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ABSTRACT

Adaptive software systems are intended to modify their appece, perfor-
mance or functionality to the needs and preferences ofrdiffeusers. A
key bottleneck in building effective adaptive systems isoanting for the
cost ofdisruptionto a user'smental modebf the application caused by the
system’s adaptive behaviour. In this work, we propose agiiistic ap-
proach to modeling the cost of disruption. This allows anpéida system
to tradeoff disruption cost with expected savings (or otf@refits) induced
by a potential adaptation in a principled, decision-thgoréashion. We
conducted two experiments with 48 participants to learn ehpdrameters
in an adaptive menu selection environment. We demonstatettlity of
our approach in simulation and usability studies. Usabilitsults with 8
participants suggest that our approach is competitive syt menus w.r.t.
task performance, while providing the ability to reducealgion and adapt
to user preferences.
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1. INTRODUCTION

of the application that reflects the knowledge gained thinoug
experience. This may include available software functiona
ity, the locations of functions, the effects of those fuont
(e.g., how long they take, whether multiple actions achieve
the same result), etc. A key bottleneck in building effestiv
adaptive systems is accounting for the indudisduptionto

a user's mental model. Consider for instance menu selection
The first time a user selecExi t from theFi | e menu, he
scans all the items insidé | e. After usingExi t several
times, he learns it is located at the bottomFifl e. An
adaptive system may obserkzi t is frequently used, and
decide to move it to the top & | e so that future access be-
comes faster. Obviously, there are tradeoffs involvedrethe
are long-term task performance gains (the user will access
the frequently use@xi t more quickly); however, the dis-
ruption of the user's mental model &ki t 's location may
cause short-term performance degradation—more search is
involved until the new location is learned—and annoyance.
The degree of disruption is, intuitively, related to thestyth

of the user’s prior beliefs and the degree of “new search” re-
quired (e.qg., if the new location is near the old one, disrup-
tion may be less than if it were further away).

While natification mechanisms may ease the abrupt transi-
tion caused by adaptive actions, some users may find them
distracting or unnecessary. ldeally, an adaptive systemldh

The need to develop user adaptive systems has been madgssess a user's mental model, and make the tradeoffs be-
evident by emerging work that applies user modeling to tech- yeen thelong-termbenefits of adaptive actions (e.g., im-

nologies ranging from automatic interface customization [

proved task performance) and the costs of disruption be-

11] to health care systems [1]. Since different people pre- f5q taking those actions. We propose just such a model

fer different styles of interaction, intelligent systenoald

here, with a focus on models of function location, relevant

adapt to individual user's changing needs and preferences;, 5daptive systems that change function locations in order
For example, some users may prefer to optimize task perfor-i, make access more convenient or to reduce interface bloat.
mance, while others may prefer to learn the software bettter a or mental model is probabilistic: it allows for a natural

the expense of task completion time. The sequential naturegefinition of strength, model dynamics (including learning
of .human—compgter interaction (HCI) makes it possible to 54 forgetting), and cost of disruption. We also propose
build user adaptive systems that learn user preferences oveaans for assessing the long-term tradeoffs in a decision-
time. When deployed successfully, adaptive systems haveieoretically principled fashion. This stands in contrast

the potential to increase productivity and user satisfacti

Through repeated interaction, a user buildaental model
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adaptive system models that focus only on maximizing ben-
efits of speed performance, while designating a “generic”
cost to adaptive actions or ignoring costs altogether [12].

In Sec. 2, we review some known properties about men-
tal models from existing literature. As our first contribu-
tion, we present a probabilistic mental model in Sec. 3 and
define three mental operations (learning, forgetting uglisr
tion) using mental model strength. In Sec. 4, we describe
how our model is used to estimate the cost of disruption
in a decision-theoretic system. Unlike other user adaptive



systems, ours is the first to explicitly tradeoff the longate  tion that adequately captures the three mental model prop-
benefits of adaptive actions against the associated costof d erties.To make our discussion more concrete, we consider
ruption. Our system is first evaluated in simulation in the three types of adaptive actions in menu selection tasks (al-
context of adaptive menus in Sec. 5. To learn a more realis-though the general principles apply more broadly): moving
tic model, we conducted two studies reported in Sec. 6 anda function to the top and shifting functions down as needed
Sec. 7. Most importantly, these experiments show a signif- (Top); swapping a function with the one above itW&p);

icant overhead in search performance times that varies withhiding a function at the bottom of a menu (e.g., under dou-
mental model strength and cannot be naturally explained byble arrows) and shifting functions as neededie); and the
existing predictive models. Finally, we confirm our simu- non-adaptive default of not moving any itemsqNE). We
lation results by conducting usability experiments ddwati aim to capture the effect of such actions on a user’'s mental
in Sec. 8. Both the objective and subjective usability rissul model in order to quantify the induced disruption.

show that our approach offers competitive performance with

adaptive menus, while enabling more opportunities forsiser

Most mental model research elicits information to deteemin
the representation of mental models, “rather than trying to
2. PROPERTIES OF MENTAL MODELS determine which set of hypothetical mental operationsjis su
The termmental modehas been used in psychology to de- ported by the data” [16]. Here, we develop a probabilistic
note a person’s mental representation of (concrete or ab-representation of a mental model for function location that
stract) objects [13, 8]. We use the term in its HCI sense, supports three key operations of interest for adaptive sys-
pertaining to software usability—a mental model is a user’s tems: learning, forgetting, and modeling disruption.
representation of an application. In particular, we focos o
mental models of function locations, e.g., the location of
menu items. Much research on mental models describes3-1 Basic Model and Model Strength _
conditions and effects, but does not offer explanations or Let K be a set of possible functions each located in one of
theoretical predictions [16]. Furthermore, due to vasiasi L (menu or interface) locations. For akye K, the user's

in the elicitation and experimental procedures, much debat mental model of’s location,§”, is a multinomial distribu-
surrounds these results [2]. tion overL locations. We might think of* (1) as the proba-

bility the user will attempt to (first) access functiérat lo-
Despite the imprecise state of work in the area, most re- cationl. While generally not true, we assume for simplicity
searchers agree that people’s mental modelmamnplete that the distributiong!, . . ., 6% are independent, allowing a
dynami¢ and unstable[14]. Consider a word processing convenient marginal (rather than joint) representation.
application with standard menus lilké | e, Edi t , etc. A ] ) ] ]
typical user will learn where common functions are located Without experience, modéF will be “weak” (e.g., uniform
within menus, but will not know the locations of all availabl ~ OverL or a prior induced fr_om using similar 'nterfaces)_- Us-
functionality, thus rendering his mental model incomplete ing k then generally requires the style of search typical of
Through extended usage, the user reinforces, or strergthen novices (e.g., visual search) [10]. After executingome
what he already knows and learns new information about the number of times, we expect the mod@éito become stronger
application. Certain knowledge may weaken as well (e.g., (and more accurate), with higher probability assigned éo th
rarely used functions). This illustrates the dynamic neanfr ~  true location (and possibly nearby locations, spatialigrea-
a mental model. Finally, if we ask the user to report his be- logically), leading to reduced search time, and eventually
liefs (based on his current mental model), elicited respsns leading to expert behavior (e.g., logarithmic search or-“im

will often vary, even without disruption to the mental madel mediate” execution) [3]. Indeesfrengthof a mental model,
indicating instability of mental models. or how well users believe they know a function’s location,

seems to be a key criterion in how they assess their own level
In HCI, mental models are often used to account for software Of interface expertise. Our model leads to a natural notfon o
learnability, or the user’s ability to master the application. strength, which we use extensively below to quantify disrup
For example, after usage, a researcher may elicit/evaluatdion. In what follows, we focus our formalization on model
how well a user’s mental model depicts the actual state of the strength, rather than the model itself.
software. If a system could “track” a user’s mental model at . .
runtime, it could identify sources of disturbance to the men Model strengthis defined w.r.t. to a user's degree of un-
tal model and eliminate them from the design of the soft- Certainty or normalized entropy of the model distribution.
ware. To this end, some computational approaches to men-Specifically, the strength of is M* = 1 — H(6*)/H],
tal models have been proposed, but are non-probabilisfic an WhereH (X) = — 3>~ P(z)log(P(x)) is the entropy of dis-
use heuristic updates [17]. Thus, these approaches do-not adribution X, and H; is the maximum entropy of any multi-
count for the three properties above in a principled manner. nomial with L events (i.e., the entropy of the uniform distri-
bution overL locations). This definition normalizes strength
Our aim is to develop an approach to mental models thatin [0, 1], with 0 corresponding to the “weakest” mental model
allows a system to quantify the disruption caused by adap- (high normalized entropy, no knowledge of function loca-
tive actions. We are unaware of any such formal models of tion) and1 corresponding to the “strongest” mental model
disruption. In Sec. 3, we present a probabilistic represent (low normalized entropy, complete certainty of location).



Using this representation, we develop the dynamics of men- 3.3 Forgetting

tal models, with an eye toward quantifying disruption cost, When functions are not used, we expect users to forget their

using three key operations: learning, forgetting, andugisr  locations over time. This implies a decrease in model streng

tion due to adaptation. (The first two apply to any form of (and accuracy in most cases), and an increase in search time.

software, adaptive or not.) Fig. 2 illustrates this process, with an unused function be-
coming more uncertain.

3.2 Learning

We begin by examining how location models are learned. /\_’/\_’/\_’/\_’/\
As noted, we expect modéf to become stronger with in-
creased usage @&. Additional factors may also influence ) )
this process. For example, using a functidriocatednear X\éel drggge| égesﬂgg}egre%egreo%ﬁgrl%Z%GOnrgtlri]tgritnu%eef( ]ODI_%';'
k may reinforcey” §omewhat_—search|ng fof may involve impact o disuse on mode strength is givgn by’ '
seeing (and learning)'s location! Thus, usage history df

and neighbouring functions can influene Other factors M} = gM! | )

are visual-spatial cues surroundihg For example, menu  wherek is unused at timeé, and0 < 3 < 1 is the forgetting
length and depth may influence how well users know menu rate (w.r.t. model strength, as distinct from decay of model
item locations (longer/deeper menus leave greater péigsibi  parameters themselves).

for error). Landmarks could accelerate learning, with func

tions near landmarks—line separators, submenu arrows, dis Using the processes modeled in Egs. (1) and (2), we tracked
abled (greyed-out) functions, shortcut labels, top ordmtt  model strengths in simulation in the context of menu selec-
of a (sub)menu—Ilearned more rapidly. tion. In a menu withK' = 20 items andL = 20 locations,

) . the user repeatedly selects a series of items according to a
e ey e ohrcred S A CISRSSRe ™ 2t dson 19), Fi. 3 sha e esung chnan-
learning process can be encodeds= f'(Context). As ics. In gene_ral, used func'uo_ns exh|b_|t !ogarlthmlc_growth
discussed above, varying contexts afford different leggni strength while unused functions exhibit exponential decay
rates, as illustrated conceptually in Fig. 1. In terms of the

Figure 2. Forgetting and changesin the mental model distribution.

dynamicsof model strength, we assume that strengyffi ! j:tf; ;fequ
at timet is a linear combination of the prior strength and L I
strength induced with the new usage contekt 0.8] — k=12 freq=3
s ——k=19 freq=28
~ 0.7 = =
M = (1= M+ XCf () g RO e
$ 0.6
Here,\ € [0,1] is a learning rate an@F = f(Context,) is % 05l
the strength associated with = f/( Context;), butignores -
the dynamics of the update process. By incorporating the z 04
prior strength, this definition is consistent with the cqpice 5 0.3x/ [ [XR
of belief perseverandd 5], whereby people maintain strong = ool
beliefs in the face of contrary evidence. ol
We investigate the relationship between the user’'s mental % 20 30
model and several cues and usage histories empirically in Number of Trials (1

Sec. 6. From this, we derivgdt’C = f(Freqf, NBf), where Figure 3. Dynamics of strength estimates over 50 trialswith M} = 0.3

k- k- for all k. Strengths of several functions (indexed ask = 2, 6, etc.) with
Freq” is the accumulated usage frequencycc_zfndNBk is varying usage frequencies (of 50 trials) are shown.
the usage frequency @fs neighbours. Specifically,;’ =
af - log(bf - Freqf) + ¢f, with a',i = 0.11, b',i = 0.51, 3'43A(1.d6| Dt'fmp;f'on ¢ adaoti . | model
C£ — 0.56 when NB* is high, anda-,’; — 0.11, b-,’i — 044, Modeling the effect of adaptive actions on mental models,

b L . _ and strengths, is critical to assessing their utility. Whes
¢, = 0.50 when NB; is low. We found little evidence of a  moyed to a new location, intuitively, we exp@étto change

learning effect with cues (see Sec. 6 for details). in a way that reflects the learning process in the new context
(function arrangement) and the previous one. This is due to
our expectation that users will retain some memory:'sf
A_)/\_’A previous location, even after realizing it has been movad (a
(a) Faster rate of learning. effect like “muscle memory”).
R e /\—)J\ Formally, we capture this effect as a mixture of two mod-

els. Let¢® denote a hypothetical model learned (using the
learning and forgetting processes above) as if the user had
Figure 1. Learning and changes in the mental model distribution. no experience wittk prior to the adaptation that moved it.
The user’s model at timefollowing the adaptation is given
This is one reason our assumed model independence fail&to ho by the mixtured¥ = (1 —a)0F | + a¢f _,, wherea denotes

(b) Slower rate of learning.




a learning rate (the rate at which the new model replacesdistance of the item from the parent menu item, arahdb
the old one). The process is illustrated in Fig. 4 whieiie are empirical constanfs.

moved to a new location aftér= 3. Notice that the “new”

model (which is mixed with the old) also evolves over time The savingsexpectedf any (singlekﬂinteraction depend on

i i i u " i the probability of function usag oreover, functions-can
as the user gains experience with the “new” location. not (usually) be moved in isolation (e.g., others may shift)

Thus, we define thpint expected savingdES) of a vector

/ of location moves to be:
_ J p
\l Ny \l JES (15 UKy = kgk gk 3
/\%/\—)A—)/\’—)/\/—lj (L=, ) kzzlp (b l) ®)

Figure 4. Changesin 6% as k is moved to a new location at time t = 3. \,/vhere 1K is Shorth_a_'nd notation fof variables,p™ is
Thebottom distribution represents 6* and the consequences of moving /€S estimated p_robabl_llty (e.q., based_ on Samp_le frequency)
k. Thetop distribution represents the hypothetical mental mo%el #* of Since an adaptive actiof fully determined % givenl}%,
learning k in anew context. Prior to ¢t = 3, the dynamics of 6" follow- we also denote this byES(Aﬂtlfg).

ing theregular learning and forgetting processes. Once k is moved, the
resulting distribution is0¥ = (1 — @)0F | + a¢h ;.

4.2 The Costs of Disruption
In what follows, we model impact of disruptioon model When an adaptive action occurs, we define disruption time
strength)M* instead of the model* itself. This approxima-  (see Sec. 3.4) as the search time required for the function se
tion is more tractable (requiring tracking strength onlgt n Iectlo.n task pv_erthe time requwed giventhe prior user rhode_
models). We assume that? = (1—a)MF | +aM(¢F_)). ¢*. Since this is an objective measure, we devised an experi-

; : mentin Sec. 7 to learn this value. With adaptive actibe-
(The strength learning rate will not be the same as the 4 gne of NonE, Swap, Top, and HDE, we define (initial)
model learning rate, but can be derived from it.)

disruption time asD¥(A) = g(A|M[), whereg takes the

dask o pd wi e 0 pd —
Adaptive actions disrupt a user's mental model and incur two forma®M; "Zb » with (zmpmcal constantsg:f‘jl =0, bg =0
types of costs. First, referring to Fig. 4, we see a location fOF NONE, a = 1.4,b5 = 0.2 for SWAP, a’ = 2.8, b = 0

change initially has a negative impact on task performance for TOP, andaj, = 6.0,b = 2.9 for HIDE. Using this
or search behavior, due to the reduction is model strengthdefinition, we defingoint expected disruptio(JED) analo-

and accuracy. At = 3, 6% is peaked and user can assess gously to JES:

k quickly. Immediately after the move, the user will search K

for k at the old location, not find it, and need to discover the JED(AIM{ ™) = " p"Dy(A) 4
new location (e.g., using visual linear search). This iscur k=1

an (objective)disruption time In addition, the user proba- ~ Ed- (1) gives us a way to estimate the dynamics of model

: : strength with function use. When functiénis moved as a
bly experiences some level of frustration (due to both menta result of adaptive actior, strength becomes weaker. \We

gffort and increased task time), which is reflected in a;ubje capture this with a disruption factd; which weakens the
tive annoyancdactor. In Sec. 7, we conduct an experiment model after applyingi:

to learn the objective disruption time. In practice, the an-

\ \ R M} = sMf (5)
noyance factor may amplify the disruption time so that users ) t t ) ]
who dislike adaptations perceive a more significant cost. We The factor by which strength weakens is defined as a func-
do not address annoyance further here. Notice, of coursetion of disruption timeD;'(A). Specifically, givenM;, we
that disruption time decreases over time as the new model iseXpect no change in strength when disruption tinfé A) =

learned. We discuss this further in the next section. 0 (i.e., A is NONE). In that casey = 1. When Df(A)
is small, users may not notice the disruption, so we expect

strength to only decrease slightly. A%°(A) increases and
4. DECISION-THEORETIC ACTION SELECTION becomes noticeable, we expect strength to decrease. The
A typical metric for evaluating adaptive systems is the de- greater disruption time, the less the effect on strength be-
gree to which they reduce user effortin repetitive taskg. (6. cause the mental model will, in the worst case, “reset” it-
typing common phrases, or selecting oft-used menu itemsgef to the weakest point. The specific function we crafted
or toolbar icons). The costs associated with adaptatiaas ar 1o model this pattern is a Gaussian function defined as
often ignored. Here, we develop a decision-theoretic model == (p¥(4)/)* \ith ¢ — 3.977. In effect. there is mini-
that allows benefits (e.g., selection time savings) andscost mrﬁ impact Whén disruptior{timé is betwe(éto 1.5 second.

(e.g., selection time increases due to disruption) to listia WhenD} (A) > 1.5s, the impact peaks and eventually stabi-
off against one another. Our model is also sequential, teflec lizes beyondD¥(A) > 6s. These boundaries are developed
; .

ing tradeoffs over time. using the empirical results from Sec. 7 as guidelines.

4.1 The Benefits of Savings 4.3 Sequential Decision Model
An adaptive action provides savings for the user ifit moves  The savings and disruption cost models above focus on a sin-
to a location that is closer to the user’s reach. We adog Fitt  gle interaction. In repeated use, both savings and dismpti
Law [5] and define thsavingsof movingk from IF_, to I¥ 2w : — o . -

e require an application-specific mapping from locatiandis-

asS(If_,1f) = ﬁtts(_lf—ﬂ - ﬁt_ts(lf)' wherefitts(d) = tances, which reflects specific implementation artifaci. (éo ac-
alog,(d/w + 1) 4+ b with w the width of a menu item] the cess a hidden menu item, hovering or clicking double arrows fi




costs accrue over multiple interactions. However, disampt ~ Split menusave been shown to offer faster selection perfor-
cost diminishes over time as the user develops a new mentamance than various other static and adaptive menus [18]. A
model as described in Sec. 3.4. The utility of an adaptive split menu consists of two areas—the top (adaptive) parti-
action must take into account the sequential nature of the in tion hasN menu items with highest estimated usage (in or-
teraction and total net utility over some horizon of intéres  der), while the bottom (static) partition h&5— N remaining
For simplicity, we model the long term effects of the current items arranged in a fixed (default) ordering Sett¥ig= 4 is
adaptation assuming no future adaptive actions are taken. understood as providing good performance in practice [18].
We refer to this policy as&.1T-4.3.
Let H denote the expected number of interactions with an
interface. We assume discount fadiiox v < 1, with long- Our adaptive policy is denoted ¥%(w,)-N, and is parame-
term savings given byzzjzl ~h JES(A|IFK). Long-terms terized by the savings weight (an(_j hence, dlsruptlon_wyzlght
costs are defined similarly, but with a wrinkle. Unlike sav- and the number of items moved simultaneously.(We im-
ings, the long-term effects of disruption decay over tinge, a Plement action selection in Eq. (7) greedily (the best meve i
the user learns the new model at ratéWith the old model's ~ derived first, then the next begiventhe first, etc.). We test
retention rate a$ — «, we discount/ED at ratel — « (in :Eree‘EVe'f\lSionﬁ by varying, = 0.1, (t)-5, O.9.tFi(;1aIIy,.We t?St
" .y H _ N\hah 1K e Es-N policy, maximizing joint expected savings from
addition t07): 3y (1 — @)y JED(AIM;*2). Eq. (3). This alternative adaptive approach ignores disrup
While one could sum the two expressions above to obtain tion (and hence need not reason sequentially).
the estimated utility of an adaptive action, we wish to ac-
count for different user preferences. Specificall¥, we imag We investigate these policies under two item distributions
0

{ﬂgttgﬁkﬁg?{'?aléfesreﬁehﬁ?/fna( grgrgrr]r?o?(rae;eerr?gfaelly rt;gf(eggﬁqe_?ipf (which models actual function usage frequencies [9])
pletion) time, even if they are somewhat “disrup’tive"; oth- and uniform. We fix the number of menu items2® (K =

ers may prefer a more stable interface, even at the expense0 andL = 20), the learning rates ta = 0.5 anda = 0.5,

of increased expected selection time. This is accomplishedthe forgetting rate tg@ = 0.9, the savings discount factor
heuristically by scoring actions using a convex combinmatio to 4 = 0.95, and the horizon t¢{ = 50. To enable com-
of the scores above, with weight; € [0, 1] applied toJES parative results with 8LiT-4, all the adaptive systems take

andwg = 1 — w, applied toJED. Users with greater  Top actions only withN = 4. All the systems estimate
ws are more tolerant of disruption if this induces selection frequency using normalized sample frequency.

savings. This gives theveighted expected rewarstcore,

1: K 11:K . . . .
WER(A|M** ;2 ws, H, o, ) Simulated Users.  The simulated users select menu items

y bylsampling from the %redefti]ned it(ejmI di;stcr:ibuliign. To mcl)d[%I]
h LKy _ \hoh 1K selection times, we adopt the model of Cockburn et al.

> [“’” JES(All=1) = wa(l = ) ™y JED(A| M, )} ) which accounts for novice and expert performance (which

h=1 . . S iS necessary in adaptive systems since interface changes ca

To compute the optimal action, the& system policy is: Iower a user's derg]]ree of expz%rtlse). I|r|1 t3|s ﬂodel, mlam se-
. _ LK LK ection requires the user to (i) mentally decide to select an

A" = argmax WER(AIM, ™, L=y, ws, W, 00) - (7) item and (ii) physically select it. Selection time for item
Since we only consider specific kinds of adaptive actions is 7% = TF + Tk (i.e., decision time plus pointing time).

(i.e., NONE, Swap, Top, BoTTOM), only a few location  pointing time is roughly the same for everyone (using Fitts’

changes are possible (specifically, the neighbouringaiop,  law). However, decision time varies witixpertisew.r.t. k's

bottom locations of*). location. Decision time is modeled as a linear combination
of novice and expert search times with € [0, 1] denoting

5. SIMULATION RESULTS the user’s expertise with [3]:

To illustrate the benefits of our model, we conducted a sim- TF = (1 — M) Tos + &5, ®)

ulation experiment to compare the performance of several
system policies in the context of adaptive menus. We re-
port analogous usability results with real users in Sec. 8.
The scenario is repeated interaction focusing on menu se-.

lection tasks. In each session, a (simulated) user musttsele '(Ia'oueasttégmkat_e SCﬁ l;)saesres deé(rr]’%ﬁ'rs%\ggg |a21cl)t§g|1 ;‘?r(;?]t'?ﬂ’ev;’_e
an item, drawn from a predefined item distributiGtitems q ot 9

. ko ,
are drawn in turn and the system can adapt its menu accord—::'g}ﬁtel'etelnexeffsr(t:t\',vi‘?'&eri\/[a As 1]\/[(§t:joencgr)e,atshees l(JSeG(r:olfn gs
ing to some policy after each interaction. P P o ¢

weaker) ¢* approaches to the value of a novice.

whereT,; andT},;, are previously proposed search models
for novices and experts respectively (see [3] for details).

Policies.  We compare seven menu policies w.r.t. selection
and disruption. BST STATIC provides an upper-bound on
performance: it presents the menu layout with items sorted
in descending frequency. Aside fronEBT STATIC, no other
policy has access to the item distribution. At the opposite
end of the spectrum, we tested the adaptive polisyBoMm-

N, which randomly movedv items at each interaction (it is

maximally disruptive). The remaining policies make use of 3Refinements of split menu design have been proposed recently
estimatedtem distributions to adapt their menus. e.g., the “copy” variant of [6], which we discuss furtherde!

Results:  We defineselection timeas the time predicted
according to [3], andisruption timeas any additional search
time (Sec. 4.2.3). To assess the impact of adaptation on
learnability, we measure how often a user develops a “strong
mental model of any functions in the sessitotdl strong
model3. We deem a model to be strong whaff > 0.4,




Total Percent Total Percent
Select. Disrupt. | Strong  Strong Select. Disrupt. | Strong  Strong
Method N | Time Time | Models Moves Method N | Time Time | Models  Moves
BESTSTATIC 0 1197 0 152 0.00 BESTSTATIC O 1700 0 100 0.00
RANDOM 4 1306 196 136 56.80 RANDOM 4 1701 120 93 49.61
SPLIT 4 1213 22 150 3.11 SPLIT 4 1702 44 95 7.33
JES 4 1301 130 133 36.31 JES 4 1703 82 91 45.60
WER(.1) 4 1296 0 152 0.00 WER(.1) 4 1700 0 100 0.00
WER(.5) 4 1284 6 152 0.18 WER(.5) 4 1700 2 100 0.10
WER(.9) 4 1273 50 149 2.58 WER(.9) 4 1702 28 97 4.42
Table 1. Resultsusing a Zipf distribution with K = 20 menu items, Table 2. Resultsusing a uniform distribution with K = 20 menu items,
averaged over 100 runs, each with a horizon H = 50. Timesin msec. averaged over 100 runs, each with ahorizon ‘H = 50. Timesin msec.

Results using a uniform frequency distribution are presgnt
in Table 2. Not surprisingly, selection time is difficult to

a threshold based on the sample median of strengths from_ .. ~" o
optimize regardless of the policy; users have fewer oppor-

;Xeprftgmﬁgtjsellniss gics'rg'ptvevc? a\l/?/g ?;ﬁf:sﬁoﬂgwm%f\t/zg%Ztrongtunities to develop strong models (since experience is dis-
' tributed over more items). As a result, selection times are

any action that moves a function with a strong model to a
new location, and record the percentage of strong modelsSIOWer and strong models are rarer. The performance across
' other dimensions is similar for all policies, with the nd&ab

that are movedpercentage of strong movesUltimately, . . .
we are interested in systems that can tradeoff reduction in &xception that all Vér variants ou_tpe_rform BLIT-4 in "’?"
dimensions. Overall, our AR policy is competitive with

selection time (via adaptation) and stability (by minimigi .
disruption of strong models, where costs are greatest). SPLIT-4 and is able to adapt to user preferences.

The results using a Zipf distribution is presented in Table 1 6. LEARNING MENTAL MODEL DYNAMICS

We report the average times based on 100 simulation runs.Our first experiment is designed to determine the kinds of
Note that computation times are fast in all casess(ms). visual-spatial cues and usage histories that define the-lear
BEST STATIC is the gold standard for desirable selection ing contextfor model strength. First, participants wereta
time and stability. 8LIT-4 is fast, as is evident from the with a series of controlled menu selection tasks. This al-
literature. All WER variants perform about the same, about lowed participants to build a mental model of our experimen-
60-83ms slower thanr.1T-4 and 5-28ms faster thag S-4. tal interface. Second, the same participants were presente
RANDOM-4 is a lower baseline and induces an undesirable with a series of recall tasks designed to assess their model
amount of disruption. As expected;s}4 ignores disruption  strengths. In total, we collected data from 48 participants
so it has a cost close to that oARDOM-4. The remaining

methods induce a similar and much smaller range of disrup- 6.1 Training Session

tion times. Although these times are small, the associated, The training session was designed to accommodate a range
subjective annoyance factor of adaptation should playe rol of cues and usage conditions in order to test the effect of
in amplifying overall costs. As a result, we expect task cOm- these variables on the mental model. Participants werelaske
pletion times in practice to be greater than the sum of the g complete a set of 29 menu selection tasks as accurately
predi_c_ted selection and disruption tim(_a_s (we see this in the gng as quickly as possible using abstract labels in a pull-
usability results as well). Thus, the ability to accommedat  gown menu as shown in Fig. 5. Only four distinct (randomly
user preference toward adaptation is crucial. chosen) menu items were used as targets among the 29 tasks.
. o . If a mistake was made, the participant had to redo the task.
When the VER weight setting isw, = 0.1 (i.e., represent-  Thjg set of tasks is designed to mimic a particui@story
ing a user who cares most about minimizing disruption), no of application use, so we can probe the participant’s mental
dlsruptlon_ is mduce_d. Indeed, our data indicates th_|sqyol| model (in the next session) knowing the usage history that
behaves like a static system so as to not annoy this type of«created” it. In each trial, we measured task completioretim

user. Only when setting, = 0.9 (i.e., a user who prefers  5nq accuracy. We used these results to filter out participant
to maximize selection performance) is when we see more g did not take the experiment seriously.

disruption than 8LIT-4.

While we recognize the potential impact of all of the vari-

The more a system adapts its interface, the less the user igpjes discussed in Sec. 3.2, we restricted our attentiovoto t
able to learn and develop a strong mental model of it. We seeces and two usage variables:

that the number of total strong models thatN®om-4 of-

fersis much less than that oE3T STATIC. Since WER(.1)- e Length Total number of menu items (shown and hidden)
4 behaves like a static system, it also offers just as many op-  pelonging to the menu. Values: K=20, 40.

portunities to develop strong mental models &sBSTATIC.

We see a similar pattern among these systems when compar® ; o )
ing the percentage of strong moves made. When comparing assigned to ea_ch of the four distinct targets. Values: 1, 4,
how other systems perform with respect to the percentage of &' 16- These give the 29 tasks.

strong moves made, we see that all the®\Wariants make e Landmark A line separator in the menu. Values: none,
fewer disturbances tharr8iT-4. line above the item witlF'req = 16, line above the item

Freq. Target usage frequency. One usage frequency is



[hel per repeated trial), three corresponding response timds a

f«dw self-reported confidence score (how well he thinks he knows
Fonaul the original location, on a Likert scale).

Rasbora

Mehimati 6.3 Experiment Results

EQID' Flou nder We used the task completion times in the training session
— to identify outliers so that if the completion times did not
Flounder | generally decrease for high frequency items, we assumed
Gouramie the participant did not pay attention. With this criteriag w
Pollock discarded data from 5 participants and kept 48 for analysis.
Satiged Next, we present the results from the recall session.

Figure 5. Experiment prototype with desktop menu.

] 6.3.1 Computing Mental Model Strength
with Freq = 1. Recall our definition of model strength in terms of entropy

« NB: Usage of functions near the target. Values: low (neigh-iS 1 — H(6%)/H] for an interface withZ locations (here,

bouring items are used zero times), high (a neighbouring L = Length). To compute strength, we estimated the model
item is used 16 times). distribution using the recalled locations. For each unique

target, the three responses were fit to a discrete normal dis-
As we expecEreq to play a key role in determining model  tribution (fit using the sample mean and standard deviation
strength, we use a denser set of test values (than prescribe@f the three responses). Strength was computed using this

by Zipf). Using four items from a menu with = 40 distribution. This provided us with a single strength esti-
items mimics real-world scenarios with complicated inter- Mate, an average response time, and a confidence score for
faces where only 10% of the interface is used. Foukof each of the 10 to 25 unique targets.

20 items reflects a denser 20% functionality usage. o ) ) )
Across all participant-target pairs, the median strength i

0.40. We also measured the correlation between strength,

6.2 Recall Session N confidence, and response time. We found that strength and
Once training is c}gmpleted, participants have developedme confidence are positively correlated & 0.46,p < 0.01)
tal model®)”, .., 6™ for each of the items in the test appli-  while response time is not significantly correlated with ei-

cation (wherei’ = 20, 40). The recall session is designed  ther strength nor confidence & —0.03 andr = 0.04 re-
to allow estimation of mental model strengths by asking par- spectively). This suggests our definition of strength ases

ticipants to carry out a series ocall tasks. Given menu  the participants’ beliefs of how well they think they know
item k, we asked participants to recall its location on a new the function locations.

menu, which has the same interface settings except menu

labels are replaced witfiller labels. The purpose of these )

filler labels is to see how well participants remember the 6-3:-2 Relevantindependent Variables - _
actual location of the menu items. Fillers are designed to Using factorial ANovA analysis on all the condition vari-
preserve the length of the original label using a random se- 8bles, we found thalVB and Freq have a significant effect

guence of consonants. For example, the corresponding filleron strength < 0.01) and Length only marginally signif-
for “Flounder” is “Xtnxctzr”. icant (p < 0.1). Thus, the variable®/B and Freq provide

sufficient context to explain the data, so our strength egtm
To create the set of target items for this recall session, we function is best modeled g4 Freq", NB").
first took the four targets from training and added their near
neighbours—i.e., all menu items within a distance of three—
to the set. For example, if one of the original four targets wa
in locationl, then items at positions+ 1,--- , I+ 3 andl —
1,---,1— 3 were added to the recall set as well. This yields
a total of 28 & 4 x 7) items. However, the condition with
high frequency neighbours (i.eNB = high) require the
target withF'req = 16 be located close to the other targets.
Therefore, these 28 items are not distinct. As a result, the
recall task has betweel to 25 unique target items across
all the conditions.

6.3.3 Quantitative Relationships

As we expected frequency to have less effect as it increases,
we chose to fit the data using a logarithmic function. We
fit a separate function for each value 8. Fig. 6 shows

the averaged data and the regression results. As presented
in Sec. 4.2.1, we hav&111og(0.51 Freq + 1) + 0.56 with

r?2 = 0.9 whenNB = high, and0.11log(0.44Freq + 1) +

0.50 with 72 = 0.9 when NB = low. This is the function
used to define the model strength induced with the new usage
context in Sec. 3.2.

Participants were asked to recall each distinct item thinees,

resulting in 30 to 75 recall tasks presented in random order.7. LEARNING THE COST OF DISRUPTION

In each task, participants were asked to identify the loca- The experiment described in this section attempts to assess
tion of the targets as accurately and as quickly as possible.the degree of disruption induced by adaptive actions in menu
For each unique target, the participant responded wittethre selection. It was conducted as a continuation of the Recall
samples of his mental model of that target’s location (one experimentin Sec. 6 with the same 48 participants.



ir subjects experiment design or logistically infeasible dor
between-subjects design. As a compromise, our conditions
here vary only inLength and Freq, and aggregated the other
variables into one experiment. This experiment thus takes
just an initial step in assessing disruption time.

- 7.2 Results
L o4 | [—~—NB=high data To estimate disruption time, we subtracted task completion
0al Egjzgvh df;'tf;““’” 0.11%0g(0.51Freq+1)+0.56 time of the corresponding condition from the training phase
' “o- NB=low function 0.11+I0g(0.44Freq+1)+0.50 from the task time in this new disruption phase. This gives
021 us a crude assessment of the additional search time induced
01t by the adaptive action. Correlation between disruptioretim
o ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ and self-reported disruption scores are positive and fsigni
0 2 4 6 8 10 12 14 16

cant ¢ = 0.40,p < 0.01). On average, we found the mean
disruption time is about.5s with a disruption score of
(which corresponds to noticing a small amount of disrup-
tion), and the mean disruption time is abdutwith a dis-

7.1 Experimental Set-Up _ _ _ ruption score ofs (highly disruptive). We used these times
As defined in Sec. 4.2, the disruption of moving function o computes in Eq. (5).

is given by D¥(A). Our aim is to learn this function in the

menu selection task, while restricting the actibto chang-  since this experiment is conducted following the Recall ex-
ing only one menu item at a time (i.eY, = 1). For conve-  periment, we took the estimated strength values from the
nience in this initial study, we treat disruption as ad@iit  same participant’s corresponding conditions and used them
what fO||0WS, with total d|srupt|0n be|ng the sum of the dis- in f|tt|ng Df(A) The data was noisy in generaL SO we
ruptions over all functions. (The accuracy of this assuompti  pinned the strength estimates into three equally-sizek-buc
will need to be verified in follow-up experiments.) ets and analyzed the disruption times with respect to a weak,
) o ) . medium-strength, and strong mental model. The mean val-
We trained the participant’s mental model as described in ;a5 for these bins afe26, 0.66, and0.90 respectively.
Sec. 6.1 while keeping track of all task completion times. To
induce disruption on the mental model, we applied one ofthe |n general, we expect disruption time to increase as sthengt
four adaptive actions (@p, SwaP, HIDE, NONE) and then  increases. We used the empirical disruption timesiferNONE
asked the participant to select the (potentially) movegltar a5 the baseline. For simplicity, we chose to fit the data us-
Thereafter, we asked the participant to indicate whether th |ng linear regression_ F|g 7 shows the averaged data and
target was moved. If no, a self-reported disruption score of the following regression results: wheh= Swap, we have
0 was recorded. If yes, we further asked the participant to p — 142307 + 158 with 72 = 0.5, whenA = Top, we have
report the disruptiveness of that adaptation on a Liketesca  p — 986517 with 2 = 0.8, and whend = Hide, we have
Since one of our adaptive actions is to hide menu items, the p — 603317 + 2901 with 2 = 0.9. Overall, we see that
menu always has 10% of its items hidden. Otherwise, the

same interface with different text labels was used. A=Swap data
A=Swap function D = 1423M + 158
. .. . 12000¢ —— A=Top data
For simplicity, we use a subset of the usage frequencies from & A=Top function D = 2865M + 0

Sec. 6 to create our target items. We randomly chose three 10000 | —— A=Hide data_
target items and assigned them frequencies 1, 4, 16 respec- * AcHidefunctonD=6033M+2901]  —
tively, creating 21 selection tasks with three distincyéds.

We then augmented this set of tasks with adaptive actions
and additional selection tasks as follows: after selecting
targetp times (wherep is the item’s associated usage fre-
guency), the system moves its location (as dictated by the
chosen actiord) and asks the participant to select the (po- 20007 s
tentially) moved target. With three target items, this adds 4
three new tasks, yielding a total of 24 menu selection tasks. or

Freq
Figure 6. Resulting functions for mental model strength.
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Since we are interested in learning the disruption for every _ _ _ M _ o
combination of usage frequency and system action under Figure 7. Resulting functions for disruption time.
each experiment condition, we desigrfedr sets of target  disruption time is positively correlated with model strémg
items and associated selection tasks according to the abovand most significantly so with tBE. Note that existing pre-
procedure. In total, we created 12 distinct targetitems#nd dictive pointing models (e.qg., Fitts law) do not account for
menu selection tasks. Ideally, a separate experiment woulda user’'s mental model, and at best attempt to reflect only a
be run for each combination of the condition variables and user’s expertise level (e.g., [3]), neither of which addglya
system action. However, the resulting protocol is too large accounts for added disruption time. Our results suggest the
and would either be overwhelming for participantsin awithi need for such a model in adaptive systems.



8. USABILITY EXPERIMENT Estimated [ Total — Percent
. . - . . Task Disrupt. | Strong  Strong

We concluded this study with a usability experimentdesigne | p1ethod N | Time Time | Models  Moves
to test and verify the simulation results from Sec. 5 with rea [ BEsTStatic 0 | 1513 0 134 0.0
users, adopting model parameters estimated via the preced- RANDOM 4 | 2966 779 82 59.9
ing experiments. We adopt the same set-up and evaluation] SPLIT 4 1 1760 26 11 9.8
: ; ; : : WER(all) 4 | 1817 21 121 5.2

metrics as those in the simulation experiments from Sec. 5.

- WER(.I) 41 2123 24 135 3.7
In total, we collected data from 8 participants. WER(5) 4 | 1864 23 118 51
WER(.9) 4 | 1651 17 119 5.8

8.1 Experimental Set-Up Table 3. Usability results using a Zipf distribution. Timesin msec.
Following the experiment in Sec. 5, we created menu se- Esimated T Total  Percent
lection tasks with these systemse8r STATIC, RANDOM- Task Disrupt. | Strong  Strong
4, SPLIT-4, and WER(ws)-4. We chose BST STATIC and Method N | Time Time | Models  Moves
RANDOM-4 as they provide baseline results, arel8-4 EESTSTAT'C 2 %ggg 99% 2421 58-(9)
as a plausible competitor to our model. Another competing | £A"\2°V 2 | 3501 o e e
approach not investigated here is the copying approach ofl weggall) 4 | 2913 47 60 29.7
Gajos et al. [6]—menu items are copied rather than moved | Wer(T) 4 | 3546 53 84 1.2
to more convenient locations—which has been shown to be| WER(.5) 4| 2792 27 63 33.5
preferred by users. To offer a fair comparison, we could aug- | WER(.9) 4 | 2865 31 49 34.2

ment our adaptive \&R(w,)-4 policy with a GPY action. Table 4. Usability results using a uniform distribution. Timesin msec.
We leave this possibility to future research. To create the
same visual menus in each system, the line typically separat do not have an equal number of participants for each weight

ing the top and bottom partitions in split menus is removed. setting, we also aggregated their results together to geovi
All parameter values used in this study are identical toeéhos an overall performance on ¥&.

in Sec. 5.

In general, we see similar results as those in the simutation
There are two parts to this experiment. The first is a within- WeRr is competitive with ®Li1T-4 when comparing task and
subjects experiment which asked participants to compare th disruption times. In contrast to the predicted selectiore
4 systems by carrying out 50 menu selection tasks with tar- from the simulation results, theeasuredask times for the
gets sampled from a Zipf frequency distribution. To help three adaptive systems are much higher. We suspect this ef-
differentiate the experience, each system was designéd wit fectis due to the participant’s subjective annoyance faoto
a different set of menu labels (e.qg., fish, colors, fruits, an ward the system’s adaptations which resulted in an inctease
imals). The second part follows the same design except it gverhead. Unlike the simulation, ¥%(.9)-4, whose goal is
uses a uniform distribution rather than lef In all cases, W to maximize Savings, does better tha#L®-4 on all dimen-
used an interface similar to the one shown in Fig. 5 and fixed sjons. The-test results show \WR(.1)-4, whose goal is to

menu length t20. The presentation order of the 4 systems minimize disruption, offers significantly more opportiest
and the two parts were counter-balanced across partisipant for learning strong models tharpSIT-4 (p < 0.05).

We let participants explore the interface usingN®om-4 Significant advantages of our method are made more obvi-
until they were comfortable. To determine their preference ous when the tasks are created from a uniform distribution.
toward adaptive systems, we asked a multiple choice ques-Table 4 shows these usability results. Usingst analy-
tion, “Would you use adaptive menus if they were designed sjs, we see that WR(.5)-4 is significantly faster in task

to SPEED UP the tasks?” To a response of “yes”, we as- time than $LIT-4 (p < 0.05) and WER(.1)-4 offers signif-

signed the weight setting; = .9 in our WER system (with jcantly more opportunities to develop strong mental models
wq = 1 — w), denoting the participant has a strong pref- (, < 0.01).

erence to maximize savings at the expense of added disrup-

tion. On the other hand, a response of “no” was assigned|astly, we report the post-questionnaire results in Fighl8.

ws = .1, denoting the participant has a strong preference to though no significance was found, in large part due to having

minimize disruption. Finally, a response of “maybe” was as- to divide the number of participants into threee®/weight

signedw; = .5. Atthe end of each part of the experiment, cases, we see that on average, participants reported that ou

we asked participants to rate each system on a Likert scalewer-4 system is less frustrating, easier to use, and more ef-

based on frustration, ease of use, and efficiency. ficient than $L1T-4. Overall, our usability results confirm
and amplify the conclusions in the simulation experiment.

8.2 Results

In each trial, we logged the task completion time (as opposed9. CONCLUSIONS AND FUTURE WORK

to the predicted selection time in the simulation evalugtio  In this paper, we presented a probabilistic model of the'siser

and estimated the corresponding disruption time. Follgwin mental model of function locations and defined three men-

the format from the simulation, we report the objective us- tal operations based on model strength. We implemented a

ability results from the Zipf condition in Table 3. Amongthe decision-theoretic system that trades off the long-terva sa

8 participants, 3 used the weight settinguaf = .9 for our ings of its adaptive actions with the costs of disruption, de

WER system, 4 used; = .5, and 1 usedvs; = .1. Since we fined as a function of model strength. To model individual
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Figure 8. Subjective results

preferences, we parameterized our system with weights that™™

capture a user’s tradeoff between maximizing savings ver-

sus minimizing disruption. In addition, we conducted two 1.

empirical experiments to learn model parameters and eval-
uated the resulting model in simulation and with a usabil-

ity study. Overall, our user adaptive approach respects use 17.

preferences, minimizes disruption of strong mental models
and is competitive with split menus in task selection perfor
mance in both simulation and the usability study.

A natural extension of this work is removal of the indepen- 19.

dence assumption over mental model distributions. Our re-
sults demonstrate value in estimating the cost of disraptio
as a function of model strength; we would like to further our
approach by estimating disruption directly as a function of
the mental model distribution itself. Due to the number of
parameters involved, such an approach demands much more
data than is empirically feasible (even with the simplerrep
resentation here we had to place constraints on our experi-
ments.) Therefore, a tradeoff must be made between a more
accurate, theoretical model and the ability to provide sup-
porting, empirical evidence for it. Finally, investigatiof
richer disruption-sensitive adaptive policies (e.g.oiming

a wider space of actions, including @€y action) would be

of value, as would comparison to additional customization
techniques (e.g., [6]).
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