
Computing Optimal Subsets∗

Maxim Binshtok
Dept of Comp. Sci.

Ben-Gurion University
maximbi@cs.bgu.ac.il

Ronen I. Brafman
Dept of Comp. Sci.

Ben-Gurion University
brafman@cs.bgu.ac.il

Solomon E. Shimony
Dept of Comp. Sci.

Ben-Gurion University
shimony@cs.bgu.ac.il

Ajay Martin
Dept of Comp. Sci.
Stanford University

ajaym@cs.stanford.edu

Craig Boutilier
Dept of Comp. Sci.

University of Toronoto
cebly@cs.toronto.edu

Abstract

Various tasks in decision making and decision support require
selecting a preferred subset of items from a given set of fea-
sible items. Recent work in this area considered methods for
specifying such preferences based on the attribute values of
individual elements within the set. Of these, the approach
of (Brafman et al. 2006) appears to be the most general. In
this paper, we consider the problem of computing an optimal
subset given such a specification. The problem is shown to
be NP-hard in the general case, necessitating heuristic search
methods. We consider two algorithm classes for this problem:
direct set construction, and implicit enumeration as solutions
to appropriate CSPs. New algorithms are presented in each
class and compared empirically against previous results.

Introduction
Work on reasoning with preferences focuses mostly on the
task of recognizing preferred elements within a given set.
However, recent work has begun to consider the problem of
selecting an optimal subset of elements. Optimal subset se-
lection is an important problem with many applications: the
choice of feature subsets in machine learning, selection of a
preferred bundle of goods (as in, e.g., a home entertainment
system), finding the best set of items to display on the user’s
screen, selecting the best set of articles for a newspaper or
the best members for a committee, etc. Of particular inter-
est is the case where the candidate items have attributes, and
their desirability depends on the value of their attributes.

Optimal subset selection poses a serious computational
challenge: the number of subsets is exponential in the size of
the domain, and so the number of possible orderings is dou-
bly exponential. This combinatorial explosion is problem-
atic both for the preference elicitation task and for the task
of optimal subset selection given some specification. Exist-
ing approaches attempt to overcome this by consider prop-
erties of subsets. (desJardins & Wagstaff 2005) offer a for-
malism for preference specification in which users can spec-

∗Brafman and Martin were supported in part by NSF grant
IIS-0534662, Binshtok, Brafmam and Shimony were supported by
Deutsche Telekom Laboratories at Ben-Gurion University, by the
Paul Ivanier Center for Robotics Research and Production Manage-
ment, and by the Lynn and William Frankel Center for Computer
Science.
Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ify their preferences about the set of values each attribute
attains within the selected set of items, asserting whether
it should be diverse or concentrated around some particular
value. (desJardins & Wagstaff 2005) also suggests a heuris-
tic search algorithm for finding good sets.

(Brafman et al. 2006) present a more general two tiered
approach for set preferences. This approach consists of a
language for specifying certain types of set properties com-
bined with an arbitrary preference specification language
(for single elements). The basic idea is that each set is now
associated with particular property values, and sets are or-
dered based on these values. This approach is intuitive and
quite powerful. It generalizes the approach of (desJardins
& Wagstaff 2005) because diversity and specificity are just
two set properties that it can capture. More general prop-
erties that consider multiple attributes can be expressed, as
well as more general conditional preferences over the values
of these properties.

Essentially, (Brafman et al. 2006) reduce the problem of
specifying preferences over sets to that of specifying prefer-
ences over single items. Now, the items are the possible sets
and their attributes are their (user-defined) set-property val-
ues. Thus, in principle, this approach allows us to re-use any
algorithm for computing preferences over single items. In-
deed, (Brafman et al. 2006) consider the case where prefer-
ence specification is based on TCP-nets (Brafman, Domsh-
lak, & Shimony 2006) and adapt existing algorithms for
computing optimal elements in TCP-nets to the problem of
computing an optimal subset. Of course, the main problem
is that the number of “items” is very large. Thus, the set se-
lection algorithm must utilize the special structure of these
“items”. (Brafman et al. 2006) does this, to a certain extent,
but much can be done to improve their algorithm.

This paper takes a closer look at the problem of comput-
ing an optimal subset given a preference specification. We
consider two classes of algorithms: search over property val-
ues and search over sets. The first extends and improves
the algorithm of (Brafman et al. 2006) by better exploit-
ing properties of the special search space used. The second,
and quite different, approach explicitly performs branch and
bound search over the space of sets. We formulate these al-
gorithms in quite a general way, showing how they could
be used with an arbitrary preference specification. Then, we
proceed to compare their performance empirically.

In the next section we describe the property-based ap-

proach to set preference specification. Then, we describe
the two algorithmic approaches to optimal subset selection
as well as some complexity results. Finally, the algorithms
are evaluated empirically.

Specifying Set Preferences
Our discussion here follows (Brafman et al. 2006).
Item Properties. The formalism we use for set-preference
specification makes one fundamental assumption: the items
from which sets are built are associated with attributes, and
the values of these attributes are what distinguish different
elements. We shall use O to denote the set of individual
items, and X to denote the set of attributes of these ele-
ments. For example, imagine that the “items” in question
are US senate members, and the attributes and their values
are: Party affiliation (Republican, Democrat), Views (lib-
eral, conservative, ultra conservative), and Experience (ex-
perienced, inexperienced).

Given the set X of attributes, we can talk about primitive
item properties. For example: “Senate members with liberal
views.” Or, we can talk about more general item proper-
ties: “inexperienced, conservative senate members.” More
formally, define:

X = {X = x | X ∈ X , x ∈ Dom(X)}

Let LX be the propositional language defined over X with
the usual logical operators. LX provides us with a language
for describing properties of individual elements. Since ob-
jects in O can be viewed as models of LX , we can write
o |= ϕ whenever o ∈ O and o is an item that satisfies the
property ϕ ∈ LX .
Set Properties. We can define set properties based on prop-
erties of items in a set. For example: the property of having
at least two Democrats, or having more Democrats than Re-
publicans. More generally, given any item propertyϕ ∈ LX ,
we can talk about the number of items in a set that have
property ϕ, which we denote by |ϕ|(S), i.e., |ϕ|(S) = |{o ∈
S|o |= ϕ}|. Often the set S is implicitly defined, and we
simply write |ϕ|. Thus, |Experience=experienced|(S) is the
number of experienced members in S. Often, we simply
abbreviate this as |experienced|.
|ϕ|(·) is an integer-valued property of sets. We can

also specify boolean set properties as follows: 〈|ϕ| REL k〉,
where ϕ ∈ LX , REL is a relational operator over integers,
and k ∈ Z∗ is a non-negative integer. This property is sat-
isfied by a set S if |{o ∈ S|o |= ϕ}| REL k. In our running
example we use the following three set properties:

P1 : 〈|Republican ∨ conservative| ≥ 2〉
P2 : 〈|experienced| ≥ 2〉
P3 : 〈|liberal| ≥ 1〉
P1 is satisfied by sets with at least two members that are
either Republican or conservative. P2 is satisfied by sets
with at least 2 experienced members. P3 is satisfied by sets
with at least one liberal.

We can also write 〈|ϕ| REL |ψ|〉, with a similar interpre-
tation. For example, 〈|Republican| > |Democrat|〉 holds for
sets containing more Republicans than Democrats. An even

more general language could include arithmetic operators
(e.g., require twice as many Republicans as Democrats) and
aggregate functions (e.g., avg. number of years on the job).
We do not pursue such extensions here, but they make little
fundamental impact on our algorithms.
Set Preferences. Once we have set properties, we can
define preferences over their values using any preference
specification formalism. Here we will discuss two spe-
cific formalisms: TCP-nets (Brafman, Domshlak, & Shi-
mony 2006), an extension of CP-nets (Boutilier et al. 2004),
and Generalized Adaptively Independent (GAI)-utility func-
tions (Bacchus & Grove 1995; Fishburn 1969). The former
is a qualitative preference specification, yielding a partial or-
der. The latter is a quantitative specification, which can rep-
resent any utility function.

Let P = P1, . . . , Pk be some collection of set properties.
A TCP-net over P depicts statements of the following type:
Conditional Value Preference Statements. “If Pi1 = pi1∧
· · ·∧Pij

= pij
then Pl = pl is preferred to Pl = p′l.” That is,

when Pi1 , . . . , Pij have a certain value, we prefer one value
for Pl over another value for Pl.
Relative Importance Statements. “If Pi1 = pi1 ∧ · · · ∧
Pij

= pij
then Pl is more important than Pm.” That is,

when Pi1 , . . . , Pij have a certain value, we prefer a better
value for Pl even if we have to compromise on the value of
Pm.

Each such statement allows us to compare between certain
pairs of elements (sets in our case) as follows:

• The statement “If Pi1 = pi1∧· · ·∧Pij
= pij

then Pl = pl

is preferred to Pl = p′l” implies that given any two sets
S, S′ for which (1) Pi1 = pi1 ∧ · · · ∧Pij = pij holds. (2)
S satisfies Pl = pl and S′ satisfies Pl = p′l. (3) S and S′

have identical values on all attributes except Pi. We have
that S is preferred to S′.

• The statement “If Pi1 = pi1 ∧ · · · ∧ Pij = pij then Pl

is more important than Pm” implies that given any two
sets S, S′ for which (1) Pi1 = pi1 ∧· · ·∧Pij = pij holds.
(2) S has a more preferred value for Pl. (3) S and S′ have
identical values on all attributes except Pl and Pm. We
have that S is preferred to S′. (Notice, that we do not care
about the value of Pm if Pl is improved.)

We refer the reader to (Brafman, Domshlak, & Shimony
2006) for more details on TCP-nets, their graphical struc-
ture, their consistency, etc. The algorithms in this paper,
when used with TCP-nets, assume an acyclic TCP-net. This
ensures its consistency, and ensures the existence of certain
“good” orderings of P .

As an example, consider the following preferences of the
president for forming a committee. He prefers at least two
members that are either Republican or conservative, i.e., he
prefers P1 to P̄1 unconditionally. (Depending on context, P
is used to denote both the property P and the value P =true.
We use P̄ to denote P =false.) If P1 holds, he prefers P2

over P̄2 (i.e., at least two experienced members), so that
the committee recommendations carry more weight. If P̄1

holds, he prefers P̄2 to P2 (i.e., all but one are inexperi-
enced) so that it would be easier to influence their decision.
The president unconditionally prefers to have at least one

liberal, i.e., he prefers P3 to P̄3, so as to give the appearance
of balance. However, P3 is less important than both P1 and
P2. There is an additional external constraint (or possibly
preference) that the total number of members be 3.

GAI value functions map the elements of interest into
real-value functions of the following form: U(S) =∑

i=1,...,n Ui(Pi(S)), where Pi ⊂ P is some subset of
properties. For example, the President’s preferences imply
the following GAI structure: U(S) = U1(P1(S), P2(S)) +
U2(P3(S)) because the President’s conditional preferences
over P2’s value tie P1 and P2 together, but are indepen-
dent of P3’s value. U1 would capture the weight of this
conditional preference, combined with the absolute pref-
erence for P1’s value. U2 would represent the value of
property P3. We might quantify these preferences as fol-
lows: U1(P1, P2) = 10, U1(P1, P̄2) = 8, U1(P̄1, P2) = 2,
U1(P̄1, P̄2) = 5; while U3(P3) = 1, U3(P̄3) = 0. Of
course, many other quantifications are possible.

Finding an Optimal Subset
In this section we consider two classes of algorithms for
finding an optimal subsets which differ in the space in which
they search. In the next section, we compare them empiri-
cally. We assume we are given a preference specification
and a set S of available items. Our goal is to find a subset
of S that is optimal with respect to the preference specifi-
cation. That is, a set Sopt ⊆ S such that for any other set
S′ ⊆ S, we have that the properties Sopt satisfies are no less
desirable than the properties S′ satisfies. For our running
example we use the following set of candidates:

o1 Republican conservative inexperienced
o2 Republican u. conservative experienced
o3 Democrat conservative experienced
o4 Democrat liberal experienced

Searching over CSPs
Here is a conceptually simple way of computing an optimal
subset, pursued in (Brafman et al. 2006): (1) Generate all
possible combinations of set-property values in some order.
(2) For each such combination of properties, search for a set
that satisfies these properties. (3) Output a set satisfying the
best set of satisfiable properties found.

To make this approach efficient, we have to do two
things: (1) Find a way to prune many property combinations
as sub-optimal. (2) Given a set of properties, quickly
determine whether a set satisfying these properties exists.

Searching over Property Combinations. For the first task
consider the following approach: order set properties in
some manner. Given an ordering P1, . . . , Pk, incrementally
generate a tree of property combinations. The root node con-
tains an empty set of properties. For each node n with prop-
erty values P1 = p1, . . . , Pj = pj , and for every possible
value pj+1 of property Pj+1, add the node corresponding to
P1 = p1, . . . , Pj = pj , Pj+1 = pj+1 as n’s child. Leaf
nodes in this tree assign a value to each set property in P .
Each node in this tree is also implicitly associated with a
(possibly empty) set of subsets – those subsets that have the

property values assigned to this node. Such a tree for our
example appears in Figure 1.

∅

$$IIIII

zzuuuuu

P1

��zzuuuu
P̄1

��))TTTTTTTTTT

P1P2

}}zzz
z

��

P1P̄2

�� $$III
I P̄1P̄2

$$III
I

��

P̄1P2

$$III
I

��
P1P2P3 P1P2P̄3 P1P̄2P3 P1P̄2P̄3 P̄1P̄2P3 P̄1P̄2P̄3 P̄1P2P3 P̄1P2P̄3

Figure 1: A Search Tree
In our search for an optimal set, we will expand this tree

of set property-combinations, but we would like to expand as
few nodes of it as possible by pruning certain property com-
binations as sub-optimal or unsatisfiable. A standard way to
do this is using branch&bound search. This requires that we
be able to associate an upper and a lower bound on the value
of the best subset of each combination of properties.

B&B can be implemented in various ways, e.g., using
best-first search or depth-first search. In all cases, the or-
der we associate with properties and their values affects our
ability to prune nodes throughout the search process. To get
the most leverage out of our bounds, we would like to order
the children of a node that correspond to a more valuable
property value, earlier. Moreover, when we order the prop-
erties themselves, we want properties that can potentially
contribute more to appear earlier in this ordering. In our
running example, P1’s value has greater influence than P2’s
value, so P1 is assigned first. For P1, true is a better value.
For P2, true is a better value when P1 is true, and false is a
better value otherwise. This is reflected in the tree above.
Finding Sets that Satisfy a Collection of Properties. Con-
sider some collection of set-property values. To see if there
is a subset of available items that satisfies these properties,
we set up the following CSP. The CSP has a boolean vari-
able for every available item. Intuitively, a value of 1 means
that the item appears in our set, and a value of 0 indicates
that it does not appear in our set. In our example, we use
x1, . . . , x4 for o1, . . . , o4 respectively. Next, we translate
every set property value into a constraint on these variables.
For P1 we have: C1 : x1 + x2 + x3 ≥ 2 expressing the
fact that we want at least two of the elements that satisfy
Republican ∨ conservative, because o1, o2, o3 are all can-
didates that are either Republican or conservative. For P̄1

we have C̄1 : x1 + x2 + x3 < 2. For P2 we would have
C2 : x2 + x3 + x4 ≥ 2 because o2, o3, o4 are the experi-
enced members. For P3 we would have C3 : x4 ≥ 1. Thus,
every collection of set-property values corresponds to a CSP
that is solvable IFF our database of items contains a subset
with these properties. Moreover, the solution of this CSP
provides us with such a set.

Because collections of set properties map to CSPs, each
node in our tree of set-property collections maps to a CSP,
and the entire tree can be viewed as a tree of CSPs. The im-
portant property of the tree-of-CSPs is that the children of
each CSP node are CSPs obtained by adding one additional
constraint to the parent CSP – a constraint corresponding to
the additional property value that we want the set to satisfy.
This implies that if some node in this tree is unsatisfiable,

Algorithm 1 B&B over CSPs
1: Fix an ordering over properties P
2: Fix an ordering over the values of each property
3: Fix an ordering over all available items
4: Q← {Node(∅, ∅, 0,∞)};
5: Best← ∅
6: while Q is not empty do
7: N = Pop(Q);
8: CSP(N);
9: if N .Solution is not false & N .Upper > Value(Best) then

10: if Value (N .Solution) > Value(Best) then
11: Best← N .Solution;
12: Let P be the next set property unassigned in N ;
13: for each possible value p of P do
14: Create a new node N ′ that extends N.assigned with

P = p;
15: N ′.solution← N.solution
16: Insert N ′ into Q //Its position depends on search strat-

egy used
17: Return Best;
Function CSP(node N)
1: Generate set constraints from N.assigned
2: Let x1, . . . xm be boolean variables, one for every available

item;
3: xi is initialized to true IFF item i is in N.solution
4: Continue depth-first traversal over possible assignments to the

xis. (We used fixed variable ordering, forward pruning, and a
form of bounds consistency for cardinality constraints).

5: if solution not found then
6: Node.solution = false
7: else Node.solution = solution
8: Node.lower = Value(Node.solution)
9: Node.upper = upper-bound estimate

then all of its descendants are unsatisfiable. (Brafman et al.
2006) use this to prune the search tree. We make stronger
use of the nature of this search tree, recognizing that we can
reuse the work done on a parent node to speed up the solu-
tion of its children.

To see this, consider some CSP C in our Tree-of-CSPs.
Let set S be some solution to this CSP, and consider C ′, a
child CSP of C. C ′ extends C with another constraint c.
Thus, any set S′ that we ruled-out in our solution for C,
can be ruled out in our solution for C ′. If C and C ′ con-
sider sets in the same order (e.g., by using the same property
and property-value ordering), then when we solve C ′, we
can start from the leaf node corresponding to S, the solution
generated for C. Moreover, when c represents a boolean
property then if S is not a solution to C ′ = C ∪ c, it must be
a solution to C ∪¬c, which is the sibling of C ′. Using these
ideas, we share the work done on different CSPs nodes of
the Tree-of-CSPs. In fact when all set properties are boolean
this approach needs to backtrack over each property at most
once. This considerably improves the performance of the
algorithm with respect to (Brafman et al. 2006).

The algorithm’s pseudo-code appears above. It is formu-
lated for the quantitative case (the qualitative case is essen-
tially the same, but there are minor differences and space
constraints limit our ability to discuss them). The node data
structure has four attributes: assigned is a list of assigned
property values; solution is a set with these properties or the

value false; lower and upper are its associated lower and up-
per bounds. The function Value(S) returns the value of a
set S. In the pseudo-code we assume a fixed ordering over
values (Line 2), but one can vary it depending on earlier val-
ues (as we do in our implementation). Finally, we have not
specified the particular search strategy used by B&B, which
depends on the insertion order in Line 16.

Consider our running example. Recall that we also have
a constraint that the set size is 3, which translates into C :
x1 + x2 + x3 + x4 = 3. The first CSP we consider has
{C,C1} as its only constraints. Assume the CSP variables
are ordered x1, x2, x3, x4, with value 1 preceding 0. In that
case, the first solution we will find is s1 : x1 = 1, x2 =
1, x3 = 1, x4 = 0. Our next CSP adds the constraint C2.
When we solve it, we continue to search (using the same
order on the xi’s and their values) from the current solution
s1, which turns out to satisfy C2 as well. Thus, virtually no
effort is required for this CSP. Next, we want to satisfy C3.
This corresponds to a leaf node in the tree-of-CSPs which
corresponds to the complete assignment P1P2P3 to the set
properties. Our current item set does not have a liberal, so
we have to continue to the assignment s2 : x1 = 1, x2 =
0, x3 = 1, x4 = 1 (requiring us to backtrack in the CSP-
solution space over the assignments to x4, x3, and x2). We
now have a set that satisfies the properties in the leftmost leaf
node in our tree-of-CSPs. If we can prove that this property
combination is optimal using our upper/lower bounds, we
are done. Otherwise, we need to explore additional nodes in
our tree-of-CSPs. In that case, the next CSP we would visit
corresponds to P1, P2, P̄3, with constraints {C,C1, C2, C̄3}.
But, we already have a solution to this node: s1. s1 was
a solution to the parent of our current CSP, but it was not
a solution to its sibling {C,C1, C2, C3}, so it must satisfy
{C,C1, C2, C̄3}.

Searching in Sets Space
In the Tree-of-CSP approach, each node searches implicitly
over a space of sets (i.e., the possible solutions to each CSP).
When we examine CSPs generated along a path in the Tree-
of-CSPs, we see that a set will never be generated twice in
our algorithm. However, different path within the Tree-of-
CSPs will consider overlapping item sets. Why not simply
go over the possible sets, generating each set once, and find
the optimal set directly. This is precisely the idea behind the
Branch&Bound in Set-Space algorithm.

At each stage the algorithm maintains a queue of sets. For
each set, it maintains an upper and a lower bound on the
maximal value of all sets that extend that set. It selects the
first set S in the queue, whose lower and upper bounds are
denoted L and U , respectively. Next, it removes all sets
whose upper bound ≤ L and it adds all children of S into
the queue. The children of a set are all sets that extend it
with a single element. The pseudo-code is described below.

Different implementations of the algorithm differ in how
they sort the queue. The best-first version sorts the queue
according to a heuristic value of the set – we use the upper
bound. The depth-first version always positions the children
of the newly expanded node at the front of the queue. We
implemented and tested both versions.

Algorithm 2 B&B in the Space of Sets
1: Q← {∅}
2: Best← ∅
3: while Q contains an item S s.t.

Upper-Bound (S) > Value(Best) do
4: S ← element of Q with best upper bound.
5: Insert all sets that extend S with one element into Q.
6: if S′ is a new set in Q such that V alue(S′) > Value(Best)

then
7: Best← S′

8: Remove from Q any set S s.t.
Lower-Bound(Best) > Upper-Bound S

9: Return Best

The method used to generate bounds for a set S must de-
pend on the actual preference representation formalism and
the idea is more natural given a quantitative utility function.
For a lower bound we use the value of S. For an upper
bound, we proceed as follows: First, we consider which set-
property values are consistent with S. That is, for each set-
property, we examine what values S and any of its subsets
can potentially have. For example, consider P2 and suppose
S contains a single experienced member. So currently, P̄2

holds. However, we can satisfy P2 if we add one more expe-
rienced member. Thus, both values of P2 are consistent with
S. However, if we had two experienced members in S then
P̄2 is inconsistent with S because no matter who we add to
S, we can never satisfy P̄2. Next, given the set of possible
values for each set-property w.r.t. set S, we can bound the
value of S and its supersets by maximizing values locally. In
a GAI utility function, we can look at each local function Ui,
and consider which assignment to it, from among the con-
sistent values, would maximize its values. This is an over-
estimate, since we don’t know whether these joint assign-
ments are consistent. Similar ideas can be used with other
quantitative representations, as in various soft-constraint for-
malisms (Bistarelli et al. 1999).

Consider our running example with the GAI utility func-
tion given earlier with search based on DFS B&B and items
ordered o1, o2, o3, o4. We start with the empty set. Its
property values are P̄1, P̄2, P̄3. Thus, the lower bound,
which is the value of the empty-set, is 5. For the upper-
bound, we consider the best properties that are individu-
ally consistent with the current set, which are P1, P2, P3,
and their value is 11. Best is also initialized to the empty
set. Next, we generate all of the children of the current
node, which are all singleton sets: {o1}, {o2}, {o3}, {o4}.
They all have lower and upper bounds identical to the empty
set, and are inserted into the queue. Suppose {o1} is the
first queue element, and we select it for expansion. We
now get {o1, o2}, {o1, o3}, {o1, o4}. Their lower and upper
bounds are (8, 11), (8, 11), (6, 11), respectively. We’ve also
updated Best to be {o1, o2}. We use DFS B&B, so we in-
sert them in the front of the queue, and proceed to expand
{o1, o2}, obtaining {o1, o2, o3}, {o1, o2, o4} with lower and
upper bounds (10, 11) and (11, 11). With a lower bound of
11 for {o1, o2, o4} we can prune all nodes currently in the
queue, and we are done.

An important issue for DFS B&B is the order by which

sets are generated. In our implementation, an item is or-
dered based on its weight, which is a sum of the utility of
the properties it can help satisfy. For example, a conserva-
tive member such as o1 could help us satisfy P1.

Qualitative preferences typically induce a partial ordering
over property collections. In this case, it is harder to generate
strict upper and lower bounds – as they must be comparable
to any possible solution. One way to handle this is to lin-
earize the ordering and require the stronger property of opti-
mality w.r.t. the resulting total order. Here, TCP-nets present
themselves as a good choice for two reasons. First, there is
an efficient and simple way of generating a utility function
consistent with a TCP-net. This utility function retains the
structure of the original network which is important to make
the bound computations efficient (i.e., each Ui depends on a
small number of property values). Second, we can actually
work with TCP-nets directly. Given a node n, we can gen-
erate a lower bound L and an upper bound U such that any
leaf node in n’s sub-tree is comparable to L and U , and use
the algorithm exactly as in the case of GAI utility functions.
We discus the specifics for TCP-nets in more detail in the
full version of this paper.

Complexity
We presented two algorithms for computing an optimal sub-
set. This begs the question of whether the problem itself is
hard. With external constraints, the subset optimization is
obviously NP-hard. Nevertheless, even without the external
constraints, the problem remains NP-hard, even with some
further restrictions of the problem.

Theorem 1 Given TCP preferences, the subset optimization
problem is NP-hard, even if all item attributes are binary.

Proof outline: by reduction from vertex cover, where each
item is mapped to a graph vertex, and edges are non-zero
attribute values.

Theorem 2 Given TCP preferences, the subset optimization
problem is NP-hard, even if the number of item attributes is
bounded by a constant, and where all the properties are fully
preferentially independent.

Proof outline: by reduction from 3µ3-SAT (i.e. 3-SAT prob-
lems where each variable appears at most 3 times). Reduces
to subset optimization where the items have 4 attributes, and
no preferential dependency between properties.

Experimental Results
We evaluate the different algorithms using the movie data-
set used by (Brafman et al. 2006) (from imdb.com).
Experiments were conducted using Pentium 3.4 GHz pro-
cessor with 2GB memory running Java - 1.5 under Win-
dows XP. Initial experiments quickly show that B&B in Set
Space does not scale up. With just over 20 elements, it did
not converge to an optimal solution within an hour even
when the preference specification involved only 5 proper-
ties. This was true for both qualitative and quantitative pref-
erence specifications, for depth-first B&B, best-First B&B,

and queue elements ordered based on upper-bound, lower-
bound, and weighted combinations of them. Here is a sam-
ple of these results for preferences over nine set properties
with qualitative preferences (i.e., TCP-based):

Items Method Sets Generated Sets Until Best Time (sec)
8 BFS 4075 18 0.56
8 DFS 630 83 0.19
10 BFS 15048 40 2.34
10 DFS 2935 672 0.47
15 BFS 104504 7879 68.23
15 DFS 30547 11434 3.13
20 BFS 486079 28407 1584.67
20 DFS 231616 28407 28.578

Table 1: B&B in Sets Space

DFS is much better than BFS, but the branching factor
of larger databases overwhelms this approach. Various im-
provements may be possible, but given the much better per-
formance of the other approach, they are unlikely to make
a difference. It may be thought that with larger databases,
it will be easy to quickly generate really good sets, but we
found that for moderately larger (e.g,. 25+) and much larger
(e.g., 3000) databases, this approach is too slow.

Next, we compared our improved B&B over CSPs (de-
noted CSP B&B+ below) with (Brafman et al. 2006) (de-
noted BDSS06) on the (qualitative) dataset used in (Brafman
et al. 2006) which includes two preference specifications
with 5 and 14 variables – and 4 database sizes. We added
another specification based on 9 properties, and one more 14
variable-based specification (14-2) designed intentionally to
cause many backtracks in the space of set-property assign-
ments. “–” indicates that the run did not complete within
four hours. Results below report time in seconds.

Properties Method 400 1000 1600 3200
5 BDSS06 0.3 0.77 1.30 4.02
5 B&B+ 0.13 0.14 0.17 0.25
9 BDSS06 0.43 1.42 2.42 6.58
9 B&B+ 0.12 0.14 0.17 0.23
14-1 BDSS06 0.66 2.03 4.69 14.92
14-1 B&B+ 0.16 0.19 0.27 0.34
14-2 BDSS06 4113.48 – – –
14-2 B&B+ 29.80 4352.30 16643 –

Table 2: Search over CSPs: New vs. Old Algorithm with
Qualitative Preferences

We conclude that Search-over-Sets, at least in its current
form, cannot escape the effect of the large branching fac-
tor, while the improved Search-over-CSPs shows much bet-
ter potential. When we can find the optimal solution with
little backtrack in the space of CSPs, it is very effective for
both qualitative and quantitative preferences. When we need
to explore many different CSPs, performance degrades. On
larger databases, such backtracks often indicate an inherent
conflict between desirable properties that could be recog-
nized and resolved off-line. Sharing information between
the solutions of different CSPs might also help.

Next, we tested the B&B over CSPs algorithm with the
GAI utility function. Preferences were obtained by quan-
tifying the qualitative preferences used for the earlier tests.

The results are quite different. With 5 and 9 set properties,
the algorithm performs well. But with 14 set properties, per-
formance degrades significantly.

400 1000 1800 3200
5 0.24 0.14 0.17 0.26
9 0.16 0.25 0.28 0.41

14 38.91 2376.40 – –

Table 3: Search over CSPs: GAI Utility Functions

There are a number of reasons for this difference in per-
formance. First, qualitative preferences can admit more than
one optimal (non-dominated) solution, and so one such so-
lution may be easier to find. Second, for TCP-based pref-
erences there are variable orderings that ensure that the first
solution found will be an optimal one. For GAI utilities,
typically, after we generate the best solution we still have to
explore the tree in order to prove that no better solution ex-
ists. Finally, solutions to intermediate nodes in the space of
set-property assignments which provide important guidance
for search in the qualitative case provide much less informa-
tion in the quantitative case.

Conclusion
We considered the problem of computing an optimal sub-
set given a preference specification based on the methodol-
ogy of (Brafman et al. 2006). Our main contributions are a
considerably improved search-over-CSPs algorithm, a new
search-over-sets algorithm, more uniform and general treat-
ment of different types of preference models, and hardness
proofs for TCP preferences. Additionally, we provide an
empirical analysis that illuminates the possibilities and pit-
falls for both qualitative and quantitative preferences; show-
ing what can be done efficiently today, and where we would
benefit from additional exploitation of the special properties
of this search problem.

References
Bacchus, F., and Grove, A. 1995. Graphical models for
preference and utility. In UAI’95, 3–10. San Francisco,
CA: Morgan Kaufmann Publishers.
Bistarelli, S.; Fargier, H.; Montanari, U.; Rossi, F.; Schiex,
T.; and Verfaillie, G. 1999. Semiring-based CSPs and val-
ued CSPs: Frameworks, properties, and comparison. Con-
straints 4(3):275–316.
Boutilier, C.; Brafman, R.; Domshlak, C.; Hoos, H.; and
Poole, D. 2004. CP-nets: A tool for representing and rea-
soning about conditional ceteris paribus preference state-
ments. JAIR 21:135–191.
Brafman, R. I.; Domshlak, C.; Shimony, S. E.; and Silver,
Y. 2006. Preferences over sets. In AAAI.
Brafman, R. I.; Domshlak, C.; and Shimony, S. E. 2006.
On graphical modeling of preference and importance.
Journal of AI Research 25:389–424.
desJardins, M., and Wagstaff, K. L. 2005. Dd-pref: A lan-
guage for expressing preferences over subsets. In AAAI’05.
Fishburn, P. C. 1969. Utility Theory for Decision Making.
John Wiley & Sons.

