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1 Introduction

Coalition formation, widely studied in game theory and amits [3,31, 35, 38,45,50], has
attracted much attention in Al as means of dynamically fogpartnerships or teams of co-
operating agents [32—34,48,52]. Most models of coalitmmition assume that the values
of potential coalitions are known with certainty, implyitttiat agents possess knowledge of
the capabilities of their potential partners. However, emmnatural settings, rational agents
must form coalitions and divide the generated value withowwing a priori what this
value may be or how suitable their potential partners aréhitask at hand. In other cases,
it is assumed that this knowledge can be reached via comationc[51,52]; but without
strong mechanisms or contract conditions, agents usually mcentives to lie about (e.g.,
exaggerate) their capabilities to potential partners.

The presence of uncertainty presents opportunities fontage learn about the capa-
bilities of their partners if they interact repeatedly. Téfeects of collective actions provide
valuable information about the capabilities of one’s daalial partners. This information
should, naturally, impact future coalition formation da@ons and choice of coalitional ac-
tions, thus refining how coalitions are formed over time. Example, extremely capable
agents may find themselves in greater demand as their citipabilecome known with
greater certainty; and they may, over time, also be abletra&xa larger share of the sur-
plus generated by the coalitions in which they patrticipate.

Examples of coalition formation under such uncertaintyusdab The case of an enter-
prise trying to choose subcontractors (e.g., for buildirggxts) while unsure of their capa-
bilities and synergies is one such example. As projects @mleted, information gleaned
from the outcomes allows for refined assessment of the dijmband value that specific
subcontractors bring to the table, which in turn influenassigions regarding future project
participation. The creation and interactiorvirtual organizationshas long been anticipated
as a target of agent coalition technologies within e-concee¥While virtual organizations
will allow institutions to come together dynamically to shaesources and coordinate ac-
tions to accomplish common (or partially aligned) objeesivthis cannot happen without
some means of establishing coalitional terms under typertaioty. We expect past ex-
periences to influence the formation of future organizati@ilowing institutions to select
partners dynamically and switch allegiances as appr@priat

Realistic models of coalition formation must be able to deih both uncertainty re-
garding the effects of potential coalitional actions arel ¢hpabilities of the potential part-
ners. This uncertainty is translated into uncertainty allog values of various coalitions.
In addition, learning mechanisms must be assumed to cafitaréact that uncertainty is
typically reduced as agents gain experience with one andthmlly, these models should
reflect the fact that agents must make decisions about wiiglitions to form, and which
actions to take, knowing that information gained thoughcairse of coalitional interaction
will influence future decisions. Research in coalition fation to date has not dealt with the
sequential decision problem facing agents forming caagiunder such type uncertainty.
To this end, we develop a model of sequential coalition faimmaunder uncertainty that
allows agents to take sequentially rational decisionsrdégg which coalitions to form and
which coalitional actions to take. In our model, theue of a coalition is assumed to be a
function of thetypesof its participants, where types can be viewed loosely asatifig any
relevant capabilities and qualities of team members.

As an illustrative example, consider a group of contra¢teay plumbers, electricians,
and carpenters, each possessing trade-specific skillsriousadegrees corresponding to
their types e.g., a carpenter might be highly skilled or moderatelyoinpetent. The con-



tractors repeatedly come together to collaborate on vaidounstruction projects. Any group
of contractors that joins together to form a coalition wélteive a payoff for the house they
build. The payoff for received for a house depends on the ¢§peoject undertaken and its
resulting quality, which in turn depends on the quality ofleéeeam member and potential
synergies or conflicts among them. We assume that agentseeetain about the types of
potential partners, but that thdieliefsare used to determine a distribution over coalitional
outcomes and expected coalitional value. It is these Isafieft influence the coalition for-
mation process and the stability of any coalition structheg results. Each coalition must
also decide which collective action to take. For instandeaan of contractors may have a
choice of what type of housing project to undertake (e.gigh-hise in Toronto or a town-
house estate in Southampton). The outcome of soalitional actionsis stochasti¢ but is
influenced by the types of agents in the coalition. This taygpla key role in determina-
tion of coalition value. Deliberations about team formataye complicated by the fact that
uncertainty about partner types influences coalitionabastdecisions (e.g., what type of
house to build) and payoff division (e.g., how to split theereue generated). Our model can
incorporate a variety of (say, negotiation or equilibribbased) mechanisms for determining
coalitional stability, value, and agent bargaining/péylfision.

In our model, agents come together repeatedbpisodesduring which they can form
new coalitions and take coalitional actions. In our corddtam example, for instance, after
one set of housing projects is completed, the agents havegamtanity to regroup, forming
new teams. Of course, the outcomes of previous coalitiartadras provide each agent with
information about the types of its previous partners. Inexample, receiving a high price
for a house may indicate to a plumber that the electriciancampenter she partnered with
were highly competent. Agents update their beliefs abait fartners based on those prior
outcomes and use these updated beliefs in their futurdtiooal deliberations. For example,
an agent may decide to abandon its current partners to joewagnoup that shéelieves
may be more profitable.

We propose 8ayesian reinforcement learning (Rixjodel that enables agents to make
better decisions regarding coalition formation, coatitibaction, and bargaining using expe-
rience gained by these repeated interaction with othesscliticalexploration-exploitation
tradeoffin RL is embodied in the tension between forming teams witingas about which
types are known with a high degree of certainty (e.g., stagne’s current coalition) or
forming teams with partners about whom much less in knowrrderoto learn more about
these new partners’ abilities. Our Bayesian RL model alltvistradeoff to be made opti-
mally by relying on the concept afalue of informationWe develop a partially observable
Markov decision process (POMDP) formulation of our Baye$td model. The solution of
this POMDP determines agent policies that value actiongusofor their immediate gains,
but also because of the information they provide about thesyf others and the values of
potential coalitions.

Since the solution of POMDPs is computationally intractalle develop several com-
putational approximations to allow for the more effectiemstruction of sequential policies.
We investigate these approximations experimentally awogvghat our framework enables
agents to make informed, rational decisions about coalittwmation and coalitional ac-
tions that are rewarding in both the short and long term. Ehisue even if agents do not
converge to “stable” coalitions in the end of a series ofitioal formation episodes. We also
demonstrate that our model allows for effectixensfer of knowledgbetween tasks: agents
that learn about their partners’s abilities are able togethis knowledge when encountering
those partners in different circumstances.



This paper focuses on the online behavior of agents that lsaobserving the results of
coalitional actions, that is, actions that are agreed upmimg coalition formation episodes
and executed upon such an episode’s completion. We do nas fogre on the negotiation
processes that determine the coalitions formed in eaclodgisior on the strategic con-
siderations of agents during bargaining. However, our BayeRL model is fully general,
and it allows for the incorporation of any potential bargagnprocess that might be used
to determine coalitional structure in each episode. Far @son, we do not model or an-
alyze agent behavior during the repeated interaction asn@ gadeed, our repeated coali-
tion formation problem under uncertainty could formallyrhedeled as an infinite-horizon
Bayesian extensive form game (BEF®)which the coalitional negotiations among agents
at each episode are explicitly modelled. An appropriatatBmi concept for such a game is
aperfect Bayesian equilibrium (PBIE}6], in which agents adopt behavioral strategies that
are optimal at all subgames with respect to their own bebef$ the strategies adopted by
opponents, and beliefs are determined by Bayesian updétessspect to these behavioral
strategies. Unfortunately, due to the size of the beligfsttsgies space, obtaining a PBE so-
lution is a practically infeasible task [13]. The POMDP appmation methods we propose
in this work can be viewed as heuristic approximations ofsthletion of the corresponding
BEFG (though this comes without any bounds or guaranteesdiey the PBE-optimality
of an agent’s policy). We elaborate on these issues latéeipaper.

The paper is structured as follows. We begin with a briefeavof coalition forma-
tion and Bayesian reinforcement learning in Section 2. IatiBe 3 we describe a generic
Bayesian coalition formation model, detail our BayesianfRimework for optimal repeated
coalition formation under uncertainty, and describe it$VB formulation. We also moti-
vate the use of this approximation to the strategic behakitrarise in a Bayesian extensive
form game formulation. In Section 4 we present several BapeRL algorithms that ap-
proximate the solution of the POMDP, and in Section 5 exgtaw our RL algorithms can
be combined with different negotiation processes for tioaliformation. We evaluate our
algorithms experimentally in Section 6 and compare our@gght with related work in Sec-
tion 7. We conclude in Section 8 with a summary and discussiduture directions. Earlier
versions of some aspects of this research were present#d, iv].

2 Background

We begin with background on coalition formation and Bayes&nforcement learning. A
deeper discussion of related work is found in Sec. 7.

2.1 Coalition Formation

Cooperative game theoeals with situations where players act together in a ceadper
equilibrium selection process involving some form of bangey, negotiation, or arbitration
[38]. The problem ofcoalition formationis one of the fundamental areas of study within
cooperative game theory.

Let N = {1,...,n}, n > 2, be a set of players (or “agents”). A subgetC N is
called acoalition, and we assume that agents participating in a coalitionrcedkdinate their
activities for mutual benefft.A coalition structure(CS) is a partition of the set of agents

1 Seeking “mutual benefit” does not imply that the agents ateémividually rational—i.e., seeking to
maximize their own individual payoffs by participating inaditions. This will become more evident shortly.



containing exhaustive and disjoint coalitions. Coalitformation is the process by which
individual agents form such coalitions, generally to savproblem by coordinating their
efforts. Thecoalition formation problentan be seen as being composed of the following
activities [48]: (a) the search for an optimal coalitionusture; (b) the solution of a joint
problem facing members of each coalition; and (c) divisidthe value of the generated
solution among the coalition members.

While seemingly complex, coalition formation can be algttrd into a fairly simple
model under the assumption wansferable utility which assumes the existence of a (di-
visible) commodity (such as “money”) that players can fyaehnsfer among themselves.
Thus, it is easy to to describe the possidllecationsof utility among the members of each
coalition, as itis sufficient to specify a single number derpitsworth (i.e., the total payoff
available for division among its members).

This is the role of thecharacteristic functiorof a coalitional game with transferable
utility (TU-game) A characteristic function, : 2V = R defines thevalue v(C) of each
coalition C [60]. Intuitively, v(C) represents the maximal payoff the membersCofan
jointly receive by cooperating effectively. Aallocation is a vector of payoffs (or “de-
mands”)d = (di, ..., dn) assigning some payoff to eache N. An allocation isfeasible
with respect to coalition structur€s if ;.- d; < v(C) for eachC € CS, and isefficient
if this holds with equality. Theeservation valuew; of an agent is the amount it can attain
by acting alone (in aingletoncoalition): rv; = v({i}).

One important concept regarding characteristic functistise concept of superadditiv-
ity. A characteristic function is callesperadditivef any pair (C, T') of disjoint coalitions
C andT is better off by merging into one coalition{C UT) > v(C) + v(T). Since super-
additivity is unrealistic in many real-world applicatignse do not assume it in our work.
When transferable utility is not assumed, we lie in the reafnmon-transferable utility
(NTU) gameg38]. We do not deal with NTU games in this work.

When rational agents seek to maximize their individual fffayt¢he stability of the un-
derlying coalition structure becomes critical. Intuitigea coalition structure is stable if the
outcomes attained by the coalitions and agreed-upon magoéf such that both individual
and group rationality are satisfied. Research in coalitmmétion has developed several
notions of stability, among the strongest beingtbes[28, 35, 31,48, 24].

Definition 1 Thecoreof a characteristic function game is the the set of coalisiactures
and payoff configuration pairs:

{(CS,d) |VC C N, d; >v(C) and » di= »_ v(C)}

i€eC i€EN ceCs

A core allocation{CS, d) is both feasible and efficient, and no subgroup of players can
guarantee all of its members a higher payoff. As such, natamalwould ever “block” the
proposal for a core allocation. Unfortunately, in many sabe core is empty, as there exist
games for which it is impossible to divide utility to ensuhe tcoalition structure is stable
(i.e., there might always be alternative coalitions thaid@ain value if they were given the
opportunity to negotiate). Moreover, computing the corevan deciding its non-emptiness
is, in general, intractable [44,23,47,17].

Other cooperative solution concepts include keenel [18], a stability concept that
combines individual rationality with group rationality mffering stability within agiven
coalition structure (and under a given payoff allocatidrt)e kernel is a payoff configura-
tion space in which each payoff configurati¢€s, d) is stable in the sense that any pair



of agentsi, j belonging to the same coalitiol € CS arein equilibrium with one an-
other, given payoff vectord. Agents: andj are said to be in equilibrium if they cannot
outweigh one another within their common coalition—in othwrds, neither of them can
successfully claim a part of the other’s payoff under configion (CS,d). The kernel is
always non-empty. In particular, for evedys for which there exists at least one allocation
y such that all agents receive at least their reservatiorevaly, there also exists an alloca-
tion d such that the resulting configuration is in the kernel (wetbay it iskernel-stablg
Blankenburget al[9] have recently developed a kernel stability concept umdalitional
value uncertainty, introducing tHazzy kernefor use in fuzzy cooperative games.

In recent years, extensive research has covered many ssgdtie coalition forma-
tion problem. Dynamic coalition formation research in gatar is interested in the ques-
tion of establishing endogenous processes by which agemtsdoalitions that reach stable
structures, such as the core. Dieckmann and Schwalbe [@d§méze the need to deal with
dynamic coalition formation processes, combining questiof stability with the explicit
monitoring of the process by which coalitions form. Theya#®e adynamic processf
coalition formation, in which agents are given, at randadne dpportunity to abandon or
join existing coalitions and demand a certain payoff. Atrestage of the process, a given
coalition configuratioq CS, d) prevails. With some specified small probabiktyanyplayer
may independently decide which of the existing coalitianin, and states a (possibly dif-
ferent) payoff demand for himself. A player will join a cd#@n iff it is in her best interest
to do so. These decisions are determined by a non-coopetagist-reply rule, given the
coalition structure and allocation prevailing at the begig of the period: a player switches
coalitions if her expected payoff in the new coalition exdeéer current payoff; and she
demands the most she can get subject to feasibility. Theemagbserve the coalitional
structure and the demands of the other agents in the begiohthe period, and expect the
current coalition structure and demand to prevail in theé peiod—which is not unrealistic
if v is small. It is assumed that coalitions so formed persist, (tontinue to participate in
the process until the end of all bargaining rounds). Thegssallows foexperimentation
agents can explore suboptimal coalition formation actemwell.

The process in which all players adopt the best-reply ridedes a finite Markov chain
with at least one absorbing state. If the playexplorewith myopically suboptimal actions,
Dieckmann and Schwalbe prove that if the core is non-empigh €ore allocation corre-
sponds to an absorbing state of the resulbiagt reply with experimentation (BREfocess,
and each absorbing state of this process can be associdltea edre allocation. Moreover,
the process converges to a core allocation with probaHil{tithe core is non-empty). How-
ever, Dieckmann and Schwalbe’s model does not explicittyafor the agents to suggest
and agree on coalitional actions to perform. Moreover, dpasi the usual assumption of full
information regarding coalitional values. Their work iflirenced by the work of Agastya
[2], which is, unlike [24], confined to superadditive enviroents.

Suijs et al. [57,56] introducestochastic cooperative games (SCGg)mprising a set
of agents, a set of coalitional actions, and a function agsigto each action a random
variable with finite expectation, representing the payofftte coalition when this action is
taken. Thus uncertainty in coalitional value is presentadoommodate stochastic payoffs,
they useelative sharegor the allocation of the residual of the stochastic coatitil values,
and make the—in some cases unrealistic—assumption thatsalyavecommon expecta-
tionsregarding expected coalitional values; thus, the degreamial information permitted
in this model is quite limited. This work provides strongahetical foundations for games
with this restricted form of uncertainty, and describesstes of games for which the core of
an SCG is non-empty. No explicit coalition formation pracésassumed. Also, no assump-



tion of incomplete information about partners’s types iddmaand thus there is no direct
translation of type uncertainty into coalition value uriagity. However, [57] discusses the
effect that different risk behaviour on the part of agentghthihave on the existence of a
core allocation within a specific class of SCG games.

Chalkiadakiset al.[12, 15, 10] define the concept of tBayesian core (BCip describe
stability undertype uncertaintyin cooperative games with stochastic coalitional actions.
Specifically, they examine properties of three variantshef Bayesian core concept: the
strong the weakand thestrict BC. Intuitively, the BC is the set of coalition-structure,
demand-vector, agent-belief triples that are stable utiteelagents’s private probabilistic
beliefs regarding the types (capabilities) of their patdmtartners. They also extend Dieck-
mann and Schwalbe’s BRE process to uncertain environmgumdsanteeing convergence to
the (strong) BC if it is non-empty. Unlike [24], this procestows the agents to explicitly
propose and agree to actions to be performed by the coalittmat are formed. We refer
to[12,15, 10] for further details regarding the BRE procasd the Bayesian core. Since the
underlying Bayesian coalition formation problem introddahere is the one we adopt, we
briefly define the BC in the next section when we present owatsa coalition formation
model. Our algorithms are, however, orthogonal to the $igatieans by which coalitions
are formed and the stability concept used (if indeed, onegsired at all). Nevertheless, in
some of the experiments in this paper, we use this BRE prasethe negotiation process to
illustrate the performance of our Bayesian RL frameworkrégreated coalition formation.

2.2 Bayesian Reinforcement Learning

Consider an agent learning to control a stochastic enviemtrmodeled as a Markov deci-
sion process (MDPJS, A, R, D), with finite state and action sefs .4, reward functionr,

and transition dynamic®. D refers to a family of transition distributioridr(s, a, -), and
Pr(s,a,s’) is the probability of reaching staté after taking actioru at s. The probabil-

ity with which rewardr is obtained when stateis reached after executing is denoted
R(s,a,r). The agent has to construct an optimal Markovian poficyS — A maximizing

the expected sum of future discounted rewards over an iafirdtizon. This policy, and its
value,V*(s) at eachs € S, can be computed using standard algorithms, such as value or
and policy iteration [43,58].

In thereinforcement learningetting, an agent does not have direct accessdnd/orR,
so it must learn a policy based on its interactions with thérenment. While striving to do
so, it has to face the well-knowaxploration-exploitation tradeaf§hould oneexploitwhat is
already known by following a policy that currently appeaest)y or should onexplore that
is, try different actions in order to gain further inforn@tiabout reward® and dynamic9,
and thus potentially revise its view of the optimality of ahle actions? If the underlying
uncertainty is not properly accounted for, agents risk@pd) very unrewarding regions of
policy space.

When model-based RIs used, the agent maintains an estimated MBPA, R, f)),
based on the set of experiencgsa, r,¢) obtained so far; an experience tugle a, r,t)
describes the reward and transition to state experienced by the agent when taking an
actiona while at states. At each stage (or at suitable intervals) this MDP can beesb(er
approximated). Single-agent Bayesian methods [49,205182] assume some prior den-
sity P over all possible dynamics modeisand reward functiong, which is updated with
past experiences. By acting optimally (in a sequential sgridayesian RL methods allow



agents to make the exploration-exploitation tradeoff appately, providing a framework
for optimal learning—acting so as to maximize performance while learning.

More specifically, assume a prior densityover D, R reflecting an agent’belief state
regarding the underlying model. Lettirfg denote the (current) state-action history of the
observer, we can use the posterittD, R|H) to determine an appropriate action choice at
each stage. The formulation of [19] renders this update byeBaule tractable by assum-
ing a convenient prior. Specifically, the following assuiops are made: (a) the densiy/
is factored overk? and D, with P(D, R) being the product of independent local densities
P(D*%*%) and P(R*%) for each transition and each reward distribution; and (lcheden-
sity P(D*%) andP(R*“) is Dirichlet [22]. The choice of Dirichlet is appropriatesasning
discrete multinomial transition and rewards models, foichtDirichlet priors are conju-
gate. As a consequence, the posterior can be representgéhcityn after each observed
experience tuple, the posterior is also a Dirichlet. In thésy, the posterio?(D|H) over
transition models required by the Bayesian approach camdieréd into posteriors over
local families, each of the form:

P(DS,G|HS,(Z) — ZPr(HS,alDS,a)P(DS,a)

whereH ® ¢ is the history of, a-transitions—captured by updates of the Dirichlet paramset-
andz is a normalizing constant. Similarly,

P(R*®|H*®) = 2 Pr(H>*|R*>*)P(R>%).

To model P(D*% %), a Dirichlet parameter vectar®™“ is used, with entriea®%*" for each
possible successor state similarly, to modelP(R>%) a parameter vectd®* is used,
with entriesk®*" for each possible reward The expectation oPr(s, a,s") with respect
to P is given byns’“’s//zi n®®*%_ Updating a Dirichlet is straightforward: given prior
P(D*>% n*") and data vectoe®® (wherec*>** is the number of observed transitions
from s to s; undera), the posterior is given by parameter vector® + ¢*®. Thus, the
Bayesian approach allows for the natural incorporationrigfrknowledge in the form of a
prior probability distribution over all possible MDPs, aadmits easy update. In a similar
fashion, multi-agent Bayesian RL agents [11] update pristridutions over the space of
possible strategies of others in addition to the space dfiplesMDP models.

In a fully observable MDP, the value of an action is a functadrboth the immediate
reward it provides and the expected state transition, wificfates the opportunity to accrue
future value. In a belief state MDP, the “state transition” inclad®th a transition in the
underlying state space as well as an update to the belief Jtatis the value of performing
an action at a belief state can implicitly be divided into wamponents: the expected value
given the current belief state and the value of the actionjsaict on the current belief state.
The second component captures tpected value of information (EVO®f an action.
Each action gives rise to some immediate response by thebanwént changing the agent’s
beliefs, and subsequent action choice and expected rewanfluenced by this change.
EVOI need not be computed directly, but can be combined wathject-level” expected
value via Bellman equations. This can be viewed as the soluf a partially observable
MDP (POMDP) or equivalently, the belief state MDP. A numbgpigor studies [20,19,11,
41] have demonstrated the practical value of the Bayesiproaph, and the effectiveness
of related approximation algorithms, in allowing expldoat costs to be weighed against
their expected benefits. This leads to informed, intelligexploration, and better online
performance while learning than offered by other RL exgloramodels.



3 A Bayesian RL Framework for Repeated Coalition Formation under Uncertainty

Our goal is to develop a framework for modeling situationsvimrich sets of agents come
together repeatedly to form coalitions. Agents partidigatn coalition formation activities
will generally face two forms of uncertainty: (a) type urtegmty, i.e., uncertainty regarding
thetypes(or capabilities) of potential partners; and (b) uncetianegarding the results of
coalitional actions. Unlike the case in one-shot coaldimettings, the potential for repeated
interaction provides agents with an opportunityléarn about both the abilities of their
partners and the nature of coalitional actions over timés ®pens up the possibility that
rational agents might explicitly take actions that redugectfic type or action uncertainty
rather than try to optimize the myopic value of the “next” kitien they join. This is, of
course, nothing more than tleeploration-exploitatiortradeoff faced by any reinforcement
learning agent.

To this end, our model fooptimal repeated coalition formatiobrings together coali-
tion formation under uncertainty (specifically the Bayasiaalitional model proposed in
[12,15]) with Bayesian reinforcement learning to propar@pture the both aspects of this
learning process and the interactions that arise between. th

To capture the “stage games” within which agents form doalét at each stage of the
RL process, in Section 3.1 we review the model of Bayesialitmyaformation introduced
in [12,15]. We then describe the full reinforcement leagninodel in Section 3.2. While we
briefly discuss certain stability concepts for Bayesiarlitioa formation, we note that our
Bayesian RL framework is largely independent of the meanslbgh coalitions are formed,
relying only on the Bayesian formulation of the coalitiomplem and certain assumptions
about the form of coalitional agreements.

3.1 A Bayesian Model for Cooperative Games under Uncegtaint

The need to address type uncertainty, one agent’s undgregtout the abilities of its po-
tential partners, is critical to the modeling of realist@atition formation problems. For in-
stance, if a carpenter wants to find a plumber and electrigitmwhom to build a house, her
decision to propose (or join) such a partnership, to engagespecific type of project, and
to accept a specific share of the surplus generated shoudle@dhd on her (probabilistic) as-
sessment of their abilities. To capture this, we start bythicing the problem of Bayesian
coalition formation under type uncertainty. We then show ltlais type uncertainty can be
translated into coalitional value uncertainty.

We adopt the model proposed in [12, 15]BAyesian coalition formation probleomder
type uncertainty is a cooperative game defined as follows:

Definition 2 (Bayesian coalition formation problem [12,15] A Bayesian coalition for-
mation problem (BCFP) is a coalition formation problem tisatharacterized by a set of
agents,N; a set of typesr; for each agent € N; a setA. of coalitional actions for
each coalitionC C N; a setO of stochastic outcomes (or states); with transition dyrcami
Pr(s|lac, tc) denoting the probability of an outcomes O given that coalition” whose
members have type vecter takes coalitional action; a reward function? : © — %;
and agent belief®; for each agent € N comprising a joint distribution over typ&s_; of
potential partners.

We now describe each of the BCFP components in turn: We asause¢ of agents
N = {1,...,n}, and for each agenta finite set of possibléypesT;. Each agenti has
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a specific type € T;, which intuitively captureg’s “abilities”. An agent’s type is private
information. We letl’ = x ;< nT; denote the set of type profiles. For any coalit@rc N,

Tc = xiecTi, and foranyi € N, T_; = x;,;T;. Eachi knows its own type;, but not
those of other agents. Ageiis beliefs B; comprise a joint distribution over_;, where
B;(t_;) is the probability; assigns to other agents having type profile. We useB;(t¢)

to denote the marginal a8; over any subsef’ of agents, and for ease of notation, we let
B;(t;) refer to: “beliefs” about its own type (assigning probability 1 to éstual type and

0 to all others). We may assume that the piigris derived from a common knowleddge
overT conditioned agents true type, but this is not critical in this paper (but seg]j1

A coalition C' has available to it a finite set @oalitional actionsAs. We can think
of Ax as the set of decisions available @on how to deal with the underlying task at
hand—or even a decision on what task to deal with. When apnra@itaken, it results in
some outcome astates € O. The odds with which an outcome is realized depends on the
types of the coalition members (e.g., the outcome of bujldirhouse will depend on the
capabilities of the team members). We Ief(s|«, t) denote the probability of outcome
s given that coalitionC' takes actionr € Ac and member types are given by € T¢.2
This probability is assumed to be known by all agents. Ourehodn be generalized to
allow uncertainty over the action dynamics: for examplesrag may have Dirichlet priors
over the probabilities of each outcome, which could be wgdiat the standard Bayesian
fashion given observed outcomes (and influenced by estihtgpes of its partners). This
would make our model more like standard single-agent RL itsodéowever, we ignore
such action uncertainty in order to simplify the presentatind focus purely on the impact
of type learning on coalition formation. Finally, we assutinat each state results in some
reward R(s). If s results from a coalitional action, the members are assi@{eyl which is
assumed to be divisible/transferable among them.

We illustrate the basic formulation with a simple, partiahmple. Consider a three-
agent scenario with one carpenter (agerand two electricians (agentsand3). The elec-
tricians and carpenters have three types—ggdciedium (») and bad— and each agent
has beliefs about the others. For simplicity, we focus onktblefs of the carpenter, who
believes agemn is somewhat more competent than agent

Agent 2 Agent 3
Type || g m b g m b
B || 03 04 0.3| 05 03 02

The true types of each agent will be private information.’d.assume the true type of the
carpenter is; = g, then she will re Let suppose that a coalition consistingasr@enter and
an electrician can undertake an ambitious or a moderatdrtgppsoject. The probabilities
of success or failure are dictated by the type-vector of tie for example (listing only the
outcome probabilities for carpenter type= g for brevity):

(9,9) (g,m) (9,b)
P(succ)| P(fail) | P(succ)| P(fail) | P(succ)| P(fail)
0.8 ‘ 0.2 ‘ 0.4 ‘ 0.6 ‘ 0.1 ‘ 0.9

Type vector(te, te)

Ambitious

Moderate 0.9 0.1 0.8 0.2 0.7 0.3

2 The model can be extended to allow action effects to dependoorjust the types of the coalition
members, but on other factors as well. Dependence on thenadiken by other coalitions, for example,
would induce a stage game of incomplete information betweziitions. Dependence on the state of the
environment (e.g., as dictated by the outcomes of priooasjiwould require modeling the environment as a
Markov decision process. We do not consider such extensiergsin order to isolate the problem of learning
in repeated coalition formation.
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Finally assume a successful ambitious project has caaditiceward 1000, a successful
moderate project has reward 500, and any failed projectdveard O.

Now we turn to the problem of showing how type (and action)autainty in a BCFP
can be translated into coalitional value uncertainty. INnGFB, the (immediateyalue of
coalitionC with members of type is:

V(Clto) = mage 37 Prlslas to)R() = max Q(Craltc) ®

where, intuitively,Q(C, a|tc) represents the value (or quality) of coalitional actiorio
coalition C that is made up of members with typgs. V(C|t¢) therefore represents the
(maximal) payoff that coalitio can obtain by choosing the best coalitional action. Unfor-
tunately, this coalition value cannot be used in the caaliformation process if the agents
are uncertain about the types of their potential partnéredsany potential partners may
have one of several types, any agent in @hyould be uncertain about the type profile

of its members, and thus about the valigC)). However, each agetithas beliefs about
the (immediate, or myopic) value of any coalition based sexpectation of this value with
respect to other agents’s types:

Vi(C) = max Bi(tc)Q(C,altc) = max Qi(C,a) @
a€Ac acAc
tceTo

where, intuitively, @, (C, «) represents the expected value (or, expected quality) taf
coalitionC, according ta’s beliefs. Note that/;(C) is not simply the expectation 6f(C')
with respect ta’s belief about types. The expectatian of action values (i.e.Q-values)
cannot be moved outside the max operator: a single actiob lmeushosen which is useful
giveni’s uncertainty. Of course,s estimate of the value of a coalition, or any coalitional
action, may not conform with those of other agents (é.may believe thak is competent,
while j may believe that is incompetent; thus, will believe that coalition(s, j, k) has a
much higher value thajidoes). However is certain of itseservation valugthe amount it
can attain by acting alonev; = V;({i}) = maxaeca,,, >, Pr(s|a, ;) R(s).

In our example above, agems beliefs about the immediate, or one-shot, values of
partnering with agent 3 can be given computed as follows.ekpected values of ambitious
and moderate projects with agent 3 are:

Q1({1, 3}, Ambitious) = (0.8 - 0.5+ 0.3 - 0.3 + 0.1 - 0.2)1000 = 540 ®3)
Q2({1, 3}, Moderate) = (0.9 - 0.5+ 0.8 - 0.3 4 0.7 - 0.2)500 = 415 4)

Hence 1 would want to engage in an ambitious project with 3dnexshot problem. Notice
that these must dominate the expected values of partneith@wiven 1's beliefs.

Because of the stochastic nature of payoffs in BCFPs, wenssshat agents join a
coalition with certairrelative payoff demand&7,56]. Intuitively, since action uncertainty
means agents cannot predict coalition payoff (and, coresgtylthe payoff shares to coali-
tion members) with certainty, it is natural to place relatilemands on the fractional share of
the realized payoff. This directly accounts for the allgmatof unexpected gains or losses.
Formally, letd represent th@ayoff demand vectaey, . . ., d»), andd¢ the subset of these
demands corresponding to agents in coalitignand assume that these demands are ob-
servable by all agents. For aniye C we define therelative demand of agent to be
r; = Zj:; T If reward R is received by coalitiorC' as a result of its choice of action,
eachs receives payoff; R. This means that the gains or losses deriving from the fatt th
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the reward function is stochastic will be allocated to therdg in proportion to their agreed
upon demands. As such, each agent has beliefs about anyagfbet's expected payoff
given a coalition structure and demand vector. Specificédlypeliefs about the (maximum)
expected stochastic payalf some agenj € C is denotedﬁ;'- = 7;V;(C). Similarly, if

i € C, i believes itown (maximum) expected payoff to g = r;V;(C).

If all agents in coalitiorC had the same beliefs about the expected value of the awailabl
actionsA¢, then all would agree to execute the action with maximum ebquevalue (as-
suming risk neutrality). However, agents enter coalitianith potentially different beliefs
about the types of their partners. Since the expected vdlaetion « predicted by agent
i € C depends critically on's beliefs B;, each agent may have different estimates of the ex-
pected value of any coalitional actidiHence, thehoiceof action must also be part of the
negotiated agreement. Given a coalition structife anaction vectoris a tuple consisting
of one actiom € A for eachC € CS. To this end, we define @palition agreement vector
to be a triple(CS, d, ) whereCS is a coalition structured is a demand vector, angis an
action vector, withC; denoting the” € C'S of which: is a member (and let be the relative
demand vector correspondingdd.

The stability of a vector of coalitional agreements can bindd in several different
ways. While the specific stability concept used is not ailtto the repeated coalition formal
model we develop below, we briefly two forms of tBayesian corea stability concept
introduced for BCFPs in [12,15].

Definition 3 (weak Bayesian core [15])Let (CS,d, ) be a coalition agreement vector,
with C; denoting the” € CS of whichi is a member(CS, d, a) (or equivalently(CS, r, )

is in theweak Bayesian coref a BCFP iff there is no coalitios C N, demand vectod g
and actiong € Ag s.t.pi(S,ds,8) > pi(Ci,dc,,ac,), Vi € S, wheredg,, ac, is the
restriction ofd, « to theC; coalition.

In words, there is no coalition such that all of its membeigele that they would be strictly
better off in it (in terms of expected payoffs, given someica®f action) than they are in
CS. The agents’s beliefs, in evely € CS, “coincide” in the weak sense that there is a
payoff allocationd~ and some coalitional actiam- that is commonly believed to ensure a
better payoff. This doesn’'t mean th#t anda is what each agent believes to be best. But
an agreement odc andag is enough to keep any other coalitisrfrom forming. Even if
one agent proposed its formation, others would disagreausecthey would not expect to
become strictly better off themselves.

A stronger notion can be defined as well:

Definition 4 (strong Bayesian core [15])Let (CS,d,«) be a coalition agreement vec-
tor, with C; denoting theC' € CS of which ¢ is a member(CS,d, ) (or equivalently
(CS,r,a)) is in thestrong Bayesian coréf there is no coalitions C N, demand vector
dg and action3 € Ag s.t. forsome € S

pi(S,ds, B) > pi(Cy,dc,, ac,)

and ‘ ‘
]3;(57 dS7ﬁ) > ﬁ;(Cg7dcj7acj)
VjeS, i

3 To focus on learning of agent types over time, we assumehbalistribution of outcomes given action
« and the reward function are known. In model-based RL thesate uncertain. The definition of a BCFP
is easily generalized to allow for unknown action modelsiclwtwould add a further source of discrepancy
among the beliefs of agents.
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The strong BC is more tightly linked to an agent’s subjectiiav of the potential accept-
ability of their proposals and is thus more “endogenous”adture.

3.2 Optimal Repeated Coalition Formation under Uncernaint

We now turn our attention to the problem of acting and leagrimrepeated coalition for-
mation settings.

A Model for Repeated Coalition Formatiohhe learning process proceeds in stages. Intu-
itively, at each stage agents come together with only pémiawledge of the types of their
counterparts. They engage in some coalition formationge®¢e.g., negotiation or bargain-
ing), forming various teams, each governed by a coalitiorement (i.e., agreement on the
action to be taken by the team as well as the relative payaeffestor each team member).
Once the coalitions have completed their actions and obdetive outcomes, each agent
gains some information about the members of its team. Spailtyfi the action outcome
provides (noisy) evidence about the coalition type veaaach member of that coalition.
Agent’s update their beliefs, and then enter the next sthgeatition formations.

More formally, the process can be described as follows: waras an infinite horizon
model in which a set of agenté faces a Bayesian coalition formation problem at each stage
0 < t < oo. The BCFP at each stage is identical except that, at staggch agent may
enter the coalition formation process withdatedbeliefs B! that reflect its past interactions
with previous partner$ Each agent enters the coalition formation process with beligts
about the types of all agents (including the certain knogtedf its own type). Coalitions
are formed, resulting in a coalition agreement vee;'@ft, dt, at), with coalition structure
Cst, demand vectod! (and induced relative demand vecid), and action vectoa?. Let
C; denote the> € CS* of whichi is a member. Eactl € CS? takes its agreed upon action
ot and observes the stochastic outcontieat is realized. The rewarsi(s) is obtained, with
eachi in C obtaining its relative share R(s) (wherer; = d;/ >, d;). Such outcomes
are “local,” that is, depending only upon the actiap taken byC and the type vector
tc, with Pr(s|a, t¢) dictating outcome dynamics. We assume limited obsenggbégent:
observes only the outcome the action of its own coalitignnot those of other coalitions.

Once coalitional agreements are reached, actions aretegeeund outcomes observed
at stage, the process moves to stage 1 and repeats. We assume a discount fagtwith
0 < v < 1), and model assume agents wish to maximize the expecteduditedd sum of
future rewards. Specifically, lgt! be a random variable denoting agestrealized reward
share at stageof the process (i.e., in the outcome of coalitional agregmeand actions at
staget). Then:'s goal is to maximize

o0
Z fthf.
t=0

A POMDP FormulationTo model the behavior of agents in the repeated coalitiomder
tion, the most appropriate formal model would be that of ad3&n extensive form game.
However, we make certain simplifying assumptions, andeetmodel this as a partially

4 We discuss below—and experiment with—settings where ttieraand reward model vary from stage
to stage; but we always assume that the collection of agietset of possible typés;, and the private type
of each agent is fixed across all stages.
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observable Markov decision process. We contrast the POMEPanfull game-theoretic
treatment after describing the POMDP formulation.

Our primary goal is to capture how the repeated coalitioetirsy should influence how
agents should approach their coalitional negotiationsah stage game. Each member of
coalitionC can thus update its beliefs about the types of the membets calitions:

Bt (tc) = 2 Pr(s|a, to) B (tc) (5)

wherez is a normalizing constant. When time is clear from context,denote this updated
belief stateB;"“.

We make one key simplifying assumption, namely, that agebttliefs are not updated
during the coalition formation process itself. In genegaly negotiation process that is
used to determine coalitions and coalitional agreememsr@zeal considerable informa-
tion about one’s partners. For example, strategic modedsalition formation as Bayesian
extensive form games have been developed for standardicodbrmation problems [16,
39] and for BCFPs [15], during which agents update theirdfglduring a negotiation pro-
cess. If this process is well-defined, an intermediate stddpelief update can be factored
into our model (and updates based on observing action ogs@rould be made against this
intermediate model). However, our aim is to abstract anamyfithe specifics of the coalition
formation process adopted.

We illustrate the computation of updated beliefs in ouriendxample. Suppose agents
1 and 3 partnered and attempted an ambitious project whileld f@Agent 3 would update its
beliefs about 1's type by conditioning its prior on the olveek failure, obtaining posterior
Bi:

Agent 2 Agent 3
Type || g m b g m b
By 03 04 03[022 039 0.39

The failure of the ambitious project strongly suggests 8isttype is notg. Note that its
beliefs about agent 2 are unchanged since we assume 1 cannmaleservation of the
actions or outcomes of coalitions other than its own.

Given the sequential nature of the process, the decisiods maagents regarding which
specific coalitions to join—and which coalitional agreetseto adopt—should be informed
not only by the immediate expected value of those coalitisnsh decisions should also be
influenced by the impact they may have foture decisionsFor example, one agentmay
be so uncertain about the type of a potential parjntrat the risk of joining a coalition
with j has lower expected immediate value than a joining a “saéatitabout which it has
more certain beliefs. However, shoulfbin with 5 and discover that, in facj;s capabilities
complement its own, this knowledge would prove very valaabllowing: to partner with
j over a long period of time (multiple stages) to reap the dimis of this information. A
coalition formation process that does not account forvillee of informatiorwould never
allow 5 to partner withj, hence never discover this hidden value.

To account for just such considerations, we approach optiepeated coalition for-
mation using a sequential model that allow for just such @gtion-exploitation tradeoffs
to be made explicitly. By usin@ayesian explorationagents optimize long-term sequen-
tial value, balancing exploration with exploitation to mpize expected accumulated reward
given their current beliefs. We cast the problem gmeially observable Markov decision
process (POMDR)or equivalently, delief-state MDPWe assume an infinite horizon prob-
lem, with discount factoty (with 0 < v < 1), and model agents who wish to maximize the
expected discounted sum of future rewards. It is reasorsdtdightforward to formulate the
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optimality equations for this POMDP; however, certain teti#s will arise because of an
agent’s lack of knowledge of other agent beliefs.

Let agent have beliefsB; about the types of other agents. I&t(C, «, d¢, B;) denote
the long-term valuei places on being a member of coalitichwith agreed-upon action
« and stated agent demands = (d;;i € C) (denoting the agents’s requested payoffs
from the formation process), realizing that after this@tis taken the coalition formation
process will repeat. This is accounted for using Bellmaraéquos [6] as follows:

Qi(C.a,de, By) = Y Pr(s|C,a B)[riR(s) +1Vi(B) )] (6)
=Y Bi(tc) Y Pr(sla, to)[riR(s) +Vi(B;)]
tc s

Vi(Bi)= Y Pr(C,a,dc|B)Qi(C,a,dc, By) 7
C|i€C,dc

(Recall thatr; is i's relative demand of the payoff received bYy, hencer; R(s) describes
i's reward.)V;(B;) reflects the value of belief stafg to i, deriving from the fact that given
beliefs B;, agent: may find itself participating in any of a number of possiblaldwmnal
agreements, each of which has some Q-value (we elaborais)bel

Of note is that fact that agehntonsiders the (expected, discounted) value of being in its
updated belief statB;**—obtained after joining coalitiot’;, demandingt;, and executing
coalitional actiona,—when computing the value of any coalitional agreement.cHipe
cally, the Q-value and value functions for the belief stat®@Mdescribed by Egs. 6 and 7,
explicitly incorporate both immediate and future coalitbvalue in a way that embraces the
expectedalue of informationcoalitional decisions at future stages may exploit infation
gleaned from the current interaction.

Unlike typical Bellman equations, the value functipcannot be defined by maximiz-
ing Q-values. This is because the choice that dictates dgwamely, the coalition that is
formed, is not in complete control of agentnstead; must predict, based on it beliefs, the
probability Pr(C, «, d¢| B;) with which a specific coalitiorC' (to which it belongs) and a
corresponding action-demands péig, d¢) will arise as a result of negotiation. However,
with this in hand, the value equations provide the means terchine the long-term value
of any coalitional agreement.

A Bayesian Extensive Form Game Modefully general formulation of the repeated coali-
tion setting would require Bayesian extensive form game (BERGvhich the bargaining
or negotiation actions at each BCFP stage game are explinilbeled. Once coalitional
actions are determined at stagéhere are no further action choices at that stagince the
agreements themselves determine actions taken by thesagatthe information revealed
about one’s partners by the execution of coalitional astiwould cause additional belief up-
date in the game process. Such a model would require exygjmiesentation of the beliefs
of all agents at each stage of the negotiation process amdeadcution of coalitional ac-
tions. The appropriate solution concept would then peréect Bayesian equilibrium (PBE)
agents possess a system of beliefs (beliefs about oppomest &t each decision point), and
adopt behavioral strategies (mappings from beliefs taastat each decision point); and
these beliefs and strategies must be in equilibrium in timses¢hat each agent's strategy
must be optimal (at all subgames) given its beliefs and ttateggies of its opponents, and
the beliefs must be determined by Bayesian update w.r.behavioral strategies.
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There are two key reasons we do not adopt such a model. Rirshadel is intended to
work with different formsof coalitional negotiation. The formulation of the BEFG vegs
a commitment to a specific negotiation protocol, whereasmmdel assumes only that some
coalition formation process is adopted and that the prdibabf specific coalitional agree-
ments can be estimated. While BEFG formulation that abstraway the details of the
negotiation processes during the BCFP stage games woulddirable, this is not feasible
since the only strategic behavior available to the agergsisedded within the stage games
themselves. Outside of the stage games in which coalitioegbtiation takes place, agents
have no decisions to make: they simply implement their afjug®n coalitional actions and
observe the results. One might consider adoptingrapirical gamespproach [61], using
detailed simulation to obtain a high-level description bamacterization of the underlying
negotiation process and use these results to inform PBE watign. However such an
approach is beyond the scopre of this work.

The second reason is the analytic and computational iatvdity of BEFGs. Analyzing
equilibria of BEFGs is notoriously difficult, especiallyvgin the complexity of the repeated
coalition formation problems we propose. Even studyingB&&G formulation of the stage
games themselves (see [15] for such an analysis) oftenresgsimplifying assumptions.
The computation of such equilibrium is also unlikely to pequractical for anything but the
simplest settings.

Our POMDP model can thus be viewed as a heuristic approxmati the modeling
of the behavior of strategically-aware agents. The modstrabts much of the detail about
strategic interactions into beliefs about agent types,raakles the simplifying assumption
that updates of these beliefs is based only on the “objé€ctivielence supplied by action
outcomes (i.e., evidence that is not manipulable by theegjia choices of other agents).
This does prevent us from capturing sophisticated stregethiat explicitly link behavior
across stages (e.g., in which the outcomes of future ndigotsacan be influenced by past
strategic behavior, for example, via “threats”). Howewehnjle this an important avenue for
future research, we believe that practical analytic andmdational results will be possible
only for the simplest of settings.

3.3 Estimating Agreement Probabilities

One aspect of the POMDP model that is not directly part of tipaii are the “agreement”
probabilitiesPr(C, «, d¢|B;) that an agent needs to predict the coalitional agreements
that might arise. These probabilities obviously dependhenprecise coalition formation
mechanism adopted, and can be estimated or approximatediiety of ways.

If a discounted coalitional bargaining model is assumed1B89L5], an agentcan com-
pute these probabilities by simulating the process of aglthe game tree (possibly using
a heuristic algorithm). If the equilibrium solution is unig then the resulting agreement
vector(CS, d, o) will occur with certainty. If multiple solutions arise, éacan be assigned
uniform probability of occurrence, or some other biasedd:be incorporated.

In contrast, a simpler form of negotiation could be assursadh as the best response
with experimentation (BRE) process [24,12,15] discusgefdc. 2, a simple dynamic ne-
gotiation process in which agents make proposals (in sos@epermined or random order)
and groups of agents accept or reject them using myopic bsgbnses w.r.t. the existing
set of coalitional agreements. The process can be modelas! Markov chain [24] whose
state at time is simply the prevailing agreement vect@?s®, d, o). The steady-state dis-
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tribution P* of this chain then dictates the probability of ending up vetly specific set of
coalitional agreements.

However, such an approach is inherently problematic in ettirgy. The transition ma-
trix of the Markov chain, hence the steady-state distrdmytrequires knowledge of all pa-
rameters affecting the state transitions of the BRE pro@esany other heuristic negotiation
process). Unfortunately, a specific agemioes not have complete knowledge of these pa-
rameters, since it has only probabilistic information of tiypes of other agents, and is
unaware of their beliefs. Expectations w.r.t. agent tymaslme used of course. The use of
common priorcan help approximate the beliefs of other agents as wellighahis can be
somewhat problematic. Suppose for example, that at eaclel§ke,ghere is a common prior,
shared by all agents, specifying the probability with which agent type profiles are drawn;
and that agents use this common prior to estimate the piiakeh{beliefs) that other agents
of a specific type assign to type profiles (i.e., each agerst tilgecommon prior to represent
the beliefs of their opponents). Using the prior in thisisté&shion to account for the be-
liefs of others is unrealistic, since agents update thdietseat the conclusion of each stage
of the RL process. Furthermore, even with a common prios, fitat possible for agents to
accurately monitor the belief dynamics of other agentsiesthey are unable to observe the
outcomes of the actions of coalitions other than their own.

For these reasons (and others discussed in the next seatiergo not try to com-
pute the Markov chain or its steady-state distribution hRgtwe approximate the quantities
Pr(C, o, d¢|B;) determined by BRE (or other dynamic) processes, in othesvahich
we elaborate in the next section). In addition, should it éeassary for an agent to estimate
the beliefs of others, we avoid the simple static commonr@gsumption, and instead use
a heuristic approach.

4 Computational Approximations

Computing the exact solution Bayesian optimal solutiorhtoreinforcement learning prob-

lem for repeated coalition formation, as specified by Eqsn® 3 is generally infeasible

for two reasons. First, as discussed above, the difficultgstimating relevant quantities,

agreement probabilities in particular, will often requeeme approximation. Second, be-
cause solving POMDPs is generally intractable, espeaigign the size of the state space
(the cross-product of agent types), action space (the smtaditional agreements), solving
the induced POMDP will also require some form of approxiwmtio be practical.

In this section, we describe several algorithms that apprate the POMDP solution.
Each of the Bayesian RL algorithms below can be combined anthunderlying negoti-
ation process: we require only that the process result ilitcreal agreements of the type
(C,a,d¢) assumed above, and that agents can estimate the probabiipecific agree-
ments given beliefs about agent types. A skeletal algorigshown in Fig. 1. We now
describe four instantiations of this framework, of varylagels of sophistication.

4.1 The One-Step Lookahead Algorithm

The first approximate RL algorithm is ttene-step lookahead algorithm (OSLAYhile
dynamic programming techniques are often used for solvidIBPs [55, 30], (tree) search
techniques are often more effective for MDPs (and POMDP®1bover when the initial
state (or belief state) is known. In OSLA, we use a very restd form of tree search,
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1. Each agent with belief stateB; computes the Q-value of potential agreemeiiisa, d¢) in which it participates by approx
imating the solution to Eqgs. 6 and 7, using one of the follgvaigorithms (described belowDSLA VPI, VPI-over-OSLA
Myopic MAP.

2. The agents engage in some coalition formation proce#is @ach agent using the Q-values computed above in ordepresent
thelong term valueof coalitional agreements. The process results in a coaldtructureC'S, a payoff allocation vectod, and a|
vector of coalitional actionsx, one for each coalitiod € CS.

3. After observing the result of the coalitional actiagy, of the coalitionC; to which it belongs, each agenupdates it beliefs
about its partnerg € C;, j # i using Eq. 5.

4. The RL process repeats.

Fig. 1 Approximating the optimal solution to the problem of regehtoalition formation under uncertainty.

looking ahead only a single step at the value of coalitiogaéements at the current state
B! attimet and possible states at the next stﬁijél given possible outcomes of coalitional
actions. This maintains tractability, exploiting the fttat only a (relatively) small number
of belief states can be reached after the execution of aesowgllitional action.

More precisely, we compute the Q-values of successor sitatEg. 6 in the OSLA
method myopically. Specifically, we define thae-step lookahea@-value of agreement
(C, a, d ) for agenti, under belief stat®;, to be:

Q1(C,a,dc, B;) =Y Pr(s|C, e, By)[riR(s) + vV (BY)] 8)

= > " Bi(to) Y Pr(sla, to)lriR(s) + Vi (B )]
te 5

V2 (B;) = > Pr(C, 8,dc|B)QY(C,B.dc, Bi)  (9)
C,BEA(C),dc|icC

QY(C,B.dc,Bi)=r; > Bi(tc)d  Pr(s|B,tc)R(s) (10)
tceTe s

In Eq. 8,V;°(Bf"") represents the myopic, or immediate value of the succesdief btate
to B;, which is defined (Eq. 9) to be the expectetnediaterather than long-term, value of
the agreement that will emerge.

As discussed above, computing the probability of agreeteemsPr(C, 3, d¢|B;) can
be very difficult. As a result, we approximate these proliédsl by assuming a specific ne-
gotiation process, and again adopt a simple one-step loekdaperspective on coalitional
negotiations. Specifically, we assume that agents engag¢him best-response with exper-
imentation (BRE) process for BCFPs discussed above. (Ve tef[10,12] for a detailed
description of the BRE process.) While this process indackkarkov chain over coalition
structures and agreements, we assume that the processmilhate after single stepof
this process. We then estimate the probability of an agreetade the probability at reach-
ing that agreement at the first stage of the induced Markoinckiée note that agents need
only compute Q-values, bo®)} (C, o, d¢, B;) andQY(C, o, d¢, B;), for agreements that
can be reached at those stages. Since only a small numbereeiagnts could be reached
by a restricted negotiation process, this further enhaceegputational tractability.

We chose to use a negotiation tree-depth bound of one wheputorg agreement prob-
abilities using the BRE process in our experiments, largetyreasons of computational
efficiency. However, this lookahead bound could take anyevaifi > 1, depending on
the specific setting’s requirements. In addition, the cardus nature of agent demands and
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the combinatorial number of type vectors can also cause gtatipnal difficulty in evalu-
ation the search tree, even to depth one. Neverthelessséhefisampling and appropriate
discretization of demands can alleviate these problemsdigéiss this in Sec. 6 when de-
scribing our experiments.

Another issue that we address is the evolution of beliefstaticscommon prior is in-
appropriate, since each agent will update its beliefs ah stage of the RL process. But
as discussed above, agents have little evidence upon wiicpdate their knowledge of
the belief states abther agents due to the limited observability in our model. We aoto
heuristically for this within OSLA by having agents initiahdopt astatic assumptioabout
the beliefs of all other agents: specifically, an agenmill assume that all agents# ¢ main-
tain their prior for the firs& stages of the RL process. Aftérstages, agents will adopt a
convergent assumptiospecifically, agent will assume that the beliefs of all agentgo-
incidewith its own? This is a very crude heuristic that attempts to account ferynamic
nature of opponent beliefs, exploiting the fact that thedfglof all agents (with sufficient
exploration of structures and agreements) will convergetd the true vector, despite the
very limited observability of opponent belief dynamics.

We note that many of these approximations provide only cesienates of long-term
value. We will see this reflected in the performance of OSLkb\e

4.2 The VPI Exploration Method

Thevalue of perfect information (VPI) exploration methiscan RL technique that approx-
imates optimal Bayesian exploration using the (myopic)eekpd value of perfect infor-
mation inherent in an agent’s actions. VPI exploration wasially developed in [20,19]
for single-agent environments. We extend the VPI formatato the multiagent, repeated
coalition setting by defining how to estimate the expectegofnit) value of perfect infor-
mation of coalitional agreements given an agent’s curretiefs. The sequential value of
any coalitional action, accounting for its value of infortioa, is then used in the formation
process.

Let us consider what can be gained by learning the true vdlaeoalitional agreement
o = {C,a,d¢). Supposer is adopted, its action executed, and assume that it provides
exact evidenceegarding the types of the agentsdh Thus, we assume that the real type
vectorty, is revealed followings. If agent types are revealed, then thee valueof o is also
revealed: it is simply agerits share of expected coalition value givanwhich we denote

by 45 = 4}, o 4,y = Qi(Cr a,dcte), where
Qi(C,a,dclte) =ri »_ Pr(slo, t&)R(s). (11)

This is a “myopic” calculation of the specific (future) caadhal agreement value, assuming
the adoption ot and subsequent revelation of actual agent types.

This new knowledge is of value to agemnly if it leads to a change of its policy. This
can happen in two cases: (a) when the information shows tba@al@ional action that was
previously regarded as inferior to the best action is nowa&&d to be the best choice; or (b)
when the information indicates that the action previouslyarded as best is actually worse
than the second best action.

5 Our experiments in Sec. 6 use static beliefs for the first 5&®ps and convergent beliefs after that.
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For case (a), suppose that given current belief dtatbe value of’s current best action
o1 =(C1,a1,d¢,) isq1 = Qi(C1,a1,dc1|B;) = Ep, [q<01,a1,dc1>]' Moreover, suppose
that the new knowledge indicates thais a better action; that ig; > ¢;. Thus, we expect
i to gaing; — ¢1 by virtue of performings instead ofo;.

For case (b), suppose that the value of the second best agtienCa, aa, dco) iISq2 =
Qi(Ca,a2,dc2|B;) = Ep, [q<c2,a2,dc2)]- If action o coincides with the action considered
best,s1, and the new knowledge indicates that the real valye= ¢ is less than the value
of the previously considered second-best action—thaitds, i< ¢go—then the agent should
performos instead ofr; and we expect it to gaigy — g, -

Thus, thegain from learning the true valug; of theos agreement is:

g2 — q5, if o =01 andgs < g2
o, ;
gain, (g;[to) = { a5 — a1, if 0 # o1 andg; > ¢ (12)
0, otherwise

However, agent does notknow what types (and, consequently, which Q-value) will
be revealed for; therefore, we need to take into account the expected gaém gfis prior
beliefs. Hence, we compute te&pectedsalue of perfect information of:

VPI(o|B;) = ) _ gain, (45 [t&) Bi(te) (13)

to

Expected VPI gives an upper bound on the myopic value ofinéion for exploring coali-
tional actions. The expectedostof this exploration is the difference between the (expécted
value ofo and the value of the action currently considered best,gies Ep,[¢0s], Where
Ep, (0] = BB, (00,0 d,) | 1S9VEN bYEp 0] = i St e, Bilte) 3, Pr(sla, te)R(s).
Consequently, an agent should choose the action that nmesmi

VPI(o|B;) — (q1 — E,lao]). (14)
This strategy is equivalent to choosing the proposal thaimmaes:
QVi(o|B;) = Ep,[¢s] + VPI(0|B;) (15)

Agents then use thesgV values instead of using the usual Q-values in their decisiak-
ing for forming coalitions. The computation of expectedues and VPI above can be done
in a straightforward manner if the number of possible typefigorations is small. If, how-
ever, this number is large, sampling of type vectors can he@red.

In summary, the VPI algorithm proceeds as follows:

1. The “true” Q-values of any potential agreementvith respect to each realization of the
relevant type vector, are myopically calculated via Eq. 11.

2. The gain from reaching agreemenis calculated via Eq. 12.

. The VPI fore is calculated via Eq. 13.

4. The Q-value®)V; for (any) o are calculated through Eq. 15 (and are subsequently used
in the coalition formation process).

w

VPI exploration is in a sense non-myopic, since it implicittasons about the value of
future belief states through its use of value of perfectrimi@tion is estimating the value of
future coalitional agreements. However, VPI uses myodutations when determining the
value of agreements. Even though this is an approximati@mables the method to exploit
the value of (perfect) information regarding agent typesyéver myopic the estimation of
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this value may be, instead of estimating the specific valumtitipated coalitional actions
(in contrast to lookahead methods). Unlike lookahead nisth@'PI does not have to ex-
plicitly incorporate the common prior hypothesis whenrasting the Q-values used during
coalition formation, nor does it need to account for the phulity of agreement when tran-
sitioning to future belief states. The VPI exploration nueths thus less tightly coupled to
the details of the underlying coalition formation processwe demonstrate below, myopic
VPI estimation works very well in a variety of experimentattings.

Nevertheless, we also develop a method which combines ViRl @SLA. VPI-over-
OSLAuses the application of VPI over Q-values estimated usiad8LA method. When
this method is used, the values of currently expected be&inasecond best action and
exploratory actiornr are estimated using one-step lookahead (and, thus, tharaded to
approximate the probabilities of future agreements). lafp¥/PIl-over-OSLA proceeds as
follows:

1. The “true” g-values of any potential agreementire calculated, assuming one-step
lookahead and calculation of the’ andQ? values of the successor belief state (follow-
ing the revelation of the trug-) through Eq. 9 and 10.

2. The gain from reaching agreements calculated via Eq. 12, where the valugsand
g2 Of the best and second-best actions are calculated throgg®, B and 10.

3. The VPI foro is calculated via Eq. 13.

4. The Q-valueg)V; for (any)o are calculated through Eq. 15 (and are subsequently used
in the coalition formation process).

4.3 Myopic Bayesian RL Algorithm

A very simple RL algorithm is thenyopic Bayesian RL algorithrit is purely myopic, with
agents reasoning only about the immediate value of coaditiagreements and ignoring the
value of any future coalitions or the evolution their bek¢dites. An agentusing myopic
Bayesian RL computes the value of an agreement given b&ief3;, as follows:

Qi(Cra,de, Bi) =ri Y Biltc)Y  Pr(sla,tc)R(s).

tceTe s

4.4 Maximum A Posteriori Type Assignment RL Algorithm

Another relatively simple, but sometimes effective algori is themaximum a posteriori
type assignment (MARjIgorithm. This algorithm effectively reduces the problefnes-
timating the Q-values of agreements given an agent’s Isedibbut opponent types to the
problem of estimating Q-values about agreements given eifgpepponent type vector,
namely, the most probable type vector given its beliefs.

More precisely, given belief staf®;, agent assumes that the actual ty@mf opponent
j is the most probable type§ = argmazy; B;(t;). The vector of typesc assumed by
for any coalitionC is defined in this way, giving the following estimate of thdueof any
agreement:

Qi(C o dclte) =ri > Pr(sla,to)R(s)

Notice that this calculation is myopic, not accounting foe sequential value of an agree-
ment. However, the sequential value of agreement under i fylpoe assumption is simply
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the discounted sum of the (best) myopic agreement valub:tyiie uncertainty is assumed
away, there is no need for belief update or negotiation utyger uncertainty.

5 Combining RL Algorithms with the Coalition Formation Proc ess

It is easy to define variants of our Bayesian RL algorithmsyrater to accommodate dif-
ferent environment requirements. What is more, we cantjmartihe space of the possible
variants of RL algorithms by examining their combinatiortiwiarious coalition forma-
tion processes. For example, we can consider the followong ¢lasses of reinforcement
learners, combining Q-value estimation with dynamic faiora(or negotiation) processes.

The first arenon-myopic/full negotiation (NM-FNggents. Agents in this class employ
full negotiationwhen forming coalitions, attempting to find a stable (e.qay@&sian core)
structure and allocation before engaging in their actiés.instance, they might use the
dynamic process described above to determine suitablgicnalgiven their current beliefs.
Furthermore, they employ sequential reasoning (using BieAr the VPI RL method, for
example), in their attempt to solve the POMDP described hyaigns 6 and 7.

Myopic/full negotiation (M-FN)agents use full negotiation to determine coalitions at
each stage. However, they do not reason about future (pslafes when assessing the
value of coalitional moves. Essentially, M-FN agents emsgegrepeated application of a
coalition formation process (such as BRE), myopically c®actions, and repeat.

Myopic/one-step proposers (M-OSB)e agents that are myopic regarding the use of
their beliefs when estimating coalition values (like M-EFKut do not employ full negoti-
ation to form coalitions. Rather, at each stage of the RLgsscone random proposer is
assumed to be chosen, and once a proposal has been madeeptddioc rejected, no fur-
ther negotiations are assumed to take place: the coalia@tian is assumed to be executed
after asingleproposal. Finallynon-myopic/one-step proposers (NM-O8R), naturally, the
obvious combination of NM-FN and M-OSP agents. Notice thatfact that OSP agents as-
sume (from an RL perspective) that the negotiation procassohly one round, does not
necessarily mean that the actual negotiations will lasfdst one round. Specifically, an
agent may deliberate about the value of various agreemgrsggposing one-step negotia-
tion, to simplify its reasoning. This is possible even if #eual negotiation uses multiple
rounds. Nevertheless, in our experiments, all OSP agentdaions involve actual negoti-
ations that last for one round.

FN approaches have the advantage that at the end of each &g, bifore actions
are executed, the coalition structure is in a stable stapefuding on the nature of the
coalition formation process). Another advantage of FNat #fgents have the opportunity to
update their beliefs regarding other agents’s types dutingnegotiation itself. However,
FN-methods generally do not permit agents to fully expldre full space of coalitions
or actions: at the end of each stage, the agents will indeeel $taong information on a
sub-space of the coalition structure space, specificadlystibspace that contains the stable
coalition structure the agents have led themselves intbfH®iagents may not have the
opportunity to explore coalition structures that are uohedle given their beliefs (since
if they reach a stable structure, they have little interesiurther exploration). This is in

6 We do not explore this possibility in our experiments, inaarth focus on the RL aspects of the repeated
coalition formation problem, rather than those of bargain\e note, however, that one can devise methods
that make use of the update of beliefs while observing theooepts's responses to proposals. See, for
example, [13].
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contrast to OSP approaches, which may potentially provideagents with more flexibility
to investigate the whole space of structures.

6 Experimental Evaluation

We conduct three sets of experiments to evaluate the difé?e methods and computa-
tional approximations proposed above. Evaluation indudeying the nature of the negoti-
ation process by examining distinctions between the figbtiation and one-step proposals
for coalition formation during the stage games. In all casesmeasure the total discounted
reward accumulated by all agents to measure the qualityeofdalitions formed, and ex-
amine their evolution over time. We also examine “convecgémehavior is some cases, to
test whether stable coalitions are formed, and to look ditgue performance after learning
has stabilized. For reasons discussed above, solving P@NtiDProblems of this scope is
impractial, as is the formulation of a BEFG for our model. Eemve are unable to compare
our approximations to an “exact” solution.

The first set of experiments examines the performance ofeaming methods with
agents that face theamecoalition formation problem—specifically with the sameiat
dynamics and reward model—at each stage (though with diffdreliefs). The second con-
sidersdynamic tasksin which the actions and rewards vary at each stage; thislaihon-
strate the ability of our RL framework and methods to supgadwledge transfer across
tasks through its focus on type learning. The third set okexpents compares our meth-
ods to an adaptation of a successful algorithm for coalif@mmation under uncertainty
proposed in the literature [34].

The process used during the coalition formation stage®iBRE dynamic process [12]
for BCFPs. In estimating Q-values, we sample sample typmk&cather than exhaustively
enumerating them all as follows. LEt| be the number of types and| the size of coalition
in question. If7'|!°! < 1000, no sampling is used; otherwisk)0 type vectors are sampled
according the belief distribution.

6.1 Static Tasks

We first test our approach in two related static settings, inewhich the action dynamics
and rewards are identical at each stage. This can be viewagkass facing the same choice
of tasks throughout the RL process. In both settings, doafithave three actions available,
each with three possible stochastic outcomes dependirtgearotlition’s type vector. In the
first setting, five agents and five types are used; in the setem@gents and ten types.
Intuitively, the agents form companies to bid for softwaeve&lopment projects. There
are three agembles corresponding to project roles, each having three ordoatity levels
with the combination of role and quality determining an agetype: interface designes
(bad, average, expert), programmer= (bad, average, good, expert) andsystems engineer
= (bad, average, expert). The quality levels correspond to quality “points” (0 pairfor
bad, and increasing by 1 for each quality increment), andweeall quality of a coalition is
the sum of these points. Agents know the role of their opptsndat not their quality levels.
Companies (coalitions) can bid for a large, medium or snrajgets (actions), and they can
make large, average or small profits (outcomes), dependirthebid and the members’s
types. The outcome (and subsequent coalitional reward) atdon depends on the quality
of the coalition. A coalition can (with high probability) ceive large profits by bidding on a
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Fully informed agents | 5agents| 10 agents
Full negotiation 183713 | 258726
One-step proposals 139965 226490

Table 1 Discounted average (over 30 runs) total accumulated pafier 500 RL steps fdully informed
agents employing either FN or OSP formation algorithms.

large project only if its total quality is high and there idfmient diversity of roles amongst
its members. A coalition with two (respectively, more) marsbis “punished” if it does not
have two (resp., at least 3) members with different rolegglogiving only a fraction of the
reward it is entitled to given the quality of its members. [€alb, 8, and 9 in Appendix A
illustrate the dynamics of the problem and rewards. Rewlaades that the members of size
two coalitions can expect to receive are equal to their rdviar acting alone, but less if
the two-member coalition is made up of members with the sanee Thus agents using a
Myopic method will find it hard to form size two coalitions gsting from a configuration
structure of singletons), even if in fact these coalitioas serve as the “building blocks” for
more promising ones.

Tables 6 and 7 in Appendix A show the types of the agents in thahfive and ten-
agent experiments. The five-agent environment is such hieafctassic deterministic) core
is nonempty, while the 10-agent environment has an emp#y. #lithin each environment,
we consider two distinct settings, one in which agents hawveifarm prior over (quality)
types of opponents, and one withnaisinformedprior—in this case agents believe with
probability 0.7 that each of its opponents has a type different than its bctua

Agents are homogeneous in the sense that each employs thdesaming algorithm in
any given setting. Each experiment consists of 30 runs, @&btb00 RL steps. A discount
factor 0f0.985 is used in all experiments. Whenever a full negotiation (&pfroach is used,
formation negotiations last for 50 rounds (per RL stage)kmg observe only the results of
the action taken by their coalition, not those of any othelition, and only update beliefs
about their partners at any specific stage.

Figures 2, 3, 4 and 5 plot the discounted reward accumulatétebcoalitions in each
homogeneous environment consisting of Myopic, OSLA, VPARVor VPI-over-OSLA
agents (averaged over 30 runs). In addition, Tables 2 ang@tréhe average “per step”
reward accumulated during the final 50 RL steps, once agebgdiefs and behaviour are
expected to have stabilized. For comparison against amaptnonlearning) benchmark,
we also tested the behaviour of agents who knew the exacs tfpeach agent (i.e., were
fully informed): total discounted average reward (over 3ds) after 500 iterations is shown
in Table 1 (not plotted for legibility reasons). In the 5-agease, the structure (and actions)
agreed upon by the fully informed agents is optimal (i.ethwmaximum expected collective
payoff) and core-stable.

In the five-agent experiments (Figs. 2 and 3), we see that &RIstto be the best per-
forming algorithm (with the exception of uniform priors|ifaegotiation, Fig. 2(b)), though
the advantage over MAP is not statistically significant ie¢ime-step proposal settings. My-
opic consistently performs worst. Interestingly, MAP penfis reasonably well, beating all
other methods with uniform priors and full negotiation. M&Rectively employs a crude
form of exploration, with agents behaving in an overly opsitic or pessimistic manner w.r.t.
the value of information they receive: a slight modificatadrtheir beliefs may “point” to a
completely different partner. This turns out to be helpfullie five-agent setting, since roles
are known, and type uncertainty limited to only 3 or 4 unknayality levels; furthermore,
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Fig. 2 Experiments with five agents, full negotiation. Discounéedrage total payoff accumulated by coali-
tions (in 30 runs). Error bars are 95% confidence intervate “BC-Stable configuration” is a non-optimal
one, and involves no learning. The discounted average adated payoff for an optimal core-stable config-
uration at step 500 is as shown in Table 1 (i183, 713).

the reward signal is quite clear regarding the quality oflitoas. Hence, MAP agents are
able to quickly determine which partners have good qualipe$ and stick to their choices.
In fact, MAP agents manage to achieve high reward without mducing type uncertainty
regarding most of their potential partners. DefiDér, ) = 1 — Bz (ty = 7y) to be the
distance between'’s beliefs about the type, of agenty andy’s true type. We observe
distances of approximately75 or 0.66667 regularly at the end of RL stage 500 with MAP
agents, which coincides with the initial distances priostiage 1.

In the five agent-full negotiation experiments we also phat tBC-Stable Configura-
tion” curve corresponding to reward accumulated by a grduggents that are placed in
a strong Bayesian core configuration (w.r.t. their initialiéfs) at each stage (i.e., with no
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Fig. 3 Experiments with five agents, one-step proposals. Diseduaverage total payoff accumulated by
coalitions (in 30 runs). Error bars are 95% confidence imistvT he discounted average accumulated payoff
for an optimal core-stable configuration at step 500 is as/shio Table 1 (i.e. 139, 965)

renegotiation or learning involved). This BC-stable comfajion is quite rewarding (though
not optimal). With both uniform and misinformed priors (Big(a) and 2(b)), we see that
VPI agents performing substantially better agents stétiggaced in the Bayesian core.
(The plot is identical in the one-step proposer cases anotishown.)

Our results indicate that agents using full negotiationmaoee successful than those us-
ing one-step proposals by a wide margin (from 2-4 times bpdgormance in most cases).
The fact that FN agents engage in lengthy dynamic formatioogsses at each RL stage en-
ables them to reach more stable configurations (as these agréater extent the product of
“collective consensus,” and likely closer to more rewagdstates). The more “exploratory”
nature of OSP agents is also evident when observing the learsrin these figures. Never-
theless, Tables 2 and 3 show that OSP agents do eventuali thet performance of FN
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Fig. 4 Experiments with ten agents, full negotiation. Discourdedrage total payoff accumulated by coali-
tions (in 30 runs). Error bars are 95% confidence intervals.

agents in the stage games. In fact, in the five-agent setfliadpe 2), they consistently (with
the exception of MAP-Uni) achieve per-stage reward whidhigder than that gathered by
their FN counterparts. Thus, the more exploratory natu®S®P agents pays benefits in the
long run—but at the expense of performance while learning.

In the ten-agent experiments, with a larger number of agemisa more complicated
environment, VPI establishes itself as the most succestulr methods, both in terms of
discounted accumulated reward (Figs. 4 and 5) and per-staged once agent beliefs have
“converged” (Table 3). VPI accumulatgs.9% of the average discounted reward earned
by fully informed agents in the misinformed priors-full rg@tion case (an@4.5% in the
uniform priors-full negotiation case). One important alvagion is that VPI agents achieve
good performance without, in most cases, significantly cedytheir type uncertainty. For
example, in the experiments shown in Fig. 4(b), in most cdses ,) ranges from0.5
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Fig. 5 Experiments with ten agents, one-step proposals. Diseduaterage total payoff accumulated by
coalitions (in 30 runs). Error bars are 95% confidence iasrv

to 0.96 at the end of stage 500. (To be more exact, only 8 out of the 88ilple runs—
since we hava0 agents with beliefs abodtpossible partners—hald(z, ) less tharo.5.)
This illustrates the point that it is not always necessanafgents to explicitly reduce total
uncertainty, but only relevant uncertainty, to achievedyperformance.

Our results, especially those involving ten agents, sheat@SLA and VPI-over-OSLA
perform poorly w.r.t. discounted accumulated reward. Webaitte this to the the strong as-
sumptions and minimal lookahead of OSLA, though it is nadbht VVPI-over-OSLA con-
sistently achieves better performance than OSLA. Interglgt the performance of OSLA
and VPI-over-OSLA in the final RL stages (Tables 2 and 3) ieroftomparable (and in
some cases superior) to that of methods that fare better avgtounted accumulated re-
ward. Unsurprisingly, Myopic usually exhibits poor perfance—it is far too cautious, and
unable to progressively building profitable coalitions.



(a) Full negotiations

(b) One-step proposals

Method

Reward

Method

Reward

Fully informed agents|

2992.82

Fully informed agents

2392.54

VPI-Uni

1503.08(50.23%)

VPI-Uni

1611.4(67.35%)

VPI-Mis

1387.283(46.35%)

VPI-Mis

1562(65.29%)

VPI-over-OSLA-Uni

873.74(29.19%)

VPI-over-OSLA-Uni

1063.14(44.44%)

VPI-over-OSLA-Mis

783.44(26.18%

VPI-over-OSLA-Mis

973.92(40.71%)

( )
OSLA-Uni 860.72(28.76%) OSLA-Uni 1562.86(65.32%)
OSLA-Mis 807.18(26.97%) OSLA-Mis 1253.8(52.4%)
MAP-Uni 2745.6(91.73%) MAP-Uni 1588.6(66.4%)
MAP-Mis 1218.24(40.7%) MAP-Mis 1459.4(61%)
Myopic-Uni 824.96(27.56%) Myopic-Uni 674.44(28.2%)
Myopic-Mis 1046.64(34.97%) Myopic-Mis 723.76(30.25%)

Table 2 Experiments with 5 agents. Average “per step” reward acdatmd within the final 50 RL steps of
a run; “Uni”; uniform, “Mis”: misinformed prior.

(a) Full negotiations (b) One-step proposals

Method

Reward

Method

Reward

Fully informed agents|

3884.77

Fully informed agents

3881.7

VPI-Uni

2987.6(76.9%)

VPI-Uni

2764.2(71.21%)

VPI-Mis

2893.6(74.48%)

VPI-Mis

2736.4(70.49%)

VPI-over-OSLA-Uni

1622.5(41.76%)

VPI-over-OSLA-Uni

1642.88(42.32%)

VPI-over-OSLA-Mis

1768.86(45.53%)

VPI-over-OSLA-Mis

1710.96(44.08%)

OSLA-Uni

1564.6(40.27%)

OSLA-Uni

1542.4(39.74%)

OSLA-Mis 1669.4(42.97%) OSLA-Mis 1541.8(39.72%)
MAP-Uni 2736(70.42%) MAP-Un 2657.58(68.46%)
MAP-Mis 2144.34(55.2%) MAP-Mis 1660.7(42.78%)
Myopic-Uni 2419.4(62.28%) Myopic-Uni 1078.68(27.8%)
Myopic-Mis 2235.2(57.54%) Myopic-Mis 1462.8(37.68%)

Table 3 Experiments with 10 agents. Average “per step” reward actated within the final 50 RL steps of
a run; “Uni”; uniform, “Mis”: misinformed prior.

FN Unif. FN Misinf. OSP Unif. | OSP Misinf.
MAP 27/30 0/30 14/30 0/30
Myopic 0/30 0/30 1/30 2/30
VPI 0/30 0/30 1/30 3/30
OSLA 0/30 0/30 2/30 2/30
VPI-over-OSLA 0/30 0/30 0/30 0/30

Table 4 The convergence to BC results (converged/30 runs) for frerigthms (for 5 agents). “Convergence”
is assumed if at least 50 consecutive RL trials before a memsination result in a BC configuration.

With regard to the stability of the coalitions formed in th@gent setting, VPI, OSLA,
VPI-over-OSLA, and Myopic agents frequently find themselivea BC configuration while
learning (i.e., at the end of formation stages, before dakagwwoalitional actions), even if
they do not “converge” to one. Convergence results are shiowable 4’ Convergence is

7 When we tried some runs for 10000 RL steps, the methods dith $eee able to converge to BC
allocations more often.



30

assumed if a least 50 consecutive RL trials before final siegdted in a BC configuration.
MAP agents managed to converge to the rewarding stable coafigns quite often (and this
contributed to their good performance in the uniform prfuls negotiations case.) With ten
agents, the core is empty so convergence is not measurable.

While MAP exhibits reasonable performance, these resglyesst that VPI is the supe-
rior method for reinforcement learning in repeated caaliformation. Further, VPl is much
more computationally effective than the other methods.

6.2 Dynamic Tasks

We know consider a setting in which agents face dynamic taslather words, where the
possible coalitional actions, their dynamics, or theiraeys can change from stage to stage
of the repeated interaction. Such dynamic tasks [37,3834lare an important aspect of
coalition and team formation. The ability of our RL framewdo allow agents to learn
about thetypesof other agents facilitates theansfer of knowledgbetween tasks. Indeed,
this is one of the major benefits of a model that assumes typertainty and uses learning
to tackle it: once agents learn about the abilities of pastrtbey can re-use this knowledge
when encountering those partners under different circamesss.

We test this ability in a setting with five agents (again, hgemeous in the RL method
used), which form coalitions over 500 stages. Coalitioesfarmed using the BRE method
(50 full negotiation steps). There are five types, each agaving adistincttype (different
from the other four) but not aware of this constraint. Agestitare a uniform prior regarding
the types of their opponents (but know their own types). ioak have three actions at their
disposal with three possible outcomes each. However, ttewme probabilities vary from
one RL stage to another (see below) reflecting differentstaslenvironments. We assume
agents know which task they will face at which stage so thatiimamics of the underlying
POMDP is known and can be factored into the Bellman equafions

The precise set up is as follows: the agents are five banditseirwild West trying
to form a successful gang. The ultimate goal of the three tagentypes “Good”, “Bad”
and “Ugly” is to discover each other and come together to “fab Train” (coalitional
action), so as to get the “Big Money” (outcome). Before dasog they will go through an
experience-gathering phase, during which it is possibleotdesce with other villains (“El
Viejo” and “Sancho Villa”), performing “petit crime” actits of lesser significance (such
as “Rob Cornerstore” or “Rob Saloon”) which may result in 8 Change” or “Some
Decent Cash” (outcomes) states—given the coalition deslénd underlying stochasticity.
The setup is summarized in Fig. 6.

During the experience-gathering phase, i.e., the first 408t&ges, the bandits are faced
with problems 1 and 2 in an alternating fashion, with eactblenm having its own, distinct
outcome transition model. They face problem 3 during the188 RL stages: this is the
“Big Crime” phase of the experiment). By the time stage 40feached, they should have
gained enough experience to form good coalitions to taakdblpm 3 (through identifying
each other correctly) and fare well in their “Big Crime;” ibt they will only make “Some
Change” during this phase. Specifically, if all of them forneaalition and decide to rob
the train, they hav&5% probability of making Big Money; if only two of them form a
coalition, they can expect, witR0% probability, to make Some Decent Cash by taking

8 The tasks at each stage need not be known with certaintyribdigon over tasks is sufficient to apply
our model. If the task distribution is not known, the POMDPdwalowill break down. However, we can still
apply our methods as we discuss later in this section.
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Fig. 6 The Good, the Bad and the Ugly.
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Fig. 7 Transfer of knowledge setup: Discounted accumulated cbvesults.

that same action. Problems 1 and 2, by contrast, suggesigbats should form two-agent
coalitions, so that they get information regarding theitpers’s types.

Results are presented in Figs. 7 and 8. VPI dominates themgthods both in terms of
discounted accumulated rewards (i.e., behaviour duriagekperience-gathering” phase),
and also in terms of accumulated rewards during the finalgpbathe experiment. Perfor-
mance of the lookahead methods and Myopic are not unredsoiai clearly worse than
VPI (and none get the same bump in performance during theinig@hase experienced by
VPI). MAP agents appear to be utterly confused by the setgsd results illustrate that our
framework, and the VPI algorithm specifically, supports titeasfer of learned knowledge
in coalition formation across different tasks/settings.
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Fig. 8 Transfer of knowledge setup: rewards gathered during tigCBime” phase (averaged over 30 runs).
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Fig. 9 The Good, the Bad and the Ugly: Discounted accumulated tevesults.
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Fig. 10 The Good, the Bad and the Ugly: Rewards gathered during tlieCBme” phase (averaged over 30
runs).
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We repeated the experiment with the following change: agaré now unaware of the
order in which they would be presented with tasks (in otherdapthey cannot predict
what action transition model will be in place at any stageepkthe current one). In order
to facilitate the computation required by lookahead meshedch agent assumes that the
current transition model will be encountered. In this mpd@5LA and VPI-over-OSLA
agents are unable to accurately evaluate 1-step Q-valnes, they have incorrect beliefs
regarding the coalition formation problem to be faced airtheccessor belief states.

Results are presented in Figure 9 and Figure 10. Again VPiraes the other meth-
ods in all respects. Unsurprisingly, OSLA and VPI-over-@3are much more poorly given
their inability to accurately evaluate Q-values. Neveehs, the OSLA and VPI-over-OSLA
agents do manage to collect, in the last phase of the expatrimeproximately 10 and 6
times more reward, respectively, than the MAP agents; htfregestill exhibit some knowl-
edge transfer.

6.3 Comparison to Kernel-Based Coalition Formation

While no existing work prior to ours combines dynamic caatitformation with learning
under type uncertainty, Kraus, Shehory and Taase [34] haeak @ith coalition formation
under uncertainty over coalitional values in a specific domfarhough their method is
better tailored to settings focusing on social welfare mezation, it is a rare example of
a discounted coalitional bargaining method under a resttiform of uncertainty, which
combines heuristics with principled game theoretic teghes.

We compare our Bayesian RL methods with an algorithm inddisethe work Kraus,
Shehory, and Taase [34]. We adapt their method to our regpheatdition setting with type
uncertainty, referring to the modification as #8Talgorithm. The method essentially com-
putes an approximation of a kernel-stable allocation faditions that are formed during the
negotiation phase of the RL process, with agents interitiooampromising part of their
payoff to successfully form coalitions. The level of commiee is determined by a “com-
promise factor,” and following [34], our KST algorithm usasompromise factor di.8.
We assume no central authority, and have only one agent girgpper round, with coali-
tion values estimated given type uncertainty.

A direct comparison of our techniques with [34] would not Ipp@priate, since it uses
no learning and is not designed to handle type uncertairdyo#tmer aspects of our setting
(e.g., that work makes certain heuristic assumptions waiehinappropriate here, such as
computing the kernel for the coalition with the greatestlitioaal value, even though this
might not at all be the coalition ensuring the highest paimthe agent). Nevertheless, after
some adaptations, it can serve as a useful benchmark, gxgithe benefits of learning
versus non-learning approaches to repeated coalitionafiom We also combined KST
with our Myopic RL algorithm, treating KST as its dynamic tiban formation component,
in an attempt to assess whether there are any clear distisdietween core-based or kernel-
based coalition formation in our RL setting. In this respea can view KST as a myopic
RL method, using kernel-stable payoff allocations and comise [34].

We compared these methods on a setting with five agents, fiestynd each agent
having a different type. The setup is shown in Fig. 11. Agéwtee uniform prior beliefs.
We compare KST (with and without learning) to our VPl methsih¢e this is the method
that performed best in the preceding experiments) and tgoMygince KST is essentially a

9 We explain the domain details later in Section 7.
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Fig. 11 Setup for the fourth set of experiments (comparison to th&é K®thod).
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Fig. 12 Comparison with the (adapted) KST coalition formation aggh. “KST(learning)” is Myopic RL
having KST as its coalition formation component. Thaxis shows discounted average accumulated reward
gathered in 30 runs.

myopic method). As abovép negotiation steps are used to form coalitions, and we run the
process for 1000 RL stages (30 runs). Results are shown.idEiglearly, VPI (using BRE)

is the best method in this domain, achieving total discalimésvard close t&0% of the
maximum achievable by fully informed agents.. When agesésno learning, performance

is very poor: KST (no learning) achieves negligible rewadvtyopic RL seems to work
equally well whether a core-based (BRE) or kernel-basetiticwaformation is used (the
core-based approach does marginally, but not significaoiyer).
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7 Related Work

In this section we review some related work from both the Al game theory communities
and, where appropriate highlight, the differences fromveorrk.

Shehory and Kraus [51,52] develop coalition formation atgms which account for
the capabilities of agents. However, agents rely on inféionacommunicated to them by
their potential partners in order to form initial estimatéghe capabilities of others. Pay-
off allocation is addressed in [52], where they present tigorithms for self-interested
agents in non-superadditive environments. The algorittieas directly with expected pay-
off allocation, and the coalition formation mechanismsdisee based on the kernel stability
concept. Shehory, Sycara and Jha [53] also assume comrionitainform agents of the
capabilities of partners, and develop coalition formatidgorithms to achieve agent collab-
oration in the RETSINA framework, so that tasks of commoeri@st are executed success-
fully. This work focuses on serving the needs of the team, §&cial welfare) and does not
deal with payoff allocation issues.

Kraus, Shehory and Taase [33, 34] propose heuristic mefoodsalition formation in

a “Request for Proposal” domain, modeling a restricted fofigpalitional value uncertainty
(as opposed to agent type uncertainty). In the RFP domaémtagome together to perform
tasks comprised of subtasks, each to be performed by adfiffagent. The agents may not
know the value of a subtask to another agent or the cost obmeirig it, but they know
the overall payoff associated with performing a task andcpabilities of the other agents.
A kernel-based approach is combined with the use of “comjzesh for the payoff allo-
cation. Their focus is again social-welfare maximizatiather than individual rationality.
Furthermore, no learning is involved and repeated coalfitomation is not addressed.

Campos and Willmott [37] address iterative coalition fotima. They define “iterative
coalition games” in which different agents may posses®uifit abilities that will collec-
tively enable coalitions to complete a task that does natgbaver time. Agents are initially
assigned to coalitions randomly. They do not concern themsevith the payoff allocation
problem; instead, they use several pre-defined strategieshbosing coalition formation
moves, based essentially on whether their current coalgibwinning” over several rounds
of play. Those limitations make the approach basicallyistanhd there is no attempt to em-
ploy learning to facilitate coalition formation. By consta Abdallah and Lesser [1] utilize
reinforcement learning in their approach to “organizafi@sed coalition formation.” They
assume an underlying organization guides the coalitiandtion process, and Q-learning is
used to optimize the decisions of coalition managers, weessscommunication or action-
processing costs. However, agents are assumed to be ctipesad there is no attempt
to solve the payoff allocation problem. Furthermore, managre assumed to possess full
knowledge of their “child” agents’s capabilities.

Banerjee and Sen [4] address uncertainty regarding payaifembers entering a coali-
tion. The authors do not concern themselves with the progessalition formation itself
or payoff allocation, but rather address only with the peoblof “coalition selection”: an
agent has imperfect summary information of the anticipgiagbff for joining a coalition,
and has to choose one coalition over another after a fixed euoftallowed interactions
with them. This “summary information” is provided by a pafysfructure encoding in the
form of a multinomial distribution over possible payoffs foining the coalition. The pro-
posed mechanism for choosing a coalition makes use of thishiition, and also employs
an arbitration mechanism from voting theory to resolve. tieghe case of limited allowed
interactions, the proposed mechanism notably outperfarmaximization of expected util-



36

ity mechanism in terms of selecting the most beneficial coalitithe interactions allowed
are infinite, however, the former mechanism reduces to therla

Klusch and Gerber [32] design and implement a simulaticsetalynamic coalition for-
mation scheme which can be instantiated using differenjcational methods and negoti-
ation protocols. Their framework can be employed for thestigyment, implementation and
experimental evaluation of different coalition formatiand payoff allocation algorithms
(even fuzzy or stochastic coalition formation environnsgnSeveral different algorithms
for learning of optimal coalition coalitions using Bayesiand RL methods are explored as
well [27]. Blankenburg et al. [9] (as discussed in Sec. 2odtice the concept of the fuzzy
kernel to cope with uncertain coalition values in sequéntitateral coalition negotiations,
while Blankenburg and Klusch [8] propose a coalition forimatalgorithm in which agents
to negotiate (Shapley value) stable coalitions in uncergsivironments. Both approaches
are restricted to static, non-adaptive coalition formingincertain environments. Blanken-
burg et al. [7] have recently implemented a coalition folioraprocess that allows the agents
to progressively updateust values regarding others, by communicating their private es
mates regarding task costs and coalition valuations. Tkeyeacryption-based techniques
and develop a payment protocol that ensures agents havecietive to truthfully report
their valuations. However, the proposed mechanism ingobstensive inter-agent commu-
nication, and its effectiveness relies on computing opticaalition structures and kernel
stable solutions (both intensive computationally). Ouysrapch could incorporate theirs as
the internal coalition formation “stage” of the larger RLopess (though some extension
would be necessary to allow for the overlapping coalitigresrtmodel admits).

In contrast to some of the methods described above, ageats iinamework have the
ability not only to dynamically choose the tasks they wisltaickle, but also to choose the
proper way (action) to deal with them. The incorporationasiktexecution in our model can
be realized by simply viewing the tasks as requiring the @ispecific action sets. Tasks can
be thought of as defining a relevant action set at a specifie sththe RL process, specif-
ically, triggering the existence of those actions that ddug used to accomplish the task
in question. Therefore, we can abstract away tasks, foldiam into the the specification
of action sets. Finally, we note that our approach can be tesedable agents to form the
most suitable coalitions for a new problem “online” in thexse that knowledge acquired
during execution of one task can be readily “transferredrtother as shown in the previous
section. Thus, the agents do not require experience witlwgonablem before deciding on
ways to attack it.

8 Conclusions

We have proposed a Bayesian multiagent reinforcementifgaframework for (repeated)
coalition formation under type uncertainty. The frameweriables the agents to improve
their ability to form useful coalitions through the expece gained by repeated interac-
tion with others and observation of the effects of coaliioactions. Agents in our model
maintain and update beliefs about the types of others, aké sequentially rational deci-
sions that reflect their interests, accounting for both piisecoalition formation activities,
and the potential choice of actions by the coalitions they. jgve developed a POMDP
formulation that enables agents to assess the long-teme dlcoalition formation deci-
sions, accounting for: the value of potential collectivéi@ts, uncertainty regarding both
the types of others and the outcomes of coalitional actiand,the need to choose actions
and coalitions not only for their immediate value, but alsotheir value of information.
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Our RL framework is generic, allowing the agents to dynattidarm coalitions, serve
tasks and transfer knowledge between them. Critically,fmmework enables the agents
to weigh their need to explore the abilities of their potehgiartners against their need to
exploit knowledge acquired so far. Specifically, coalitfparticipants are able to make in-
formed, sequentially rational decisions (regarding bbih hargaining and the coalitional
actions to take, and taking into account the value of infaiomaof the various actions),
balancing exploration of actions with exploitation of kredge in repeated coalition for-
mation scenarios. Our framework can in principle accomrteday underlying negotiation
process, and is not tightly bound to any specific cooperatiation or equilibrium concept.

We developed and evaluated several RL algorithms, eachd asélifferent compu-
tational approximations or assumptions. Our experimeetsahstrate the effectiveness of
our Bayesian approach, and of the concrete RL algorithmdgrua variety of assumptions.
Our Bayesian VPI technique, in particular, proved to be vehust, outperforming other
methods consistently, and exhibiting very good computatiperformance. It works well
with both full negotiation and one-step proposals, unded@mns of high stochasticity, and
when the initial beliefs held by agents is poor or misleadifgrthermore, it supports the
effective transfer of knowledge among diverse tasks.

In future work, we intend to test our algorithms in open distred environments. More
specifically, experimenting in such environments with aatge variety of problem sizes,
and different degrees of accuracy of agents’s prior beitedd interest, as is experimenting
with multi-step lookahead methods.

We believe our framework and algorithms are well-suitecetdistic, complex task allo-
cation environments, such as environments requiring thadtion of coalitions to provide
services in the computational grid [40] under time consatsathat will not admit intensive
computation [51]. In these settings, we expect VPI to be teépred technique for several
reasons. Our lookahead approaches have intense compatatguirements and are not
well-suited to such settings. Furthermore, in a varietyetifisgs, priors may be uninfor-
mative and transition models may not be particularly disgrative (i.e., may not strongly
distinguish the types of team members). Our experimentwethdlyopic or MAP agents
to perform poorly in such situations. In contrast, VPI appda be far more robust, bal-
ancing value of information with immediate payoff. Consewly, we expect VPI to prove
to be superior in realistic, repeated coalition formationinments. Indeed, these ideas
were recently recast in a large computational trust setiyngeacy et al. [59], who report
very encouraging results when applying our method to théexfion-exploitation problem
faced by Bayesian agents that have to choose trusted infiormaroviders over time in a
sequentially optimal manner. A variant of our VPI algorithassuming a continuous type
space, was shown there to dramatically outperform all Bt&ln the 2006 and 2007 Inter-
national Agent Reputation and Trust Competition [26]. Tleiperiments, involving up to
60 agents, showed VPI to operate in near-linear time.

To handle large-scale problems, another interesting titireds the extension of our
model to include reasoning about the cost of computatiopdf@as part of the inferential
process. An agent using an approximate method for inferemgat specify the cost of
improving that approximation by using more computatione omputation thus would
have a value, arising as the expected gains or losses iddoyrigs use.

Theoretical directions include extending the model toudel simultaneous learning of
types and transition/reward models. Despite its intrakitalin general, we are also inter-
ested in developing a full Bayesian extensive form game édation of the repeated coali-
tion problem for specific forms of coalitional bargainingiadyzing its equilibria—at least
in certain simple cases—and developing practical comjouiaitapproximations.
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A Appendix: Experimental Parameters from Sec. 6.1

a: “action”; s: “state”; ¢ : quality points;«: any;
N: number of coalition members

penalty = N % 0.1 : penalty to discourage employing “cheap” workers
N number of different “major” types present in coalition
S P: small profit state;

AP: average profit state;

LP: large profit state

BF'S: bid for small project action;

BF A: bid for average project action;

BF L: bid for large project action

Table 5 Symbols used in tables describing transition functionsttfe first experimental setting in Section 6).

Agent Type quality points
expert interface designe
good programmer
expert systems engineer
bad programmer

bad systems engineer

Bl WIN| RO
O] O NN N

Table 6 Participants in the five-agent experiments.
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Agent Type quality points
expert interface designe
good programmer
expert systems enginee
bad programmer
bad systems engineer
bad interface designer
average interface design€
average programmer
average systems enginegr

bad programmer

=

O 00| N O] U | W[ N | O
O | R | O[O O| N N N

Table 7 Participants in the ten-agent experiments.

1-member coal. Pr(LP\a =%,q)=0
Pr(AP|a = BFS q) = q+*0.02
Pr(AP|a = BFA,q) = ¢*0.01
Pr(APla = BFL,q) =0
Pr(SPla,q) =1 —Pr(AP|a,q)
2-member coal. if Ny < 2theng = /2
Pr(LP|a = *,q) =0
Pr(AP|a = BFS q) =q=*0.04
Pr(AP|la = BFA,q) = qx0.02
Pr(APla = BFL,q) =0
Pr(SPla,q) =1 —Pr(AP|a,q)
3-member coal. if Ny < 3then:if Ny = 1theng = ¢/3
if Ny = 2 thenq = q/2
Pr(LPla=*,q) =0
Pr(AP|a = BFS q) = ¢*0.06
Pr(AP|a = BFA ,q) = q*0.02
Pr AP|a = BFL,q) =q+*0.01
Pr

(
Pr(SPla,q) =1 — Pr(AP|a,q)
if Ny = 3then :Pr(LPla = BFS,q) = ¢*0.01
(LPla=BFA,q) =q=*0.04

Pr(LP|la = BFL,q) = q+0.05

Pr(5Pla,q) = (1 = Pr(LP|a,q))/(q + 1)

Pr(APla,q) =1 — Pr(LP|a,q) — Pr(SP|a,q)
4 or 5-member coal.if Ny < 3then:if Nyyr = 1theng = ¢/3

if N]WT =2 thenq = q/2

Pr(LP|a = *,q) =0

Pr(APla = BFS q) = ¢*0.03

Pr(AP|la = BFA,q) = ¢*0.05

Pr(AP|a = BFL,q) = q % 0.03

Pr(SPla,q) =1 —Pr(AP|a,q)
if Nysr = 3 then :Pr(LP|a = BFS,q) = q+0.01
(
(
(
(

Pr LP\a—BFA q) =q=*0.04
Pr(LPla = BFL,q) =q=*0.05
Pr(SPla,q) = (1 - Pr(LPla,q)/(q + 1)
Pr(AP|a,q) =1 — Pr(LP|a,q) — Pr(SP|a,q)

Table 8 Outcome transition function for 5-agent environments {ferfirst experimental setting in Section 6).
In all casesPr(SP|a, q), Pr(AP|a,q) andPr(LP|a, q) are eventually normalized in order to sum to one.
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1 or 2-member coal. As in a 5-agent environment
3-member coal. if Ny < 3then:if Ny = 1theng = ¢/3
if Ny = 2thenq = q/2
Pr(LPla = *,q) =0
Pr(AP|a = BF'S,q) = q*0.06
Pr(AP|a = BFA,q) = ¢*0.02
Pr(AP|a = BFL,q) = q0.01
Pr(SP|a,q) =1 —Pr(AP|a,q)
if Ny = 3then :Pr(LPla = BFS,q) = ¢q*0.01
Pr(LP|a = BFA,q) = q*0.04
Pr(LPla = BFL,q) = q+*0.05
Pr(SPla,q) = (1 — Pr(LPla,q))/(q + 1) + penalty
Pr(APla,q) =1 — Pr(LPla,q) — Pr(SP|a,q)
4,5,6 or 7-member coalif Ny, < 3then :if Ny = 1theng = ¢/3
if Nyyr = 2theng = q/2
Pr(LPla = #*,q) =0
Pr(AP|a = BFS,q) = ¢*0.03
Pr(AP|la = BFA,q) = ¢*0.05
Pr(AP|a = BFL,q) = q*0.03
Pr(SP|a,q) =1 —Pr(APla,q)
if Ny = 3 then :Pr(LPJa = BFS, q) = ¢ 0.01
Pr(LPla = BFA,q) = q=*0.04
Pr(LP|a = BFL,q) = q*0.05
Pr(SPla,q) = (1 — Pr(LP|a,q))/(qg+ 1) + penalty
Pr(AP|a,q) =1 — Pr(LP|a,q) — Pr(SP|a,q)
8,9 or 10-member coal.if Ny, < 3then :if Ny = 1theng = ¢/3
if Ny = 2thenq = q/2
Pr(LPla = *,q) =0
Pr(AP|a = BF'S,q) = ¢*0.035
Pr(AP|a = BFA,q) = ¢*0.05
Pr(AP|a = BFL,q) = q*0.04
Pr(SP|a,q) =1 —Pr(AP|a,q)
if Ny = 3then :Pr(LPla = BFS,q) = q*0.01
Pr(LP|a = BFA,q) = q*0.04
Pr(LP|a = BFL,q) = q *0.05
Pr(SPla,q) = (1 — Pr(LP|a,q))/(qg + 1) + penalty
Pr(AP|a,q) =1 — Pr(LPla,q) — Pr(SP|a,q)

Table 9 Outcome transition function for 10-agent environments {fe first experimental setting in Sec-
tion 6). In all casesPr(SP|a, g), Pr(AP|a, q) andPr(LP|a, g) are eventually normalized in order to sum
to one.



