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Abstract

Classic direct mechanisms suffer from the drawback of re-
quiring full type (or utility function) revelation from partici-
pating agents. In complex settings with multi-attribute utility,
assessing utility functions can be very difficult, a problem ad-
dressed by recent work on preference elicitation. In this work
we propose a framework for incremental, partial revelation
mechanisms and study the use ofminimax regretas an opti-
mization criterion for allocation determination with type un-
certainty. We examine the incentive properties of incremental
mechanisms when minimax regret is used to determine allo-
cations with no additional elicitation of payment information,
and when additional payment information is obtained. We ar-
gue that elicitation effort can be focused simultaneously on
reducing allocation and payment uncertainty.

Introduction
Mechanism design [13] studies the design of protocols
through which self-interested agents can interact to achieve
some (e.g., socially desirable) objective. Therevelation
principle states that mechanisms can be restricted to those
in which agents reveal their type, that is, their utility func-
tion over outcomes. However, as agents increasingly interact
in powerful computational settings, outcome spaces are be-
coming more complex, combinatorial auctions (CAs) being
a now standard example [6]. Thus eliciting complete type
information is unlikely to be successful.

This limitation of direct revelation mechanisms is start-
ing to be addressed. Recent research has examined meth-
ods involving limited or incremental elicitation of types
to circumvent some of these difficulties (see, e.g., [5; 1;
16]), much of this in the context of (single-good or combina-
torial) auctions. We continue along these lines by proposing
regret-based elicitationin partial revelation mechanisms.
Specifically, we useminimax regretto define the quality of
an outcome in the presence of type uncertainty. Techniques
for elicitation based on regret can quickly determine relevant
type information for optimal choices, or provide bounds on
error if optimality is not possible.

While we draw on single-agent regret-based elicitation
frameworks [2; 4; 3], our key contributions are the inves-
tigation of incentive properties when we adopt these mod-
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els for the design of incremental, partial-revelation mech-
anisms. We first elaborate a general model for incremen-
tal mechanisms that admit partial type revelation. Focus-
ing on efficiency in quasi-linear environments andex post
equilibria, we then define a simple payment scheme that can
be used with any partial type information and describe the
incentive properties that result from a direct application of
regret-based elicitation to multi-agent settings. We then im-
prove incentives by adding a second “payment elicitation”
phase, itself a common mechanism design approach [9;
12]), that exploits the notion of regret and allowsa priori
bounds on manipulability to be provided. Finally, we argue
that if one is going to allow for both allocation and pay-
ment uncertainty, one should not break elicitation into the
two phases. Instead, we define a “global regret” over both
measures simultaneously and describe a regret-based elic-
itation process that quickly reducesboth loss in efficiency
and manipulability. A key feature of our framework is that
a priori bounds on manipulability can be provided, allowing
a tradeoff between the quality and “incentive properties” of
the mechanism and the amount of elicitation required.

Related Work
Much work has been devoted to the partial elicitation of
preferences. Apart from a considerable body of work on
ascending-price mechanisms, recent work has focused on
more direct elicitation of types. Although theoretical results
show savings in information revelation are impossible in the
worst-case [15], a number of approaches have been empir-
ically successful by exploiting the (inherent or assumed)
structure of the valuation space, particularly in CAs [5; 9;
18; 11]. In our work, we also exploit a known, compact rep-
resentation of valuations, but the type of structure we con-
sider is completely general (and applies beyond CAs).

When designing incremental mechanisms, it is not only
necessary to elicit enough information to determine an op-
timal allocation, but also to determine suitable payments to
ensure that appropriate incentive properties are met. A fa-
mous result by Green and Laffont (1979) shows that, in gen-
eral, choosing the efficient allocation in dominant strategy
(or ex-post) equilibrium requires using the Groves payment
scheme. To ensure individual rationality, it is sufficient to
use VCG payments (a special case of Groves). Hudson and
Sandholm [9], for instance, consider a two-phase approach



for CAs in which elicitation is first directed toward deter-
mining an efficient allocation, and is then focused on opti-
mal allocations in the(n−1)-agent sub-economies to deter-
mine VCG payments, thus ensuring truth telling is anex post
equilibrium in the sequential mechanism.1 In [11], the two
phases are run simultaneously by using universal demand
queries, but the elicitation of the allocation and the payments
is still done independently. In [17], incremental, partial rev-
elation mechanisms are designed by converting a one-shot
dominant strategy mechanism into a multistage one.

While we focus on incremental analogs of VCG mecha-
nisms with partial type revelation, Nisan and Ronen [14] dis-
cuss thecomputational approximationof VCG mechanisms.
They show that, for two important classes of problems, any
“reasonable” approximation scheme for determining alloca-
tions will destroy truth-telling of the corresponding VCG
scheme. This form of approximation is quite different from
ours in that we assume optimization is possible, but rely on
regret to bound the amount of information that is actually
required to do the (approximate) optimization.

Fadel and Segal [7] tackle a related problem to ours,
examining the communication cost incurred by insisting
enough information be revealed to ensure (ex post) incen-
tive properties are respected by a mechanism designed to
implement some social choice function. They show that ex
post incentive compatibility can incur significant cost (over
the information required to implement the function). Our
focus is somewhat different, allowing the (bounded) relax-
ation of ex post incentive compatibility in order to alleviate
the burden of revelation (in practice).

Mechanism Design: Background
We adopt a standard quasi-linear environment withn agents
in which the aim is to choose anoutcomeor allocationx
from the setX. Each agenti ≤ n hastypeti drawn from set
Ti, and valuation functionvi : X × Ti → R, with vi(x; ti)
denoting the value of allocationx if i has typeti. In many
cases, we can viewti as encodingi’s utility function over
X. Let T =

∏
i Ti be the set of full type vectors. Theso-

cial welfareof x given t ∈ T is SW (x; t) =
∑

i vi(x; ti).
Let t−i denote a type vector over all agents buti, and
SW −i(x; t) =

∑
j 6=i vi(x; ti).

A mechanismconsists of a set of actionsA =
∏

i Ai, an
allocation functionx∗ : A → X andn payment functions
pi : A → R. Intuitively, the mechanism offers the action
setAi to i, and chooses an allocation based on the actions
taken by each agent. We assumequasi-linear utility; that
is, an agenti’s utility for an allocationx and paymentρi is
ui(x, ρi, ti) = vi(x; ti) − ρi. It is clear that mechanismm
induces a (Bayesian) game for the participating players, as-
suming that each agent possesses probabilistic beliefs about
the types of the others. In this game, each agenti adopts a
strategyπi : Ti → Ai associating an action with its type.

1In some elicitation strategies, once an efficient allocation is de-
termined, enough information has been elicited to determine VCG
payments [5]. Unfortunately, these rigid schemes tend to elicit con-
siderably more information than some others, which typically per-
form better [9].

The goal of mechanism design is to designm to imple-
ment some social choice functionf : T → X. For in-
stance,f may be social welfare maximization (i.e.,f(t) =
argmaxSW (x; t)). In this work, we focus on social wel-
fare maximization orefficient allocation. Implementation
then depends on the equilibrium concept used; specifically,
if m induces strategiesπi for each agent in equilibrium such
that x∗(π(t)) = f(t) for all t ∈ T , we say thatm imple-
mentsf . Standard equilibrium concepts lead to dominant
strategy, ex post, and Bayes-Nash implementation. We will
be concerned largely with implementation inex-post equi-
librium: a collection of strategiesπ such thatπi is optimal
for i even when the types of all other agents are known toi
(assuming they adopt their strategies inπ).

Therevelation principleallows one to focus attention on
direct, incentive compatible mechanisms in whichAi = Ti

and each agent will reveal its type truthfully in equilibrium.
A direct mechanism isincentive compatibleif (in equilib-
rium) each agent reports its type truthfully. A mechanism
is ex-post individually rationalif no agenti is better off not
participating in the mechanism (in equilibrium) even when
the types of others are known toi. The VCG scheme (elab-
orated below) is a famous class of mechanisms that induces
truth telling in dominant strategies in quasi-linear settings
with social welfare maximization as the goal.

Incremental Partial Revelation Mechanisms
Because of the difficulties of full type revelation discussed
above, we focus on the incremental revelation of partial
types. We define apartial typeθi ⊆ Ti for agenti to be
any subset ofi’s types. A partial type vectorθ includes a
partial type for each agent. We now elaborate on the defini-
tion of a mechanism to draw out the structure of the iterative
querying process involved in incremental elicitation.

Let Qi be the set of queries the mechanism can pose toi,
and letRi(qi) be the responsesi can offer toqi ∈ Qi. We
interpret each query as askingi about its type; thus each re-
sponser ∈ Ri(qi) is equated with a partial typeθi(r) ⊂ Ti.
For example, standard direct mechanisms would aski “What
is your true type?” with response setTi. A simpler query “Is
your valuation for outcomex greater thanv?” admits two
responses (yes and no) corresponding to the obvious subsets
of Ti. Standard queries (e.g., value, rank, demand queries)
can all be represented in this way. LetQ = ∪Qi.

A nonterminal historyis any finite sequence of queries
and responses (including the empty sequence), and atermi-
nal history is any nonterminal history followed by an out-
comex ∈ X. Let H = Ht ∪ Hn be the set of (termi-
nal or nonterminal)histories, and for anyh ∈ H, let hi

denote the restriction ofh to queries/responses for agenti.
For anyh, let h≤k denote the initialk-step history. We use
hk to denote thekth query-response pair or outcome in se-
quenceh anda(hk) refers to the “action” (i.e., query asked
or outcome chosen) at stagek of this history. Anincremen-
tal mechanismM = 〈m, (pi)i≤n〉 consists of: (a) a mapping
m : Hn → Q∪X, that for each nonterminal history chooses
a query for some agent or selects an outcome; and (b) a col-
lection of payment functionspi : Ht → R that associates
a payment for agenti with each terminal history. The set



of realizable historiesinduced bym is simply that subset of
historiesh for whicha(hk+1) = m(h≤k).2

An agentstrategyπi associates a responseπi(hi, qi; ti) ∈
Ri(qi) with every query, conditioned on its local history and
its type.3 Strategiesπi and typesti together withm induce
a specific (possibly unbounded) history:h(m, π, t). Since
each response is associated with a partial type, for any length
k local historyhi we say thatθi(hi) = ∩j≤kθi(rj) is the
revealed partial typeof agenti (that is, i has represented
his type to lie within the partial types associated with each
response). We sayπi is truthful iff ti ∈ θi(πi(hi, qi; ti)) for
all ti ∈ Ti, qi ∈ Qi andhi ∈ Hi. A truthful strategy is
necessarilyhistory independentif responses correspond to
disjoint partial types.

We say an incremental mechanismM is direct iff m
and pi depend only on the partial types that are revealed
and not on the precise history: that is,m(h) = m(h′) if
θi(h) = θi(h′) for eachi ≤ n, and similarly for payments
pi. We restrict attention to direct mechanisms, and write
m(θ) andpi(θ) to emphasize the dependence of the mech-
anism decisions only on the partial type vector revealed so
far. If m(θ) ∈ X, we write x∗(θ) to denote the outcome
chosen. An incremental mechanism is apartial revelation
mechanismif there exists a realizable terminal historyh and
agenti such thatθi(hi) admits more than one possible type
ti. In other words, it is possible for the mechanism to termi-
nate without full knowledge of the types of all agents.

Given a mechanismm and response policiesπ−i for
agents other thani, the utility of agenti of type ti for us-
ing strategyπi is defined as:

ui(πi, π−i; ti) = vi(x
∗(θ(h)); ti) − pi(θ(h))

if the historyh induced by〈πi, π−i〉 is terminal. Otherwise,
we setui = 0.

Classic direct mechanisms can be viewed as a special case
of incremental mechanisms in which each agent is asked di-
rectly “What is your type?” and the mechanism then termi-
nates with the appropriate outcome and payment functions.

We continue by describing some general properties of di-
rect, incremental, partial revelation mechanisms.
Definition 1. A direct mechanismM = 〈m, p〉 satisfiesδ-
allocation certaintyiff for all realizable terminal historiesh,
x∗(θ(h)) is such that

∀t ∈ θ(h),∀x ∈ X,SW (x∗(θ(h)); t) ≥ SW (x; t) − δ

M satisfiesallocation certaintyif this holds forδ = 0.
That is,M is δ-allocation certain if, whenever it termi-

nates, it has enough information about agent types to deter-
mine aδ-efficient allocation.
Definition 2. A mechanismM = 〈m, p〉 is δ-efficient iff it
is terminating(i.e., all realizable histories are terminal) and
δ-allocation certain. M is efficient if it is terminal and is
allocation certain.

Allocation certainty (or its approximation) does not imply
that the mechanism “knows” the social welfare of the chosen
outcome, only that it is (withinδ of) optimal.

2M need only specify queries, etc. for realizable histories.
3We assumei knows only its own history; this can be relaxed

to admit (partial) revelation of other agent queries/responses.

Regret-based Allocation Elicitation
In contrast to standard direct mechanisms, partial revelation
mechanisms do not generally allow for the exact optimiza-
tion of social welfare. Allocation decisions made in the face
of type uncertainty run the risk of being suboptimal unless
enough type information is obtained to admit allocation cer-
tainty. However, we will often be interested in mechanisms
that do not reach allocation certainty in order to relieve elic-
itation burden. In such a case, some means of making deci-
sions in the presence of type uncertainty is required.

The concept ofminimax regrethas recently been proposed
and studied as a means of optimization in (single-agent)
decision problems in the face of (non-probabilistic) utility
function uncertainty and for driving utility elicitation [2; 4;
3]. We describe the minimax regret notion as well as one
elicitation strategy in the context of incremental, partial rev-
elation mechanisms.

Suppose a partial revelation mechanism must choose
some allocationx ∈ X with access to only incomplete infor-
mation about agent utility functions via a partial type vector
θ. We define the minimax regret ofx as follows:
Definition 3. Thepairwise regretof decisionx with respect
to decision̂x over feasible type setθ is

R(x, x̂, θ) = max
t∈θ

SW (x̂; t) − SW (x; t), (1)

This is the most one could regret choosingx instead of̂x
(e.g., if an adversary could impose any type inθ). Themaxi-
mum regretof decisionx and theminimax regretof feasible
type setθ are, respectively:

MR(x, θ) = max
x̂

R(x, x̂, θ) (2)

MMR(θ) = min
x

MR(x, θ) (3)

A minimax-optimaldecision is anyx∗ that minimizes
Eq. 3. Without distributional information over the set of pos-
sible utility functions, choosing a minimax-optimal decision
x∗ minimizes the worst case loss with respect to possible
realizations of the typest ∈ θ. We refer to the regret maxi-
mizing x̂ in Eq. (3) as thewitnessfor x.

Minimax regret optimization can be difficult in general,
but recent approaches show how it can be made practical
when utility models arefactored into a convenient func-
tional form such asgeneralized additive independence (GAI)
[8], and utility uncertainty is expressed in the form of linear
constraints on such factored models [2; 4]. In this setting,
minimax regret optimization can be formulated as a linear,
mixed-integer program with exponentially many constraints,
but can be solved using an iterative constraint generation
procedure that, in practice, enumerates only a small number
of (active) constraints [2; 3].

Several elicitation strategies have been proposed that at-
tempt to reduce minimax regret quickly. We describe
one strategy here, called thecurrent solution strategy
(CSS), which has proven quite effective in both constraint-
optimization problems with GAI models [3] and winner de-
termination in CAs with linear utility models [4]. CSS
works as follows: given the current feasible type regionθ,
letx∗ andx̂ be the minimax optimal and witness allocations,
respectively. Each of these allocations involves a specific



instantiation of the GAI factors of the agents’ valuations,
hence regret can be reduced only by imposing additional
constraints onθ that tighten our knowledge of at least some
of these parameters. Directboundqueries can be posed that
ask the user to tighten the bounds on one of these param-
eters. CSS queries the parameter with the loosest bounds,
among those instantiated inx∗ andx̂, and has been shown
to be extremely effective in practice in reducing regret.

Applying regret-based elicitation to the design of incre-
mental mechanisms works as follows: after each query the
mechanism (assuming truthful revelation) knows that agent
types lie within someθ and computesMMR(θ) and the min-
imax optimalx∗. If MMR(θ) ≤ δ, the mechanism termi-
nates withx∗; otherwise, the current solutionx∗ and witness
x̂ are used to determine the next query. The termination
condition ensures such a mechanism satisfiesδ-allocation
certainty. If we setδ = 0, then full allocation certainty is
achieved and the mechanism is efficient if we can guaran-
tee termination. While these elicitation techniques generally
converge to zero-regret in practice, in the worst case no elic-
itation technique that imposes linear constraints on the space
of valuations can be guaranteed to terminate finitely; how-
ever, regret can be made arbitrarily small [2].

Incentive Properties
The elicitation strategy defined in the previous section satis-
fies (exact or approximate) allocation certainty and therefore
provides an (exact or approximate) efficient allocation func-
tion. To fully define a mechanism, we require a payment
scheme that induces reasonable incentive properties. To this
end, we propose a partial revelation analog of VCG pay-
ments. We describe its incentive properties when applied di-
rectly after the allocation elicitation phase described above
(with no additional information elicited to determine pay-
ments); and then propose a strategy for payment elicitation
in a subsequent phase.

Allocation Certainty
We first define a class of mechanisms that is a partial reve-
lation generalization of VCG. LetM have aδ-efficient allo-
cation functionm that terminates withδ-allocation certainty
and a partial type vectorθ. An agent’s payment is simply the
maximum VCG payment over all the possible types of other
agents. More precisely, letM = 〈m, (p>i )i≤n〉 where:
• m is δ-efficient

• p>i (θ) = max
t−i∈θ−i

pv
i (x

∗(θ), t−i)

wherepv
i is the VCG payment scheme:

pv
i (x, t−i) = max

x−i

SW−i(x−i; t−i) − SW−i(x; t−i)

We refer to this payment scheme under partial types aspar-
tial VCG payment.
Thm 1. Let M have aδ-efficient allocation function and
use partial VCG payments. ThenM is a δ-efficient,δ-ex
postindividually rational,(δ + ε(x∗(θ)))-ex postincentive
compatible mechanism, whereε(x) = max

i
εi(x), and:

εi(x) = max
t′−i∈θ−i

pv
i (x, t′−i) − min

t−i

pv
i (x, t−i) (4)

Such a partial revelation mechanism will obviously deter-
mine an allocation whole social welfare is withinδ of opti-
mal if all agents reveal their partial types truthfully. The par-
tial VCG payment scheme also inducesγ-ex-post incentive
compatibility (whereγ = δ + ε(x∗(θ))). This means that
the gain an agent can attain by revealing its partial type in-
correctly is bounded byγ, when all others reveal truthfully,
even if the agent knows the types of the others. Finally, it
is approximately individually rational, so no agent can gain
more thanδ (even if it knows the others’ types) by not par-
ticipating in the mechanism.

When dealing withapproximateincentive properties, one
must be aware of the fact that a small deviation from the truth
by one agent can cause major changes in the mechanism’s
allocation (thus leading, say, to large losses in efficiency).
But with partial VCG payments, an agent can gain at most
γ compared to revealing its partial type truthfully. In most
settings, the computational cost of finding a good lie—due
to the considerable uncertainty in the value of a lie due to
uncertainty about the types of others)—will be substantial.
Thus, ifγ is small enough, it will not be worth the cost: our
formal, approximateincentive compatibility is sufficient to
ensurepractical, exactincentive compatibility. Of course, if
the query strategy used byM only tacklesSW-regret(i.e.,
regret w.r.t. efficiency)δ, we may not be satisfied with the
boundγ—we address this in the next section.

To develop a sense of the difficulty associated with ma-
nipulating such a mechanism, consider that an agent must be
able to compute an untruthful strategy (or lie) with greater
utility than truth-telling to exploit our approximate incen-
tive guarantee. An optimal lie reduces an agent’s payment
to his true VCG payment without changing the choice of
the efficient allocation.4 To compute such a lie, the agent
must have considerable (and accurate) information about the
types of the others. For example, in a one-item auction with
two agentsa andb with valuations 7 and 5, respectively,a’s
optimal lie is one that leads to the efficient allocation—he
wins the item—while reducing his payment to the true VCG
payment (5). Ifa knows thatb has type 5, the optimal lie
is clear: pretend that his type is5 + ε, leading to the same
(efficient) allocation but with payment arbitrarily close to 5
(depending on the elicitation strategy used).

Of course, things are more difficult than this. Types of
other are only known probabilistically—in our example,a
will only have a distribution overb’s type, and by underbid-
ding he runs the risk of losing the item. If the elicitation pro-
cess is nondeterministic, agents may also have beliefs about
its execution given the types of others:Pr(θ(h(m, π)))|t).
Thus manipulation requires a large amount of computation,
requiring simulation of the elicitation process (e.g., the re-
gret computations above) for all type vectors, to determine
Pr(θ|ti) for any “lie” ti it might report. The costliness of
such computations (e.g., in time, cognitive, or computational
resources) implies that manipulation is not worthwhile un-
less the bound in Thm. 1 is quite loose.

4If the allocation isδ-efficient, the optimal lie would also at-
tempt to manipulate the approximation of the allocation function.
This makes it even harder to compute.



A similar argument can be made regarding approximate
individual rationality: determining the gain from not partic-
ipating will be very difficult. Apotentialsmall loss will be
worthwhile for an agent given the savings our mechanism
provides in revelation and computational costs (relative to
the full revelation alternative).

Payment Elicitation
One might not be satisfied with the guarantees provided by
the expected value ofε defined in Thm. 1; if it is too large,
our boundγ = δ + ε(x∗(θ)) on manipulability may not in-
duce truthful partial type revelation. In this case, we would
like to continue eliciting in a second phase, after reaching al-
location certainty, until we can guarantee that manipulation
is bounded by a pre-specified,type-independentε. As dis-
cussed above, for a suitably smallε, we can expect to induce
truthful revelation for purely practical reasons.

The elicitation strategies above will not provide useful
queries for payment elicitation since allocation certainty has
been achieved. So we directly elicit information to deter-
mine payments that reduce the worst-case bounds on ma-
nipulability. This two-phase approach is similar in spirit
to other elicitation schemes that first determine an efficient
allocation and then elicit further information to determine
VCG payments [9; 12]. Our model differs slightly in that
we do notrequireallocation or payment certainty.

Once allocation certainty has been reached,i’s payment
uncertainty depends only on other agent valuations for the
chosen allocation, as well as the optimal allocation in the
sub-economy with agenti removed. In practice, one can
compute the typest>−i andt⊥−i that definei’s max and min
payments inx∗ in Eq. 4, respectively, as well as the alloca-
tionsx>

−i andx⊥
−i that are optimal, under those types, in the

sub-economy. Given these, we have:

εi(x
∗) = SW −i(x

>
−i; t

>
−i) − SW −i(x

∗; t>−i)

−SW −i(x
⊥
−i; t

⊥
−i) + SW −i(x

∗; t⊥−i)

In the spirit of thecurrent solutionstrategy, we query the
GAI parameter, among those involving these three alloca-
tions, with the most uncertainty. Note that ifε is required to
be very close to zero, it is possible that we will have to elicit
enough information to determine the efficient allocation of
the sub-economyx∗

−i (so thatx>
−i = x⊥

−i) with certainty.
This is not necessarily the case however, and, unlike other
two-phase approaches, we might terminate without knowing
either thex∗

−i’s, their social welfare, or the social welfare of
x∗ in the sub-economies.

Direct Optimization
The design approach presented so far follows that of most
other work in the literature by decomposing the mechanism
into two phases: one to reduce allocation uncertainty to a
satisfactory level and choose an allocationx∗; and another
that independently tackles payment uncertainty inx∗. How-
ever, in a partial revelation setting, the allocation defines
both the incurred loss in efficiency as well as a large part
of the payment uncertainty. The choice ofx∗ should there-
fore account for both criteria. Moreover, the true type of

the agents is unique and, along withx∗, defines both effi-
ciency and payment uncertainty. The optimization of both
criteria should therefore not be independent. Finally, when
designing approximately incentive compatible mechanisms,
the main objective is to reduce manipulability below a given
threshold. The sum of the efficiency and payment uncer-
tainty bounds is only an upper bound: actual manipulability
may be significantly lower, which can allow us to terminate
with fewer queries.

If the true type profile ist, the manipulability of our mech-
anism, when choosingx∗ and applying our paymentsp>i , is
the maximum over all agents of the difference between the
agent’s best-case utility and its actual utility. So the manip-
ulability of agenti is expressed as:

αi(x
∗, t) = max

x̂
[vi(x̂; ti) − pv

i (x̂; t−i)] − vi(x
∗; ti) + p>

i (x∗; θ−i)

The manipulability of the mechanism is
maxi{αi(x∗, t)}, and the worst-case manipulability is
α = maxt maxi{αi(x∗, t)} . We sayM is α-manipulable
if this expression holds.

Thm 2. LetM be anα-manipulable mechanism using par-
tial VCG payments. ThenM is an α-efficient,α-ex post
individually rational, andα-ex postincentive compatible.

Finding the allocation that minimizes worst-case manipu-
lability is equivalent to solving the following optimization:

x∗ = arg min
x

max
i,x̂

Ri(x, x̂)

where: Ri(x, x̂) =

max
t

[ vi(x̂; ti) − vi(x; ti) + p>
i (x; θ−i) − pv

i (x̂; t−i)]

= max
ti

( vi(x̂; ti) − vi(x; ti) )

+max
t′−i

pv
i (x; t′−i) − min

t−i

pv
i (x̂; t−i)

This is also a regret minimization problem, where regret is
with respect to theglobalutility of an agent.

The high-level idea of regret-based elicitation naturally
applies: given ana priori partial type of the agents, we com-
pute the minimax-optimal allocationx∗ and, in the process,
the witness corresponding to the adversary’s choicex̂i for
eachi. If the regret ofx∗ (i.e., manipulability) is not small
enough, we choose a query that attempts to reduce the regret
of our current solution and iterate until we reach the given
threshold.

The regret minimization problem can be reformulated as:

min
x,δ

δ such that∀x̂, ∀i,

δ ≥ max
ti

( vi(x̂; ti) − vi(x; ti) )

+ max
t′−i

pv
i (x; t′−i) − min

t−i

pv
i (x̂; t−i)

The maximum payment ofi in x is not linear inx, but
can be linearized by generating (or enumerating) allocations
that are potentially optimal when agenti is removed (the
allocations used to define VCG payments).

For eachi, generating the witnesŝxi that most violates
the constraints given a current solutionx∗ involves solving:

x̂i = arg max
x̂

»
max

ti

[ vi(x̂; ti) − vi(x
∗; ti) ] − min

t−i

pv
i (x̂; t−i)

–



Since the minimum payment is not linear either, this op-
timization requires its own round of constraint generation.
Witness generation is equivalent to a minimax regret prob-
lem. We leave details for a longer version of the paper.

Elicitation Strategies and Empirical Results
We consider three elicitation strategies with the aim of re-
ducing manipulability (i.e.,α) and SW-regret(i.e., maxi-
mum loss in efficiencyδ) of the chosen outcome with as
few queries as possible.

To set the stage, recall that we have defined CSSs (current
solution elicition strategies) w.r.t. both social welfare (call
this SW-CSS) and payment uncertainty (P-CSS) in previous
sections. Though the details have been omitted, comput-
ing theα-minimizing x∗ provides us with three witnesses:
x̂, corresponding to the adversary’s choice, andx>

−i and
x⊥
−i, corresponding to the optimal allocations in the sub-

economies that define the payments of agenti in x∗ andx̂,
respectively. This leads to a third CSS (M-CSS, for manipu-
lability) that queries the parameter among these four alloca-
tions that has the largest gap. While M-CSS seems appealing
on the surface, it in fact performs quite poorly since it tends
to ask queries that reduce payment uncertainty early on for
allocations that won’t in fact be realized. So instead, we will
use these as sub-strategies in the three methods we explore.

The first strategy we test istwo-phase (2P), in which we
first run SW-CSS until SW-regretδ reaches zero (or some
small threshold), finding an efficient allocation, then run P-
CSS to determine appropriate payments untilδ + ε is less
than some threshold. This is much like standard two-phase
approaches. Theα-two phase (α2P) strategy works exactly
like 2P, but terminates when the manipulability boundα is
below some threshold. Intuitively, this more accurately re-
flects the quality of the current decision. The third strategy
is calledcommon-hybrid (CH)and proceeds as follows. (a)
Let A be the set of GAI-parameters instantiated in the two
allocations (SW-regret minimizing and its witness) that de-
termine SW-regret; letB be the analogous set of parameters
among the four allocations that determine worst-case ma-
nipulability. If these sets have any parameter in common,
we query that common parameter with the largest gap. (b) If
no parameters are in common, then we use a hybrid method
that chooses between SW-CSS and M-CSS, with a bias to-
wards SW-CSS early on (for reasons explained above).5

We compared 2P,α2P, and CH on a car rental problem of
moderate size (based on [3]), where a buyer wants to rent a
car from one of two dealers, and the buyer’s valuation and
dealer costs exhibit GAI structure. A car is defined by eight
attributes (e.g., engine size, seating, etc.) with domain size
ranging from two to nine. Each of the three agents’ utili-
ties has 13 factors with factor sizes ranging from one to four
variables (giving a total of 825 utility parameters). We also
compared these strategies with a myopically optimal strat-

5The best M-CSS query is selected only if its utility gap is
at leastb times that of the best SW-CSS query. We useb =
max(0, 10 − 0.005

Pn
i=1 i) at queryn in our experiments. With

this setting, after 60 queries (total over all agents) M-CSS will al-
ways be selected.
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Figure 1:Car Rental Problems. Average of 40 runs. 2 sellers, 1
buyer; 13 factors/agent; 1-4 variables/factor; 2-9 values/variable.
825 parameters total.

egy (MY) on small, randomly generated, supplier-selection
problems, where a buyer negotiates with several sellers over
a multi-attribute item to trade. These problems have 81 util-
ity parameters. MY considers querying the midpoint of each
parameter, computes the two new global regret levels that
could result from each each response, and asks the query
with the best average regret reduction. Clearly this strategy
is only computationally feasible on small problems, but it
provides an interesting comparison.

Figure 1 shows how manipulabilityα is reduced as a func-
tion of the number of queries (per agent) for 2P,α2P and CH
on the car rental problem.α2P and CH, the two strategies
that exploit manipulability, exhibit better anytime behavior
than 2P, with a slight advantage for CH. 2P andα2P reach
near-zero manipulability in roughly the same number of
queries (around 110 per agent), while CH reaches the same
level in about 95 queries. Independent of the specific strat-
egy, our results make a strong case for regret-based elicita-
tion in mechanism design, as it effectively minimizes elicita-
tion effort. On average only 8% of the utility parameters are
ever queried by CH. Furthermore, these are not completely
determined, since we only tighten the initial bounds. Regret-
based elicitation terminates with 92% of the initial utility un-
certainty remaining on average (as measured by the “perime-
ter” of the partial type space) whereas halving the gap of the
most uncertain parameter (a theoretically motivated method
uninformed by regret [3]) leaves only 64% of the uncertainty
remaining after the same number of queries, and is still very
far from reaching zero-manipulability. This indicates that
regret-based strategies focus onrelevantinformation, rather
than reducing uncertainty for its own sake, thus reducing
revelation and improving decision quality. Note that initial
regret prior to elicitation is on average 99% of optimal so-
cial welfare. Despite this, zero-regret (true efficiency) is at-
tained in only 71 and 77 queries, respectively, forα2P and
CH, despite the complexity of the problem (involving 825
parameters).

Figure 2 compares CH and MY on small random prob-
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Figure 2:Small Problems. Average of 40 runs. 2 sellers, 1 buyer;
3 factors/agent; 2 variables/factor; 3 values/variable. 81 parameters
total.

lems. The large amount of additional computation required
by MY allows for reasonable anytime behavior, but it is still
outperformed by CH except in the earliest stages of elicita-
tion. CH reaches near-zero manipulability in about 15 fewer
queries (45 vs. 60). While counter-intuitive, this behavior
is plausibly explained by the fact that since CH focuses on
“relevant” parameters, it implicitly provides some sequential
guidance: the parameters instantiated in the various regret
allocations are likely to remain relevant throughout a large
part of the elicitation process. However, further investiga-
tion of this phenomenon is needed.

Concluding Remarks
We have described a regret-based approach to the design
of incremental, partial revelation mechanisms, using mini-
max regret to make allocation decisions in the presence of
type uncertainty. We examined the incentive properties of
several regret-based schemes. With only approximate allo-
cation certainty, we showed that the partial VCG payment
scheme allows one to boundex postmanipulability. We also
described how to elicit additional payment information to
providea priori bounds when our payment scheme is used.
Finally, we argued for a unified approach in which elici-
tation is directed specifically at reducing global manipula-
bility (which automatically bounds the loss in efficiency).
With sufficiently small bounds, the cost of manipulation will
generally outweigh its potential gain, so thatformal, ap-
proximateincentive compatibility will be sufficient to en-
surepractical, exactincentive compatibility. Our payment
scheme also has the positive side-effect of increasing rev-
enue relative to VCG. Our approach can be applied in any
mechanism design context, unlike most previous incremen-
tal elicitation schemes, and yet still exploits the inherent
structure of the specific setting. Empirically, our schemes
seem to be very effective.

We have recently begun to explore one-shot partial reve-
lation mechanisms [10], and several other interesting direc-
tions remain to be explored. Precisely determining the com-

plexity of manipulation is an important task in further justi-
fying our emphasis on approximate incentive compatibility
and individual rationality. Further study intosequentially
optimal elicitation and a theoretic analysis of the communi-
cation complexity of regret-based mechanisms are of great
interest as well.
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