
Who’s Asking For Help?
A Bayesian Approach to Intelligent Assistance

Bowen Hui
Department of Computer Science

University of Toronto

bowen@cs.utoronto.ca

Craig Boutilier
Department of Computer Science

University of Toronto

cebly@cs.utoronto.ca

ABSTRACT
Automated software customization is drawing increasing attention
as a means to help users deal with the scope, complexity, potential
intrusiveness, and ever-changing nature of modern software. The
ability to automatically customize functionality, interfaces, and ad-
vice to specific users is made more difficult by the uncertainty about
the needs of specific individuals and their preferences for interac-
tion. Following recent probabilistic techniques in user modeling,
we model our user with a dynamic Bayesian network (DBN) and
propose to explicitly infer the “user’s type”—a composite of per-
sonality and affect variables—in real time. We design the system
to reason about the impact of its actions given the user’s current
attitudes. To illustrate the benefits of this approach, we describe a
DBN model for a text-editing help task. We show, through sim-
ulations, that user types can be inferred quickly, and that a my-
opic policy offers considerable benefit by adapting to both differ-
ent types and changing attitudes. We then develop a more realistic
user model, using behavioral data from 45 users to learn model pa-
rameters and the topology of our proposed user types. With the
new model, we conduct a usability experiment with 4 users and
4 different policies. These experiments, while preliminary, show
encouraging results for our adaptive policy.

Categories and Subject Descriptors:I.2.11 [Artificial Intelligence]:
Intelligent agents H.5 [Information Interfaces and Presentation]:
Miscellaneous

General Terms: Human Factors

Keywords: User modeling, dynamic Bayesian networks, intelli-
gent assistance

1. INTRODUCTION
Online software customization has become increasingly impor-

tant as users are faced with larger, more complex applications. For
a variety of reasons, software must be tailored to specific individ-
uals and circumstances [18]. For example, adaptive interfaces are
critical as different users may require different functionality from
multi-purpose software [5], prefer different modes of interaction,
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or use software on a variety of hardware devices [10]. Because
of software complexity, online and automated help systems are be-
coming increasingly prevalent to help users identify and master dif-
ferent software functions [16]. Such systems should ideally adapt
the help they provide and the decision to interrupt [15] to account
for specific user preferences.

One of the difficulties facing developers of adaptive software, in-
terfaces, and help systems is the uncertainty associated with assess-
ing the needs of a specific user. While hard-coded rules offer some
benefits, it is becoming apparent that probabilistic assessment of a
user’s needs based on observed behavior offers considerable advan-
tages [16, 1, 11]. Such approaches employ detailed models (either
handcrafted or partially learned) and often multimodal inputs to in-
fer the user’s goals in the current system environment. Few of these
approaches model user features explicitly (though some exceptions
exist, e.g., systems in which user features are taken as input [6, 19,
3]). It is rarer still to learn such features. One exception is the work
of Conatiet al. [23] which infers a user’s emotional states; but it
is unclear how this information impacts the system’s actions. We
argue that it is more natural to model human-computer interaction
as asequentialstochastic process where theusermoves from state
to state. Here, states reflect the user’s attitudes and abilities (cog-
nitive, motor, etc.) as well as the system’s environment. In this
way, our method infers and adapts to the user’s current attitudes,
and learns an on-going user profile that may be transferred to other
applications.

In addition, complex tradeoffs must be assessed when deciding
if and when to offer help to a user, hide a specific function, etc. For
example, deciding to offer help must balance the uncertain assess-
ment as to whether help is needed, the costs of unwanted interrup-
tion, the benefits of providing the right type of help, and the costs
of providing the wrong type of help or of doing nothing when help
is needed. In a number of settings, decision-theoretic models have
been adopted for precisely this reason [15, 10, 9], allowing a system
to make the right decision based on such decision-theoretic trade-
offs. We adopt this general perspective, but tailor our approach so
that decisions are influenced by the system’s beliefs about the (gen-
erally evolving) user state. We achieve this via onlinebelief state
monitoring, which we show to be tractable in the system prototype.

Our aim is the development of systems that can actively monitor
user behavior and tailor an interface, help system, or functionality
to the needs of that user. Furthermore, we want systems that con-
struct models of a user over time to support this customization, and
whose actions are influenced by the need to develop accurate user
models. We focus on an automated help system for a text-editing
task (with an eye toward users with mild cognitive or physical im-
pairments), but the general principles apply more broadly.

More precisely, we develop a generic model ofstatic user type



andtransient user statein which both the type and the state are in-
ferred (or learned) over time based on observations of user behav-
ior. We model the dynamics of user state and the interaction with
a help system using a dynamic Bayesian network, and the relative
benefits of various types of help (and their interaction with user
state) using a generalized additive utility model. The probabilisti-
cally estimated user state is then used determine the expected utility
of a specific course of action (various forms of help or lack of help)
at any point in time. This generic model is elaborated in Sec. 2.
We instantiate this model in a specific text-editting task in Sec. 3,
with assistance for users with mild cognitive or physical impair-
ments in mind. However, the general principles illustrated in this
task carry over to any form of automated software assistance. We
discuss simulation results in Sec. 4, a protocol for learning model
parameters in Sec. 5, and the results of a preliminary user study in
Sec. 6. While the user study suggests certain problems with the
prototype implementation, the qualitative results are quite encour-
aging and do suggest that this general decision-theoretic approach
to assistance we propose is indeed useful.

2. A GENERIC USER MODEL
We begin by proposing a generic model that allows an automated

assistant to learn about its user.

2.1 User State and User Types
First we consider the factors that influence whether a user accepts

help from an automated assistant, and the value of such assistance,
as shown in Fig. 1 (left). Whether a user accepts automated help de-
pends on the quality of the assistance (QUAL) as well as the user’s
tendency to work independently (TI) and the amount of attention
that is directed toward considering help (CONS). For example, a
user who is highly independent may not consider or accept help
even if it is perfect. The degree to which a user might consider help
depends on the user’s current attitudes toward the automated agent
and general personality traits while working in a computing setting.
Relevant user attitudes include those directed toward the computing
environment, such as frustration (F), and those toward the immedi-
ate task, such as neediness (N). Relevant personality traits include
the user’s tendency to get distracted (TD) and tendency to work in-
dependently (TI) on a computer. These influences are illustrated in
Fig. 1 (right). Other factors can be modeled similarly.
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Figure 1: Influential factors. Left: Causes for accepting help.
Right: Causes for considering help.

Together, the variables{F, N, TD, TI} make up the user’sstate.
As we will see, these are sufficient to predict the probability of spe-
cific user behaviors (including accepting help) and how costly or
rewarding a user perceives his experience with the automated sys-
tem at any point in time. Consider the follow examples: someone
who is easily distracted may find automated assistance costly be-
cause it prevents the user from completing the task; someone who
currently needs help with a difficult task may benefit greatly from
partial suggestions that helps the user identify the next steps; some-

one who is generally dependent may not mind receiving imperfect
suggestions as much as someone who is highly independent; some-
one who is frustrated with the system now is likely to become more
frustrated with further interruptions and suggestions. We discuss
the precise structure of the reward and cost functions below.

VariablesTD andTI arestatic, reflecting specific user traits that
do not change over time.1 In contrast,F andN aretransient, re-
flecting user attitudes that can change, often frequently, during a
specific session. How these transient variables evolve can also be
modeled by assuming additional static user traits. For this purpose,
we propose latent variablesTF andTN, representing the user’sten-
denciestoward frustration and neediness in the application. These
influence the (stochastic) evolution ofF andN . We define a user’s
typeto be the state of all static user traits:{TF, TN, TD, TI}.

In our prototype application, these user variables are discrete,
with variablesF , N , TD andTI having 3 values each, andTN and
TD having 2 values each.F = 1 denotes that the user is not frus-
trated,F = 2 the user is somewhat frustrated, andF = 3 the user
is very frustrated. Other variables are defined similarly. As a result,
there are 81 user states and 36 user types.

2.2 Model Structure and Dynamics
Since the user state is partially observable, the system must main-

tain a probability distribution, or belief stateBEL(F, N, TD, TI)
(BEL for short), over user states given all past observations of user
behavior (reflecting the relative likelihood that the user is in a par-
ticular state). Based on the current belief state, the system reasons
about the rewards and costs of its actions in order to make an appro-
priate decision, and updates its beliefs after each user observation.
A user’s type (over traitsTF, TN, TD, TI), despite having a fixed
value for a specific user, is not knowna priori to the system and
thus must also be estimated probabilistically.

The causal relationships in Fig. 1 form the basis of our model.
In addition, the availability of automated assistance (HELP) affects
when the user can consider suggestions. Our model incorporates
additional system variables (SYS) and user observations (OBS).
An example of a system variable is the status of an interface wid-
get that allows the user to directly manipulate its settings. User
observations should be abstracted at a behavioral level, and useful
for inferring the user’s state. Since these observations are domain-
specific, we leave further discussion to Sec. 3.1.

At a given point in time, the system observes the user’s action,
infers the user’s current state, and decides whether to offer help
at the next time step. Naturally, certain variable values may persist
over time, or influence the values of other variables at the next point
in time. For example, a user may be frustrated now, but over time,
the frustration level will decrease if nothing else aggravates him.
To model these temporal characteristics, we adopt a two-stage dy-
namic Bayesian network (DBN) model [7], as shown in Fig. 2. In
this model, variables F, N, and CONS have temporal dependencies
on their counterparts in the future, and the values of the user type
variables persist over time. This model allows the system to learn
the user’s type through behavioral observations.

Formally, a two-stage DBN models a joint distribution over a
set ofn random variablesX = {X1, ..., Xn} at timet − 1 and
t. We denote the parameterization asθ, which specifies the set of
conditional probability distributions,Pr(Xi|Pai) for eachXi and
its parentsPai. In particular,θijk = Pr(Xi = xk

i |Pai = paj
i ) for

thekth value ofXi and thejth parent configuration. We discuss
these parameters in more detail in the next section.

1Naturally, these can change over certain time scales, but we take
these to be static at least over the time frame associated with a rea-
sonably small series of application sessions.
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Figure 2: A two time-step DBN user model. Observations are
drawn with double lines.

The parameters of a DBN are defined by a prior distribution at
time t = 0, a transition function, and an observation model. As an
initial step, we handcrafted these parameters using expert domain
knowledge. The transition function for the user types is the identity
function, since these variables represent persistent traits of a user.
The transition functionsPr(Ft|Ft−1, TFt) andPr(Nt|Nt−1, TNt)
capture frustration and neediness patterns and how they evolve.
The transition function forCONSt and the observation model for
OBSt are more complicated due to the size of the distributions.
Here, we exploit their common substructure. For example, if help
is not available, the user is not considering it (CONSt = 1). If
help is available and the user was considering it (CONSt−1 = 3),
then the probability of the user considering help now is defined as
Pr(CONSt|Ft, Nt,
HELPt), which is independent ofTDt andTIt. The intuition is that
whether one will (dis)continue to consider help depends on changes
in the levels of frustration or neediness. On the other hand, if the
user was not considering help already, then the current considera-
tion level will depend on the difficulty of the task and the user’s
tendency to work alone,Pr(CONSt|Nt, TIt, HELPt).

Exact inference in DBNs is done via theclique treealgorithm
[17]. The performance of this algorithm depends on the size of
the cliques which are created based on the dependencies in the
DBN. In the context of user modeling, we are interested in monitor-
ing the system’s belief distribution over the user’s state over time,
given past observations:Pr(BELt|OBS1:t). Let Xt denote the
clique consisting of elementsBELt, TFt, TNt, andCONSt. Then
Pr(BELt|OBS1:t) =

P
TFt,TNt,CONSt

Pr(Xt|OBS1:t) which is pro-
portional to

P
TFt,TNt,CONSt

Pr(OBSt|Xt)Pr(Xt|OBS1:t−1). This
equation corresponds to arollup step in the inference algorithm. In
Sec. 4, we discuss simulation results that gauge the speed and ac-
curacy of this process.

We are also interested in predicting the likelihood of a user ac-
cepting help given its quality, the system environment, and past
evidence:Pr(OBSt+1 = acc|HELPt+1,QUALt+1,
SY St+1|OBS1:t) . This term can also be computed readily using
the clique tree algorithm and is used in the system’s decision mak-
ing policy, which is described in Sec. 3.3.

2.3 Reward Function
In modeling a wide range of user types, we must consider multi-

ple conflicting objectives: for general users, a level of independent
functioning is considered desirable, so there is some cost to help;
there is benefit of providing the right help when needed or desired;
there is a cost to providing incorrect suggestions, or suggestions
when not needed or desired. Furthermore, the system should cus-
tomize the degree of help based on its beliefs about the user’s cur-
rent attitudes.

To evaluate automated help, we define a reward and cost function
that incorporate user preferences toward automated assistance. The
reward function depends on the user state and the quality of the sug-

gestion:R(F,N, TD, TI, QUAL) = R(F, TI, QUAL)+R(N, TI, QUAL)+
R(TD, QUAL). This generalized additive decomposition reflects
the assumption that the overall perceived value of help (of some
specified quality) can be determined by independent contributions
given the current levels of frustration and neediness (each of these
conditioned on degree of independence) and degree of distractibil-
ity. The cost of interrupting the user is defined asC(F, N, TD, TI),
irrespective of the quality of the automated help. We assume addi-
tive independence of the cost function:C(F ) + C(N) + C(TD)
+ C(TI). We normalize the range of the rewards and costs to be in
[-40,40].

3. TEXT-EDITING ASSISTANCE
In order to infer a user’s state, we need to identify observations

that correlate with those states. Therefore, the detailed structure of
the model must be domain-specific. We chose a text editor as a test-
bed application because it is familiar to many computer users and
its functions are common to other communication software such as
email and online chat. Furthermore, people with vocabulary and
motor disadvantages often find that word processing and word pre-
diction software allow them to concentrate on the quality of writing
and give them a sense of authorship [14]. Within the editor, word
prediction is treated as automated help. The architecture is pre-
sented in Fig. 3. Unlike other word prediction software, our system
will not offer suggestions whenever a letter is typed. Rather, it
learns the user’s traits and needs and make suggestions only when
it believes that the user can benefit from them. This methodology
is generalizable to more complex software and tasks.

Model
User Decision Making

Policy

Language

Model

HELP,QUAL

Abstract Event Interface

letteractionOBS,HELP,QUAL,SYS

BEL

Figure 3: Overall system architecture.

3.1 Deriving Fully Observable Variables
In a typical computing environment, keyboard and mouse events

are the source of fully observable variables. We abstract these
events intobehavioralpatterns that correlate with user character-
istics. The resulting set of observations modeled in the variable
OBScan be roughly categorized according to the various user state
characteristics with which they are correlated:

• Frustration: continuously pressing a key down, moving the
mouse back and forth quickly, jamming into the keyboard,
multiple fast mouse clicks, explicitly indicating a need for
fewer suggestions

• Neediness:erasing many characters, browsing (surfing menus,
switching applications) for help, pausing

• Distractibility: browsing (surfing menus, switching appli-
cations) due to distraction, pausing

• Independence:explicitly indicating a need for more or fewer
suggestions, accepting help/suggestions (as a function of qual-
ity)

Note that browsing and pausing are common to both neediness
and distractibility, which is consistent with other proposed models
[16]. This ambiguity creates additional uncertainty that the system



needs to manage and further suggests the importance of a proba-
bilistic model that account for multiple “causes” for observed be-
havior. Other user behaviors include responses to automated sug-
gestions, such as accepting help (acc), hovering over the suggestion
box (hh), and pausing when suggestions are present (hp). We also
created a slider widget, SDR, that allows the user to explicitly indi-
cate whether more or fewer suggestions are desired.

Under this design, the system has 2 actions—to offer a set of
completion words (POP), or to remain passive (¬POP). Together,
there are 972 hidden states and 420 observations, yielding a total
of 408,240 system states. The DBN model allows us to keep the
representation compact in terms of the local distributions, rather
than using aflat state representation (whose size is exponentially
larger).

3.2 Language Model
The word prediction component is treated as a plug-in module

in the system’s reasoning process. This module takes as input the
previously typed word,wt−1 and the current prefix,wprefix. As
output, it returns a set of suggestions with a quality estimate. This
quality value is important because it directly impacts whether a user
will accept automated assistance. Furthermore, in a word predic-
tion domain, the quality of the predictions vary widely depending
on the prediction algorithm used. These factors have a strong influ-
ence on the system’s decision whether to offer help as we will see
below.

Standard word prediction software makes use of collocation statis-
tics such asn-gram probabilities[22]. In particular, forn = 2,
a bigram probability is defined asPr(wt|wt−1). (In a predic-
tion task,wt must be consistent withwprefix.) Our system also
adopts a bigram model, which is trained on 40% of the 100 mil-
lion word British National Corpus (BNC). The system maintains
the top 20,000 bigrams and 20,000 unigrams with backoff weights
in its lexicon at runtime. In addition to using the bigram probabili-
ties, we want the suggestion feature to offer completion words that
aredifferentfrom each other. In other words, we want the comple-
tions to cover a larger probability mass. For example, withwt−1 =
“the” andwprefix = “nu”, a bigram model may offer suggestions
“number”, “numbers”, and “nuclear” even though “number” and
“numbers” only differ by one letter. Therefore, we propose a simi-
larity metric that captures theexpected savingsa word provides to
the user.

At a given point in time, there is a set of{c1, ..., cK} words that
are plausible (i.e., non-zero probability) completions givenwt−1

andwprefix. Eachck has an associated bigram probability,pk. To
attribute a utility measure to a suggestion, we first define its utility
w.r.t. a true words definingU(ck|s) to be the number of identi-
cal prefix characters less the number of characters erased less the
number of characters added to changeck into s [9]. For example,
U(“are”|“all”) = 1 − 2 − 2 = −3, while U(“apples”|“apple”) =
5−1−0 = +4. GivenU(ck|s), we define theexpected savingsof
ck asES(ck) =

PK
i=1 U(ck|ci)pi, wherepi is ci’s bigram prob-

ability. We define thejoint expected savingsJES(c1, ..., cJ ) =PK
i=1 argmaxcjU(cj |ci)pi for a suggestion withJ words. The

intuition is that, for any trueci, the user will accept the suggestion
(among theJ) offering maximum savings. In the example with
wt−1 = “the” and wprefix = “nu”, the JES model chooses the
suggestions: “number”, “nuclear”, and “nurses”.

Unfortunately, whenJ ≥ 2, the number of comparisons in-
creases exponentially. We propose a greedy implementation for our
JES model. First, amongK words, chooses1 = argmaxckES(ck).
With K − 1 words left, choose the second best completion with re-
spect tos1; that is,s2 = argmaxckJES(s1, ck); and so on. This

greedy approach results inO(J − 1 · K) comparisons. The esti-
mated quality of a suggestion is simply its joint expected savings.

Table 1 shows a comparison of these algorithms through exper-
iments implemented in Matlab and ran in Linux with 3.60G Hz
CPU, withK = 40 andJ = 3. We use bigrams as the baseline
comparison by taking theJ most probable words, and we show the
speed performance of using JES for word prediction, implemented
both greedily and by full enumeration. We ran the three algorithms
through a text of length 11,718 characters (with 7917 word predic-
tion opportunities). We see that the average and maximum times
for the bigram and greedy techniques are similar, while the enu-
merative method is too slow for an online task. We kept track of
the number of correct predictions made (Exact), the number of pre-
dictions that contained a substring of the true word (Substr), and
the actual character savings (Util). The JES greedy implementation
scores almost as well as the bigram model on correct predictions,
but this is not our main concern. Critically, the JES model provides
much greater utility with respect to character savings. It is also
significantly faster than full enumeration but still offers acceptable
performance with respect to utility (note that Enum provides opti-
mal suggestions). Results from the usability experiments in Sec. 6
also suggest that the expected savings metric is more helpful for
users.

Table 1: Comparison of prediction techniques
Method Avg (s) Max (s) Exact Substr Util
Bigrams 0.1485 0.9693 3629 5674 9151
Greedy 0.1743 1.0285 3578 5706 9740
Enum 0.7110 3.5008 3708 5806 10169

3.3 Decision Policy
The decision problem faced by the help system is characterized

by considerable uncertainty. Obviously, the word a specific user
is typing cannot be predicted with certainty, though the language
model allows us to quantify this probabilistically and rather pre-
cisely. More importantly, whether a user could benefit from the
system’s help, or desires such help, cannot be assessed with cer-
tainty either. Our model is designed to (probabilistically) predict
whether a user needs or wants help based on past observed user
behavior.

We define a myopic policy that models the uncertainty and sys-
tematically trades off the conflicting objectives as follows.2 At each
time step, the system takes an action and the user can either accept
it (OBS = acc) or not (OBS = ¬acc). Considering these pos-
sible outcomes, theexpected utilityof an action isEU(POP ) =
EU(POP |acc)Pr(acc) + EU(POP |¬acc)Pr(¬acc). If the user
accepts a suggestion, the system will “receive a reward” reflecting
the net benefit of the suggestion (incorporating any costs of inter-
ruption, etc.). Of course, the system can only compute theexpected
reward since the user state is not fully known. Thus, we define
EU(POP |acc) =

X
F,N,TD,TI

R(F, N, TD, TI, QUAL)BEL(F, N, TD, TI)

On the other hand, if the user rejects the suggestion, the system will
receive a penalty, again, in expectation given the user’s type. We

2Ultimately, we expect much better performance taking sequen-
tially informed decisions by solving the partially observable
Markov decision process (POMDP) induced by this model. We
discuss this in the concluding section.



defineEU(POP |¬acc) =

X
F,N,TD,TI

C(F, N, TD, TI)BEL(F, N, TD, TI)

We predict the value of making a suggestion by taking the expected
value ofPOP w.r.t. the probability of acceptance. The overall sys-
tem policy is to take the action with the maximum expected utility
(MEU): pop up a suggestion ifEU(POP ) > EU(¬POP ).

4. SIMULATION RESULTS
To assess our user model, we ran text editing simulations with

word prediction, as described in Sec. 3. The test text consisted of
sentences drawn randomly from 10% of an unseen portion of the
BNC. We sampled from a simulated user model based on the DBN
described in Fig. 2.

For each user type, we ran 100 simulations with texts about 200
words long. The averaged results show that the system’s beliefs
converged to the true type in all 36 cases. The time it took the
system to reach convergence varied from about 20 to 150 words.
Examples of convergence curves for three different user types (as a
function of the number of observations) are shown in Fig. 4.
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Figure 4: Examples of belief monitoring. Left: early conver-
gence. Middle: convergence with respect to competing types.
Right: slow convergence.

In our model, we chose an abstract representation of behavioral
observations that is intuitive from a designer’s perspective and that
reduces the number of temporal dependencies (see the discussion
in Sec. 3.1). Belief state monitoring is currently implemented in
Matlab 6.5 R13. On average, this computation takes approximately
0.57 second on a Pentium M, 1.2G Hz CPU, 386 MB RAM proces-
sor.3 When observational abstraction of the type used here is not
feasible, or does not provide enough decomposition of the infer-
ence task to allow real-time belief state monitoring, approximation
algorithms for monitoring (e.g., [4]) can be considered. Further-
more, belief update based on aggregate observations (e.g., every
k steps) can also be used; since user state will generally evolve on
much longer time scales than individual observational events, slight
lags in user state estimation will generally have a negligible effect
on performance.

A system’s overall utility is quantified in terms of the rewards
and costs it receives during its interaction with the user. In Sec. 3.3,
we defined implicit reward and cost functions that vary according
to the user’s state in Sec. 2.3. Here, we use them to define the
overall utility given the sampled user state and the actual quality of

3This prototype implementation can be considerable accelerated,
so real-time inference is not a concern in this task.

the suggestions,U(F, N, TD, TI, Q):

U =

8>>><
>>>:

0 ¬POP

R(F, N, TD, TI, Q) POP and OBS = acc

0 POP and OBS = hh,hp
C(F, N, TD, TI) POP and OBS o/w

For each type, observed “reward patterns” reflect the system’s adap-
tivity to the user’s responses—more acceptances encourage more
suggestions, and fewer acceptances fewer suggestions. Across user
types, the patterns also show that more needy and dependent types
receive higher overall utility, while more frustrated, distractible,
and independent types receive lower utility. In Fig. 5, we show
some examples of the patterns of average accumulated rewards that
the system receives for different types.
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Figure 5: Examples of system behavior according to inferred
user type. Left: a user who welcomes help so the system of-
fers them regularly. Middle: a sporadic user so help is sparse.
Right: a user who rejects help so the system learns to back off.

For comparison purposes, we conducted experiments with other
system policies. The policies we chose for this comparison are:
suggest only if the quality is greater than a threshold (THRESH, for
QUAL > 3), always make suggestions (ALWAYS), and never make
suggestions (NONE). We refer to our system policy asMEU. Table
2 compares average reward per time step for these different policies
with respect to some representative user types. Generally,ALWAYS

outperforms the other policies with dependent users who tend to
need help, as we see in the first row of the table. However, it does
poorly (often extremely) in all other cases. The second row shows
that even with dependent users who are easily distracted or frus-
trated, the users may benefit more from the adaptive policies. In
the remaining cases, an independent user, either easily frustrated
or easily distracted or neither, benefits most from a system that
learns to back off when help is undesired. These cases illustrate
that a static policy, such asALWAYS, or a policy that disregards the
user type, such asTHRESH, suffers most. Overall,MEU dominates
THRESHfor 17 of the 36 user types (sometimes quite significantly);
for 12 of the types,MEU andTHRESHperform comparably (within
0.05 of each other); and for 7 of the types,THRESHperforms better
thanMEU, but only slightly. AlthoughNONE receives zero rewards
in all the cases, it is unable to detect cases when the user in fact
needs help, which is a state that could change from time to time.
5. LEARNING MODEL PARAMETERS

To replace the handcrafted parameters in the user model, we de-
signed controlled experiments that explore different user states and
logged corresponding user behavior. Because user states are not
directly accessible and cannot be explicitly elicited at every time
step, our experiments collected data in a semi-supervised fashion.

5.1 Data Collection Experiments



Table 2: Comparison of policies using average rewards by user
profile {TF,TN,TD,TI }

User Type ALWAYS MEU THRESH NONE

{1,2,1,1} 1.64 0.93 0.91 0
{2,1,2,1} 0.46 0.62 0.65 0
{1,1,3,2} -0.64 0.39 0.31 0
{1,1,1,3} -10.29 -2.15 -2.29 0
{2,1,1,3} -10.89 -1.89 -2.93 0
{2,1,3,3} -6.04 -0.07 -1.43 0

Since most potential participants can type quickly without help,
we designed a procedure that requires the user to type with a Dvo-
rak keyboard. There were 45 users and each participated in 3 con-
ditions. First, artificial delays of 2-5 seconds and sticky keys were
introduced into the system at fixed intervals. The second condition
presented a mix of audio and visual pop-up distractors at regular in-
tervals. These distractors have a lifetime of 7 seconds and can end
earlier if the user closes their residing windows. In the third condi-
tion, the text to be typed by the user contains a higher percentage
of long words and esoteric vocabulary, as measured using the Fog
index [13]. The first two conditions used text with Fog index =
11, while the third used Fog index = 30. To assess the user’s cur-
rent state, questions to elicit the user’s current F and N values were
posed at the end of each clause in all the trials. A post-questionnaire
was designed to assess the user’s general attitudes and tendencies
under this computing environment so that we could elicit the user’s
type.

We developed a Java interface over the system described above.
Based on informal observations, we identified a wide range of be-
haviors. For example, some participants ignored pop-up anima-
tions and audios, some laughed at them, while a few explicitly
closed them. Participants also varied in their strategies for dealing
with suggestions. Some typed one letter at a time while anticipating
a suggestion and accepted it when it appeared, some buffered a few
characters, typed them, and watched for suggestions, while others
just did not accept the suggestions at all. Frustration was either
not shown or appeared as a pause or sigh, but rarely as a physi-
cal action. We suspect this subtlety is influenced by the controlled
environment and the presence of a researcher.

5.2 Parameter Estimation
The learning task at hand is known structure with incomplete

data. With 45 participants and 3 sequences of observations each,
there areM = 135 training cases. Each sequence on average con-
sists of845 observations, but ranges from99 to 3097. Our goal
was to learn the prior distributionsF0, N0, CONS0, the transition
functionsFt, Nt, CONSt, and the observation function,OBSt. We
applied a standard algorithm, expectation-maximization (EM) [8,
21]. The initial parameters were set randomly. EM iterates be-
tween computing the expected values of the hidden variables (given
parameter estimates) in an E-step and maximizing the parameters
given the data in an M-step, as follows:

• E-step: given θ̂ and data setD = {yl}, compute:

EPr(x|D,θ̂)(Cijk) =
MX

l=1

Pr(xk
i , paj

i |yl, θ̂)

• M-step: given the sufficient statistics, compute:

θijk =
αijk + EPr(x|D,θ̂)(Cijk)Pri

k=1(αijk + EPr(x|D,θ̂)(Cijk))

whereCijk is the number of timesxk
i andpaj

i occur in the data set
andαijk is a bias on the correspondingθijk.

EM is guaranteed to converge to a local minimum. To avoid the
sparse data problem and to incorporate prior knowledge, we used
the handcrafted parameters in the simulations as biases in the M-
step. We report on the training results using different weights in
Sec. 5.3.2.

5.3 Model Comparison
In this section, we describe the procedures for discretizing the

user variables and learning the parameters of the DBN.

5.3.1 Topology of Users
The post-questionnaire in our experiments elicited the values of

TF, TD, and TI using 19 items, with each item intending to elicit a
particular variable. Sample questions asked the user to self-report
on a Likert scale whether they felt frustrated with the sticky keys,
whether they were distracted by the pop-up animations, or whether
imperfect suggestions were selected. Since this questionnaire was
newly designed for this experiment, we carried out factor analysis
on the responses to identify possible clusters and underlying factors
[12]. Due to the small sample size (45), this analysis is a prelim-
inary step in checking for strong correlations only. According to
the Kaiser criterion, 4 factors had eigenvalue higher than 1.0; the
scree test indicates 3 to 7 factors; using the percentage of variance
explained, we obtain 3 factors for 74%, 4 factors for 84%, and 5
factors for 93%. Finally, we retain 3 factors by the interpretability
criterion so that one factor corresponds to one design variable.

We used variance maximizing rotation to extract principal com-
ponents. The resulting factor loadings confirmed that 10 items clus-
tered with the intended factor, 2 items clustered incorrectly, and 7
items were undetermined. The incorrect items were reclassified
into their clustered factors while the others maintained their origi-
nal classes. Thereafter, we used the responses to compute the par-
ticipants’ score for TF, TD, and TI as

Pl
i=1

ri
l

, whereri is a score
and l is the number of items in the factor. By inspection, we par-
titioned the results into the domain of our model variables, i.e., 2
categories for TF and 3 for TD and TI.

For TN, we used typing speed (spd) as the motor attribute and
the percentage of unfamiliar vocabulary (vocab) as the cognitive
attribute in a user’s neediness level. Letf1 andf2 be the normalized
factor loadings forspd andvocab respectively. ThenTN = f1 ∗
spd + f2 ∗ vocab. By inspection, we partitioned the results into 2
categories for TN.

Based on this procedure, each participant has a profile{TF,TN,TD,TI}
capturing their general tendencies in a computer setting. We plot-
ted these profiles in Fig. 6 to identify the types of users in our pool.
As shown, our pool did not cover all the user types – the reason
could be due to the small sample size or that some types do not
exist. In many cases, we had one or two participants of a type (e.g.,
{1,2,2,1}). For type{2,2,3,3}, five participants had this profile.
This plot suggests that users who are highly independent (TI=3)
tend to get frustrated (TF=2) by the system. It also suggests a cor-
relation between dependent and needy users (with TN negatively
correlated to TI).

5.3.2 Parameter Settings
In training our model, we tried different weightings of the data

and biases. The weights we used are: 0% of priors (i.e., data only),
10%, 30%, and 50%. If given enough representative data, we could
compare these results using cross validation. However, our data set
is very small relative to the state space so we discuss our choices
informally.



Figure 6: The topology of our participants. Each box indicates
the number of users in that type.

With respect to the distributions using handcrafted parameters,
we computed the Kullack-Leibler (KL) divergence [20] to assess
the relative entropy of the learned distributions usingKL(P ||Qw) =P

x∈X P (x)log P (x)
Qw(x)

, whereP is the handcrafted distribution and
Qw is the learned one trained with weightw. The maximum KL di-
vergence shows little difference among them: 3.1455 for the prior
for CONS, 0.015 for the prior for N, and less than 0.01 for the
others. If we had significant differences we could compare their
performance further. However, with our results, we chose to use
the learned distributions trained withw = 10%.

6. USABILITY EXPERIMENTS
We designed a usability experiment to validate the learned model

with real users by comparing their preferences with other system
policies.

6.1 Pilot Study
We adopted a similar computing environment to the one used

in data collection (cf. Sec. 5.1). In addition, the inference engine
necessary to maintain the user model was implemented in Matlab.
A Matlab-Java server was implemented so that the Java interface
connects to it as a client.

The user’s task was to copy 10 sentences into our editor using a
Dvorak keyboard. These sentences were taken from an unseen test
set (Fog index = 15). There are four conditions in this experiment,
each employing a different system policy. The four policies we
chose for this initial comparison are those used in the simulations
(Sec. 4):THRESH, MEU (our system),ALWAYS, andNONE. Partici-
pants were asked to type as accurately as possible. A questionnaire
was given at the end of each condition and at the end of the entire
experiment. In total, we had 4 participants.

6.2 Results
Since the users in the pilot are all novices with Dvorak (typing

speeds between 4-8 wpm), they all preferred having as much help
as possible. Contrary to other findings [9], one user commented
that the system should provide completions even for short words
like “and” and “to”. We suspect that if we had users with a wider
variation in typing speeds (i.e., different levels of neediness, TN),
the results would reveal greater differences in their preferences.

Three users preferredALWAYS to both adaptive strategies, which
were in turn preferred toNONE (i.e., “the more help the better”).
This pattern is supported by the average percentage of characters
typed using the four policies, as well as the subjective responses to
whether a particular policy helped reduced effort and time. The ac-

tual time, however, revealed that typing withNONE was the fastest,
followed by the two adaptive strategies, andALWAYS was the slow-
est. The fourth user preferred the two static strategies equally over
the adaptive ones, because he could not predict exactly when the
suggestions would appear (we discuss this further below).

Between the two adaptive strategies, we found that the overhead
associated with the Matlab-Java engine4 causedMEU to be ranked
lower for two users. They added that if the system were faster,
they would have preferred it overTHRESH. All four users noted
the quality of the suggestions inMEU was notably better than those
in THRESH, although in three of the four cases, the percentage of
correct suggestions were higher inTHRESH. This suggests that
the users are perceiving the utility of character savings as part of
the quality of a suggestion. Also, the percentage of acceptances
were higher inTHRESH. This behavior indicates they are depen-
dent users in our model. Indeed, from plotting the system’s inferred
belief states, all four users were inferred as dependent (TI = 1) and
needy (TN = 2). The number of characters typed usingMEU was
on average lower than those usingTHRESH.

Finally, about 20% of all the acceptances were partial sugges-
tions, where users accept non-exact words and erase the endings.
This indicates that the utility metric used in our language model (cf.
Sec. 3.2) is more helpful than one that only uses a bigram statistic.

Despite the overall ranking by the users, which suggests that the
adaptive strategies were not as useful as the static strategies, overall
we find the results quite encouraging. Apart from a time-delay arti-
fact, and concerns about predictability, user comments suggest that
utility-based help is more desirable than suggestions made purely
based on probability of acceptance. The task itself was also per-
haps more difficult than anticipated, leading to a bias forALWAYS,
which may not be present over time (as skill levels improve) or in
less unfamiliar tasks.

7. DISCUSSION AND CONCLUSIONS
We have outlined a general methodology for incorporating user

models in automated assistance that encompasses a wide range of
user types. In particular, we proposed to model user features ex-
plicitly so that they can be inferred and learned throughout over the
course of interaction with the system. We demonstrated our ap-
proach in the word prediction domain via simulations with a hand-
crafted model and usability experiments after learning the parame-
ters from extensive studies. Our results show that the model is able
to adapt to different (static) user types and to evolving (transient)
user state—changes in user attitude—during the course of the inter-
action. Although our model employs a myopic policy, its adaptive
nature allows greater reward to be obtained over a wider range of
user types than a other fixed policies.

Of course, several drawbacks must be addressed within the gen-
eral framework. One of the participants in the usability study in-
dicated a preference for much more predictable system behavior (a
common theme in interface design). We can model these prefer-
ences as user features in the state space to reflect different attitudes
toward usability goals. In this way, the cost model can weigh the
amount of disturbance each action imposes on, say, a user’s mental
model of the application.

In an effort to exploit the sequential nature of human-computer
interaction, we are currently exploring the construction of deci-
sion policies usingpartially observable Markov decision processes
(POMDPs). This model enables the system to evaluate the long-

4Unfortunately, an artifact of the implementation created extra
threading and file I/O delays; there is no inherent problem in the
model itself that causes these delays.



term impact of system actions optimally, giving the system the abil-
ity to take exploratory actions (for example) to directly learn about
user types. Scalabilty is typically a concern for POMDP models,
but recently they have come to be used in more and more real-
istic applications (see, e.g., work on using POMDP models in a
prompting system for Alzheimer’s patients that adapts to inferred
user characteristics [2]).

Informal observations of the participants in our experiments clearly
indicated a range of user types and the need to customize system
response to account for their preferences. Feedback from several
participants pointed to users having different reward (cost) func-
tions, varying in value and structure. In particular, the usability
results show that our adaptive policy was unable to always pro-
vide suggestions, even after learning that the user type is needy and
dependent. This problem is caused by having predefined reward
and cost functions that are insensitive to finer, numeric differences
among individuals. To truly assess the system’s overall utility, the
user’s reward function needs to be assessed or learned in real time.
In the current system, system utility is a plausible function reflect-
ing dependence on coarse-grained user types and a fixed model of
character savings. Next steps in extending our methodology in-
clude incorporating means for more direct reward, cost, and utility
model assessment tailored to individual users. Possibilities include
using a distribution over a richer set of utility models, and updating
this in response to observed user behavior.
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