements from position i to j is

D(i,j)
p (r, V ) :=

nX
`=1

jX
u=i

(1− p)pu−1
“

1− pv`(ru)−t(ru,r,v`)−1
”
.

D(i,j)
p (r, V ) is the expected number of disagreements when

we remove candidates C\{ci, . . . , cj} from consideration. To

simplify notation we write Dip(r, V ) for D(i,i)
p (r, V ).

Lemma 3. For any ranking r = r1 · · · rm and profile V ,

Dp(r, V ) ≤ n. (8)

The expected number of disagreements from rk+1 to rm is at
most

D(k+1,m)
p =

nX
`=1

mX
i=k+1

(1− p)pi−1
“
1− pv`(ri)−t(ri,r,v`)−1

”
≤pkn

(9)

Our objective function can also be written recursively; given
r = r1 · · · rm we have

Dp(r, V ) = D1
p(r, V ) +D(2,m)

p (r \ {r1}, V \ {r1})

= (1− p)
nX
`=1

0B@1− p

v`(r1)−t(r1, r, v`)| {z }
=0

−1
1CA

+ (1− p)pDp(r2 · · · rm, V \ {r1}),

The base case, when there’s only one candidate remaining,
gives zero expected disagreements. This recursive formula-
tion shows that if one accounts for the “contribution” r1

makes to Dp(r, V ), then the remaining contribution is p
times the expected number of disagreements of the remain-
ing ranking r2 · · · rm with respect to the votes V \{r1}. This
leads to the following useful observation.

Lemma 4. Suppose r∗1 . . . r
∗
k are the top k candidates of

some optimal ranking. Let r be an optimal ranking of the
remaining candidates:

r = argmin
r′∈ΓC\{r∗1 ,...,r

∗
k
}

Dp(r′, V \ {r∗1 , . . . , r∗k}).

Then r∗1 · · · r∗kr is an optimal ranking for V .

4. COMPUTING OPTIMAL RANKINGS
We now turn our attention to the problem of comput-

ing optimal rankings. We first present an integer program
(IP) formulation of the ranking problem. We then describe
two simple greedy approximation methods and a polynomial
time approximation scheme (PTAS).

4.1 An Integer Programming Formulation
We consider the problem of computing the optimal rank-

ing w.r.t. our objective minr Dp(r, V ). We first formulate
this as an IP with a quadratic objective, a polynomial num-
ber of linear constraints, and a polynomial number of binary
variables. We then linearize the objective by introducing ad-
ditional variables and constraints. We assume inputs C, V
and p ∈ [0, 1) are given. For notational convenience we de-
fine [x] = {1, 2, . . . , x} for any positive integer x.

Let Rik ∈ {0, 1} indicate whether candidate ci is ranked
(in the optimal ranking) at position k, and let R = {Rik :
i, k ∈ [m]}. To ensure the R encodes a valid ranking, we
require the following permutation constraints:

mX
k=1

Rik = 1 ∀i ∈ [m] (10)

mX
i=1

Rik = 1 ∀k ∈ [m]. (11)

We define variables Iij ∈ {0, 1} for i, j ∈ [m], i 6= j, indi-
cating whether candidate ci is ranked higher in the ranking
than cj , in terms of R. We need the following constraints
so that the ranking corresponding to I is consistent with R:

1 +

mX
j=1
j 6=i

Iji =

mX
k=1

k ·Rik ∀i ∈ [m] (12)

Iij + Ijq ≤ 1 + 2Iiq ∀i, j, q ∈ [m], i, j, q distinct (13)

Iij + Iji = 1 ∀i, j ∈ [m], i > j. (14)

Constraint (12) ensures that candidate ci’s rank corresponds
to I: the summation on the lefthand side is exactly the num-
ber of candidates ranked above ci (adding one gives us the
rank of ci), while the terms on the righthand side are all
zero except for that corresponding to the rank of ci. Con-
straint (13) enforces transitivity constraints on I—namely
that if ci is above cj and cj is above cq then ci is to be
above cq. Finally constraint (14) enforces consistency on
the relative ranking of ci and cj .

For any t ∈ {0, . . . ,m − 1}, let Jit` ∈ {0, 1} indicate
whether t(ci,R, v`) = t (i.e., there are exactly t candidates
above ci in the ranking corresponding to R that also appear
above ci in v`), for each i ∈ [m], ` ∈ [n]. We need constraints



that encode J relative to I and V :

X
j:v`(cj)<v`(ci)

Iji =

v`(ci)−1X
t=0

t · Jit` ∀` ∈ [n], i ∈ [m] (15)

v`(ci)−1X
t=0

Jit` = 1 ∀` ∈ [n], i ∈ [m]. (16)

In constraint (15), the sum on the lefthand side is indexed by
the set of candidates ranked higher than ci in v`. Iji will con-
tribute to the sum iff cj is higher ranked than ci in R—thus,
this sum is exactly t(ci, r, v`). The righthand side of (15) in
conjunction with constraint (16) forces the proper Jit` to
take value 1. (Note that in both constraints (15) and (16),
the upper limit of the sum for t should be min(R(ci), v`(ci))−
1, where R(ci) is the rank of ci in R, but we cannot express
R(ci) without introducing additional variables.) We can
now write the objective function of Eq. (7) as a quadratic
objective over R and J (note that we drop the constant
factor 1− p),

min
R,I,J

nX
`=1

mX
i=1

"
mX
k=1

pk−1 ·Rik

#
241−

min(k,v`(ci))−1X
t=0

pv`(ci)−t−1Jit`

35 ,
which is equivalent to

min
R,I,J

mX
i=1

mX
k=1

h
npk−1 ·Rik−

nX
`=1

min(k,v`(ci))−1X
t=0

pk+v`(ci)−t−2 · Jit` ·Rik

35 .
The quadratic objective can be linearized by introducing

a binary variable for each quadratic term. Let Zik`t indicate
whether Jit`Rik = 1, and Z denote the all such variables.
We impose the following constraints ∀i, k ∈ [m], ` ∈ [n], t ∈
{0, . . . ,m− 1}:

Rik + Jit` ≥ 2Zik`t ∀i, k, `, t (17)

Rik + Jit` ≤ 2Zik`t + 1 ∀i, k, `, t. (18)

The quadratic objective is linearized using Z to obtain the
following IP:

min
R,I,J,Z

mX
i=1

mX
k=1

h
npk−1 ·Rik−

nX
`=1

min(k,v`(ci))−1X
t=0

pk+v`(ci)−t−2 · Zik`t

35
subject to (10), (11), (12), (13), (14), (15), (16), (17), (18)

R, I,J,Z ∈ {0, 1}.
(IP1)

The total number of variables is at most nm3 + (1 +n)m2−
mn and the number of constraints is (1 + 2n)m3 −m2/2 +
(2n− 1/2)m. While exact computation is desirable, this IP
is quite large and will not scale to m and n of more than

moderate size.6 We turn to approximation methods in the
next section to circumvent this difficulty.

4.2 Approximation Algorithms
Before presenting approximation algorithms for ranking,

we first make a key observation: any candidate with at least
n/2 top votes is a top-ranked candidate in some optimal
ranking; and this holds for the restriction to any subset of
candidates. We exploit this fact by having our algorithms
check for such candidates and, if one exists, placing it at the
top of the ranking and recursively computing the rest, thus
exploiting Lemma 4.

Definition 5. Let S ⊆ C. c ∈ S is a dominant candidate
w.r.t. S, V iff |{` ∈ N : v`(c) ≤ v`(c′), ∀c′ ∈ S}| ≥ n/2.

Note the requirements on dominant candidates are much
more stringent than those on Condorcet winners.

Lemma 5. For any p ∈ [0, 1), suppose there exists a dom-
inant candidate c with respect to C and V . Then there is a
ranking that minimizes Dp(r, V ) that ranks c highest. Fur-
thermore if c has strictly more than n/2 top votes then all
minimizing rankings must place c at the top.

While one might suspect that Condorcet winners can also
be placed at the top of any optimal ranking, the following
example shows that this is not the case.

Example 2. Let votes V = (abcd, cbad, dbac). It can be
seen that b is the Condorcet winner. However, when there is
high probability all candidates are available (small p), b will
never be chosen since it is not a top ranked candidate in any
of the votes. Specifically, Dp(abcd, V )−Dp(bacd, V ) = 2p−1,
which is less than zero whenever p < 1

2
. So a lies at the top

of the optimal ranking for any p < 1
2
.

Intuitively, the Condorcet condition fails to hold because
strength of preference among available candidates is not
considered in our optimization criterion (only disagreement
among the top ranked available candidates is considered).
But as noted above, the unavailable candidate model can be
extended to account for strength of preference.

4.2.1 Greedy Algorithms
Our first greedy algorithm (see Alg. 1) is based on the ob-

jective in Corollary 2 and the observation of Lemma 5. We
first check if there is a dominant candidate w.r.t. C; if so,
it can be placed in the first position of an optimal ranking
(Lemma 5). Otherwise, we select the top-ranked candidate
r1 by greedily choosing the candidate that induces the small-
est expected number of disagreements (i.e., contributes least
to the cost in Corollary 2) when placed in the top position.
Once r1 is selected, we remove it from consideration (and
from the votes) and recursively choose the second-ranked
candidate from C \ {r1} in the same fashion, assuming r1 is
in the first position. This is repeated for all m positions in
the ranking. Note that at each step, we can easily compute
t(c, r, v) for any remaining candidate c and vote v ∈ V since
it depends only on the candidates ranked above c in r (hence,
which have been fixed in the preceding iterations). Greedy1
has a running time of O(nm3) and has an approximation
guarantee:
6More concise formulations and heuristics for effective com-
putation are likely obtainable, e.g., by adapting approaches
for Kemeny computation [6].



Algorithm 1 Greedy1

Input: p ∈ [0, 1), C = {c1, . . . , cm} and V = (v1, . . . , vn).
Q← C
r ← empty ranking
for i = 1 to m do

if ∃c ∈ Q : |{` ∈ N : v`(c) ≤ v`(c
′), ∀c′ ∈ Q}| ≥ n/2

then
ri ← c {c is a dominant candidate}

else
t(c, r, v`)← |{rj : j ≤ i− 1}∩
{c′ ∈ C : v`(c

′) < v`(c)}|, ∀c ∈ Q, ` ∈ {1, . . . , n}
ec ←

Pn
`=1 1− pv`(c)−t(c,r,v`)−1, ∀c ∈ Q

ri ← argminc∈Q ec
end if
Q← Q\{ri}

end for
Output: r

Algorithm 2 Greedy2

Input: p ∈ [0, 1), C = {c1, . . . , cm} and V = (v1, . . . , vn).

ec ←
Pn
`=1 1− pv`(c)−1, for all c ∈ C.

r ← sort C in ascending order according to ec.
Output: r

Theorem 6. The approximation ratio of Greedy1 is at
most (1 + p2)/(1− p)2. That is, if minr Dp(r, V ) 6= 0,

Dp(Greedy1(p, C, V ), V )

minr Dp(r, V )
≤ 1 + p2

(1− p)2
,

otherwise minr Dp(r, V ) = Dp(Greedy1(p, C, V ), V ) = 0.

The proof of this theorem relies on a method used to prove
Theorem 7 and, as discussed there, we believe this can be
tightened significantly. Despite its looseness, this bound is
reasonable for small p. For large p (say, p > 0.25), the bound
is too loose to be useful.

The second greedy algorithm is even simpler: we compute
the expected number of disagreements induced by each can-
didate assuming it is placed in the top position, then output
the (ascending) sorted list of candidates as the ranking (see
Algorithm 2). It can be verified that Greedy2 has running
time O(nm + m logm). Unlike Greedy1, we do not recom-
pute the disagreement score each time a candidate is placed
in position.

The advantage of these greedy algorithms is that they
are simple to implement and have fast running times. In
our experiments, both these algorithms perform very well in
terms of approximation ratio on randomly generated votes
(see Section 6) with Greedy1 outperforming Greedy2.

4.2.2 A Polynomial Time Approximation Scheme
We now show that there exists a polytime algorithm that

can approximate the optimal ranking in the unavailable can-
didate model arbitrarily well. We provide a polynomial time
approximation scheme for computing the ranking that min-
imizes the expected number of disagreements with a prefer-
ence profile when p is upper bounded by any constant less
than 1. That is, given any ε > 0, along with the usual in-
puts, the algorithm will run in polynomial time in 1/ε,m, n
and output a ranking that has an expected number of dis-

Algorithm 3 MyopicTop

Input: K ≥ 1, p ∈ [0, 1), C = {c1, . . . , cm} and V =
(v1, . . . , vn)
Q← C
i← 1
r ← empty ranking
while ∃c ∈Q : |{` ∈ N : v`(c) ≤ v`(c

′), ∀c′ ∈ Q}| ≥ n/2
do
ri ← c {c is a dominant candidate}
Q← Q\{c}
i← i+ 1

end while
(ri, ri+1, . . . , ri+K−1) ← argminr′∈ΓQ

D(i,i+K−1)
p (rr′, V ),

e.g. by solving (IP2)
Q← Q\{ri, . . . , ri+K−1}
(ri+K , . . . , rm)← arbitrarily order candidates in Q

Output: r

agreements that is within a factor 1+ε of that of the optimal
solution.

The PTAS is based on the observation that the expected
number of disagreements with r, Dp(r, V ), is more sensitive
to the ordering of candidates near the top of the ranking
than the bottom. Indeed, candidates higher in the ranking
contribute exponentially more to the expected disagreement
score than lower candidates. We exploit this by finding the
myopically optimal top K candidates, i.e., a subranking of

size K that minimizes D(1,K)
p (r, V ). Since the remaining

positions in r are less important, we order these m−K can-
didates arbitrarily. The algorithm is somewhat more clever
in that it also checks for dominant candidates (which must
lie at the top of an optimal ranking). We show that the value
of K needed to derive a PTAS depends only on constants ε
and an upper bound on p.

The myopically optimal top K algorithm is shown in Algo-
rithm 3. We use rr′ to denote the current ranking r (which
is not yet “completed”), with a ranking r′ of some other can-
didates appended to r. The algorithm requires a method to
find the top K candidates of votes V ′ over candidates Q.
In theory this can be done in polytime by exhaustive search
over all m!/(m −K)! possible length K subrankings; how-
ever, a more sensible approach is to solve a modified version
of the IP (IP1) in which we truncate the objective to con-
sider only the contributions of the top K candidates to the
total expected number of disagreements, obtaining:

min
R,I,J,Z

mX
i=1

KX
k=1

h
npk−1 ·Rik−

nX
`=1

min(k,v`(ci))−1X
t=0

pk+v`(ci)−t−2 · Zik`t

35
subject to (10), (11), (12), (13), (14), (15), (16), (17), (18)

R, I,J,Z ∈ {0, 1}
(IP2)

Theorem 7. Let d ∈ [0, 1). Let constant ε > 0 be our
desired accuracy. Suppose we run the algorithm MyopicTop
with inputs p ∈ [0, d], C of size m ≥ 1, V of size n ≥ 1, and

set K =
l
log 2

ε(1−p)2 / log 1
p

m
. Let r∗ = argminr Dp(r, V ) =
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Figure 2: Kemeny is not optimal for these votes.

r∗1 · · · r∗m be the optimal ranking of C given votes V ; and
let r̂ = MyopicTop(K, p,C, V ) = r̂1r̂2 · · · r̂m be the rank-
ing output by the algorithm. Then: (a) MyopicTop runs
in polynomial time in m,n; and (b) if Dp(r∗, V ) = 0 then
Dp(r̂, V ) = 0, otherwise

Dp(r̂, V )

Dp(r∗, V )
≤ 1 + ε.

Thus algorithm MyopicTop is a PTAS for the ranking prob-

lem. The proof demonstrates an O

„
m

log 1
d

2
ε(1−d)2

«
running

time for the algorithm. We bound p by an (arbitrary) upper
bound d to remove dependence of p on m and n, so that K
does not depend on m,n; such a dependence would render
the algorithm no longer polytime (note that as p increases,
K becomes larger). The exponential dependence on log(1/ε)
is sufficient for a PTAS since ε is a fixed (but arbitrary) con-
stant.

5. RELATION TO OTHER SCHEMES
We now consider relationships between the consensus rank-

ing induced by the unavailable candidate model and two
popular voting rules, the Kemeny consensus [15] and plural-
ity. Recall the Kemeney consensus from Defn. 1. For any
ranking r = r1 · · · rm and preference profile V , the Kemeny
cost can also be written recursively:

κ(r, V ) =

nX
`=1

mX
i=2

1[v`(r1) > v`(ri)] + κ(r2 · · · rm, V \ {r1}).

The base case is when only one candidate remains and of
course the Kemeny cost is zero. Thus if we are given the
top candidate of a Kemeny consensus, computing the best
remaining ranking gives us a full Kemeny consensus. This
leads to the following observation (similar to Lemma 4):

Lemma 8. Let r∗1r
∗
2 · · · r∗k be the top k candidates of some

Kemeny consensus with respect to votes V . Then computing
the Kemeny consensus over the remaining candidates,

r = argmin
r′∈ΓC\{r∗1 ,...,r

∗
k
}

κ(r′, V \ {r∗1 , . . . , r∗k}),

gives us a Kemeny consensus r∗1 · · · r∗kr.

Given our objective—which aims to maximize the num-
ber of voters who consider the selected candidate best among
available candidates—not surprisingly our scheme corresponds
to plurality voting when p = 0:

Theorem 9. Let p = 0, and r∗ = argminr Dp(r, V ). Then
the top candidate in r∗ is a candidate with the maximum
number of first-place votes (i.e., a winner under plurality).

Obviously, when p = 0, an arbitrary ordering of candidates
will suffice for positions 2 and higher in the optimal ranking.
As discussed above, different objectives that, say, account for

relative preferences, can be incorporated into the unavailable
candidate model.

There are tight connections between the optimal ranking
in our model and the Kemeny ranking as well. First, we
note that the models are not the same:

Lemma 10. For any p ∈ (0, 1), there exist candidates C
and votes V such that the Kemeny consensus K∗ does not
minimize Dp(·, V ).

A counterexample is shown in Fig. 2, where the two Kemeny
consensus rankings for the votes shown are abcd and bacd;
but only r∗ = abcd minimizes Dp(·, V ) for any p ∈ (0, 1).
However, for p close to 1 (where closeness is a function of
m and n), we show that any optimal ranking in our model
must be Kemeny consensus. This implies that at least one
Kemeny consensus is optimal; but the full converse is not
true as we have shown. Not every Kemeny consensus needs
to be optimal under our model. However, we show that any
Kemeny consensus is a good approximation of the optimal
ranking. Intuitively, as p gets closer to 1, candidates lower
in the ranking contribute more to the expected number of
disagreements. Thus, the optimal ranking must get the en-
tire ranking “right.” Consequently, the unavailable candi-
date model can be used justify Kemeny in certain scenarios.
This can be seen as an alternative justification—at least in
some circumstances—of the use of the Kemeney consensus
as an aggregation technique for“subjective”rankings, just as
Young’s maximum likelihood model [25] or Mallow’s model
[20] justifies its use for estimating an “objective” ranking
under suitable assumptions.

Theorem 11. Fix m,n ≥ 1. For any set of m candidates

C, n votes V , positive ε < 2
nm(m−1)+2

and p > (1− ε)
1

m−1 ,

we have that:

1. Any ranking that minimizes the expected number of dis-
agreements is also a Kemeny consensus.

2. Any Kemeny consensus K∗ has the property

Dp(K∗, V )

minr Dp(r, V )
≤ 1

1− ε .

Hence for values of p very close to 1, finding a Kemeny
consensus can be reduced to minimizing the expected num-
ber of disagreements Dp(·, V ) in the unavailable candidate
model. This demonstrates the NP-hardness of our ranking
model for large values of p (see Corollary 12). But while
the converse fails to hold, any Kemeny consensus provides a
very good approximation of our objective, which gets better
as p gets closer to 1. In fact, this theoretical phenomenon is
clearly demonstrated in our empirical results (next section).

Corollary 12. Let p be large as in Theorem. 11. For a
given x ≥ 0, deciding whether there exists a ranking r such
that Dp(r, V ) ≤ x is NP-complete for even integers n ≥ 4.

Theorem 11 shows that the Kemeny consensus approx-
imately minimizes the expected number of disagreements
when p is close to 1. But for small values of p this is gener-
ally not the case.

Theorem 13. For any p ∈ [0, 1), let K∗ be a Kemeny
consensus and r∗ = argminr Dp(r, V ) any optimal ranking.
If Dp(r∗, V ) 6= 0, then:

Dp(K∗, V )

Dp(r∗, V )
≤ 2

(1− p)2
; (19)
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Figure 3: Poor performance of Kemeny as p→ 0.
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Figure 4: Histogram of approximation ratios (20 in-

stances) for small m, n, p = 0.3. An empty plot means all

output rankings are optimal.

otherwise Dp(r∗, V ) = Dp(K∗, V ) = 0.

This bound is loose for larger values of p. However, for
small p, we can show that the Kemeny consensus can be
close to a factor of two worse than the optimal ranking.

Example 3. Consider the votes shown in Fig. 3. It can be
seen that the Kemeny consensus K∗ is bacd (note that b is
the Condorcet winner). For k ≥ 2 and p < 3/4 the optimal
ranking in our model is r∗ = abcd. Thus,

Dp(K∗, V )

Dp(r∗, V )
=

4k − 1 + 2kp+ kp2

2k + 4kp+ kp2
=

2 + p+ p2 − 1/(2k)

1 + 2p+ p2/2

which approaches 2 from below as p→ 0 and k →∞.

6. ALGORITHMIC EXPERIMENTS
We perform experiments that examine the performance

of our greedy algorithms and the Kemeny consensus. We
compare the outputs r of these ranking schemes on random
problems by examining the ratio of expected number of dis-
agreements relative to the (minimum) number obtained by
the optimal ranking r∗: Dp(r, V )/Dp(r∗, V ). We also exam-
ine the computational performance of the greedy algorithms.

2

(m = 12, n = 10)
1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

1.16

2

(m = 15, n = 10)

2

(m = 12, n = 10)

3

(m = 15, n = 10)

2

(m = 12, n = 10)

2

(m = 15, n = 10)

Approximation Ratios (runs=10, p = 0.3)
greedy1 greedy2 kemeny

Figure 5: Histogram of upper bounds on approximation

ratios (10 instances) for large m, n = 10, p = 0.3.

We generate random problem instances as follows given
fixed numbers m of candidates and n of voters. We first
randomly partition voters into “types,” with voters of the
same type having their votes generated by a noisy realization
of a common ranking. There are log2 n types, and each type
θ is characterized by a “score vector” θ = (θ1, θ2, . . . , θm)
(each score drawn from an exponential distribution with rate
λ = 3). A voter of type θ has her vote generated as in
the Luce-Plackett model [19, 21]: candidate ci is placed in
position 1 with probability proportional to θi; the selected
candidate is eliminated, and the remaining candidates are
selected for position 2 in the same way; and this is repeated
until all m candidates are placed.

In our first series of experiments, we fix the value of can-
didate unavailability at p = 0.3 and vary m and n, gen-
erating random instances for each m,n-pair. Fig. 4 shows
the histogram of the approximation ratios of both greedy
algorithms and Kemeny relative to the optimal ranking for
small values of m (in the range 4–9) and large values of n
(ranging from 20 to 45). Fig. 5 shows the same for large
values of m (m = 12, 15) and n = 10. and Fig. 6 shows the
average ratios for both small and large m values. For small
m, 20 instances were generated and the optimal ranking was
computed by exhaustive search. For large m, 10 instances
were generated and CPLEX 11.1.1 was used to solve our IP
(IP1) with a time limit of 5 minutes for m = 12 and 10
minutes for m = 15, and its lower bound on expected dis-
agreements used. Thus the approximation ratios for large
m are in fact upper bounds, with the true ratio potentially
better than the ratio relative to the lower bound that we
compute. Kemeny rankings were computed using the IP
formulation of [6]. Computationally, the greedy algorithms
solve all problems in well under one second, while the Ke-
meny IP is bit slower but still under a second for problems
of this size (though Kemeny optimization takes well over a
minute for m ≥ 100, while the greedy methods remain under
one second).

These results indicate that Greedy1 offers an extremely
good approximation algorithm and often finds the optimal
solution, and does so very quickly. This also suggests the ap-
proximation ratio bound in Theorem 6 is overly pessimistic.
Relatively speaking, Greedy2 performs worse, though it still
provides very good approximations with an asymptotically
better running time. The Kemeny consensus performs worst
w.r.t. expected disagreements in our model (often quite poorly,
note the differences in y-axis scale), but does also provide
a reasonable approximation in some cases. Not surprisingly
its performance gets worse as the number of voters increases.



Parameters (m, n) varies
p = 0.3 (4, 20) (5, 25) (6, 30) (7, 35)
greedy1 1.00000 1.00036 1.00081 1.00033
greedy2 1.01190 1.00597 1.00621 1.00450
kemeny 1.00554 1.01546 1.01665 1.02429

(8, 40) (9, 45) (12, 10) (15, 10)
1.00046 1.00034 1.01587 1.01816
1.00355 1.00424 1.02276 1.02572
1.01605 1.03074 1.06411 1.08512

Figure 6: Average approximation ratio of different al-

gorithms for p = 0.3 (20 instances for m ≤ 9, 10 instances

for m > 9, average upper bound is shown for m = 12, 15.)

Parameters m = 8, n = 40, p varies
0.01 0.05 0.10 0.20

greedy1 1.00003 1.00000 1.00004 1.00030
greedy2 1.00018 1.00032 1.00101 1.00251
kemeny 1.01178 1.04776 1.02528 1.03288

0.5 0.70 0.90 0.95
1.00171 1.00385 1.00667 1.00698
1.00615 1.00630 1.01087 1.00817
1.01435 1.00386 1.00039 1.00025

Figure 7: Average approximation ratio of different al-

gorithms for m = 8, n = 40 (20 instances for each p). The

results corroborate Theorem 11.

In a second set of experiments, we vary values of p while
fixing m = 8, n = 40. Similar histograms are shown in
Fig. 7 and average approximation ratios are plotted in Fig. 8.
Some interesting patterns emerge in the histograms: the
greedy algorithms perform extremely well for p up to 0.7
(with Greedy1 dominating), but get relatively worse as p ap-
proaches 1. This is due to the fact that the greedy algorithms
focus on placing the “best candidates” in the top positions
at the potential expense more disagreements near the bot-
tom of the ranking. As p gets larger, disagreements near the
bottom contribute more to expected cost. Still the greedy
algorithms provide very good approximations, particularly
Greedy1. The Kemeny consensus, by contrast, improves as
p approaches 1, and for values of p ≥ 0.9 dominates the
greedy algorithms. This corroborates Theorem 11, which
states that, as p approaches 1, Kemeny will offer a very
good approximation of the optimal ranking and addition-
ally, for p very close to 1, the optimal ranking is a Kemeny
consensus.

7. CONCLUSION AND FUTURE WORK
We have introduced the unavailable candidate model, a

novel model of social choice that provides one possible ra-
tionale for computing a consensus ranking of voter prefer-
ences rather than a single decision. Our model gives rise
to a principled objective function for rank aggregation, one
that differs from classical rank aggregation rules, but bears
some strong connection to such methods, including the plu-
rality and Kemeny voting rules. We have provided exact
algorithms as well as approximation algorithms that exploit
the property that items higher in the ranking are more “im-
portant” with respect to their contribution to the objective
function. Apart from theoretical bounds on performance,
our experiments indicate that the greedy algorithms provide
excellent approximations to the optimal ranking—especially
Greedy1, which frequently finds the optimal ranking—and
are computationally effective. Empirical evidence also cor-
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Figure 8: Histogram of approximation ratios (20 in-

stances) for various p, and fixing m = 8, n = 40. An empty

plot means all output rankings are optimal.

roborates the theoretical connections we draw between our
model and the Kemeny consensus.

The unavailable candidate model is an illustration of the
use of a specific decision criterion to derive a specific prefer-
ence aggregation model, and one that naturally gives rise to
consensus rankings rather than single winners. As empha-
sized above, there are a number of other decision models can
justify the use of consensus rankings. The broader lesson is
that the specific decision model should be used to determine
the choice, or derivation, of social choice or rank aggregation
methods that maximize the desired decision criterion.

Future work includes looking at various extensions of the
unavailable candidate model. One of the most important
is to incorporate criteria other than “binary disagreement”
with the chosen candidate from among available candidates,
using voter relative preference over all available candidates
to derive a ranking. Other interesting and realistic distribu-
tions over available candidates are being investigated, as well
as methods for aggregating partial preferences from voters.
We are also exploring other decision models that would nat-
urally induce rankings, such as web search and or other con-
sensus recommendations that provide a range of options for
a variety of users. One of our primary aims is to incorporate
such decision models into techniques for rank learning where
limited preference data from users must be aggregated to fa-
cilitate learning. In this setting, the tradeoff between mak-
ing fully personalized decisions (with limited data) and pure
consensus decisions (with increased degree of dissatisfaction)
gives rise to natural criteria for clustering/aggregating cer-
tain subsets of user and not others. From a more technical



perspective proving tighter approximation bounds for the
greedy algorithm remains open.
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