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ABSTRACT
Adaptive software systems are intended to modify their appearance, perfor-
mance or functionality to the needs and preferences of different users. A
key bottleneck in building effective adaptive systems is accounting for the
cost ofdisruptionto a user’smental modelof the application caused by the
system’s adaptive behaviour. In this work, we propose a probabilistic ap-
proach to modeling the cost of disruption. This allows an adaptive system
to tradeoff disruption cost with expected savings (or otherbenefits) induced
by a potential adaptation in a principled, decision-theoretic fashion. We
conducted two experiments with 48 participants to learn model parameters
in an adaptive menu selection environment. We demonstrate the utility of
our approach in simulation and usability studies. Usability results with 8
participants suggest that our approach is competitive withsplit menus w.r.t.
task performance, while providing the ability to reduce disruption and adapt
to user preferences.
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Author Keywords
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1. INTRODUCTION
The need to develop user adaptive systems has been made
evident by emerging work that applies user modeling to tech-
nologies ranging from automatic interface customization [7,
11] to health care systems [1]. Since different people pre-
fer different styles of interaction, intelligent systems should
adapt to individual user’s changing needs and preferences.
For example, some users may prefer to optimize task perfor-
mance, while others may prefer to learn the software better at
the expense of task completion time. The sequential nature
of human-computer interaction (HCI) makes it possible to
build user adaptive systems that learn user preferences over
time. When deployed successfully, adaptive systems have
the potential to increase productivity and user satisfaction.

Through repeated interaction, a user builds amental model
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of the application that reflects the knowledge gained through
experience. This may include available software functional-
ity, the locations of functions, the effects of those functions
(e.g., how long they take, whether multiple actions achieve
the same result), etc. A key bottleneck in building effective
adaptive systems is accounting for the induceddisruptionto
a user’s mental model. Consider for instance menu selection.
The first time a user selectsExit from theFile menu, he
scans all the items insideFile. After usingExit several
times, he learns it is located at the bottom ofFile. An
adaptive system may observeExit is frequently used, and
decide to move it to the top ofFile so that future access be-
comes faster. Obviously, there are tradeoffs involved: there
are long-term task performance gains (the user will access
the frequently usedExit more quickly); however, the dis-
ruption of the user’s mental model ofExit’s location may
cause short-term performance degradation—more search is
involved until the new location is learned—and annoyance.
The degree of disruption is, intuitively, related to the strength
of the user’s prior beliefs and the degree of “new search” re-
quired (e.g., if the new location is near the old one, disrup-
tion may be less than if it were further away).

While notification mechanisms may ease the abrupt transi-
tion caused by adaptive actions, some users may find them
distracting or unnecessary. Ideally, an adaptive system should
assess a user’s mental model, and make the tradeoffs be-
tween thelong-termbenefits of adaptive actions (e.g., im-
proved task performance) and the costs of disruption be-
fore taking those actions. We propose just such a model
here, with a focus on models of function location, relevant
to adaptive systems that change function locations in order
to make access more convenient or to reduce interface bloat.
Our mental model is probabilistic: it allows for a natural
definition of strength, model dynamics (including learning
and forgetting), and cost of disruption. We also propose
means for assessing the long-term tradeoffs in a decision-
theoretically principled fashion. This stands in contrastto
adaptive system models that focus only on maximizing ben-
efits of speed performance, while designating a “generic”
cost to adaptive actions or ignoring costs altogether [12].

In Sec. 2, we review some known properties about men-
tal models from existing literature. As our first contribu-
tion, we present a probabilistic mental model in Sec. 3 and
define three mental operations (learning, forgetting, disrup-
tion) using mental model strength. In Sec. 4, we describe
how our model is used to estimate the cost of disruption
in a decision-theoretic system. Unlike other user adaptive



systems, ours is the first to explicitly tradeoff the long-term
benefits of adaptive actions against the associated cost of dis-
ruption. Our system is first evaluated in simulation in the
context of adaptive menus in Sec. 5. To learn a more realis-
tic model, we conducted two studies reported in Sec. 6 and
Sec. 7. Most importantly, these experiments show a signif-
icant overhead in search performance times that varies with
mental model strength and cannot be naturally explained by
existing predictive models. Finally, we confirm our simu-
lation results by conducting usability experiments described
in Sec. 8. Both the objective and subjective usability results
show that our approach offers competitive performance with
adaptive menus, while enabling more opportunities for users
to learn the system.

2. PROPERTIES OF MENTAL MODELS
The termmental modelhas been used in psychology to de-
note a person’s mental representation of (concrete or ab-
stract) objects [13, 8]. We use the term in its HCI sense,
pertaining to software usability—a mental model is a user’s
representation of an application. In particular, we focus on
mental models of function locations, e.g., the location of
menu items. Much research on mental models describes
conditions and effects, but does not offer explanations or
theoretical predictions [16]. Furthermore, due to variations
in the elicitation and experimental procedures, much debate
surrounds these results [2].

Despite the imprecise state of work in the area, most re-
searchers agree that people’s mental models areincomplete,
dynamic, and unstable[14]. Consider a word processing
application with standard menus likeFile, Edit, etc. A
typical user will learn where common functions are located
within menus, but will not know the locations of all available
functionality, thus rendering his mental model incomplete.
Through extended usage, the user reinforces, or strengthens,
what he already knows and learns new information about the
application. Certain knowledge may weaken as well (e.g.,
rarely used functions). This illustrates the dynamic nature of
a mental model. Finally, if we ask the user to report his be-
liefs (based on his current mental model), elicited responses
will often vary, even without disruption to the mental model,
indicating instability of mental models.

In HCI, mental models are often used to account for software
learnability, or the user’s ability to master the application.
For example, after usage, a researcher may elicit/evaluate
how well a user’s mental model depicts the actual state of the
software. If a system could “track” a user’s mental model at
runtime, it could identify sources of disturbance to the men-
tal model and eliminate them from the design of the soft-
ware. To this end, some computational approaches to men-
tal models have been proposed, but are non-probabilistic and
use heuristic updates [17]. Thus, these approaches do not ac-
count for the three properties above in a principled manner.

Our aim is to develop an approach to mental models that
allows a system to quantify the disruption caused by adap-
tive actions. We are unaware of any such formal models of
disruption. In Sec. 3, we present a probabilistic representa-

tion that adequately captures the three mental model prop-
erties.To make our discussion more concrete, we consider
three types of adaptive actions in menu selection tasks (al-
though the general principles apply more broadly): moving
a function to the top and shifting functions down as needed
(TOP); swapping a function with the one above it (SWAP);
hiding a function at the bottom of a menu (e.g., under dou-
ble arrows) and shifting functions as needed (HIDE); and the
non-adaptive default of not moving any items (NONE). We
aim to capture the effect of such actions on a user’s mental
model in order to quantify the induced disruption.

3. A MENTAL MODEL OF FUNCTION LOCATION
Most mental model research elicits information to determine
the representation of mental models, “rather than trying to
determine which set of hypothetical mental operations is sup-
ported by the data” [16]. Here, we develop a probabilistic
representation of a mental model for function location that
supports three key operations of interest for adaptive sys-
tems: learning, forgetting, and modeling disruption.

3.1 Basic Model and Model Strength
Let K be a set of possible functions each located in one of
L (menu or interface) locations. For anyk ∈ K, the user’s
mental model ofk’s location,θk, is a multinomial distribu-
tion overL locations. We might think ofθk(l) as the proba-
bility the user will attempt to (first) access functionk at lo-
cationl. While generally not true, we assume for simplicity
that the distributionsθ1, . . . , θK are independent, allowing a
convenient marginal (rather than joint) representation.

Without experience, modelθk will be “weak” (e.g., uniform
overL or a prior induced from using similar interfaces). Us-
ing k then generally requires the style of search typical of
novices (e.g., visual search) [10]. After executingk some
number of times, we expect the modelθk to become stronger
(and more accurate), with higher probability assigned to the
true location (and possibly nearby locations, spatially orana-
logically), leading to reduced search time, and eventually
leading to expert behavior (e.g., logarithmic search or “im-
mediate” execution) [3]. Indeed,strengthof a mental model,
or how well users believe they know a function’s location,
seems to be a key criterion in how they assess their own level
of interface expertise. Our model leads to a natural notion of
strength, which we use extensively below to quantify disrup-
tion. In what follows, we focus our formalization on model
strength, rather than the model itself.

Model strengthis defined w.r.t. to a user’s degree of un-
certainty or normalized entropy of the model distribution.
Specifically, the strength ofθk is Mk = 1 − H(θk)/H+

L ,
whereH(X) = −

∑
x P (x) log(P (x)) is the entropy of dis-

tributionX , andH+
L is the maximum entropy of any multi-

nomial withL events (i.e., the entropy of the uniform distri-
bution overL locations). This definition normalizes strength
in [0, 1], with 0 corresponding to the “weakest” mental model
(high normalized entropy, no knowledge of function loca-
tion) and1 corresponding to the “strongest” mental model
(low normalized entropy, complete certainty of location).



Using this representation, we develop the dynamics of men-
tal models, with an eye toward quantifying disruption cost,
using three key operations: learning, forgetting, and disrup-
tion due to adaptation. (The first two apply to any form of
software, adaptive or not.)

3.2 Learning
We begin by examining how location models are learned.
As noted, we expect modelθk to become stronger with in-
creased usage ofk. Additional factors may also influence
this process. For example, using a functionk′ locatednear
k may reinforceθk somewhat—searching fork′ may involve
seeing (and learning)k’s location.1 Thus, usage history ofk
and neighbouring functions can influenceθk. Other factors
are visual-spatial cues surroundingk. For example, menu
length and depth may influence how well users know menu
item locations (longer/deeper menus leave greater possibility
for error). Landmarks could accelerate learning, with func-
tions near landmarks—line separators, submenu arrows, dis-
abled (greyed-out) functions, shortcut labels, top or bottom
of a (sub)menu—learned more rapidly.

Abstractly, letContext denote the set of function usage his-
tories and cues that influence the mental model ofk. The
learning process can be encoded asθk = f ′(Context). As
discussed above, varying contexts afford different learning
rates, as illustrated conceptually in Fig. 1. In terms of the
dynamicsof model strength, we assume that strengthMk

t
at time t is a linear combination of the prior strength and
strength induced with the new usage contextCk

t :

M
k

t = (1 − λ)Mk

t−1 + λC
k

t (1)

Here,λ ∈ [0, 1] is a learning rate andCk
t = f(Contextt) is

the strength associated withθk
t = f ′(Contextt), but ignores

the dynamics of the update process. By incorporating the
prior strength, this definition is consistent with the concept
of belief perseverance[15], whereby people maintain strong
beliefs in the face of contrary evidence.

We investigate the relationship between the user’s mental
model and several cues and usage histories empirically in
Sec. 6. From this, we derivedCk

t = f(Freqk
t ,NBk

t ), where
Freqk is the accumulated usage frequency ofk andNBk is
the usage frequency ofk’s neighbours. Specifically,Ck

t =

af · log(bf · Freqk
t ) + cf , with af

h = 0.11, bf
h = 0.51,

cf
h = 0.56 whenNBk

t is high, andaf
h = 0.11, bf

h = 0.44,
cf
h = 0.50 whenNBk

t is low. We found little evidence of a
learning effect with cues (see Sec. 6 for details).

(a) Faster rate of learning.

(b) Slower rate of learning.

Figure 1. Learning and changes in the mental model distribution.

1This is one reason our assumed model independence fails to hold.

3.3 Forgetting
When functions are not used, we expect users to forget their
locations over time. This implies a decrease in model strength
(and accuracy in most cases), and an increase in search time.
Fig. 2 illustrates this process, with an unused function be-
coming more uncertain.

Figure 2. Forgetting and changes in the mental model distribution.

We model the rate of decrease in strength using exponen-
tial decay, as suggested by other memory literature [4]. The
impact of disuse on model strength is given by:

M
k

t = βM
k

t−1 (2)
wherek is unused at timet, and0 < β < 1 is the forgetting
rate (w.r.t. model strength, as distinct from decay of model
parameters themselves).

Using the processes modeled in Eqs. (1) and (2), we tracked
model strengths in simulation in the context of menu selec-
tion. In a menu withK = 20 items andL = 20 locations,
the user repeatedly selects a series of items according to a
Zipf distribution [19]. Fig. 3 shows the resulting dynam-
ics. In general, used functions exhibit logarithmic growthin
strength while unused functions exhibit exponential decay.
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Figure 3. Dynamics of strength estimates over 50 trials with Mk
0

= 0.3
for all k. Strengths of several functions (indexed as k = 2, 6, etc.) with
varying usage frequencies (of 50 trials) are shown.

3.4 Model Disruption
Modeling the effect of adaptive actions on mental models,
and strengths, is critical to assessing their utility. Whenk is
moved to a new location, intuitively, we expectθk to change
in a way that reflects the learning process in the new context
(function arrangement) and the previous one. This is due to
our expectation that users will retain some memory ofk’s
previous location, even after realizing it has been moved (an
effect like “muscle memory”).

Formally, we capture this effect as a mixture of two mod-
els. Letφk denote a hypothetical model learned (using the
learning and forgetting processes above) as if the user had
no experience withk prior to the adaptation that moved it.
The user’s model at timet following the adaptation is given
by the mixtureθk

t = (1−α)θk
t−1 +αφk

t−1, whereα denotes



a learning rate (the rate at which the new model replaces
the old one). The process is illustrated in Fig. 4 wherek is
moved to a new location aftert = 3. Notice that the “new”
model (which is mixed with the old) also evolves over time
as the user gains experience with the “new” location.

Figure 4. Changes in θk as k is moved to a new location at time t = 3.
The bottom distribution represents θk and the consequences of moving
k. The top distribution represents the hypothetical mental model φk of
learning k in a new context. Prior to t = 3, the dynamics of θk follow-
ing the regular learning and forgetting processes. Once k is moved, the
resulting distribution is θk

t
= (1 − α)θk

t−1
+ αφk

t−1
.

In what follows, we model impact of disruptionon model
strengthMk instead of the modelθk itself. This approxima-
tion is more tractable (requiring tracking strength only, not
models). We assume thatMk

t = (1−α)Mk
t−1+αM(φk

t−1).
(The strength learning rateα will not be the same as the
model learning rate, but can be derived from it.)

Adaptive actions disrupt a user’s mental model and incur two
types of costs. First, referring to Fig. 4, we see a location
change initially has a negative impact on task performance
or search behavior, due to the reduction is model strength
and accuracy. Att = 3, θk is peaked and user can assess
k quickly. Immediately after the move, the user will search
for k at the old location, not find it, and need to discover the
new location (e.g., using visual linear search). This incurs
an (objective)disruption time. In addition, the user proba-
bly experiences some level of frustration (due to both mental
effort and increased task time), which is reflected in a subjec-
tive annoyancefactor. In Sec. 7, we conduct an experiment
to learn the objective disruption time. In practice, the an-
noyance factor may amplify the disruption time so that users
who dislike adaptations perceive a more significant cost. We
do not address annoyance further here. Notice, of course,
that disruption time decreases over time as the new model is
learned. We discuss this further in the next section.

4. DECISION-THEORETIC ACTION SELECTION
A typical metric for evaluating adaptive systems is the de-
gree to which they reduce user effort in repetitive tasks (e.g.,
typing common phrases, or selecting oft-used menu items
or toolbar icons). The costs associated with adaptations are
often ignored. Here, we develop a decision-theoretic model
that allows benefits (e.g., selection time savings) and costs
(e.g., selection time increases due to disruption) to be traded
off against one another. Our model is also sequential, reflect-
ing tradeoffs over time.

4.1 The Benefits of Savings
An adaptive action provides savings for the user if it movesk
to a location that is closer to the user’s reach. We adopt Fitts’
Law [5] and define thesavingsof movingk from lkt−1 to lkt
asS(lkt−1, l

k
t ) = fitts(lkt−1) − fitts(lkt ), wherefitts(d) =

a log2(d/w + 1) + b with w the width of a menu item,d the

distance of the item from the parent menu item, anda andb
are empirical constants.2

The savingsexpectedof any (single) interaction depend on
the probability of function usage. Moreover, functions can-
not (usually) be moved in isolation (e.g., others may shift).
Thus, we define thejoint expected savings(JES) of a vector
of location moves to be:

JES(l1:Kt−1, l
1:K

t ) =
K

X

k=1

p
k
S(lkt−1, l

k

t ) (3)

where 1:K is shorthand notation forK variables,pk is
k’s estimated probability (e.g., based on sample frequency).
Since an adaptive actionA fully determinesl1:Kt givenl1:Kt−1 ,
we also denote this byJES(A|l1:Kt−1).

4.2 The Costs of Disruption
When an adaptive action occurs, we define disruption time
(see Sec. 3.4) as the search time required for the function se-
lection task over the time required given the prior user model
θk. Since this is an objective measure, we devised an experi-
ment in Sec. 7 to learn this value. With adaptive actionA be-
ing one of NONE, SWAP, TOP, and HIDE, we define (initial)
disruption time asDk

t (A) = g(A|Mk
t ), whereg takes the

formadMk
t +bd, with empirical constants ofad

n = 0, bd
n = 0

for NONE, ad
s = 1.4, bd

s = 0.2 for SWAP, ad
t = 2.8, bd

t = 0
for TOP, andad

h = 6.0, bd
h = 2.9 for HIDE. Using this

definition, we definejoint expected disruption(JED) analo-
gously to JES:

JED(A|M1:K

t ) =
K

X

k=1

p
k
D

k

t (A) (4)

Eq. (1) gives us a way to estimate the dynamics of model
strength with function use. When functionk is moved as a
result of adaptive actionA, strength becomes weaker. We
capture this with a disruption factorδ, which weakens the
model after applyingA:

M
k

t = δM
k

t (5)
The factor by which strength weakens is defined as a func-
tion of disruption timeDk

t (A). Specifically, givenMk
t , we

expect no change in strength when disruption timeDk
t (A) =

0 (i.e., A is NONE). In that case,δ = 1. WhenDk
t (A)

is small, users may not notice the disruption, so we expect
strength to only decrease slightly. AsDk

t (A) increases and
becomes noticeable, we expect strength to decrease. The
greater disruption time, the less the effect on strength be-
cause the mental model will, in the worst case, “reset” it-
self to the weakest point. The specific function we crafted
to model this pattern is a Gaussian function defined asδ =

exp−(Dk

t
(A)/c)2 , with c = 3.977. In effect, there is mini-

mal impact when disruption time is between0 to 1.5 second.
WhenDk

t (A) > 1.5s, the impact peaks and eventually stabi-
lizes beyondDk

t (A) > 6s. These boundaries are developed
using the empirical results from Sec. 7 as guidelines.

4.3 Sequential Decision Model
The savings and disruption cost models above focus on a sin-
gle interaction. In repeated use, both savings and disruption
2We require an application-specific mapping from locations to dis-
tances, which reflects specific implementation artifacts (e.g., to ac-
cess a hidden menu item, hovering or clicking double arrows first).



costs accrue over multiple interactions. However, disruption
cost diminishes over time as the user develops a new mental
model as described in Sec. 3.4. The utility of an adaptive
action must take into account the sequential nature of the in-
teraction and total net utility over some horizon of interest.
For simplicity, we model the long term effects of the current
adaptation assuming no future adaptive actions are taken.

Let H denote the expected number of interactions with an
interface. We assume discount factor0 ≤ γ ≤ 1, with long-
term savings given by:

∑H

h=1 γhJES (A|l1:Kt−1). Long-terms
costs are defined similarly, but with a wrinkle. Unlike sav-
ings, the long-term effects of disruption decay over time, as
the user learns the new model at rateα. With the old model’s
retention rate as1 − α, we discountJED at rate1 − α (in
addition toγ):

∑H

h=1(1 − α)hγhJED(A|M1:K
t ).

While one could sum the two expressions above to obtain
the estimated utility of an adaptive action, we wish to ac-
count for different user preferences. Specifically, we imag-
ine that some users have a strong preference for interfaces
that support fast selection (and more generally, task com-
pletion) time, even if they are somewhat “disruptive”; oth-
ers may prefer a more stable interface, even at the expense
of increased expected selection time. This is accomplished
heuristically by scoring actions using a convex combination
of the scores above, with weightws ∈ [0, 1] applied toJES
and wd = 1 − ws applied toJED . Users with greater
ws are more tolerant of disruption if this induces selection
savings. This gives theweighted expected rewardscore,
WER(A|M1:K

t , l1:Kt−1 , ws,H, α, γ):

H
X

h=1

h

wsγ
h
JES(A|l1:Kt−1) − wd(1 − α)h

γ
h
JED(A|M1:K

t )
i

(6)

To compute the optimal action, the WER system policy is:

A
∗ = arg max

A

WER(A|M1:K

t , l
1:K

t−1, ws,H, α, γ) (7)

Since we only consider specific kinds of adaptive actions
(i.e., NONE, SWAP, TOP, BOTTOM), only a few location
changes are possible (specifically, the neighbouring, top,and
bottom locations oflk).

5. SIMULATION RESULTS
To illustrate the benefits of our model, we conducted a sim-
ulation experiment to compare the performance of several
system policies in the context of adaptive menus. We re-
port analogous usability results with real users in Sec. 8.
The scenario is repeated interaction focusing on menu se-
lection tasks. In each session, a (simulated) user must select
an item, drawn from a predefined item distribution.H items
are drawn in turn and the system can adapt its menu accord-
ing to some policy after each interaction.

Policies: We compare seven menu policies w.r.t. selection
and disruption. BEST STATIC provides an upper-bound on
performance: it presents the menu layout with items sorted
in descending frequency. Aside from BESTSTATIC, no other
policy has access to the item distribution. At the opposite
end of the spectrum, we tested the adaptive policy RANDOM-
N, which randomly movesN items at each interaction (it is
maximally disruptive). The remaining policies make use of
estimateditem distributions to adapt their menus.

Split menushave been shown to offer faster selection perfor-
mance than various other static and adaptive menus [18]. A
split menu consists of two areas—the top (adaptive) parti-
tion hasN menu items with highest estimated usage (in or-
der), while the bottom (static) partition hasK−N remaining
items arranged in a fixed (default) ordering SettingN = 4 is
understood as providing good performance in practice [18].
We refer to this policy as SPLIT-4.3.

Our adaptive policy is denoted WER(ws)-N, and is parame-
terized by the savings weight (and hence, disruption weight)
and the number of items moved simultaneously (N ). We im-
plement action selection in Eq. (7) greedily (the best move is
derived first, then the next bestgiventhe first, etc.). We test
three versions by varyingws = 0.1, 0.5, 0.9. Finally, we test
the JES-N policy, maximizing joint expected savings from
Eq. (3). This alternative adaptive approach ignores disrup-
tion (and hence need not reason sequentially).

We investigate these policies under two item distributions:
Zipf (which models actual function usage frequencies [9])
and uniform. We fix the number of menu items to20 (K =
20 andL = 20), the learning rates toλ = 0.5 andα = 0.5,
the forgetting rate toβ = 0.9, the savings discount factor
to γ = 0.95, and the horizon toH = 50. To enable com-
parative results with SPLIT-4, all the adaptive systems take
TOP actions only withN = 4. All the systems estimate
frequency using normalized sample frequency.

Simulated Users: The simulated users select menu items
by sampling from the predefined item distribution. To model
selection times, we adopt the model of Cockburn et al. [3]
which accounts for novice and expert performance (which
is necessary in adaptive systems since interface changes can
lower a user’s degree of expertise). In this model, item se-
lection requires the user to (i) mentally decide to select an
item and (ii) physically select it. Selection time for itemk
is T k = T k

d + T k
p (i.e., decision time plus pointing time).

Pointing time is roughly the same for everyone (using Fitts’
law). However, decision time varies withexpertisew.r.t. k’s
location. Decision time is modeled as a linear combination
of novice and expert search times withǫk ∈ [0, 1] denoting
the user’s expertise withk [3]:

T
k

d = (1 − ǫ
k)Tvs + ǫ

k
T

k

hh (8)

whereTvs andThh are previously proposed search models
for novices and experts respectively (see [3] for details).

To estimate the user’s expertise with an item location, we
equateǫk = Mk

t based on our mental model strength es-
timate. In effect, whenMk

t = 1 (strong), the user is a
complete expert withǫk = 1. As Mk

t decreases (becomes
weaker),ǫk approaches to the value of a novice.

Results: We defineselection timeas the time predicted
according to [3], anddisruption timeas any additional search
time (Sec. 4.2.3). To assess the impact of adaptation on
learnability, we measure how often a user develops a “strong”
mental model of any functions in the session (total strong
models). We deem a model to be strong whenMk

t > 0.4,

3Refinements of split menu design have been proposed recently,
e.g., the “copy” variant of [6], which we discuss further below.



Total Percent
Select. Disrupt. Strong Strong

Method N Time Time Models Moves
BEST STATIC 0 1197 0 152 0.00
RANDOM 4 1306 196 136 56.80
SPLIT 4 1213 22 150 3.11
JES 4 1301 130 133 36.31
WER(.1) 4 1296 0 152 0.00
WER(.5) 4 1284 6 152 0.18
WER(.9) 4 1273 50 149 2.58

Table 1. Results using a Zipf distribution with K = 20 menu items,
averaged over 100 runs, each with a horizon H = 50. Times in msec.

a threshold based on the sample median of strengths from
experiments in Sec. 6. We also measure how often a strong
mental model is disrupted. We define astrong moveto be
any action that moves a function with a strong model to a
new location, and record the percentage of strong models
that are moved (percentage of strong moves). Ultimately,
we are interested in systems that can tradeoff reduction in
selection time (via adaptation) and stability (by minimizing
disruption of strong models, where costs are greatest).

The results using a Zipf distribution is presented in Table 1.
We report the average times based on 100 simulation runs.
Note that computation times are fast in all cases (< 50ms).
BEST STATIC is the gold standard for desirable selection
time and stability. SPLIT-4 is fast, as is evident from the
literature. All WER variants perform about the same, about
60-83ms slower than SPLIT-4 and 5-28ms faster than JES-4.
RANDOM-4 is a lower baseline and induces an undesirable
amount of disruption. As expected, JES-4 ignores disruption
so it has a cost close to that of RANDOM-4. The remaining
methods induce a similar and much smaller range of disrup-
tion times. Although these times are small, the associated,
subjective annoyance factor of adaptation should play a role
in amplifying overall costs. As a result, we expect task com-
pletion times in practice to be greater than the sum of the
predicted selection and disruption times (we see this in the
usability results as well). Thus, the ability to accommodate
user preference toward adaptation is crucial.

When the WER weight setting isws = 0.1 (i.e., represent-
ing a user who cares most about minimizing disruption), no
disruption is induced. Indeed, our data indicates this policy
behaves like a static system so as to not annoy this type of
user. Only when settingws = 0.9 (i.e., a user who prefers
to maximize selection performance) is when we see more
disruption than SPLIT-4.

The more a system adapts its interface, the less the user is
able to learn and develop a strong mental model of it. We see
that the number of total strong models that RANDOM-4 of-
fers is much less than that of BESTSTATIC. Since WER(.1)-
4 behaves like a static system, it also offers just as many op-
portunities to develop strong mental models as BESTSTATIC.
We see a similar pattern among these systems when compar-
ing the percentage of strong moves made. When comparing
how other systems perform with respect to the percentage of
strong moves made, we see that all the WER variants make
fewer disturbances than SPLIT-4.

Total Percent
Select. Disrupt. Strong Strong

Method N Time Time Models Moves
BEST STATIC 0 1700 0 100 0.00
RANDOM 4 1701 120 93 49.61
SPLIT 4 1702 44 95 7.33
JES 4 1703 82 91 45.60
WER(.1) 4 1700 0 100 0.00
WER(.5) 4 1700 2 100 0.10
WER(.9) 4 1702 28 97 4.42

Table 2. Results using a uniform distribution with K = 20 menu items,
averaged over 100 runs, each with a horizon H = 50. Times in msec.

Results using a uniform frequency distribution are presented
in Table 2. Not surprisingly, selection time is difficult to
optimize regardless of the policy; users have fewer oppor-
tunities to develop strong models (since experience is dis-
tributed over more items). As a result, selection times are
slower and strong models are rarer. The performance across
other dimensions is similar for all policies, with the notable
exception that all WER variants outperform SPLIT-4 in all
dimensions. Overall, our WER policy is competitive with
SPLIT-4 and is able to adapt to user preferences.

6. LEARNING MENTAL MODEL DYNAMICS
Our first experiment is designed to determine the kinds of
visual-spatial cues and usage histories that define the learn-
ing context for model strength. First, participants were faced
with a series of controlled menu selection tasks. This al-
lowed participants to build a mental model of our experimen-
tal interface. Second, the same participants were presented
with a series of recall tasks designed to assess their model
strengths. In total, we collected data from 48 participants.

6.1 Training Session
The training session was designed to accommodate a range
of cues and usage conditions in order to test the effect of
these variables on the mental model. Participants were asked
to complete a set of 29 menu selection tasks as accurately
and as quickly as possible using abstract labels in a pull-
down menu as shown in Fig. 5. Only four distinct (randomly
chosen) menu items were used as targets among the 29 tasks.
If a mistake was made, the participant had to redo the task.
This set of tasks is designed to mimic a particularhistory
of application use, so we can probe the participant’s mental
model (in the next session) knowing the usage history that
“created” it. In each trial, we measured task completion time
and accuracy. We used these results to filter out participants
who did not take the experiment seriously.

While we recognize the potential impact of all of the vari-
ables discussed in Sec. 3.2, we restricted our attention to two
cues and two usage variables:

• Length: Total number of menu items (shown and hidden)
belonging to the menu. Values: K=20, 40.

• Freq: Target usage frequency. One usage frequency is
assigned to each of the four distinct targets. Values: 1, 4,
8, 16. These give the 29 tasks.

• Landmark: A line separator in the menu. Values: none,
line above the item withFreq = 16, line above the item



Figure 5. Experiment prototype with desktop menu.

with Freq = 1.

• NB: Usage of functions near the target. Values: low (neigh-
bouring items are used zero times), high (a neighbouring
item is used 16 times).

As we expectFreq to play a key role in determining model
strength, we use a denser set of test values (than prescribed
by Zipf). Using four items from a menu withK = 40
items mimics real-world scenarios with complicated inter-
faces where only 10% of the interface is used. Four ofK =
20 items reflects a denser 20% functionality usage.

6.2 Recall Session
Once training is completed, participants have developed men-
tal modelsθ1, .., θK for each of theK items in the test appli-
cation (whereK = 20, 40). The recall session is designed
to allow estimation of mental model strengths by asking par-
ticipants to carry out a series ofrecall tasks. Given menu
item k, we asked participants to recall its location on a new
menu, which has the same interface settings except menu
labels are replaced withfiller labels. The purpose of these
filler labels is to see how well participants remember the
actual location of the menu items. Fillers are designed to
preserve the length of the original label using a random se-
quence of consonants. For example, the corresponding filler
for “Flounder” is “Xtnxctzr”.

To create the set of target items for this recall session, we
first took the four targets from training and added their near-
neighbours—i.e., all menu items within a distance of three—
to the set. For example, if one of the original four targets was
in locationl, then items at positionsl + 1, · · · , l + 3 andl−
1, · · · , l − 3 were added to the recall set as well. This yields
a total of 28 (= 4 × 7) items. However, the condition with
high frequency neighbours (i.e.,NB = high) require the
target withFreq = 16 be located close to the other targets.
Therefore, these 28 items are not distinct. As a result, the
recall task has between10 to 25 unique target items across
all the conditions.

Participants were asked to recall each distinct item three times,
resulting in 30 to 75 recall tasks presented in random order.
In each task, participants were asked to identify the loca-
tion of the targets as accurately and as quickly as possible.
For each unique target, the participant responded with three
samples of his mental model of that target’s location (one

per repeated trial), three corresponding response times, and a
self-reported confidence score (how well he thinks he knows
the original location, on a Likert scale).

6.3 Experiment Results
We used the task completion times in the training session
to identify outliers so that if the completion times did not
generally decrease for high frequency items, we assumed
the participant did not pay attention. With this criteria, we
discarded data from 5 participants and kept 48 for analysis.
Next, we present the results from the recall session.

6.3.1 Computing Mental Model Strength
Recall our definition of model strength in terms of entropy
is 1 − H(θk)/H+

L for an interface withL locations (here,
L = Length). To compute strength, we estimated the model
distribution using the recalled locations. For each unique
target, the three responses were fit to a discrete normal dis-
tribution (fit using the sample mean and standard deviation
of the three responses). Strength was computed using this
distribution. This provided us with a single strength esti-
mate, an average response time, and a confidence score for
each of the 10 to 25 unique targets.

Across all participant-target pairs, the median strength is
0.40. We also measured the correlation between strength,
confidence, and response time. We found that strength and
confidence are positively correlated (r = 0.46, p < 0.01)
while response time is not significantly correlated with ei-
ther strength nor confidence (r = −0.03 andr = 0.04 re-
spectively). This suggests our definition of strength assesses
the participants’ beliefs of how well they think they know
the function locations.

6.3.2 Relevant Independent Variables
Using factorial ANOVA analysis on all the condition vari-
ables, we found thatNB andFreq have a significant effect
on strength (p < 0.01) andLength only marginally signif-
icant (p < 0.1). Thus, the variablesNB andFreq provide
sufficient context to explain the data, so our strength estimate
function is best modeled asf(Freqk,NBk).

6.3.3 Quantitative Relationships
As we expected frequency to have less effect as it increases,
we chose to fit the data using a logarithmic function. We
fit a separate function for each value ofNB . Fig. 6 shows
the averaged data and the regression results. As presented
in Sec. 4.2.1, we have0.11 log(0.51Freq + 1) + 0.56 with
r2 = 0.9 whenNB = high , and0.11 log(0.44Freq + 1) +
0.50 with r2 = 0.9 whenNB = low . This is the function
used to define the model strength induced with the new usage
context in Sec. 3.2.

7. LEARNING THE COST OF DISRUPTION
The experiment described in this section attempts to assess
the degree of disruption induced by adaptive actions in menu
selection. It was conducted as a continuation of the Recall
experiment in Sec. 6 with the same 48 participants.
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Figure 6. Resulting functions for mental model strength.

7.1 Experimental Set-Up
As defined in Sec. 4.2, the disruption of moving functionk
is given byDk

t (A). Our aim is to learn this function in the
menu selection task, while restricting the actionA to chang-
ing only one menu item at a time (i.e.,N = 1). For conve-
nience in this initial study, we treat disruption as additive in
what follows, with total disruption being the sum of the dis-
ruptions over all functions. (The accuracy of this assumption
will need to be verified in follow-up experiments.)

We trained the participant’s mental model as described in
Sec. 6.1 while keeping track of all task completion times. To
induce disruption on the mental model, we applied one of the
four adaptive actions (TOP, SWAP, HIDE, NONE) and then
asked the participant to select the (potentially) moved target.
Thereafter, we asked the participant to indicate whether the
target was moved. If no, a self-reported disruption score of
0 was recorded. If yes, we further asked the participant to
report the disruptiveness of that adaptation on a Likert scale.
Since one of our adaptive actions is to hide menu items, the
menu always has 10% of its items hidden. Otherwise, the
same interface with different text labels was used.

For simplicity, we use a subset of the usage frequencies from
Sec. 6 to create our target items. We randomly chose three
target items and assigned them frequencies 1, 4, 16 respec-
tively, creating 21 selection tasks with three distinct targets.
We then augmented this set of tasks with adaptive actions
and additional selection tasks as follows: after selectinga
targetp times (wherep is the item’s associated usage fre-
quency), the system moves its location (as dictated by the
chosen actionA) and asks the participant to select the (po-
tentially) moved target. With three target items, this adds
three new tasks, yielding a total of 24 menu selection tasks.

Since we are interested in learning the disruption for every
combination of usage frequency and system action under
each experiment condition, we designedfour sets of target
items and associated selection tasks according to the above
procedure. In total, we created 12 distinct target items and96
menu selection tasks. Ideally, a separate experiment would
be run for each combination of the condition variables and
system action. However, the resulting protocol is too large,
and would either be overwhelming for participants in a within-

subjects experiment design or logistically infeasible fora
between-subjects design. As a compromise, our conditions
here vary only inLength andFreq , and aggregated the other
variables into one experiment. This experiment thus takes
just an initial step in assessing disruption time.

7.2 Results
To estimate disruption time, we subtracted task completion
time of the corresponding condition from the training phase
from the task time in this new disruption phase. This gives
us a crude assessment of the additional search time induced
by the adaptive action. Correlation between disruption time
and self-reported disruption scores are positive and signifi-
cant (r = 0.40, p < 0.01). On average, we found the mean
disruption time is about1.5s with a disruption score of2
(which corresponds to noticing a small amount of disrup-
tion), and the mean disruption time is about6s with a dis-
ruption score of5 (highly disruptive). We used these times
to computeδ in Eq. (5).

Since this experiment is conducted following the Recall ex-
periment, we took the estimated strength values from the
same participant’s corresponding conditions and used them
in fitting Dk

t (A). The data was noisy in general, so we
binned the strength estimates into three equally-sized buck-
ets and analyzed the disruption times with respect to a weak,
medium-strength, and strong mental model. The mean val-
ues for these bins are0.26, 0.66, and0.90 respectively.

In general, we expect disruption time to increase as strength
increases. We used the empirical disruption times forA =NONE
as the baseline. For simplicity, we chose to fit the data us-
ing linear regression. Fig. 7 shows the averaged data and
the following regression results: whenA = Swap, we have
D = 1423M +158 with r2 = 0.5, whenA = Top, we have
D = 2865M with r2 = 0.8, and whenA = Hide, we have
D = 6033M + 2901 with r2 = 0.9. Overall, we see that
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Figure 7. Resulting functions for disruption time.

disruption time is positively correlated with model strength,
and most significantly so with HIDE. Note that existing pre-
dictive pointing models (e.g., Fitts law) do not account for
a user’s mental model, and at best attempt to reflect only a
user’s expertise level (e.g., [3]), neither of which adequately
accounts for added disruption time. Our results suggest the
need for such a model in adaptive systems.



8. USABILITY EXPERIMENT
We concluded this study with a usability experiment designed
to test and verify the simulation results from Sec. 5 with real
users, adopting model parameters estimated via the preced-
ing experiments. We adopt the same set-up and evaluation
metrics as those in the simulation experiments from Sec. 5.
In total, we collected data from 8 participants.

8.1 Experimental Set-Up
Following the experiment in Sec. 5, we created menu se-
lection tasks with these systems: BEST STATIC, RANDOM-
4, SPLIT-4, and WER(ws)-4. We chose BEST STATIC and
RANDOM-4 as they provide baseline results, and SPLIT-4
as a plausible competitor to our model. Another competing
approach not investigated here is the copying approach of
Gajos et al. [6]—menu items are copied rather than moved
to more convenient locations—which has been shown to be
preferred by users. To offer a fair comparison, we could aug-
ment our adaptive WER(ws)-4 policy with a COPY action.
We leave this possibility to future research. To create the
same visual menus in each system, the line typically separat-
ing the top and bottom partitions in split menus is removed.
All parameter values used in this study are identical to those
in Sec. 5.

There are two parts to this experiment. The first is a within-
subjects experiment which asked participants to compare the
4 systems by carrying out 50 menu selection tasks with tar-
gets sampled from a Zipf frequency distribution. To help
differentiate the experience, each system was designed with
a different set of menu labels (e.g., fish, colors, fruits, an-
imals). The second part follows the same design except it
uses a uniform distribution rather than Zipf. In all cases, we
used an interface similar to the one shown in Fig. 5 and fixed
menu length to20. The presentation order of the 4 systems
and the two parts were counter-balanced across participants.

We let participants explore the interface using RANDOM-4
until they were comfortable. To determine their preference
toward adaptive systems, we asked a multiple choice ques-
tion, “Would you use adaptive menus if they were designed
to SPEED UP the tasks?” To a response of “yes”, we as-
signed the weight settingws = .9 in our WER system (with
wd = 1 − ws), denoting the participant has a strong pref-
erence to maximize savings at the expense of added disrup-
tion. On the other hand, a response of “no” was assigned
ws = .1, denoting the participant has a strong preference to
minimize disruption. Finally, a response of “maybe” was as-
signedws = .5. At the end of each part of the experiment,
we asked participants to rate each system on a Likert scale
based on frustration, ease of use, and efficiency.

8.2 Results
In each trial, we logged the task completion time (as opposed
to the predicted selection time in the simulation evaluation)
and estimated the corresponding disruption time. Following
the format from the simulation, we report the objective us-
ability results from the Zipf condition in Table 3. Among the
8 participants, 3 used the weight setting ofws = .9 for our
WER system, 4 usedws = .5, and 1 usedws = .1. Since we

Estimated Total Percent
Task Disrupt. Strong Strong

Method N Time Time Models Moves
BEST STATIC 0 1513 0 134 0.0
RANDOM 4 2966 779 82 59.9
SPLIT 4 1760 26 111 9.8
WER(all) 4 1817 21 121 5.2
WER(.1) 4 2123 24 135 3.7
WER(.5) 4 1864 23 118 5.1
WER(.9) 4 1651 17 119 5.8

Table 3. Usability results using a Zipf distribution. Times in msec.

Estimated Total Percent
Task Disrupt. Strong Strong

Method N Time Time Models Moves
BEST STATIC 0 2335 0 82 0.0
RANDOM 4 3322 993 54 50.9
SPLIT 4 3311 75 56 25.6
WER(all) 4 2913 47 60 29.7
WER(.1) 4 3546 53 84 1.2
WER(.5) 4 2792 27 63 33.5
WER(.9) 4 2865 31 49 34.2

Table 4. Usability results using a uniform distribution. Times in msec.

do not have an equal number of participants for each weight
setting, we also aggregated their results together to provide
an overall performance on WER.

In general, we see similar results as those in the simulation:
WER is competitive with SPLIT-4 when comparing task and
disruption times. In contrast to the predicted selection times
from the simulation results, themeasuredtask times for the
three adaptive systems are much higher. We suspect this ef-
fect is due to the participant’s subjective annoyance factor to-
ward the system’s adaptations which resulted in an increased
overhead. Unlike the simulation, WER(.9)-4, whose goal is
to maximize savings, does better than SPLIT-4 on all dimen-
sions. Thet-test results show WER(.1)-4, whose goal is to
minimize disruption, offers significantly more opportunities
for learning strong models than SPLIT-4 (p < 0.05).

Significant advantages of our method are made more obvi-
ous when the tasks are created from a uniform distribution.
Table 4 shows these usability results. Usingt-test analy-
sis, we see that WER(.5)-4 is significantly faster in task
time than SPLIT-4 (p < 0.05) and WER(.1)-4 offers signif-
icantly more opportunities to develop strong mental models
(p < 0.01).

Lastly, we report the post-questionnaire results in Fig. 8.Al-
though no significance was found, in large part due to having
to divide the number of participants into three WER weight
cases, we see that on average, participants reported that our
WER-4 system is less frustrating, easier to use, and more ef-
ficient than SPLIT-4. Overall, our usability results confirm
and amplify the conclusions in the simulation experiment.

9. CONCLUSIONS AND FUTURE WORK
In this paper, we presented a probabilistic model of the user’s
mental model of function locations and defined three men-
tal operations based on model strength. We implemented a
decision-theoretic system that trades off the long-term sav-
ings of its adaptive actions with the costs of disruption, de-
fined as a function of model strength. To model individual



Figure 8. Subjective results

preferences, we parameterized our system with weights that
capture a user’s tradeoff between maximizing savings ver-
sus minimizing disruption. In addition, we conducted two
empirical experiments to learn model parameters and eval-
uated the resulting model in simulation and with a usabil-
ity study. Overall, our user adaptive approach respects user
preferences, minimizes disruption of strong mental models,
and is competitive with split menus in task selection perfor-
mance in both simulation and the usability study.

A natural extension of this work is removal of the indepen-
dence assumption over mental model distributions. Our re-
sults demonstrate value in estimating the cost of disruption
as a function of model strength; we would like to further our
approach by estimating disruption directly as a function of
the mental model distribution itself. Due to the number of
parameters involved, such an approach demands much more
data than is empirically feasible (even with the simpler rep-
resentation here we had to place constraints on our experi-
ments.) Therefore, a tradeoff must be made between a more
accurate, theoretical model and the ability to provide sup-
porting, empirical evidence for it. Finally, investigation of
richer disruption-sensitive adaptive policies (e.g., involving
a wider space of actions, including a COPY action) would be
of value, as would comparison to additional customization
techniques (e.g., [6]).
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