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ABSTRACT
Scoring rules for eliciting expert predictions of random variables are usually
developed assuming that experts derive utility only from the quality of their
predictions. We study more realistic settings in which (a) the principal is a
decision maker who takes a decision based on the expert’s prediction; and
(b) the expert has an inherent interest in the decision. Not surprisingly, in
such situations, the expert usually has an incentive to misreport her forecast
to influence the choice of the decision maker. We develop a general model
for this setting and introduce the concept of a compensation rule. When
combined with the expert’s inherent utility for decisions, a compensation
rule induces a net scoring rule that behaves like a traditional scoring rule.
Assuming full knowledge of expert utility, we provide a complete charac-
terization of all (strictly) proper compensation rules. We then analyze the
case when the expert’s utility function is not fully known to the decision
maker. We show bounds on: (a) expert incentive to misreport; (b) the de-
gree to which an expert will misreport; and (c) decision maker loss in utility
due to such uncertainty. These bounds depend in natural ways on the de-
gree of uncertainty, the local degree of convexity of net scoring function,
and properties of the decision maker’s utility function. Finally, we briefly
discuss the use of compensation rules in prediction markets.
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Algorithms, Economics, Theory
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1. INTRODUCTION
Eliciting predictions of uncertain events from knowledgeable ex-

perts is a fundamental problem in statistics, economics, operations
research, artificial intelligence and a variety of other areas [18,
4]. Increasingly, robust mechanisms for prediction are being de-
veloped, proposed and/or applied in real-world domains ranging
from elections and sporting events, to events of public interest (e.g.,
disease spread or terrorist action), to corporate decision making.
Indeed, the very idea of crowd-sourcing and information (or pre-
diction) markets is predicated on the existence of practical mecha-
nisms for information elicitation and aggregation.

Prediction mechanisms must provide an expert agent with incen-
tives to reveal a forecast they believe to be accurate. Many forms of
“outcome-based” scoring rules, either individual or market-based,
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provide experts with incentives to: (a) provide sincere forecasts;
(b) invest effort to improve the accuracy of their personal forecasts;
and (c) participate in the mechanism if they believe they can im-
prove the quality of the principal’s forecast. However, with just a
few exceptions (see, e.g., [14, 12, 17, 15, 2, 6, 8, 5]), most work
fails to account for the ultimate use to which the forecast will be
put. Furthermore, even these models assume that the experts who
provide their forecasts derive no utility from the final forecast, or
how it will be used, except insofar as they will be rewarded by the
prediction mechanism itself.

In many settings, this assumption is patently false: the principal
is will often exploit the elicited forecast in order to make a deci-
sion [10, 12, 15, 2, 5]. In corporate prediction markets, the prin-
cipal may base strategic business decisions on internal predictions
of uncertain events. In a hiring committee, the estimated proba-
bility of candidates accepting offers influences the order in which
(and whether) offers are made. Providing appropriate incentives in
the form of scoring rules is often difficult in such cases [15, 2, 6].
However, just as critically, experts often have their own interests
in specific decisions. For example, in corporate settings, an expert
from a certain division may have an incentive to misreport demand
for specific products, thus influencing R&D decisions that favor her
unit. In a hiring committee, a member may misreport the odds that
a candidate will accept a competing position in order to bias the
“offer strategy” in a way that favors her preferred candidate.

In this work, we develop a formal model of scoring rules that
incentivize truthful forecasts even when experts have an interest
in the decisions taken by the principal. Naturally such rules must
compensate experts for “sacrificing their own interests.” One might
respond by ignoring forecasts from experts with such conflicts. Un-
fortunately, decision makers often must rely on the advice and pre-
dictions of experts who have some stake in their decisions. This
is especially true in organizations (e.g., corporate R&D decisions,
faculty hiring, etc.), when advice from employees or group mem-
bers is solicited; but it also holds in any case where the principal
is uncertain about an expert’s true interests. Our model and analy-
sis, rather than ignoring the issue and hoping for the best, provides
insight into how best to reward experts for their forecasts. Other
work has studied both decision making and incentive issues in pre-
diction markets [14, 10, 15, 2, 8, 7, 17], but only rarely addresses
the natural question of expert self-interest in decisions [12, 5].

Our basic building block is a scoring rule for a single expert
who knows the principal’s policy—i.e., mapping from forecasts to
decisions—and where the principal knows the expert’s utility for
decisions. We show that the scoring rule must compensate the ex-
pert in a simple, intuitive way based on her utility function: we use
a compensation function that induces a proper scoring rule. We pro-
vide a complete characterization of proper compensation functions,



as well those which, in addition, satisfy participation constraints.
We then analyze expert uncertainty in the principal’s policy, and

principal uncertainty in the expert’s utility. First, we note that the
expert need not know the principal’s policy prior to providing her
forecast as long as she can verify which decision has been taken af-
ter the fact. Second, we observe that, in general, the principal can-
not ensure truthful reporting without full knowledge of the expert’s
utility function. However, principals will almost always have some
partial knowledge of expert utility. We show that bounds on this un-
certainty give rise bounds on each of the following: (i) the expert’s
incentive to misreport; (ii) the deviation of the expert’s misreported
forecast from her true beliefs; and (iii) the loss in utility the prin-
cipal will realize due to this uncertainty. The first two bounds rely
on the notion of strong convexity of the net scoring function. The
third uses natural properties of the principal’s utility function. We
show that these bounds can be significantly tightened using local
strong convexity, requiring only sufficient (and differential) con-
vexity near the decision boundaries of the principal’s policy. We
conclude by briefly discussing a market scoring rule (MSR) based
on our one-shot compensation rule.

2. BACKGROUND: SCORING RULES
We first review scoring rules and prediction markets (see [18,

4] for more details). We assume an agent—the principal—must
assess the distribution of a discrete random variableX with domain
X = {x1, . . . , xm}. Let ∆(X) denote the set of distributions
over X , where p ∈ ∆(X) is a nonnegative vector 〈p1, . . . , pm〉
s.t.

∑
i pi = 1. The principle can engage one or more experts to

provide a forecast p ∈ ∆(X). We first assume a single expert
E. Consider a running example: the chief strategy officer (CSO)
of a company asks a division head to estimate demand for a new
product prior to committing R&D efforts to that product.

We assume E has beliefs p about X . To incentivize E to report
p faithfully (and devote reasonable effort to developing accurate
beliefs), a variety of scoring rules have been proposed [16, 13, 9].
A scoring rule is a function S : ∆(X) × X → R that provides
a score (or payoff) S(r, xi) to E if she reports forecast r and the
realized outcome of X is xi, essentially rewarding E for her pre-
dictive “performance” [13]. If E has beliefs p and reports r, her
expected score is S(r,p) =

∑
i S(r, xi)pi. We say S is a proper

scoring rule iff a truthful report is optimal for E:

S(p,p) ≥ S(r,p), ∀p, r ∈ ∆(X) (1)

We say S is strictly proper if inequality (1) is strict for r 6= p. A
popular strictly proper scoring rule is the log scoring rule, where
S(p, xi) = a log pi+ bi (for arbitrary constants a > 0 and bi) [13,
16]. In what follows, we restrict attention to regular scoring rules
in which payment S(r, xi) is bounded whenever ri > 0.

Proper scoring rules can be fully characterized in terms of convex
cost functions [13, 16]; here we review the formulation of Gneiting
and Raftery [9]. Let G : ∆(X) → R be any convex function
over distributions—we refer to G as a cost function. We denote by
G∗ : ∆(X)→ Rm some subgradient of G, satisfying

G(q) ≥ G(p) +G∗(p) · (q− p)

for all p,q ∈ ∆(X).1 Such cost functions and associated subgra-
dients can be used to derive any proper scoring rule.

THEOREM 1. [13, 16, 9] A regular scoring rule S is proper iff

S(p, xi) = G(p)−G∗(p) · (p) +G∗i (p) (2)

1If G is differentiable at p then the subgradient at that point is
unique, namely, the gradient∇G(p).
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Figure 1: Illustration of a proper scoring rule. If the expert re-
ports p, her expected score (relative to her true beliefs) is given
by the subtangent hyperplane Hp. For any report q different
from p, the expected score S(q, p) = Hq · p must be less than
the expected score S(p, p) = Hp · p of truthful reporting.

for some convex G and subgradient G∗. S is strictly proper iff G
is strictly convex.

Intuitively, Eq. 2 defines a hyperplane

Hp = 〈S(p, x1), . . . , S(p, xm)〉,

for each point p, that is subtangent to G at p. This defines a linear
function, for any fixed report p, giving the expected score of that
report given beliefs q: S(p,q) = Hp · q. An illustration is given
in Fig. 1 for a simple one-dimensional (two-outcome) scenario.

Several prediction market mechanisms allow the principal to ex-
tract information from multiple experts [18, 4]. Market scoring
rules (MSRs) [11] allow experts to (sequentially) change the fore-
casted p using any proper S. An expert can change a forecast p′ to
p if she is willing to pay according to S(p′, ·) and receive payment
S(p, ·). If her true beliefs p differ from p′ and the rule is strictly
proper, then she has incentive to participate and report truthfully.
Under certain conditions, MSRs can be interpreted as automated
market makers [3]. Since each expert pays the amount due to the
previous expert for her prediction, the net payment of the principal
is the score associated with the final prediction.

Some prior work has studied incentives when prediction markets
are used for decision making. Hanson [10] introduced the term
decision markets to refer to the broad notion of prediction mar-
kets where experts offer forecasts for events conditional on some
policy being adopted or a decision being taken. Osband [14] de-
scribes an interesting model for optimally incentivizing experts to
“put effort” into deriving their forecasts. Othman and Sandholm
[15] provide the first explicit, formal treatment of a principal who
makes decisions based on expert forecasts. They address several
key difficulties that arise due to the conditional nature of forecasts,
but assume that the experts themselves have no direct interest in
the decision that is taken. Chen and Kash [2, 6] extend this model
to a wider class of informational settings and decision policies.
Dimitrov and Sami [8] consider strategic behavior across multiple
markets, where an expert may misreport her beliefs in one market
to manipulate prices (and gain advantage) in another. Similarly,
Conitzer [7] explores strategic aspects of prediction markets via
connections to mechanism design, but again assumes that expert
utility is derived solely from the mechanism’s payoff. Shi et al. [17]
consider experts that, once they report their forecasts, can take ac-
tion to alter the probabilities of the outcomes in question. Unlike
our model, they do not consider expert utility apart from the payoff
offered by the mechanism (though, as in our model, the principal’s
utility function dictates the value of an expert report).

Hanson and Oprea [12] explicitly consider a single expert who
has an interest in the final forecast of a prediction market and show
that attempts to manipulate can in fact increase market accuracy (by
incentivizing others to participate). Chen et al. [5] consider perfect
Bayesian equilibria in a two-stage game with two participants pre-



dicting a boolean variable, one of whom has an interest in the final
forecast. Both models, like ours, are motivated by expert interest in
the principal’s decision, but there are many important distinctions.
Unlike our framework, neither approach explicitly models the prin-
cipal’s policy, utility, or loss due to manipulation. Both represent
expert utility for the principal’s decision indirectly through (very
restrictive) payoff functions over the final forecast (either quadratic
payoffs [12] or increasing payoffs [5]). Finally, neither model at-
tempts to incentivize truthful reports by the manipulator.

3. SELF-INTERESTED EXPERTS
We now consider an expert who has a direct interest in the de-

cision induced by her forecast. We devise a class of scoring rules
that incentive self-interested agents to report their true beliefs. Such
models are especially relevant in settings where expert opinions are
sought from members internal to an organization. Rather than re-
jecting the forecasts of such experts, our model quantifies the im-
pact of this self-interest and admits rules to circumvent it.

3.1 Model Formulation
A principal, or decision maker (DM), elicits a forecast of X

from expert E, and makes a decision based on this forecast. Let
D = {d1, . . . , dn} be the set of possible decisions, and uij be
DM’s utility should he take decision di with xj (j ≤ m) being
the realization of X . Letting ui = 〈ui1, · · · , uim〉, the expected
utility of decision di given distribution p is Ui(p) = ui · p. For
any beliefs p, DM takes the decision that maximizes expected util-
ity, giving DM the utility function U(p) = maxi≤n Ui(p). Since
each Ui is a linear function of p, U is piecewise linear and convex
(PWLC). Furthermore, each di is optimal in a (possibly empty)
convex region of belief space Di = {p : ui · p ≥ uj · p, ∀j}. We
assume DM acts optimally and that he has a policy π : ∆(X)→ D
that selects some optimal decision π(p) for any expert forecast p.
In what follows, we take Di = π−1(di). We denote by Dij the
(possibly empty) boundary betweenDi andDj . Notice that for any
p ∈ Dij we must have Ui(p) = Uj(p). In our running example,
the CSO is given a forecast probability p of high product demand
from the division head: he will authorize R&D if p is above some
threshold τ , and abandon development if p falls below τ (here τ is
the indifference probability: Udevelop(τ) = Uabandon(τ)).

Our model of DM utility is slightly more restricted than that of
[15, 2], who allow the utility of each decision to depend on a dif-
ferent random variable, and assume that a variable will be observed
only if the corresponding decision is taken. We also focus on prin-
cipals that maximize expected utility given E’s report (i.e., DM
uses the max decision rule [15]), though we discuss stochastic DM
policies in Sec. 4.2.

Suppose expert E is asked by DM to provide a forecast of X .
Assume that E knows DM’s policy π—knowledge of DM’s util-
ity function is sufficient but not required, see Sec. 4.1—and that
E has her own utility function or bias b, where bi,j is E’s utility
should DM take decision di and xj is the realization of X . Define
bi = 〈bi,1, · · · , bi,m〉; and let E’s expected utility for di given p
be Bi(p) = bi · p. For example, the division head (expert) may
see increased corporate influence if R& D is authorized, but see her
power wane if the product fails to materialize.

As with DM, E’s optimal utility function B∗ is PWLC:

B∗(p) = max
i

bi · p. (3)

Denote by D∗(p) the decision di that maximizes Eq. 3, i.e., E’s
preferred decision given beliefs p (see Fig. 2).2

2We assume that D includes no dominated decisions; i.e., for any
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Figure 2: Expert utility function. E’s utility for each decision
di is given by the corresponding hyperplane (here, thin black
line). E’s “optimal” utility B∗ is the PWLC function shown
by the dotted green line (i.e., the upper surface), with each Ri
denoting the regions of belief space whereD∗(p) = di. Regions
Di represent DM’s policy, where π(p) = di for p ∈ Di. The
thick red lines denote the (discontinuous) utility Bπ that E will
receive from (truthfully) reporting her belief.

Since DM is pursuing his own policy π, E’s actual utility for a
specific report r under beliefs p is given by

Bπ(r,p) = bπ(r) · p; (4)

that is, if she reports r, DM will take decision π(r) = dk for some
k, and she will derive benefit Bk(p). We refer to Bπ(r,p) as E’s
inherent utility for reporting r. Similarly, B(r, xi) = bi,π(r) is E’s
inherent utility for report r under realization xi. This is the inherent
benefit she derives from the decision she induces DM to take. This
is illustrated in Fig. 2. Note that E’s utility for reports, given any
fixed beliefs p, is not generally continuous, with potential (jump)
discontinuities at DM’s decision boundaries.

Without some scoring rule, there is a clear incentive for E to
misreport her true beliefs to induce DM to take a decision that E
prefers, thereby causing DM to take a suboptimal decision. For
instance, in Fig. 2, if E’s true beliefs p lie in R1, her preferred de-
cision is d1; but truthful reporting will induce DM to take decision
d3. E has greater inherent utility for reporting (any) r ∈ D1. In-
deed, her gain from the misreport is p · (b1 − b3). Equivalently,
E stands to lose p · (b1 − b3) by reporting truthfully. Intuitively,
a proper scoring rule would remove this incentive to misreport.

3.2 Compensation Rules
If DM knows E utility function, he could reason about E’s in-

centive to misreport and revise his decision policy accordingly. Of
course, this would naturally lead to a Bayesian game requiring anal-
ysis of its Bayes-Nash equilibria, and generally leaving DM with
uncertainty about E’s true beliefs.3 Instead, we wish to derive a
scoring rule that DM can use to incentivize E to report truthfully.

Unsurprisingly, such rules must compensate E for the utility she
foregoes by reporting her beliefs truthfully rather than influencing
DM to act in a way that furthersE’s own interests. A compensation
function C : ∆(X) × X → R maps reports and outcomes into
payoffs, like a standard scoring rule. However, C does not fully
determine E’s utility for a report; we must also account for the
inherent utility E derives from the decision she brings about. A
compensation function C induces a net scoring function:

S(p, xi) = C(p, xi) +Bπ(p, xi) (5)

d ∈ D, we have π−1(d) 6= ∅. If not, the subset of D with only
nondominated decisions should be used, since DM never needs to
compensate E for a decision he would never take.
3See Dimitrov and Sami [8] and Conitzer [7] for such a game-
theoretic treatment of prediction markets (without decisions).



E’s expected net score for report r under beliefs p is S(r,p) =
C(r,p) + Bπ(r,p), where C(r,p) =

∑
i piC(r, xi) is E’s ex-

pected compensation.
We adapt the definition of proper scoring rules to the case of

compensation rules, recognizing that compensation is in full con-
trol of DM, while the net score is not:

DEFINITION 2. A compensation function C is proper iff the ex-
pected net score function S satisfies S(p,p) ≥ S(q,p) for all
p,q ∈ ∆(X). C is strictly proper if the inequality is strict.

One natural way to structure the compensation function is to use
C to compensate E for the loss in inherent utility incurred by re-
porting her true beliefs p (relative to her best report), thus removing
incentive for E to misreport. This gives rise to a very specific com-
pensation function Cb that accounts for this loss:

Cb(p, xi) = bi,D∗(p) − bi,π(p). (6)

Cb(p, xi) is simply the difference between E’s realized utility for
her optimal decision (relative to her report p) and the actual deci-
sion she induced. Cb gives rise to the specific net scoring function:

Sb(p, xi) = Cb(p, xi) +Bπ(p, xi) (7)
= (bi,D∗(p) − bi,π(p)) + bi,π(p)) = bi,D∗(p) (8)

Since E’s expected net score under beliefs p is identical to her
expected utility for the optimal decision D∗(p), truthful reporting
results, showing Cb to be a proper compensation rule.
Cb is just one straightforward mechanism for proper scoring with

self-interested experts. We can generalize the approach to provide
a complete characterization of all proper (and strictly proper) com-
pensation functions. We derivedCb by compensatingE for her loss
due to truthful reporting. This is more “generous” than necessary:
we need only remove the potential gain from misreporting. The
key element of Cb is not the “compensation term” bi,D∗(p), but the
penalty term−bi,π(p), which preventsE from benefiting by chang-
ing DM’s decision. Any such gain is subtracted from her compen-
sation via the penalty term −bi,π(p). We require only that the pos-
itive compensation term is convex: it need bear no connection to
E’s actual utility function to incentivize truthfulness. Indeed, we
can fully characterize the space of proper and strictly proper com-
pensation functions:

THEOREM 3. A compensation rule C is proper for E iff

C(p, xi) = G(p)−G∗(p) · p +G∗i (p)− bi,π(p) (9)

for some convex functionG, and subgradientG∗ ofG. C is strictly
proper iff G is strictly convex.4

An illustration of a cost function G(p) that gives rise to a proper
compensation function is shown in Fig. 3(a).

The fact that the specific rule Cb is proper follows directly by
observing that the net score Sb can be derived from Eq. 2 by letting
G(p) = B∗(p) = maxi≤nBi(p) be E’s optimal utility func-
tion (which is PWLC, hence convex), and using the subgradient
G∗(p) given by the hyperplane corresponding to the optimal deci-
sionD∗(p) at that point.5 Of course,Cb is not strictly proper, since
it is induced by a non-strictly convex cost functionG = B∗. In par-
ticular, for any region R(d) of belief space where a single decision
d is optimal for E, every report p ∈ R(d) has the same expected
net score, hence there is no “positive” incentive for truthtelling.
4All proofs are available in working paper arXiv:1106.2489.
5At interior points of E’s decision regions, the hyperplane is the
unique subgradient. At E’s decision boundaries, an arbitrary sub-
gradient can be used.
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Figure 3: Illustration of cost functions G for strictly proper
compensation rules. E’s optimal utility B∗ is the PWLC func-
tion shown in green, and E’s inherent utility Bπ is the dis-
continuous function in red. The net scoring function G(p) =
S(p,p), the convex curve, induces an expected compensation
function C(p,p) by subtracting Bπ . (a) A strictly proper rule
that violates weak participation at point p. (b) A rule that satis-
fies weak participation but violates strong participation at point
q. (c) A rule that satisfies strong participation.

The characterization of Thm. 3 ensures truthful reporting, but
may not provide incentives for participation. Indeed, the expert
may be forced to pay DM in expectation for certain beliefs. Specif-
ically, if G(p) < Bπ(p), E’s expected compensation C(p,p) is
negative. Unless the DM can “force” E to participate, this will
cause E to avoid providing a forecast if her beliefs are p (e.g., see
point p is Fig. 3(a)). In general, we’d like to provide E with non-
negative expected compensation. We can do this by insisting the
compensation rule weakly incentives participation:

DEFINITION 4. A compensation function C satisfies weak par-
ticipation iff for any beliefs p,E’s expected compensation for truth-
ful reporting C(p,p) is non-negative.

(Fig. 3(b) illustrates a cost function G that induces a compensation
rule C satisfying weak participation.)

THEOREM 5. A proper compensation ruleC satisfies weak par-
ticipation iff it meets the conditions of Thm. 3 and G(p) ≥ Bπ(p)
for all p ∈ ∆(X).

While desirable, weak participation does not ensure participa-
tion in general. Consider a compensation function defined with a
convex cost function G(p). If E participates, she maximizes her
net payoff by reporting her true beliefs p. But suppose G(p) <
B∗(p). While E may not be certain how DM will act without her
input (e.g., she may not know DM’s “default beliefs” precisely), she
may nevertheless have beliefs about DM’s default policy. And, ifE
believes DM will take decision D∗(p) if she provides no forecast,
then she is better off taking the expected payoff B∗(p) based on
her inherent utility and not participating (which has a lower pay-
off of G(p)). (See point q in Fig. 3(b).) To prevent this, we say
C strongly incentivizes participation if, no matter what E believes
about DM’s default policy (i.e., his action given no reporting), she
will not sacrifice expected utility by participating in the mechanism.

DEFINITION 6. A compensation functionC satisfies strong par-
ticipation iff, for any decision di ∈ D, for any beliefs p, E’s net
score for truthful reporting is no less than Bi(p).

Strong participation means that E has no incentive to abstain from
participation (and need not “take her chances” that DM will make
a decision she likes). This definition is equivalent to requiring that
E’s expected utility for truthful reporting, as a function of p, is at
least as great as her optimal utility function, i.e., S(p,p) ≥ B∗(p)
for all p ∈ ∆(X). Fig. 3(c) illustrates such a compensation rule.

THEOREM 7. Proper compensation ruleC satisfies strong par-
ticipation iff it meets the conditions of Thm. 3 and G(p) ≥ B∗(p)
for all p ∈ ∆(X).



OBSERVATION 8. Compensation rule Cb is the unique mini-
mal (non-strictly) proper rule satisfying strong participation. That
is, no compensation rule offers lower compensation for any report
without violating strong participation.

In general, if we insist on strong participation, DM must provide
potential compensation up to the level ofE’s maximum utility gap:

g(B) = max
i≤m,j,k≤n

bi,k − bi,j .

However, this degree of compensation is needed only if DM and
E have “directly conflicting” interests (i.e., DM takes a decision
whose realized utility is as far from optimal as possible from E’s
perspective). In such cases, one would expect E’s utility to be sig-
nificantly less than DM’s. If not, this compensation is not worth-
while for DM. Conversely, if E’s interests are well aligned with
those of DM, the total compensation required will be small. The
most extreme case of well-aligned utility is one where functions π
and D∗ coincide, i.e., π(p) = D∗(p) for all beliefs p, in which
case, no compensation is required. Specifically, compensation func-
tion Cb(p) = 0 for all p; and while Cb is not strictly proper, the
only misreports thatE will contemplate (i.e., that do not reduce her
net score) are those that cannot change DM’s decision (i.e., cannot
impact DM’s utility). As a consequence, DM should elicit fore-
casts from an expert who either (a) has well-aligned interests in the
decisions being contemplated; (b) has interest whose magnitude is
small (hence requires modest compensation) relative to DM’s own
utility; or (c) can be “forced” to make a prediction (possibly at neg-
ative net cost). Fortunately, these conditions often obtain in many
settings, especially organizational or corporate settings. Employee
incentives are usually reasonably well-aligned with those of corpo-
rate decision makers; and when external consultants are used, while
their interests are not aligned with those of the principal, their stake
in specific decisions is usually minimal.

4. POLICY AND UTILITY UNCERTAINTY
We now relax two key assumptions from Section 3.1: that E

knows DM’s policy, and that DM knows E’s utility.

4.1 Policy Uncertainty
We first consider the case where DM does not want to disclose

his policy toE. For example, suppose DM wanted to forego a truth-
ful compensation ruleC and simply rely on a proper scoring rule of
the usual form that ignores the E’s inherent utility. Thm. 3 shows
that DM cannot prevent misreporting in general if he ignores E’s
inherent utility; hence he can suffer a loss in his own utility. How-
ever, by refusing to disclose his policy π, DM could reduce the
incentive for E to misreport. Without accurate knowledge of π, E
would be forced to rely on uncertain beliefs about π to determine
the utility of a misreport, generally lowering her incentive. How-
ever, this will not remove the misreporting incentive completely.
For instance, referring to Fig. 2, suppose DM does not disclose π.
If E believes with sufficient probability that the decision boundary
between d3 and d1 is located at the point indicated, she will misre-
port any forecast p in region D3 sufficiently close to that boundary
should DM use a scoring rule rather than a compensation rule. As
such, refusing to disclose his policy can be used by DM to reduce,
but not eliminate, the incentive to misreport.6

Our analysis in the previous section assumed that E used her
knowledge of π to determine the report that maximizes her net
6A similar argument shows that a stochastic policy can be used to
reduce misreporting incentive, e.g., the soft max policy that sees
DM take decision di with probability proportional to eλui(p). .

score. However, DM does not need to disclose π to make good
use of a compensation rule. He can specify a compensation rule
implicitly by announcing his net scoring function S(p, xi) (or the
cost functionG and subgradientG∗) and promising to deductBd ·p
from this score for whatever decision d he ultimately takes. E need
not know in advance what decision will be taken to be incentivized
to offer a truthful forecast. Nor does E ever need to know what
decisions would have been taken had she reported differently. Thus
the only information E needs to learn about π is the value of π(p)
at her reported forecast p; and even this need not be revealed until
after the decision is taken (and its outcome realized).7

4.2 Uncertainty in Expert Utility
We now consider the more interesting issues that arise when DM

is uncertain about the parameters b of E’s utility function. If the
DM has a distribution over b, one obvious technique is to spec-
ify a proper compensation rule using the expectation of b. This
may work reasonably well in practice, depending on the nature of
the distribution; but it follows immediately from Thm. 3 that this
approach will not induce truthful reporting in general.

Rather than probabilistic beliefs, we suppose that DM has con-
straints on b that define a bounded feasible region B ⊆ Rmn in
which E’s utility parameters must lie. We will confine our analysis
to a simple, but natural class of constraints, specifically, upper and
lower bounds on each utility parameter; i.e., assume DM has upper
and lower bounds bi,j↑ and bi,j↓, respectively, on each bi,j . This in-
duces a hyper-rectangular feasible region B. If B is a more general
region (e.g., a polytope defined by more general linear constraints),
our analysis below can be applied to the tightest “bounding box”
of the feasible region.8 Again by Thm. 3, DM cannot define a
proper compensation rule in general: without certain knowledge of
E’s utility, any proposed “deduction” of inherent utility from E’s
compensation could mistaken, leading to an incentive to misreport.
However, we show this incentive is bounded.

Requiring that DM have some information about E’s utility for
DM’s decisions may, at first glance, seem like too stringent a re-
quirement. However, in many contexts, including organizational
settings like those discussed above, it would, in fact, be highly un-
usual for this not to be the case. For instance, it would be unheard
of for a CSO not to have some rough, albeit imprecise, idea of the
benefit a division head would derive from undertaking R&D for
a new product. More to the point, ignoring E’s potential biases
makes it impossible for DM to have any confidence in her forecast.
Our analysis sheds light on how much, and what type of, effort DM
should invest in assessing E’s biases.

Under conditions of utility uncertainty, it is natural for DM to
restrict his attention to “consistent” compensation rules:

DEFINITION 9. Let B be the set of feasible expert utility func-
tions. A compensation rule is consistent with B iff it has the form,
for some (strictly) convex G and b̃ ∈ B:

C(p, xi) = G(p)−G∗(p) · p +G∗i (p)− b̃i,π(p). (10)

Notice that consistent compensation rules are naturally linear: in-
tuitively, we select a single consistent estimate of each parameter
˜bi,j ∈ [bi,j↓, bi,j↑], treat E as if this were her true (linear) utility

function, and define C using this estimate. We say DM is δ-certain
of E’s utility iff bi,j↑ − bi,j↓ ≤ δ for all i, j. Then we can bound
the incentive for E to misreport as follows:

7Some mechanism to verify the decision post hoc may be needed.
8General linear constraints on E’s parameters could be could be
inferred, for example, from observed behavior.



THEOREM 10. If DM is δ-certain ofE’s utility, thenE’s incen-
tive to misreport under any consistent compensation rule is bounded
by 2δ. That is, S(r,p)− S(p,p) ≤ 2δ.

We can limit the misreporting incentive further by using a uniform
compensation rule.

DEFINITION 11. A consistent compensation rule is uniform if
each parameter is estimated by b̃i,π(p) = λbi,j↓+ (1− λ)bi,j↑ for
some fixed λ ∈ [0, 1].

For example, if DM uses the lower bound (or midpoint, or upper
bound, etc.) of each parameter interval uniformly, we call the com-
pensation rule uniform.

COROLLARY 12. If DM is δ-certain of E’s utility, then E’s in-
centive to misreport under any uniform compensation rule is bounded
by δ. That is, S(r,p)− S(p,p) ≤ δ.

While bounding the incentive to misreport is useful, it is more
important to understand the impact such misreporting can have on
DM. Fortunately, this too can be bounded. The (strict) convexity of
G means that the greatest incentive to misreport occurs at the deci-
sion boundaries of DM’s policy π in Thm. 10. Since, by definition,
DM is indifferent between the adjacent decisions at any decision
boundary, misreports in a bounded region around decision bound-
aries have limited impact on DM’s utility; the amount by which E
will misreport is bounded using the “degree of convexity” of the
cost function G, which in turn bounds DM’s utility loss.

DEFINITION 13. Let G be a convex cost function with subgra-
dient G∗. We say G is robust relative to G∗ with factor m > 0 iff,
for all p,q ∈ ∆(X):9

G(q) ≥ G(p) +G∗(p) · (q− p) +m||q− p||2 (11)

It is not hard to see that m-robustness of the pair G,G∗ imposes
a minimum “penalty” on any expert misreport, as a function of its
distance from her true beliefs:

OBSERVATION 14. LetC be a proper compensation rule based
on an m-robust cost function G and subgradient G∗. Let S be the
induced net scoring function. Then

S(p,p)− S(q,p) ≥ m||q− p||2.

Together with Thm. 10, this gives a bound on the degree to which
an expert will misreport when an uncertain DM uses a consistent
compensation rule.

COROLLARY 15. Let DM be δ-certain of E’s utility and use a
consistent compensation rule based on an m-robust cost function
and subgradient. Let p be E’s true beliefs. Then the report q
that maximizes E’s net score satisfies ||q − p||2 ≤ 2δ

m
. If the

compensation rule is uniform, then ||q− p||2 ≤ δ
m

.

In other words, E’s utility-maximizing report must be within a
bounded distance of her true beliefs if DM uses an m-robust cost
function to define the compensation rule.

The notion of m-robustness is a slight variant of the notion of
strong convexity [1] in which we use the specific subgradient G∗

to measure the “degree of convexity.” In the specific case of twice
differentiable cost function G, we say G is strongly convex with
factor m iff ∇2G(p) � mI for all p ∈ ∆(X); i.e., if the matrix
∇2G(p) −mI is positive definite [1]. m-convexity is a sufficient
condition for the robustness we seek.
9The definition ofm-robustness can be recast using any reasonable
metric, e.g., L1-norm or KL-divergence; but the L2-norm is most
convenient below when we relate robustness to strong convexity.

COROLLARY 16. Let DM be δ-certain of E’s utility and use a
consistent compensation rule based on an m-convex, twice differ-
entiable cost function G. Let p be E’s true beliefs. Then the report

q that maximizes E’s net score satisfies ||q − p||2 ≤
√

4δ
m

. If the

compensation rule is uniform, then ||q− p||2 ≤
√

2δ
m

.

Robustness (or strong convexity) allows us to globally bound the
maximum degree to which E will misreport. This allows us to give
a simple, global bound on the loss in DM utility that results from
his uncertainty about the expert’s utility function. Recall that DM’s
utility function Ui for any decision di is linear, hence has a con-
stant gradient ∇Ui. (We abuse notation and simply write ∇Ui for
∇Ui(p).) The function Ui − Uj is also linear, given by parameter
vector (ui−uj). Let ek denote the n-dimensional unit vector with
a 1 in component k and zeros elsewhere.

THEOREM 17. Let DM be δ-certain of E’s utility and use a
consistent compensation rule based on an m-robust cost function
and subgradient. Assume E reports to maximize her net score.
Then DM’s loss in utility relative to a truthful report by E is at
most maxk[eTk maxi,j ∇(Ui − Uj)]

√
n 2δ
m

. If the compensation
rule is uniform, then the bound is tightened by a factor of two.

The same proof applies to strongly convex cost functions, with
√
n 2δ
m

replacing the term
√
n 4δ
m

in the bound above.
The results above all rely on the global robustness or global

strong convexity of the cost function G. Designing a specific cost
function (and if not differentiable, choosing its subgradients) can
be challenging if we try to ensure uniform m-robustness or m-
convexity across the entire probability space ∆(X). But recall
that E can only impact DM’s utility if her misreport causes DM
to change his decision. This means that the cost function need only
induce strong penalties for misreporting near decision boundaries.
Furthermore, the strength of these penalties should be related to
the rate at which DM’s utility is negatively impacted. For example,
suppose p lies on the decision boundary between region Di and
Dj . If |∇(Ui−Uj)| is large, then a misreport in the region around
p will cause a greater loss in utility than if |∇(Ui − Uj)| is small.
This suggests that the cost function should be more strongly convex
(or more robust) near decision boundaries whose corresponding de-
cisions differ significantly in utility, and can be less strong when the
decisions are “similar.” See Fig. 4 for an illustration of this point.
Furthermore, the cost function need only be robust or strongly con-
vex in a local region around these decision boundaries. In particu-
lar, supposeG ism-robust in some local region around the decision
boundary betweenDi andDj . The degree of robustness bounds the
maximum deviation from truth that E will contemplate. If the re-
gion of m-robustness includes these maximal deviations, that will
be sufficient to bound DM’s utility loss for any true beliefsE has in
that region. Outside of these regions, no misreport by E will cause
DM to change his decisions (relative to a truthful report).

We can summarize this as follows:

DEFINITION 18. G is locally robust relative to G∗ in the ε-
neighborhood around p with factor m > 0 iff, for all q ∈ ∆(X)
s.t. ||q− p||2 ≤ ε:

G(q) ≥ G(p) +G∗(p) · (q− p) +m||q− p||2 (12)

Local strong convexity is defined similarly.

Now suppose DM wishes to bound his loss due to misreporting
by E by some factor σ > 0. This can be accomplished using a
locally robust cost function:
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Figure 4: A locally strongly convex cost functionG. HereG has
is more strongly convex in the neighborhood of decision bound-
ary D12 than the boundary D23. This means an expert willing
to sacrifice compensation (e.g., to gain inherent utility due to
DM uncertainty) can offer a report that deviates more from her
true beliefs in the neighborhood around D23 and than it can in
the neighborhood around D12 for the same loss in compensa-
tion. However, since d2 and d3 are more similar than d1 and d2
(w.r.t. DM utility), i.e., the gradient |∇(U2 − U3)| is less than
|∇(U1 − U2)|, DM will lose less utility “per unit” of misreport
in the neighborhood ofD23. Note: the cost functionG is drawn
above DM’s utility function U for illustration only—in general,
it will lie below U .

THEOREM 19. Let DM be δ-certain of E’s utility and fix σ >
0. For any pair of decisions di, dj with non-empty decision bound-
ary Dij , define

mij =
maxk(e

T
k∇[Ui−Uj ])

√
n2δ

σ
; εij =

σ

maxk(e
T
k∇[Ui−Uj ])

√
n
.

LetG be a convex cost function with subgradientG∗ such that, for
all i, j and any p ∈ Dij , (a) G is locally robust with factor mij

in the εij-neighborhood around p; (b) no other decision boundary
lies within the εij-neighborhood around p. Let DM use a consis-
tent compensation rule based onG,G∗. Assume E reports to max-
imize her net score. Then DM’s loss in utility relative to a truthful
report by E is at most σ. If the compensation rule is uniform, the
result holds with mij and εij decreased by a factor of two.

This result can be generalized to the case where the degree of ro-
bustness around one decision boundary is relaxed sufficiently so
that the neighborhood within which E can profitably misreport
crosses more than one decision boundary (i.e., when another deci-
sion boundary overlaps the εij-neighborhood around Dij). Utility
loss will increase, but it can be bounded using the maximum gra-
dient ∇(Ui − Uj) over decisions that can be swapped. The result
can also be adapted to locally strongly convex cost functions.

These results quantify the “cost” to the decision maker of his
imprecise knowledge of the expert’s utility function, i.e., his worst-
case expected utility relative to what he could have achieved if he
had full knowledge of E’s utility (i.e., with truthful reporting by
E). This analysis, however, does more than merely bound the risk
facing a principal who solicits forecasts from self-interested ex-
perts. It also suggests: (a) ways in which the principal might ex-
pend effort to refine his knowledge of expert utility or bias; and (b)
procedures for optimizing compensation rules when dealing with
such experts. Regarding the first issue, while it goes beyond the
scope of this paper, a more fine-grained analysis in the style of that
used here—based on DM uncertainty regarding E’s specific utility
parameters—can be used to justify and focus DM efforts when as-
sessingE’s utility. On issue (b), the characterization of DM loss us-
ing local robustness or convexity has operational significance in the
design of compensation rules. Indeed, it suggests an procedure for
designing cost function G (and induced compensation rule C) so
as to minimize DM utility loss. Intuitively, G should optimize two

conflicting objectives: minimizing the bound σ on utility loss (re-
quiring an increase the degree of convexity at decision boundaries);
and minimizing expected compensation c (requiring a decrease in
convexity). We believe specific classes of spline functions should
prove useful for addressing this tradeoff.

Finally, note that if we relax the constraint that DM choose the
decision di with maximum expected utility, we can exploit local
robustness to induce truthful forecasts. Suppose DM uses the soft-
max decision policy (see footnote 6): this stochastic policy makes
E’s utilityBπ(r,p) continuous in her report r. An similar analysis
similar using local convexity shows that DM induces truthtelling if
the degree of convexity compensates for the gradient ofBπ at deci-
sion boundaries (since policy randomness removes the discontinu-
ities in Bπ). Of course, this comes at a cost: the DM is committed
to taking suboptimal actions with some probability, leading to inter-
esting tradeoffs between “acting optimally” but risking misleading
reports vs. “acting suboptimally” given a truthful report.

5. MARKET SCORING RULES
We provide a brief sketch how to exploit compensation functions

when DM aggregates the forecasts of multiple experts. One natural
means of doing so is to use a market scoring rule (MSR) [11] that
sequentially applies a scoring rule based on how an expert alters the
prior forecast (see Sec. 2). An MSR based on a scoring rule S has
the kth expert pay the k−1st expert for her forecast according to S,
and have the principal pay only final expert for her forecast using
S. Thus, the principal’s total payment is bounded by the maximal
payment to a single expert [11]. When experts are self-interested,
however, difficulties emerge; e.g., Shi et al. [17] show that experts
who can alter the outcome distribution after making a forecast each
require compensation to prevent them from manipulating the distri-
bution to the detriment to the principal. A related form of subsidy
arises in our decision setting.

Following [17], we assume a collection of n experts, each of
whom can provide alter the forecast p exactly once.10 An “obvi-
ous” MSR in our model would simply adopt a proper compensation
rule, and have each expert pay the either the compensation or the
net score due to the expert who provided the incumbent forecast,
and receive her payment from the next expert. If we use compensa-
tion, we run into strategic issues. With a proper compensation rule,
an expert k reports truthfully based on her net score (total utility),
consisting of both compensation and the inherent utility of the de-
cision she induces. In a market setting, k’s proposed decision may
be changed by the next expert’s forecast. This (depending on her
beliefs about other expert opinions) may incentivize k to misreport
in order to maximize her compensation rather than her net score.
Overcoming such strategic issues seems challenging.

Alternatively, each expert might pay the net score due her prede-
cessor. Unfortunately, an arbitrary proper compensation rule may
not pay expert k enough score to “cover her costs” (e.g., if k−1’s
inherent utility is much higher than k’s). However, if we set aside
issues associated with incentive for participation for the moment,
the usual MSR approach can be adapted as follows: we fix a sin-
gle (strictly) convex cost function G for all experts, and define the
compensation rule Ck for expert k using G in the usual way:

Ck(p, xi) = G(p)−G∗(p) · p +G∗i (p)− bki,π(p),

where bk is k’s utility function (bias). If G satisfies strong partic-
ipation for all experts (i.e., if G(xi) ≥ B∗(xi) for all i), then any

10This means we need not explicitly reason about how experts up-
date their beliefs given the forecasts of others.



expert k whose beliefs p[k] differ from the forecast p[k−1] pro-
vided by k−1 will have an expected net score (given p[k]) greater
than her expected payment to k−1 and will maximize her utility
by providing a truthful forecast. In particular, denote k’s expected
payment to k−1 by ρ(k, k−1); then we have:

ρ(k, k−1) = (Hp[k−1] − bk−1π(p[k−1])) · p[k] + bk−1π(p[k−1]) · p[k]

= Hp[k−1] · p[k]

≤ Hp[k] · p[k].

Hence k’s expected payment ρ(k, k−1) is less than her expected net
utility, leaving her with a (positive) net gain of (Hp[k] −Hp[k−1]) ·
p[k]. However, this gain may be smaller than the inherent utility
she derives from the decision induced by k−1, namely, bkπ(p[k−1]) ·
p[k]. Hence this scheme may not incentivize participation. In cases
where DM can force participation, such a scheme can be used; but
in general, the self-subsidizing nature of standard MSRs cannot be
exploited with self-interested experts.

To incentivize participation, DM can subsidize these payments.
In the most extreme case, DM simply pays each displaced expert
her net utility, which removes any incentives to misreport, but at
potentially high cost. In certain circumstances, we can reduce the
DM subsidy to the market by having him pay only the inherent util-
ity bk−1i,π(p[k−1]) (given realized outcome xi) of the displaced expert
k−1, and requiring the displacing expert k to pay the compensa-
tion Hi,p[k−1]. Under certain conditions on the relative utility of
different experts for different decisions, this is sufficient to induce
participation; that is, k’s net gain for participating exceeds her in-
herent utility for the incumbent decision.

For instance, suppose all experts have the same utility function
b (e.g., consider experts in the same division of a company who
are asked to predict the outcome of some event, and have different
estimates, but have aligned interests in other respects). In this case,
k’s net gain for reporting her true beliefs is:

(Hp[k] − (Hp[k−1] − bπ(p[k−1]))) · p[k]

= (Hp[k] −Hp[k−1]) · p[k] + bπ(p[k−1]) · p[k]

≥ bπ(p[k−1]) · p[k].

Hence k’s expected net gain is at least as great as her inherent ex-
pected utility for the decision induced by k−1, and strictly greater if
her beliefs differ from those of k−1. Thus participation is assured.

Indeed, the argument holds even if the utility functions are not
identical: we require only that k’s expected utility for the decision
she displaces is less than the expected utility (given k’s beliefs) to
be offered to her predecessor k−1. A sufficient condition for this is
that bk ≤ bk−1 (pointwise). This suggests that if the DM can elicit
predictions of the experts in a particular order, he should do so by
eliciting forecasts of those with the greatest utility first. Even with
identical expert utility functions, there seems to be no escape from
the requirement that DM subsidize the market at a level that grows
linearly with the number of agents (as in [17]). Further develop-
ment of MSRs in this setting should prove to be quite interesting.

6. CONCLUDING REMARKS
We have presented a model for the analysis of the incentives fac-

ing experts who have a vested interest in the decision taken by the
principal, defining compensation rules that are necessary and suf-
ficient to induce truthful forecasts and ensure participation. The
analysis allows for uncertainty in the knowledge of both parties,
exploiting various forms of robustness or convexity. We also pro-
vided some initial steps toward MSRs based on compensation rules.

Rather than rejecting self-interested experts outright, our model al-
lows the principal to assess the risks of using such experts, and
design compensation to mitigates these risks.

Of course, our model and analysis are just first steps toward a
comprehensive treatment of self-interested experts. Many interest-
ing directions remain, including: the development of effective pro-
cedures for the design of cost functions that minimize utility loss
and compensation when expert utility is unknown; the design and
analysis of more refined market-scoring rules; finer-grained mod-
eling of DM utility loss to guide DM’s elicitation or assessment
effort of expert utility/interests; and analyzing the tradeoffs when
DM accepts restrictions on his possible decisions (potentially act-
ing suboptimally) to reduce expert misreporting.
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